1 /*- 2 * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/endian.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <sys/rman.h> 44 #include <sys/queue.h> 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 #include <sys/sysctl.h> 48 #include <sys/taskqueue.h> 49 50 #include <net/bpf.h> 51 #include <net/if.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_llc.h> 56 #include <net/if_media.h> 57 #include <net/if_types.h> 58 #include <net/if_vlan_var.h> 59 60 #include <netinet/in.h> 61 #include <netinet/in_systm.h> 62 #include <netinet/ip.h> 63 #include <netinet/tcp.h> 64 65 #include <dev/mii/mii.h> 66 #include <dev/mii/miivar.h> 67 68 #include <dev/pci/pcireg.h> 69 #include <dev/pci/pcivar.h> 70 71 #include <machine/atomic.h> 72 #include <machine/bus.h> 73 #include <machine/in_cksum.h> 74 75 #include <dev/alc/if_alcreg.h> 76 #include <dev/alc/if_alcvar.h> 77 78 /* "device miibus" required. See GENERIC if you get errors here. */ 79 #include "miibus_if.h" 80 #undef ALC_USE_CUSTOM_CSUM 81 82 #ifdef ALC_USE_CUSTOM_CSUM 83 #define ALC_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 84 #else 85 #define ALC_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 86 #endif 87 88 MODULE_DEPEND(alc, pci, 1, 1, 1); 89 MODULE_DEPEND(alc, ether, 1, 1, 1); 90 MODULE_DEPEND(alc, miibus, 1, 1, 1); 91 92 /* Tunables. */ 93 static int msi_disable = 0; 94 static int msix_disable = 0; 95 TUNABLE_INT("hw.alc.msi_disable", &msi_disable); 96 TUNABLE_INT("hw.alc.msix_disable", &msix_disable); 97 98 /* 99 * Devices supported by this driver. 100 */ 101 static struct alc_ident alc_ident_table[] = { 102 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131, 9 * 1024, 103 "Atheros AR8131 PCIe Gigabit Ethernet" }, 104 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132, 9 * 1024, 105 "Atheros AR8132 PCIe Fast Ethernet" }, 106 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151, 6 * 1024, 107 "Atheros AR8151 v1.0 PCIe Gigabit Ethernet" }, 108 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151_V2, 6 * 1024, 109 "Atheros AR8151 v2.0 PCIe Gigabit Ethernet" }, 110 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B, 6 * 1024, 111 "Atheros AR8152 v1.1 PCIe Fast Ethernet" }, 112 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B2, 6 * 1024, 113 "Atheros AR8152 v2.0 PCIe Fast Ethernet" }, 114 { 0, 0, 0, NULL} 115 }; 116 117 static void alc_aspm(struct alc_softc *, int); 118 static int alc_attach(device_t); 119 static int alc_check_boundary(struct alc_softc *); 120 static int alc_detach(device_t); 121 static void alc_disable_l0s_l1(struct alc_softc *); 122 static int alc_dma_alloc(struct alc_softc *); 123 static void alc_dma_free(struct alc_softc *); 124 static void alc_dmamap_cb(void *, bus_dma_segment_t *, int, int); 125 static int alc_encap(struct alc_softc *, struct mbuf **); 126 static struct alc_ident * 127 alc_find_ident(device_t); 128 #ifndef __NO_STRICT_ALIGNMENT 129 static struct mbuf * 130 alc_fixup_rx(struct ifnet *, struct mbuf *); 131 #endif 132 static void alc_get_macaddr(struct alc_softc *); 133 static void alc_init(void *); 134 static void alc_init_cmb(struct alc_softc *); 135 static void alc_init_locked(struct alc_softc *); 136 static void alc_init_rr_ring(struct alc_softc *); 137 static int alc_init_rx_ring(struct alc_softc *); 138 static void alc_init_smb(struct alc_softc *); 139 static void alc_init_tx_ring(struct alc_softc *); 140 static void alc_int_task(void *, int); 141 static int alc_intr(void *); 142 static int alc_ioctl(struct ifnet *, u_long, caddr_t); 143 static void alc_mac_config(struct alc_softc *); 144 static int alc_miibus_readreg(device_t, int, int); 145 static void alc_miibus_statchg(device_t); 146 static int alc_miibus_writereg(device_t, int, int, int); 147 static int alc_mediachange(struct ifnet *); 148 static void alc_mediastatus(struct ifnet *, struct ifmediareq *); 149 static int alc_newbuf(struct alc_softc *, struct alc_rxdesc *); 150 static void alc_phy_down(struct alc_softc *); 151 static void alc_phy_reset(struct alc_softc *); 152 static int alc_probe(device_t); 153 static void alc_reset(struct alc_softc *); 154 static int alc_resume(device_t); 155 static void alc_rxeof(struct alc_softc *, struct rx_rdesc *); 156 static int alc_rxintr(struct alc_softc *, int); 157 static void alc_rxfilter(struct alc_softc *); 158 static void alc_rxvlan(struct alc_softc *); 159 static void alc_setlinkspeed(struct alc_softc *); 160 static void alc_setwol(struct alc_softc *); 161 static int alc_shutdown(device_t); 162 static void alc_start(struct ifnet *); 163 static void alc_start_queue(struct alc_softc *); 164 static void alc_stats_clear(struct alc_softc *); 165 static void alc_stats_update(struct alc_softc *); 166 static void alc_stop(struct alc_softc *); 167 static void alc_stop_mac(struct alc_softc *); 168 static void alc_stop_queue(struct alc_softc *); 169 static int alc_suspend(device_t); 170 static void alc_sysctl_node(struct alc_softc *); 171 static void alc_tick(void *); 172 static void alc_tx_task(void *, int); 173 static void alc_txeof(struct alc_softc *); 174 static void alc_watchdog(struct alc_softc *); 175 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 176 static int sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS); 177 static int sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS); 178 179 static device_method_t alc_methods[] = { 180 /* Device interface. */ 181 DEVMETHOD(device_probe, alc_probe), 182 DEVMETHOD(device_attach, alc_attach), 183 DEVMETHOD(device_detach, alc_detach), 184 DEVMETHOD(device_shutdown, alc_shutdown), 185 DEVMETHOD(device_suspend, alc_suspend), 186 DEVMETHOD(device_resume, alc_resume), 187 188 /* MII interface. */ 189 DEVMETHOD(miibus_readreg, alc_miibus_readreg), 190 DEVMETHOD(miibus_writereg, alc_miibus_writereg), 191 DEVMETHOD(miibus_statchg, alc_miibus_statchg), 192 193 { NULL, NULL } 194 }; 195 196 static driver_t alc_driver = { 197 "alc", 198 alc_methods, 199 sizeof(struct alc_softc) 200 }; 201 202 static devclass_t alc_devclass; 203 204 DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, 0, 0); 205 DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, 0, 0); 206 207 static struct resource_spec alc_res_spec_mem[] = { 208 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 209 { -1, 0, 0 } 210 }; 211 212 static struct resource_spec alc_irq_spec_legacy[] = { 213 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 214 { -1, 0, 0 } 215 }; 216 217 static struct resource_spec alc_irq_spec_msi[] = { 218 { SYS_RES_IRQ, 1, RF_ACTIVE }, 219 { -1, 0, 0 } 220 }; 221 222 static struct resource_spec alc_irq_spec_msix[] = { 223 { SYS_RES_IRQ, 1, RF_ACTIVE }, 224 { -1, 0, 0 } 225 }; 226 227 static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 }; 228 229 static int 230 alc_miibus_readreg(device_t dev, int phy, int reg) 231 { 232 struct alc_softc *sc; 233 uint32_t v; 234 int i; 235 236 sc = device_get_softc(dev); 237 238 /* 239 * For AR8132 fast ethernet controller, do not report 1000baseT 240 * capability to mii(4). Even though AR8132 uses the same 241 * model/revision number of F1 gigabit PHY, the PHY has no 242 * ability to establish 1000baseT link. 243 */ 244 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 && 245 reg == MII_EXTSR) 246 return (0); 247 248 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 249 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 250 for (i = ALC_PHY_TIMEOUT; i > 0; i--) { 251 DELAY(5); 252 v = CSR_READ_4(sc, ALC_MDIO); 253 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 254 break; 255 } 256 257 if (i == 0) { 258 device_printf(sc->alc_dev, "phy read timeout : %d\n", reg); 259 return (0); 260 } 261 262 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 263 } 264 265 static int 266 alc_miibus_writereg(device_t dev, int phy, int reg, int val) 267 { 268 struct alc_softc *sc; 269 uint32_t v; 270 int i; 271 272 sc = device_get_softc(dev); 273 274 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 275 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | 276 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 277 for (i = ALC_PHY_TIMEOUT; i > 0; i--) { 278 DELAY(5); 279 v = CSR_READ_4(sc, ALC_MDIO); 280 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 281 break; 282 } 283 284 if (i == 0) 285 device_printf(sc->alc_dev, "phy write timeout : %d\n", reg); 286 287 return (0); 288 } 289 290 static void 291 alc_miibus_statchg(device_t dev) 292 { 293 struct alc_softc *sc; 294 struct mii_data *mii; 295 struct ifnet *ifp; 296 uint32_t reg; 297 298 sc = device_get_softc(dev); 299 300 mii = device_get_softc(sc->alc_miibus); 301 ifp = sc->alc_ifp; 302 if (mii == NULL || ifp == NULL || 303 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 304 return; 305 306 sc->alc_flags &= ~ALC_FLAG_LINK; 307 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 308 (IFM_ACTIVE | IFM_AVALID)) { 309 switch (IFM_SUBTYPE(mii->mii_media_active)) { 310 case IFM_10_T: 311 case IFM_100_TX: 312 sc->alc_flags |= ALC_FLAG_LINK; 313 break; 314 case IFM_1000_T: 315 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0) 316 sc->alc_flags |= ALC_FLAG_LINK; 317 break; 318 default: 319 break; 320 } 321 } 322 alc_stop_queue(sc); 323 /* Stop Rx/Tx MACs. */ 324 alc_stop_mac(sc); 325 326 /* Program MACs with resolved speed/duplex/flow-control. */ 327 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) { 328 alc_start_queue(sc); 329 alc_mac_config(sc); 330 /* Re-enable Tx/Rx MACs. */ 331 reg = CSR_READ_4(sc, ALC_MAC_CFG); 332 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 333 CSR_WRITE_4(sc, ALC_MAC_CFG, reg); 334 alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active)); 335 } 336 } 337 338 static void 339 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 340 { 341 struct alc_softc *sc; 342 struct mii_data *mii; 343 344 sc = ifp->if_softc; 345 ALC_LOCK(sc); 346 if ((ifp->if_flags & IFF_UP) == 0) { 347 ALC_UNLOCK(sc); 348 return; 349 } 350 mii = device_get_softc(sc->alc_miibus); 351 352 mii_pollstat(mii); 353 ALC_UNLOCK(sc); 354 ifmr->ifm_status = mii->mii_media_status; 355 ifmr->ifm_active = mii->mii_media_active; 356 } 357 358 static int 359 alc_mediachange(struct ifnet *ifp) 360 { 361 struct alc_softc *sc; 362 struct mii_data *mii; 363 struct mii_softc *miisc; 364 int error; 365 366 sc = ifp->if_softc; 367 ALC_LOCK(sc); 368 mii = device_get_softc(sc->alc_miibus); 369 if (mii->mii_instance != 0) { 370 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 371 mii_phy_reset(miisc); 372 } 373 error = mii_mediachg(mii); 374 ALC_UNLOCK(sc); 375 376 return (error); 377 } 378 379 static struct alc_ident * 380 alc_find_ident(device_t dev) 381 { 382 struct alc_ident *ident; 383 uint16_t vendor, devid; 384 385 vendor = pci_get_vendor(dev); 386 devid = pci_get_device(dev); 387 for (ident = alc_ident_table; ident->name != NULL; ident++) { 388 if (vendor == ident->vendorid && devid == ident->deviceid) 389 return (ident); 390 } 391 392 return (NULL); 393 } 394 395 static int 396 alc_probe(device_t dev) 397 { 398 struct alc_ident *ident; 399 400 ident = alc_find_ident(dev); 401 if (ident != NULL) { 402 device_set_desc(dev, ident->name); 403 return (BUS_PROBE_DEFAULT); 404 } 405 406 return (ENXIO); 407 } 408 409 static void 410 alc_get_macaddr(struct alc_softc *sc) 411 { 412 uint32_t ea[2], opt; 413 uint16_t val; 414 int eeprom, i; 415 416 eeprom = 0; 417 opt = CSR_READ_4(sc, ALC_OPT_CFG); 418 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 && 419 (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) { 420 /* 421 * EEPROM found, let TWSI reload EEPROM configuration. 422 * This will set ethernet address of controller. 423 */ 424 eeprom++; 425 switch (sc->alc_ident->deviceid) { 426 case DEVICEID_ATHEROS_AR8131: 427 case DEVICEID_ATHEROS_AR8132: 428 if ((opt & OPT_CFG_CLK_ENB) == 0) { 429 opt |= OPT_CFG_CLK_ENB; 430 CSR_WRITE_4(sc, ALC_OPT_CFG, opt); 431 CSR_READ_4(sc, ALC_OPT_CFG); 432 DELAY(1000); 433 } 434 break; 435 case DEVICEID_ATHEROS_AR8151: 436 case DEVICEID_ATHEROS_AR8151_V2: 437 case DEVICEID_ATHEROS_AR8152_B: 438 case DEVICEID_ATHEROS_AR8152_B2: 439 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 440 ALC_MII_DBG_ADDR, 0x00); 441 val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, 442 ALC_MII_DBG_DATA); 443 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 444 ALC_MII_DBG_DATA, val & 0xFF7F); 445 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 446 ALC_MII_DBG_ADDR, 0x3B); 447 val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, 448 ALC_MII_DBG_DATA); 449 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 450 ALC_MII_DBG_DATA, val | 0x0008); 451 DELAY(20); 452 break; 453 } 454 455 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG, 456 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB); 457 CSR_WRITE_4(sc, ALC_WOL_CFG, 0); 458 CSR_READ_4(sc, ALC_WOL_CFG); 459 460 CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) | 461 TWSI_CFG_SW_LD_START); 462 for (i = 100; i > 0; i--) { 463 DELAY(1000); 464 if ((CSR_READ_4(sc, ALC_TWSI_CFG) & 465 TWSI_CFG_SW_LD_START) == 0) 466 break; 467 } 468 if (i == 0) 469 device_printf(sc->alc_dev, 470 "reloading EEPROM timeout!\n"); 471 } else { 472 if (bootverbose) 473 device_printf(sc->alc_dev, "EEPROM not found!\n"); 474 } 475 if (eeprom != 0) { 476 switch (sc->alc_ident->deviceid) { 477 case DEVICEID_ATHEROS_AR8131: 478 case DEVICEID_ATHEROS_AR8132: 479 if ((opt & OPT_CFG_CLK_ENB) != 0) { 480 opt &= ~OPT_CFG_CLK_ENB; 481 CSR_WRITE_4(sc, ALC_OPT_CFG, opt); 482 CSR_READ_4(sc, ALC_OPT_CFG); 483 DELAY(1000); 484 } 485 break; 486 case DEVICEID_ATHEROS_AR8151: 487 case DEVICEID_ATHEROS_AR8151_V2: 488 case DEVICEID_ATHEROS_AR8152_B: 489 case DEVICEID_ATHEROS_AR8152_B2: 490 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 491 ALC_MII_DBG_ADDR, 0x00); 492 val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, 493 ALC_MII_DBG_DATA); 494 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 495 ALC_MII_DBG_DATA, val | 0x0080); 496 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 497 ALC_MII_DBG_ADDR, 0x3B); 498 val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, 499 ALC_MII_DBG_DATA); 500 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 501 ALC_MII_DBG_DATA, val & 0xFFF7); 502 DELAY(20); 503 break; 504 } 505 } 506 507 ea[0] = CSR_READ_4(sc, ALC_PAR0); 508 ea[1] = CSR_READ_4(sc, ALC_PAR1); 509 sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF; 510 sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF; 511 sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF; 512 sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF; 513 sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF; 514 sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF; 515 } 516 517 static void 518 alc_disable_l0s_l1(struct alc_softc *sc) 519 { 520 uint32_t pmcfg; 521 522 /* Another magic from vendor. */ 523 pmcfg = CSR_READ_4(sc, ALC_PM_CFG); 524 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 | 525 PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK | 526 PM_CFG_SERDES_PD_EX_L1); 527 pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB | 528 PM_CFG_SERDES_L1_ENB; 529 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg); 530 } 531 532 static void 533 alc_phy_reset(struct alc_softc *sc) 534 { 535 uint16_t data; 536 537 /* Reset magic from Linux. */ 538 CSR_WRITE_2(sc, ALC_GPHY_CFG, 539 GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET); 540 CSR_READ_2(sc, ALC_GPHY_CFG); 541 DELAY(10 * 1000); 542 543 CSR_WRITE_2(sc, ALC_GPHY_CFG, 544 GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | 545 GPHY_CFG_SEL_ANA_RESET); 546 CSR_READ_2(sc, ALC_GPHY_CFG); 547 DELAY(10 * 1000); 548 549 /* DSP fixup, Vendor magic. */ 550 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) { 551 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 552 ALC_MII_DBG_ADDR, 0x000A); 553 data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, 554 ALC_MII_DBG_DATA); 555 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 556 ALC_MII_DBG_DATA, data & 0xDFFF); 557 } 558 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 || 559 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 || 560 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B || 561 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) { 562 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 563 ALC_MII_DBG_ADDR, 0x003B); 564 data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr, 565 ALC_MII_DBG_DATA); 566 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 567 ALC_MII_DBG_DATA, data & 0xFFF7); 568 DELAY(20 * 1000); 569 } 570 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151) { 571 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 572 ALC_MII_DBG_ADDR, 0x0029); 573 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 574 ALC_MII_DBG_DATA, 0x929D); 575 } 576 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 || 577 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132 || 578 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 || 579 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) { 580 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 581 ALC_MII_DBG_ADDR, 0x0029); 582 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 583 ALC_MII_DBG_DATA, 0xB6DD); 584 } 585 586 /* Load DSP codes, vendor magic. */ 587 data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE | 588 ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK); 589 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 590 ALC_MII_DBG_ADDR, MII_ANA_CFG18); 591 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 592 ALC_MII_DBG_DATA, data); 593 594 data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) | 595 ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL | 596 ANA_SERDES_EN_LCKDT; 597 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 598 ALC_MII_DBG_ADDR, MII_ANA_CFG5); 599 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 600 ALC_MII_DBG_DATA, data); 601 602 data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) & 603 ANA_LONG_CABLE_TH_100_MASK) | 604 ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) & 605 ANA_SHORT_CABLE_TH_100_SHIFT) | 606 ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW; 607 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 608 ALC_MII_DBG_ADDR, MII_ANA_CFG54); 609 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 610 ALC_MII_DBG_DATA, data); 611 612 data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) | 613 ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) | 614 ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) | 615 ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK); 616 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 617 ALC_MII_DBG_ADDR, MII_ANA_CFG4); 618 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 619 ALC_MII_DBG_DATA, data); 620 621 data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) | 622 ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB | 623 ANA_OEN_125M; 624 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 625 ALC_MII_DBG_ADDR, MII_ANA_CFG0); 626 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 627 ALC_MII_DBG_DATA, data); 628 DELAY(1000); 629 } 630 631 static void 632 alc_phy_down(struct alc_softc *sc) 633 { 634 635 switch (sc->alc_ident->deviceid) { 636 case DEVICEID_ATHEROS_AR8151: 637 case DEVICEID_ATHEROS_AR8151_V2: 638 /* 639 * GPHY power down caused more problems on AR8151 v2.0. 640 * When driver is reloaded after GPHY power down, 641 * accesses to PHY/MAC registers hung the system. Only 642 * cold boot recovered from it. I'm not sure whether 643 * AR8151 v1.0 also requires this one though. I don't 644 * have AR8151 v1.0 controller in hand. 645 * The only option left is to isolate the PHY and 646 * initiates power down the PHY which in turn saves 647 * more power when driver is unloaded. 648 */ 649 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 650 MII_BMCR, BMCR_ISO | BMCR_PDOWN); 651 break; 652 default: 653 /* Force PHY down. */ 654 CSR_WRITE_2(sc, ALC_GPHY_CFG, 655 GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | 656 GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ | 657 GPHY_CFG_PWDOWN_HW); 658 DELAY(1000); 659 break; 660 } 661 } 662 663 static void 664 alc_aspm(struct alc_softc *sc, int media) 665 { 666 uint32_t pmcfg; 667 uint16_t linkcfg; 668 669 ALC_LOCK_ASSERT(sc); 670 671 pmcfg = CSR_READ_4(sc, ALC_PM_CFG); 672 if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) == 673 (ALC_FLAG_APS | ALC_FLAG_PCIE)) 674 linkcfg = CSR_READ_2(sc, sc->alc_expcap + 675 PCIR_EXPRESS_LINK_CTL); 676 else 677 linkcfg = 0; 678 pmcfg &= ~PM_CFG_SERDES_PD_EX_L1; 679 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK); 680 pmcfg |= PM_CFG_MAC_ASPM_CHK; 681 pmcfg |= PM_CFG_SERDES_ENB | PM_CFG_RBER_ENB; 682 pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB); 683 684 if ((sc->alc_flags & ALC_FLAG_APS) != 0) { 685 /* Disable extended sync except AR8152 B v1.0 */ 686 linkcfg &= ~0x80; 687 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B && 688 sc->alc_rev == ATHEROS_AR8152_B_V10) 689 linkcfg |= 0x80; 690 CSR_WRITE_2(sc, sc->alc_expcap + PCIR_EXPRESS_LINK_CTL, 691 linkcfg); 692 pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB | 693 PM_CFG_HOTRST); 694 pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT << 695 PM_CFG_L1_ENTRY_TIMER_SHIFT); 696 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK; 697 pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT << 698 PM_CFG_PM_REQ_TIMER_SHIFT); 699 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV; 700 } 701 702 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) { 703 if ((sc->alc_flags & ALC_FLAG_L0S) != 0) 704 pmcfg |= PM_CFG_ASPM_L0S_ENB; 705 if ((sc->alc_flags & ALC_FLAG_L1S) != 0) 706 pmcfg |= PM_CFG_ASPM_L1_ENB; 707 if ((sc->alc_flags & ALC_FLAG_APS) != 0) { 708 if (sc->alc_ident->deviceid == 709 DEVICEID_ATHEROS_AR8152_B) 710 pmcfg &= ~PM_CFG_ASPM_L0S_ENB; 711 pmcfg &= ~(PM_CFG_SERDES_L1_ENB | 712 PM_CFG_SERDES_PLL_L1_ENB | 713 PM_CFG_SERDES_BUDS_RX_L1_ENB); 714 pmcfg |= PM_CFG_CLK_SWH_L1; 715 if (media == IFM_100_TX || media == IFM_1000_T) { 716 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK; 717 switch (sc->alc_ident->deviceid) { 718 case DEVICEID_ATHEROS_AR8152_B: 719 pmcfg |= (7 << 720 PM_CFG_L1_ENTRY_TIMER_SHIFT); 721 break; 722 case DEVICEID_ATHEROS_AR8152_B2: 723 case DEVICEID_ATHEROS_AR8151_V2: 724 pmcfg |= (4 << 725 PM_CFG_L1_ENTRY_TIMER_SHIFT); 726 break; 727 default: 728 pmcfg |= (15 << 729 PM_CFG_L1_ENTRY_TIMER_SHIFT); 730 break; 731 } 732 } 733 } else { 734 pmcfg |= PM_CFG_SERDES_L1_ENB | 735 PM_CFG_SERDES_PLL_L1_ENB | 736 PM_CFG_SERDES_BUDS_RX_L1_ENB; 737 pmcfg &= ~(PM_CFG_CLK_SWH_L1 | 738 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB); 739 } 740 } else { 741 pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB | 742 PM_CFG_SERDES_PLL_L1_ENB); 743 pmcfg |= PM_CFG_CLK_SWH_L1; 744 if ((sc->alc_flags & ALC_FLAG_L1S) != 0) 745 pmcfg |= PM_CFG_ASPM_L1_ENB; 746 } 747 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg); 748 } 749 750 static int 751 alc_attach(device_t dev) 752 { 753 struct alc_softc *sc; 754 struct ifnet *ifp; 755 char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" }; 756 uint16_t burst; 757 int base, error, i, msic, msixc, state; 758 uint32_t cap, ctl, val; 759 760 error = 0; 761 sc = device_get_softc(dev); 762 sc->alc_dev = dev; 763 764 mtx_init(&sc->alc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 765 MTX_DEF); 766 callout_init_mtx(&sc->alc_tick_ch, &sc->alc_mtx, 0); 767 TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc); 768 sc->alc_ident = alc_find_ident(dev); 769 770 /* Map the device. */ 771 pci_enable_busmaster(dev); 772 sc->alc_res_spec = alc_res_spec_mem; 773 sc->alc_irq_spec = alc_irq_spec_legacy; 774 error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res); 775 if (error != 0) { 776 device_printf(dev, "cannot allocate memory resources.\n"); 777 goto fail; 778 } 779 780 /* Set PHY address. */ 781 sc->alc_phyaddr = ALC_PHY_ADDR; 782 783 /* Initialize DMA parameters. */ 784 sc->alc_dma_rd_burst = 0; 785 sc->alc_dma_wr_burst = 0; 786 sc->alc_rcb = DMA_CFG_RCB_64; 787 if (pci_find_extcap(dev, PCIY_EXPRESS, &base) == 0) { 788 sc->alc_flags |= ALC_FLAG_PCIE; 789 sc->alc_expcap = base; 790 burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL); 791 sc->alc_dma_rd_burst = 792 (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12; 793 sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5; 794 if (bootverbose) { 795 device_printf(dev, "Read request size : %u bytes.\n", 796 alc_dma_burst[sc->alc_dma_rd_burst]); 797 device_printf(dev, "TLP payload size : %u bytes.\n", 798 alc_dma_burst[sc->alc_dma_wr_burst]); 799 } 800 if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024) 801 sc->alc_dma_rd_burst = 3; 802 if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024) 803 sc->alc_dma_wr_burst = 3; 804 /* Clear data link and flow-control protocol error. */ 805 val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV); 806 val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP); 807 CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val); 808 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG, 809 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB); 810 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, 811 CSR_READ_4(sc, ALC_PCIE_PHYMISC) | 812 PCIE_PHYMISC_FORCE_RCV_DET); 813 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B && 814 sc->alc_rev == ATHEROS_AR8152_B_V10) { 815 val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2); 816 val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK | 817 PCIE_PHYMISC2_SERDES_TH_MASK); 818 val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT; 819 val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT; 820 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val); 821 } 822 /* Disable ASPM L0S and L1. */ 823 cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP); 824 if ((cap & PCIM_LINK_CAP_ASPM) != 0) { 825 ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL); 826 if ((ctl & 0x08) != 0) 827 sc->alc_rcb = DMA_CFG_RCB_128; 828 if (bootverbose) 829 device_printf(dev, "RCB %u bytes\n", 830 sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128); 831 state = ctl & 0x03; 832 if (state & 0x01) 833 sc->alc_flags |= ALC_FLAG_L0S; 834 if (state & 0x02) 835 sc->alc_flags |= ALC_FLAG_L1S; 836 if (bootverbose) 837 device_printf(sc->alc_dev, "ASPM %s %s\n", 838 aspm_state[state], 839 state == 0 ? "disabled" : "enabled"); 840 alc_disable_l0s_l1(sc); 841 } else { 842 if (bootverbose) 843 device_printf(sc->alc_dev, 844 "no ASPM support\n"); 845 } 846 } 847 848 /* Reset PHY. */ 849 alc_phy_reset(sc); 850 851 /* Reset the ethernet controller. */ 852 alc_reset(sc); 853 854 /* 855 * One odd thing is AR8132 uses the same PHY hardware(F1 856 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports 857 * the PHY supports 1000Mbps but that's not true. The PHY 858 * used in AR8132 can't establish gigabit link even if it 859 * shows the same PHY model/revision number of AR8131. 860 */ 861 switch (sc->alc_ident->deviceid) { 862 case DEVICEID_ATHEROS_AR8152_B: 863 case DEVICEID_ATHEROS_AR8152_B2: 864 sc->alc_flags |= ALC_FLAG_APS; 865 /* FALLTHROUGH */ 866 case DEVICEID_ATHEROS_AR8132: 867 sc->alc_flags |= ALC_FLAG_FASTETHER; 868 break; 869 case DEVICEID_ATHEROS_AR8151: 870 case DEVICEID_ATHEROS_AR8151_V2: 871 sc->alc_flags |= ALC_FLAG_APS; 872 /* FALLTHROUGH */ 873 default: 874 break; 875 } 876 sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO; 877 878 /* 879 * It seems that AR813x/AR815x has silicon bug for SMB. In 880 * addition, Atheros said that enabling SMB wouldn't improve 881 * performance. However I think it's bad to access lots of 882 * registers to extract MAC statistics. 883 */ 884 sc->alc_flags |= ALC_FLAG_SMB_BUG; 885 /* 886 * Don't use Tx CMB. It is known to have silicon bug. 887 */ 888 sc->alc_flags |= ALC_FLAG_CMB_BUG; 889 sc->alc_rev = pci_get_revid(dev); 890 sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >> 891 MASTER_CHIP_REV_SHIFT; 892 if (bootverbose) { 893 device_printf(dev, "PCI device revision : 0x%04x\n", 894 sc->alc_rev); 895 device_printf(dev, "Chip id/revision : 0x%04x\n", 896 sc->alc_chip_rev); 897 } 898 device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", 899 CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8, 900 CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8); 901 902 /* Allocate IRQ resources. */ 903 msixc = pci_msix_count(dev); 904 msic = pci_msi_count(dev); 905 if (bootverbose) { 906 device_printf(dev, "MSIX count : %d\n", msixc); 907 device_printf(dev, "MSI count : %d\n", msic); 908 } 909 /* Prefer MSIX over MSI. */ 910 if (msix_disable == 0 || msi_disable == 0) { 911 if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES && 912 pci_alloc_msix(dev, &msixc) == 0) { 913 if (msic == ALC_MSIX_MESSAGES) { 914 device_printf(dev, 915 "Using %d MSIX message(s).\n", msixc); 916 sc->alc_flags |= ALC_FLAG_MSIX; 917 sc->alc_irq_spec = alc_irq_spec_msix; 918 } else 919 pci_release_msi(dev); 920 } 921 if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 && 922 msic == ALC_MSI_MESSAGES && 923 pci_alloc_msi(dev, &msic) == 0) { 924 if (msic == ALC_MSI_MESSAGES) { 925 device_printf(dev, 926 "Using %d MSI message(s).\n", msic); 927 sc->alc_flags |= ALC_FLAG_MSI; 928 sc->alc_irq_spec = alc_irq_spec_msi; 929 } else 930 pci_release_msi(dev); 931 } 932 } 933 934 error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq); 935 if (error != 0) { 936 device_printf(dev, "cannot allocate IRQ resources.\n"); 937 goto fail; 938 } 939 940 /* Create device sysctl node. */ 941 alc_sysctl_node(sc); 942 943 if ((error = alc_dma_alloc(sc) != 0)) 944 goto fail; 945 946 /* Load station address. */ 947 alc_get_macaddr(sc); 948 949 ifp = sc->alc_ifp = if_alloc(IFT_ETHER); 950 if (ifp == NULL) { 951 device_printf(dev, "cannot allocate ifnet structure.\n"); 952 error = ENXIO; 953 goto fail; 954 } 955 956 ifp->if_softc = sc; 957 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 958 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 959 ifp->if_ioctl = alc_ioctl; 960 ifp->if_start = alc_start; 961 ifp->if_init = alc_init; 962 ifp->if_snd.ifq_drv_maxlen = ALC_TX_RING_CNT - 1; 963 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 964 IFQ_SET_READY(&ifp->if_snd); 965 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4; 966 ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO; 967 if (pci_find_extcap(dev, PCIY_PMG, &base) == 0) { 968 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST; 969 sc->alc_flags |= ALC_FLAG_PM; 970 sc->alc_pmcap = base; 971 } 972 ifp->if_capenable = ifp->if_capabilities; 973 974 /* Set up MII bus. */ 975 error = mii_attach(dev, &sc->alc_miibus, ifp, alc_mediachange, 976 alc_mediastatus, BMSR_DEFCAPMASK, sc->alc_phyaddr, MII_OFFSET_ANY, 977 0); 978 if (error != 0) { 979 device_printf(dev, "attaching PHYs failed\n"); 980 goto fail; 981 } 982 983 ether_ifattach(ifp, sc->alc_eaddr); 984 985 /* VLAN capability setup. */ 986 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | 987 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 988 ifp->if_capenable = ifp->if_capabilities; 989 /* 990 * XXX 991 * It seems enabling Tx checksum offloading makes more trouble. 992 * Sometimes the controller does not receive any frames when 993 * Tx checksum offloading is enabled. I'm not sure whether this 994 * is a bug in Tx checksum offloading logic or I got broken 995 * sample boards. To safety, don't enable Tx checksum offloading 996 * by default but give chance to users to toggle it if they know 997 * their controllers work without problems. 998 */ 999 ifp->if_capenable &= ~IFCAP_TXCSUM; 1000 ifp->if_hwassist &= ~ALC_CSUM_FEATURES; 1001 1002 /* Tell the upper layer(s) we support long frames. */ 1003 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 1004 1005 /* Create local taskq. */ 1006 TASK_INIT(&sc->alc_tx_task, 1, alc_tx_task, ifp); 1007 sc->alc_tq = taskqueue_create_fast("alc_taskq", M_WAITOK, 1008 taskqueue_thread_enqueue, &sc->alc_tq); 1009 if (sc->alc_tq == NULL) { 1010 device_printf(dev, "could not create taskqueue.\n"); 1011 ether_ifdetach(ifp); 1012 error = ENXIO; 1013 goto fail; 1014 } 1015 taskqueue_start_threads(&sc->alc_tq, 1, PI_NET, "%s taskq", 1016 device_get_nameunit(sc->alc_dev)); 1017 1018 if ((sc->alc_flags & ALC_FLAG_MSIX) != 0) 1019 msic = ALC_MSIX_MESSAGES; 1020 else if ((sc->alc_flags & ALC_FLAG_MSI) != 0) 1021 msic = ALC_MSI_MESSAGES; 1022 else 1023 msic = 1; 1024 for (i = 0; i < msic; i++) { 1025 error = bus_setup_intr(dev, sc->alc_irq[i], 1026 INTR_TYPE_NET | INTR_MPSAFE, alc_intr, NULL, sc, 1027 &sc->alc_intrhand[i]); 1028 if (error != 0) 1029 break; 1030 } 1031 if (error != 0) { 1032 device_printf(dev, "could not set up interrupt handler.\n"); 1033 taskqueue_free(sc->alc_tq); 1034 sc->alc_tq = NULL; 1035 ether_ifdetach(ifp); 1036 goto fail; 1037 } 1038 1039 fail: 1040 if (error != 0) 1041 alc_detach(dev); 1042 1043 return (error); 1044 } 1045 1046 static int 1047 alc_detach(device_t dev) 1048 { 1049 struct alc_softc *sc; 1050 struct ifnet *ifp; 1051 int i, msic; 1052 1053 sc = device_get_softc(dev); 1054 1055 ifp = sc->alc_ifp; 1056 if (device_is_attached(dev)) { 1057 ALC_LOCK(sc); 1058 sc->alc_flags |= ALC_FLAG_DETACH; 1059 alc_stop(sc); 1060 ALC_UNLOCK(sc); 1061 callout_drain(&sc->alc_tick_ch); 1062 taskqueue_drain(sc->alc_tq, &sc->alc_int_task); 1063 taskqueue_drain(sc->alc_tq, &sc->alc_tx_task); 1064 ether_ifdetach(ifp); 1065 } 1066 1067 if (sc->alc_tq != NULL) { 1068 taskqueue_drain(sc->alc_tq, &sc->alc_int_task); 1069 taskqueue_free(sc->alc_tq); 1070 sc->alc_tq = NULL; 1071 } 1072 1073 if (sc->alc_miibus != NULL) { 1074 device_delete_child(dev, sc->alc_miibus); 1075 sc->alc_miibus = NULL; 1076 } 1077 bus_generic_detach(dev); 1078 alc_dma_free(sc); 1079 1080 if (ifp != NULL) { 1081 if_free(ifp); 1082 sc->alc_ifp = NULL; 1083 } 1084 1085 if ((sc->alc_flags & ALC_FLAG_MSIX) != 0) 1086 msic = ALC_MSIX_MESSAGES; 1087 else if ((sc->alc_flags & ALC_FLAG_MSI) != 0) 1088 msic = ALC_MSI_MESSAGES; 1089 else 1090 msic = 1; 1091 for (i = 0; i < msic; i++) { 1092 if (sc->alc_intrhand[i] != NULL) { 1093 bus_teardown_intr(dev, sc->alc_irq[i], 1094 sc->alc_intrhand[i]); 1095 sc->alc_intrhand[i] = NULL; 1096 } 1097 } 1098 if (sc->alc_res[0] != NULL) 1099 alc_phy_down(sc); 1100 bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq); 1101 if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0) 1102 pci_release_msi(dev); 1103 bus_release_resources(dev, sc->alc_res_spec, sc->alc_res); 1104 mtx_destroy(&sc->alc_mtx); 1105 1106 return (0); 1107 } 1108 1109 #define ALC_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 1110 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 1111 #define ALC_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 1112 SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 1113 1114 static void 1115 alc_sysctl_node(struct alc_softc *sc) 1116 { 1117 struct sysctl_ctx_list *ctx; 1118 struct sysctl_oid_list *child, *parent; 1119 struct sysctl_oid *tree; 1120 struct alc_hw_stats *stats; 1121 int error; 1122 1123 stats = &sc->alc_stats; 1124 ctx = device_get_sysctl_ctx(sc->alc_dev); 1125 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->alc_dev)); 1126 1127 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod", 1128 CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0, 1129 sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation"); 1130 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod", 1131 CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0, 1132 sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation"); 1133 /* Pull in device tunables. */ 1134 sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT; 1135 error = resource_int_value(device_get_name(sc->alc_dev), 1136 device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod); 1137 if (error == 0) { 1138 if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN || 1139 sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) { 1140 device_printf(sc->alc_dev, "int_rx_mod value out of " 1141 "range; using default: %d\n", 1142 ALC_IM_RX_TIMER_DEFAULT); 1143 sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT; 1144 } 1145 } 1146 sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT; 1147 error = resource_int_value(device_get_name(sc->alc_dev), 1148 device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod); 1149 if (error == 0) { 1150 if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN || 1151 sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) { 1152 device_printf(sc->alc_dev, "int_tx_mod value out of " 1153 "range; using default: %d\n", 1154 ALC_IM_TX_TIMER_DEFAULT); 1155 sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT; 1156 } 1157 } 1158 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit", 1159 CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0, 1160 sysctl_hw_alc_proc_limit, "I", 1161 "max number of Rx events to process"); 1162 /* Pull in device tunables. */ 1163 sc->alc_process_limit = ALC_PROC_DEFAULT; 1164 error = resource_int_value(device_get_name(sc->alc_dev), 1165 device_get_unit(sc->alc_dev), "process_limit", 1166 &sc->alc_process_limit); 1167 if (error == 0) { 1168 if (sc->alc_process_limit < ALC_PROC_MIN || 1169 sc->alc_process_limit > ALC_PROC_MAX) { 1170 device_printf(sc->alc_dev, 1171 "process_limit value out of range; " 1172 "using default: %d\n", ALC_PROC_DEFAULT); 1173 sc->alc_process_limit = ALC_PROC_DEFAULT; 1174 } 1175 } 1176 1177 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 1178 NULL, "ALC statistics"); 1179 parent = SYSCTL_CHILDREN(tree); 1180 1181 /* Rx statistics. */ 1182 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 1183 NULL, "Rx MAC statistics"); 1184 child = SYSCTL_CHILDREN(tree); 1185 ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 1186 &stats->rx_frames, "Good frames"); 1187 ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", 1188 &stats->rx_bcast_frames, "Good broadcast frames"); 1189 ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", 1190 &stats->rx_mcast_frames, "Good multicast frames"); 1191 ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 1192 &stats->rx_pause_frames, "Pause control frames"); 1193 ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames", 1194 &stats->rx_control_frames, "Control frames"); 1195 ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", 1196 &stats->rx_crcerrs, "CRC errors"); 1197 ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 1198 &stats->rx_lenerrs, "Frames with length mismatched"); 1199 ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets", 1200 &stats->rx_bytes, "Good octets"); 1201 ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", 1202 &stats->rx_bcast_bytes, "Good broadcast octets"); 1203 ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", 1204 &stats->rx_mcast_bytes, "Good multicast octets"); 1205 ALC_SYSCTL_STAT_ADD32(ctx, child, "runts", 1206 &stats->rx_runts, "Too short frames"); 1207 ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments", 1208 &stats->rx_fragments, "Fragmented frames"); 1209 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 1210 &stats->rx_pkts_64, "64 bytes frames"); 1211 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 1212 &stats->rx_pkts_65_127, "65 to 127 bytes frames"); 1213 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 1214 &stats->rx_pkts_128_255, "128 to 255 bytes frames"); 1215 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 1216 &stats->rx_pkts_256_511, "256 to 511 bytes frames"); 1217 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 1218 &stats->rx_pkts_512_1023, "512 to 1023 bytes frames"); 1219 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 1220 &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames"); 1221 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 1222 &stats->rx_pkts_1519_max, "1519 to max frames"); 1223 ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", 1224 &stats->rx_pkts_truncated, "Truncated frames due to MTU size"); 1225 ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", 1226 &stats->rx_fifo_oflows, "FIFO overflows"); 1227 ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs", 1228 &stats->rx_rrs_errs, "Return status write-back errors"); 1229 ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs", 1230 &stats->rx_alignerrs, "Alignment errors"); 1231 ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered", 1232 &stats->rx_pkts_filtered, 1233 "Frames dropped due to address filtering"); 1234 1235 /* Tx statistics. */ 1236 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 1237 NULL, "Tx MAC statistics"); 1238 child = SYSCTL_CHILDREN(tree); 1239 ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 1240 &stats->tx_frames, "Good frames"); 1241 ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", 1242 &stats->tx_bcast_frames, "Good broadcast frames"); 1243 ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", 1244 &stats->tx_mcast_frames, "Good multicast frames"); 1245 ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", 1246 &stats->tx_pause_frames, "Pause control frames"); 1247 ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames", 1248 &stats->tx_control_frames, "Control frames"); 1249 ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers", 1250 &stats->tx_excess_defer, "Frames with excessive derferrals"); 1251 ALC_SYSCTL_STAT_ADD32(ctx, child, "defers", 1252 &stats->tx_excess_defer, "Frames with derferrals"); 1253 ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets", 1254 &stats->tx_bytes, "Good octets"); 1255 ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets", 1256 &stats->tx_bcast_bytes, "Good broadcast octets"); 1257 ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets", 1258 &stats->tx_mcast_bytes, "Good multicast octets"); 1259 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64", 1260 &stats->tx_pkts_64, "64 bytes frames"); 1261 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127", 1262 &stats->tx_pkts_65_127, "65 to 127 bytes frames"); 1263 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255", 1264 &stats->tx_pkts_128_255, "128 to 255 bytes frames"); 1265 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511", 1266 &stats->tx_pkts_256_511, "256 to 511 bytes frames"); 1267 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023", 1268 &stats->tx_pkts_512_1023, "512 to 1023 bytes frames"); 1269 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518", 1270 &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames"); 1271 ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max", 1272 &stats->tx_pkts_1519_max, "1519 to max frames"); 1273 ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls", 1274 &stats->tx_single_colls, "Single collisions"); 1275 ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls", 1276 &stats->tx_multi_colls, "Multiple collisions"); 1277 ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls", 1278 &stats->tx_late_colls, "Late collisions"); 1279 ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls", 1280 &stats->tx_excess_colls, "Excessive collisions"); 1281 ALC_SYSCTL_STAT_ADD32(ctx, child, "abort", 1282 &stats->tx_abort, "Aborted frames due to Excessive collisions"); 1283 ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns", 1284 &stats->tx_underrun, "FIFO underruns"); 1285 ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns", 1286 &stats->tx_desc_underrun, "Descriptor write-back errors"); 1287 ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs", 1288 &stats->tx_lenerrs, "Frames with length mismatched"); 1289 ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs", 1290 &stats->tx_pkts_truncated, "Truncated frames due to MTU size"); 1291 } 1292 1293 #undef ALC_SYSCTL_STAT_ADD32 1294 #undef ALC_SYSCTL_STAT_ADD64 1295 1296 struct alc_dmamap_arg { 1297 bus_addr_t alc_busaddr; 1298 }; 1299 1300 static void 1301 alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1302 { 1303 struct alc_dmamap_arg *ctx; 1304 1305 if (error != 0) 1306 return; 1307 1308 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1309 1310 ctx = (struct alc_dmamap_arg *)arg; 1311 ctx->alc_busaddr = segs[0].ds_addr; 1312 } 1313 1314 /* 1315 * Normal and high Tx descriptors shares single Tx high address. 1316 * Four Rx descriptor/return rings and CMB shares the same Rx 1317 * high address. 1318 */ 1319 static int 1320 alc_check_boundary(struct alc_softc *sc) 1321 { 1322 bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end; 1323 1324 rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ; 1325 rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ; 1326 cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ; 1327 tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ; 1328 1329 /* 4GB boundary crossing is not allowed. */ 1330 if ((ALC_ADDR_HI(rx_ring_end) != 1331 ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) || 1332 (ALC_ADDR_HI(rr_ring_end) != 1333 ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) || 1334 (ALC_ADDR_HI(cmb_end) != 1335 ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) || 1336 (ALC_ADDR_HI(tx_ring_end) != 1337 ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr))) 1338 return (EFBIG); 1339 /* 1340 * Make sure Rx return descriptor/Rx descriptor/CMB use 1341 * the same high address. 1342 */ 1343 if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) || 1344 (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end))) 1345 return (EFBIG); 1346 1347 return (0); 1348 } 1349 1350 static int 1351 alc_dma_alloc(struct alc_softc *sc) 1352 { 1353 struct alc_txdesc *txd; 1354 struct alc_rxdesc *rxd; 1355 bus_addr_t lowaddr; 1356 struct alc_dmamap_arg ctx; 1357 int error, i; 1358 1359 lowaddr = BUS_SPACE_MAXADDR; 1360 again: 1361 /* Create parent DMA tag. */ 1362 error = bus_dma_tag_create( 1363 bus_get_dma_tag(sc->alc_dev), /* parent */ 1364 1, 0, /* alignment, boundary */ 1365 lowaddr, /* lowaddr */ 1366 BUS_SPACE_MAXADDR, /* highaddr */ 1367 NULL, NULL, /* filter, filterarg */ 1368 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1369 0, /* nsegments */ 1370 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1371 0, /* flags */ 1372 NULL, NULL, /* lockfunc, lockarg */ 1373 &sc->alc_cdata.alc_parent_tag); 1374 if (error != 0) { 1375 device_printf(sc->alc_dev, 1376 "could not create parent DMA tag.\n"); 1377 goto fail; 1378 } 1379 1380 /* Create DMA tag for Tx descriptor ring. */ 1381 error = bus_dma_tag_create( 1382 sc->alc_cdata.alc_parent_tag, /* parent */ 1383 ALC_TX_RING_ALIGN, 0, /* alignment, boundary */ 1384 BUS_SPACE_MAXADDR, /* lowaddr */ 1385 BUS_SPACE_MAXADDR, /* highaddr */ 1386 NULL, NULL, /* filter, filterarg */ 1387 ALC_TX_RING_SZ, /* maxsize */ 1388 1, /* nsegments */ 1389 ALC_TX_RING_SZ, /* maxsegsize */ 1390 0, /* flags */ 1391 NULL, NULL, /* lockfunc, lockarg */ 1392 &sc->alc_cdata.alc_tx_ring_tag); 1393 if (error != 0) { 1394 device_printf(sc->alc_dev, 1395 "could not create Tx ring DMA tag.\n"); 1396 goto fail; 1397 } 1398 1399 /* Create DMA tag for Rx free descriptor ring. */ 1400 error = bus_dma_tag_create( 1401 sc->alc_cdata.alc_parent_tag, /* parent */ 1402 ALC_RX_RING_ALIGN, 0, /* alignment, boundary */ 1403 BUS_SPACE_MAXADDR, /* lowaddr */ 1404 BUS_SPACE_MAXADDR, /* highaddr */ 1405 NULL, NULL, /* filter, filterarg */ 1406 ALC_RX_RING_SZ, /* maxsize */ 1407 1, /* nsegments */ 1408 ALC_RX_RING_SZ, /* maxsegsize */ 1409 0, /* flags */ 1410 NULL, NULL, /* lockfunc, lockarg */ 1411 &sc->alc_cdata.alc_rx_ring_tag); 1412 if (error != 0) { 1413 device_printf(sc->alc_dev, 1414 "could not create Rx ring DMA tag.\n"); 1415 goto fail; 1416 } 1417 /* Create DMA tag for Rx return descriptor ring. */ 1418 error = bus_dma_tag_create( 1419 sc->alc_cdata.alc_parent_tag, /* parent */ 1420 ALC_RR_RING_ALIGN, 0, /* alignment, boundary */ 1421 BUS_SPACE_MAXADDR, /* lowaddr */ 1422 BUS_SPACE_MAXADDR, /* highaddr */ 1423 NULL, NULL, /* filter, filterarg */ 1424 ALC_RR_RING_SZ, /* maxsize */ 1425 1, /* nsegments */ 1426 ALC_RR_RING_SZ, /* maxsegsize */ 1427 0, /* flags */ 1428 NULL, NULL, /* lockfunc, lockarg */ 1429 &sc->alc_cdata.alc_rr_ring_tag); 1430 if (error != 0) { 1431 device_printf(sc->alc_dev, 1432 "could not create Rx return ring DMA tag.\n"); 1433 goto fail; 1434 } 1435 1436 /* Create DMA tag for coalescing message block. */ 1437 error = bus_dma_tag_create( 1438 sc->alc_cdata.alc_parent_tag, /* parent */ 1439 ALC_CMB_ALIGN, 0, /* alignment, boundary */ 1440 BUS_SPACE_MAXADDR, /* lowaddr */ 1441 BUS_SPACE_MAXADDR, /* highaddr */ 1442 NULL, NULL, /* filter, filterarg */ 1443 ALC_CMB_SZ, /* maxsize */ 1444 1, /* nsegments */ 1445 ALC_CMB_SZ, /* maxsegsize */ 1446 0, /* flags */ 1447 NULL, NULL, /* lockfunc, lockarg */ 1448 &sc->alc_cdata.alc_cmb_tag); 1449 if (error != 0) { 1450 device_printf(sc->alc_dev, 1451 "could not create CMB DMA tag.\n"); 1452 goto fail; 1453 } 1454 /* Create DMA tag for status message block. */ 1455 error = bus_dma_tag_create( 1456 sc->alc_cdata.alc_parent_tag, /* parent */ 1457 ALC_SMB_ALIGN, 0, /* alignment, boundary */ 1458 BUS_SPACE_MAXADDR, /* lowaddr */ 1459 BUS_SPACE_MAXADDR, /* highaddr */ 1460 NULL, NULL, /* filter, filterarg */ 1461 ALC_SMB_SZ, /* maxsize */ 1462 1, /* nsegments */ 1463 ALC_SMB_SZ, /* maxsegsize */ 1464 0, /* flags */ 1465 NULL, NULL, /* lockfunc, lockarg */ 1466 &sc->alc_cdata.alc_smb_tag); 1467 if (error != 0) { 1468 device_printf(sc->alc_dev, 1469 "could not create SMB DMA tag.\n"); 1470 goto fail; 1471 } 1472 1473 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 1474 error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag, 1475 (void **)&sc->alc_rdata.alc_tx_ring, 1476 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1477 &sc->alc_cdata.alc_tx_ring_map); 1478 if (error != 0) { 1479 device_printf(sc->alc_dev, 1480 "could not allocate DMA'able memory for Tx ring.\n"); 1481 goto fail; 1482 } 1483 ctx.alc_busaddr = 0; 1484 error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag, 1485 sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring, 1486 ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0); 1487 if (error != 0 || ctx.alc_busaddr == 0) { 1488 device_printf(sc->alc_dev, 1489 "could not load DMA'able memory for Tx ring.\n"); 1490 goto fail; 1491 } 1492 sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr; 1493 1494 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 1495 error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag, 1496 (void **)&sc->alc_rdata.alc_rx_ring, 1497 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1498 &sc->alc_cdata.alc_rx_ring_map); 1499 if (error != 0) { 1500 device_printf(sc->alc_dev, 1501 "could not allocate DMA'able memory for Rx ring.\n"); 1502 goto fail; 1503 } 1504 ctx.alc_busaddr = 0; 1505 error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag, 1506 sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring, 1507 ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0); 1508 if (error != 0 || ctx.alc_busaddr == 0) { 1509 device_printf(sc->alc_dev, 1510 "could not load DMA'able memory for Rx ring.\n"); 1511 goto fail; 1512 } 1513 sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr; 1514 1515 /* Allocate DMA'able memory and load the DMA map for Rx return ring. */ 1516 error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag, 1517 (void **)&sc->alc_rdata.alc_rr_ring, 1518 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1519 &sc->alc_cdata.alc_rr_ring_map); 1520 if (error != 0) { 1521 device_printf(sc->alc_dev, 1522 "could not allocate DMA'able memory for Rx return ring.\n"); 1523 goto fail; 1524 } 1525 ctx.alc_busaddr = 0; 1526 error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag, 1527 sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring, 1528 ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0); 1529 if (error != 0 || ctx.alc_busaddr == 0) { 1530 device_printf(sc->alc_dev, 1531 "could not load DMA'able memory for Tx ring.\n"); 1532 goto fail; 1533 } 1534 sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr; 1535 1536 /* Allocate DMA'able memory and load the DMA map for CMB. */ 1537 error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag, 1538 (void **)&sc->alc_rdata.alc_cmb, 1539 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1540 &sc->alc_cdata.alc_cmb_map); 1541 if (error != 0) { 1542 device_printf(sc->alc_dev, 1543 "could not allocate DMA'able memory for CMB.\n"); 1544 goto fail; 1545 } 1546 ctx.alc_busaddr = 0; 1547 error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag, 1548 sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb, 1549 ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0); 1550 if (error != 0 || ctx.alc_busaddr == 0) { 1551 device_printf(sc->alc_dev, 1552 "could not load DMA'able memory for CMB.\n"); 1553 goto fail; 1554 } 1555 sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr; 1556 1557 /* Allocate DMA'able memory and load the DMA map for SMB. */ 1558 error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag, 1559 (void **)&sc->alc_rdata.alc_smb, 1560 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1561 &sc->alc_cdata.alc_smb_map); 1562 if (error != 0) { 1563 device_printf(sc->alc_dev, 1564 "could not allocate DMA'able memory for SMB.\n"); 1565 goto fail; 1566 } 1567 ctx.alc_busaddr = 0; 1568 error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag, 1569 sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb, 1570 ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0); 1571 if (error != 0 || ctx.alc_busaddr == 0) { 1572 device_printf(sc->alc_dev, 1573 "could not load DMA'able memory for CMB.\n"); 1574 goto fail; 1575 } 1576 sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr; 1577 1578 /* Make sure we've not crossed 4GB boundary. */ 1579 if (lowaddr != BUS_SPACE_MAXADDR_32BIT && 1580 (error = alc_check_boundary(sc)) != 0) { 1581 device_printf(sc->alc_dev, "4GB boundary crossed, " 1582 "switching to 32bit DMA addressing mode.\n"); 1583 alc_dma_free(sc); 1584 /* 1585 * Limit max allowable DMA address space to 32bit 1586 * and try again. 1587 */ 1588 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1589 goto again; 1590 } 1591 1592 /* 1593 * Create Tx buffer parent tag. 1594 * AR813x/AR815x allows 64bit DMA addressing of Tx/Rx buffers 1595 * so it needs separate parent DMA tag as parent DMA address 1596 * space could be restricted to be within 32bit address space 1597 * by 4GB boundary crossing. 1598 */ 1599 error = bus_dma_tag_create( 1600 bus_get_dma_tag(sc->alc_dev), /* parent */ 1601 1, 0, /* alignment, boundary */ 1602 BUS_SPACE_MAXADDR, /* lowaddr */ 1603 BUS_SPACE_MAXADDR, /* highaddr */ 1604 NULL, NULL, /* filter, filterarg */ 1605 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1606 0, /* nsegments */ 1607 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1608 0, /* flags */ 1609 NULL, NULL, /* lockfunc, lockarg */ 1610 &sc->alc_cdata.alc_buffer_tag); 1611 if (error != 0) { 1612 device_printf(sc->alc_dev, 1613 "could not create parent buffer DMA tag.\n"); 1614 goto fail; 1615 } 1616 1617 /* Create DMA tag for Tx buffers. */ 1618 error = bus_dma_tag_create( 1619 sc->alc_cdata.alc_buffer_tag, /* parent */ 1620 1, 0, /* alignment, boundary */ 1621 BUS_SPACE_MAXADDR, /* lowaddr */ 1622 BUS_SPACE_MAXADDR, /* highaddr */ 1623 NULL, NULL, /* filter, filterarg */ 1624 ALC_TSO_MAXSIZE, /* maxsize */ 1625 ALC_MAXTXSEGS, /* nsegments */ 1626 ALC_TSO_MAXSEGSIZE, /* maxsegsize */ 1627 0, /* flags */ 1628 NULL, NULL, /* lockfunc, lockarg */ 1629 &sc->alc_cdata.alc_tx_tag); 1630 if (error != 0) { 1631 device_printf(sc->alc_dev, "could not create Tx DMA tag.\n"); 1632 goto fail; 1633 } 1634 1635 /* Create DMA tag for Rx buffers. */ 1636 error = bus_dma_tag_create( 1637 sc->alc_cdata.alc_buffer_tag, /* parent */ 1638 ALC_RX_BUF_ALIGN, 0, /* alignment, boundary */ 1639 BUS_SPACE_MAXADDR, /* lowaddr */ 1640 BUS_SPACE_MAXADDR, /* highaddr */ 1641 NULL, NULL, /* filter, filterarg */ 1642 MCLBYTES, /* maxsize */ 1643 1, /* nsegments */ 1644 MCLBYTES, /* maxsegsize */ 1645 0, /* flags */ 1646 NULL, NULL, /* lockfunc, lockarg */ 1647 &sc->alc_cdata.alc_rx_tag); 1648 if (error != 0) { 1649 device_printf(sc->alc_dev, "could not create Rx DMA tag.\n"); 1650 goto fail; 1651 } 1652 /* Create DMA maps for Tx buffers. */ 1653 for (i = 0; i < ALC_TX_RING_CNT; i++) { 1654 txd = &sc->alc_cdata.alc_txdesc[i]; 1655 txd->tx_m = NULL; 1656 txd->tx_dmamap = NULL; 1657 error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag, 0, 1658 &txd->tx_dmamap); 1659 if (error != 0) { 1660 device_printf(sc->alc_dev, 1661 "could not create Tx dmamap.\n"); 1662 goto fail; 1663 } 1664 } 1665 /* Create DMA maps for Rx buffers. */ 1666 if ((error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0, 1667 &sc->alc_cdata.alc_rx_sparemap)) != 0) { 1668 device_printf(sc->alc_dev, 1669 "could not create spare Rx dmamap.\n"); 1670 goto fail; 1671 } 1672 for (i = 0; i < ALC_RX_RING_CNT; i++) { 1673 rxd = &sc->alc_cdata.alc_rxdesc[i]; 1674 rxd->rx_m = NULL; 1675 rxd->rx_dmamap = NULL; 1676 error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0, 1677 &rxd->rx_dmamap); 1678 if (error != 0) { 1679 device_printf(sc->alc_dev, 1680 "could not create Rx dmamap.\n"); 1681 goto fail; 1682 } 1683 } 1684 1685 fail: 1686 return (error); 1687 } 1688 1689 static void 1690 alc_dma_free(struct alc_softc *sc) 1691 { 1692 struct alc_txdesc *txd; 1693 struct alc_rxdesc *rxd; 1694 int i; 1695 1696 /* Tx buffers. */ 1697 if (sc->alc_cdata.alc_tx_tag != NULL) { 1698 for (i = 0; i < ALC_TX_RING_CNT; i++) { 1699 txd = &sc->alc_cdata.alc_txdesc[i]; 1700 if (txd->tx_dmamap != NULL) { 1701 bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag, 1702 txd->tx_dmamap); 1703 txd->tx_dmamap = NULL; 1704 } 1705 } 1706 bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag); 1707 sc->alc_cdata.alc_tx_tag = NULL; 1708 } 1709 /* Rx buffers */ 1710 if (sc->alc_cdata.alc_rx_tag != NULL) { 1711 for (i = 0; i < ALC_RX_RING_CNT; i++) { 1712 rxd = &sc->alc_cdata.alc_rxdesc[i]; 1713 if (rxd->rx_dmamap != NULL) { 1714 bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag, 1715 rxd->rx_dmamap); 1716 rxd->rx_dmamap = NULL; 1717 } 1718 } 1719 if (sc->alc_cdata.alc_rx_sparemap != NULL) { 1720 bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag, 1721 sc->alc_cdata.alc_rx_sparemap); 1722 sc->alc_cdata.alc_rx_sparemap = NULL; 1723 } 1724 bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag); 1725 sc->alc_cdata.alc_rx_tag = NULL; 1726 } 1727 /* Tx descriptor ring. */ 1728 if (sc->alc_cdata.alc_tx_ring_tag != NULL) { 1729 if (sc->alc_cdata.alc_tx_ring_map != NULL) 1730 bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag, 1731 sc->alc_cdata.alc_tx_ring_map); 1732 if (sc->alc_cdata.alc_tx_ring_map != NULL && 1733 sc->alc_rdata.alc_tx_ring != NULL) 1734 bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag, 1735 sc->alc_rdata.alc_tx_ring, 1736 sc->alc_cdata.alc_tx_ring_map); 1737 sc->alc_rdata.alc_tx_ring = NULL; 1738 sc->alc_cdata.alc_tx_ring_map = NULL; 1739 bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag); 1740 sc->alc_cdata.alc_tx_ring_tag = NULL; 1741 } 1742 /* Rx ring. */ 1743 if (sc->alc_cdata.alc_rx_ring_tag != NULL) { 1744 if (sc->alc_cdata.alc_rx_ring_map != NULL) 1745 bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag, 1746 sc->alc_cdata.alc_rx_ring_map); 1747 if (sc->alc_cdata.alc_rx_ring_map != NULL && 1748 sc->alc_rdata.alc_rx_ring != NULL) 1749 bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag, 1750 sc->alc_rdata.alc_rx_ring, 1751 sc->alc_cdata.alc_rx_ring_map); 1752 sc->alc_rdata.alc_rx_ring = NULL; 1753 sc->alc_cdata.alc_rx_ring_map = NULL; 1754 bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag); 1755 sc->alc_cdata.alc_rx_ring_tag = NULL; 1756 } 1757 /* Rx return ring. */ 1758 if (sc->alc_cdata.alc_rr_ring_tag != NULL) { 1759 if (sc->alc_cdata.alc_rr_ring_map != NULL) 1760 bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag, 1761 sc->alc_cdata.alc_rr_ring_map); 1762 if (sc->alc_cdata.alc_rr_ring_map != NULL && 1763 sc->alc_rdata.alc_rr_ring != NULL) 1764 bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag, 1765 sc->alc_rdata.alc_rr_ring, 1766 sc->alc_cdata.alc_rr_ring_map); 1767 sc->alc_rdata.alc_rr_ring = NULL; 1768 sc->alc_cdata.alc_rr_ring_map = NULL; 1769 bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag); 1770 sc->alc_cdata.alc_rr_ring_tag = NULL; 1771 } 1772 /* CMB block */ 1773 if (sc->alc_cdata.alc_cmb_tag != NULL) { 1774 if (sc->alc_cdata.alc_cmb_map != NULL) 1775 bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag, 1776 sc->alc_cdata.alc_cmb_map); 1777 if (sc->alc_cdata.alc_cmb_map != NULL && 1778 sc->alc_rdata.alc_cmb != NULL) 1779 bus_dmamem_free(sc->alc_cdata.alc_cmb_tag, 1780 sc->alc_rdata.alc_cmb, 1781 sc->alc_cdata.alc_cmb_map); 1782 sc->alc_rdata.alc_cmb = NULL; 1783 sc->alc_cdata.alc_cmb_map = NULL; 1784 bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag); 1785 sc->alc_cdata.alc_cmb_tag = NULL; 1786 } 1787 /* SMB block */ 1788 if (sc->alc_cdata.alc_smb_tag != NULL) { 1789 if (sc->alc_cdata.alc_smb_map != NULL) 1790 bus_dmamap_unload(sc->alc_cdata.alc_smb_tag, 1791 sc->alc_cdata.alc_smb_map); 1792 if (sc->alc_cdata.alc_smb_map != NULL && 1793 sc->alc_rdata.alc_smb != NULL) 1794 bus_dmamem_free(sc->alc_cdata.alc_smb_tag, 1795 sc->alc_rdata.alc_smb, 1796 sc->alc_cdata.alc_smb_map); 1797 sc->alc_rdata.alc_smb = NULL; 1798 sc->alc_cdata.alc_smb_map = NULL; 1799 bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag); 1800 sc->alc_cdata.alc_smb_tag = NULL; 1801 } 1802 if (sc->alc_cdata.alc_buffer_tag != NULL) { 1803 bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag); 1804 sc->alc_cdata.alc_buffer_tag = NULL; 1805 } 1806 if (sc->alc_cdata.alc_parent_tag != NULL) { 1807 bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag); 1808 sc->alc_cdata.alc_parent_tag = NULL; 1809 } 1810 } 1811 1812 static int 1813 alc_shutdown(device_t dev) 1814 { 1815 1816 return (alc_suspend(dev)); 1817 } 1818 1819 /* 1820 * Note, this driver resets the link speed to 10/100Mbps by 1821 * restarting auto-negotiation in suspend/shutdown phase but we 1822 * don't know whether that auto-negotiation would succeed or not 1823 * as driver has no control after powering off/suspend operation. 1824 * If the renegotiation fail WOL may not work. Running at 1Gbps 1825 * will draw more power than 375mA at 3.3V which is specified in 1826 * PCI specification and that would result in complete 1827 * shutdowning power to ethernet controller. 1828 * 1829 * TODO 1830 * Save current negotiated media speed/duplex/flow-control to 1831 * softc and restore the same link again after resuming. PHY 1832 * handling such as power down/resetting to 100Mbps may be better 1833 * handled in suspend method in phy driver. 1834 */ 1835 static void 1836 alc_setlinkspeed(struct alc_softc *sc) 1837 { 1838 struct mii_data *mii; 1839 int aneg, i; 1840 1841 mii = device_get_softc(sc->alc_miibus); 1842 mii_pollstat(mii); 1843 aneg = 0; 1844 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1845 (IFM_ACTIVE | IFM_AVALID)) { 1846 switch IFM_SUBTYPE(mii->mii_media_active) { 1847 case IFM_10_T: 1848 case IFM_100_TX: 1849 return; 1850 case IFM_1000_T: 1851 aneg++; 1852 break; 1853 default: 1854 break; 1855 } 1856 } 1857 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0); 1858 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 1859 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 1860 alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, 1861 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 1862 DELAY(1000); 1863 if (aneg != 0) { 1864 /* 1865 * Poll link state until alc(4) get a 10/100Mbps link. 1866 */ 1867 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1868 mii_pollstat(mii); 1869 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) 1870 == (IFM_ACTIVE | IFM_AVALID)) { 1871 switch (IFM_SUBTYPE( 1872 mii->mii_media_active)) { 1873 case IFM_10_T: 1874 case IFM_100_TX: 1875 alc_mac_config(sc); 1876 return; 1877 default: 1878 break; 1879 } 1880 } 1881 ALC_UNLOCK(sc); 1882 pause("alclnk", hz); 1883 ALC_LOCK(sc); 1884 } 1885 if (i == MII_ANEGTICKS_GIGE) 1886 device_printf(sc->alc_dev, 1887 "establishing a link failed, WOL may not work!"); 1888 } 1889 /* 1890 * No link, force MAC to have 100Mbps, full-duplex link. 1891 * This is the last resort and may/may not work. 1892 */ 1893 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1894 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1895 alc_mac_config(sc); 1896 } 1897 1898 static void 1899 alc_setwol(struct alc_softc *sc) 1900 { 1901 struct ifnet *ifp; 1902 uint32_t reg, pmcs; 1903 uint16_t pmstat; 1904 1905 ALC_LOCK_ASSERT(sc); 1906 1907 alc_disable_l0s_l1(sc); 1908 ifp = sc->alc_ifp; 1909 if ((sc->alc_flags & ALC_FLAG_PM) == 0) { 1910 /* Disable WOL. */ 1911 CSR_WRITE_4(sc, ALC_WOL_CFG, 0); 1912 reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC); 1913 reg |= PCIE_PHYMISC_FORCE_RCV_DET; 1914 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg); 1915 /* Force PHY power down. */ 1916 alc_phy_down(sc); 1917 CSR_WRITE_4(sc, ALC_MASTER_CFG, 1918 CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS); 1919 return; 1920 } 1921 1922 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1923 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0) 1924 alc_setlinkspeed(sc); 1925 CSR_WRITE_4(sc, ALC_MASTER_CFG, 1926 CSR_READ_4(sc, ALC_MASTER_CFG) & ~MASTER_CLK_SEL_DIS); 1927 } 1928 1929 pmcs = 0; 1930 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 1931 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB; 1932 CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs); 1933 reg = CSR_READ_4(sc, ALC_MAC_CFG); 1934 reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI | 1935 MAC_CFG_BCAST); 1936 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 1937 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST; 1938 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1939 reg |= MAC_CFG_RX_ENB; 1940 CSR_WRITE_4(sc, ALC_MAC_CFG, reg); 1941 1942 reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC); 1943 reg |= PCIE_PHYMISC_FORCE_RCV_DET; 1944 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg); 1945 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 1946 /* WOL disabled, PHY power down. */ 1947 alc_phy_down(sc); 1948 CSR_WRITE_4(sc, ALC_MASTER_CFG, 1949 CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS); 1950 } 1951 /* Request PME. */ 1952 pmstat = pci_read_config(sc->alc_dev, 1953 sc->alc_pmcap + PCIR_POWER_STATUS, 2); 1954 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1955 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1956 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1957 pci_write_config(sc->alc_dev, 1958 sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2); 1959 } 1960 1961 static int 1962 alc_suspend(device_t dev) 1963 { 1964 struct alc_softc *sc; 1965 1966 sc = device_get_softc(dev); 1967 1968 ALC_LOCK(sc); 1969 alc_stop(sc); 1970 alc_setwol(sc); 1971 ALC_UNLOCK(sc); 1972 1973 return (0); 1974 } 1975 1976 static int 1977 alc_resume(device_t dev) 1978 { 1979 struct alc_softc *sc; 1980 struct ifnet *ifp; 1981 uint16_t pmstat; 1982 1983 sc = device_get_softc(dev); 1984 1985 ALC_LOCK(sc); 1986 if ((sc->alc_flags & ALC_FLAG_PM) != 0) { 1987 /* Disable PME and clear PME status. */ 1988 pmstat = pci_read_config(sc->alc_dev, 1989 sc->alc_pmcap + PCIR_POWER_STATUS, 2); 1990 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { 1991 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1992 pci_write_config(sc->alc_dev, 1993 sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2); 1994 } 1995 } 1996 /* Reset PHY. */ 1997 alc_phy_reset(sc); 1998 ifp = sc->alc_ifp; 1999 if ((ifp->if_flags & IFF_UP) != 0) { 2000 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2001 alc_init_locked(sc); 2002 } 2003 ALC_UNLOCK(sc); 2004 2005 return (0); 2006 } 2007 2008 static int 2009 alc_encap(struct alc_softc *sc, struct mbuf **m_head) 2010 { 2011 struct alc_txdesc *txd, *txd_last; 2012 struct tx_desc *desc; 2013 struct mbuf *m; 2014 struct ip *ip; 2015 struct tcphdr *tcp; 2016 bus_dma_segment_t txsegs[ALC_MAXTXSEGS]; 2017 bus_dmamap_t map; 2018 uint32_t cflags, hdrlen, ip_off, poff, vtag; 2019 int error, idx, nsegs, prod; 2020 2021 ALC_LOCK_ASSERT(sc); 2022 2023 M_ASSERTPKTHDR((*m_head)); 2024 2025 m = *m_head; 2026 ip = NULL; 2027 tcp = NULL; 2028 ip_off = poff = 0; 2029 if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) { 2030 /* 2031 * AR813x/AR815x requires offset of TCP/UDP header in its 2032 * Tx descriptor to perform Tx checksum offloading. TSO 2033 * also requires TCP header offset and modification of 2034 * IP/TCP header. This kind of operation takes many CPU 2035 * cycles on FreeBSD so fast host CPU is required to get 2036 * smooth TSO performance. 2037 */ 2038 struct ether_header *eh; 2039 2040 if (M_WRITABLE(m) == 0) { 2041 /* Get a writable copy. */ 2042 m = m_dup(*m_head, M_DONTWAIT); 2043 /* Release original mbufs. */ 2044 m_freem(*m_head); 2045 if (m == NULL) { 2046 *m_head = NULL; 2047 return (ENOBUFS); 2048 } 2049 *m_head = m; 2050 } 2051 2052 ip_off = sizeof(struct ether_header); 2053 m = m_pullup(m, ip_off); 2054 if (m == NULL) { 2055 *m_head = NULL; 2056 return (ENOBUFS); 2057 } 2058 eh = mtod(m, struct ether_header *); 2059 /* 2060 * Check if hardware VLAN insertion is off. 2061 * Additional check for LLC/SNAP frame? 2062 */ 2063 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 2064 ip_off = sizeof(struct ether_vlan_header); 2065 m = m_pullup(m, ip_off); 2066 if (m == NULL) { 2067 *m_head = NULL; 2068 return (ENOBUFS); 2069 } 2070 } 2071 m = m_pullup(m, ip_off + sizeof(struct ip)); 2072 if (m == NULL) { 2073 *m_head = NULL; 2074 return (ENOBUFS); 2075 } 2076 ip = (struct ip *)(mtod(m, char *) + ip_off); 2077 poff = ip_off + (ip->ip_hl << 2); 2078 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2079 m = m_pullup(m, poff + sizeof(struct tcphdr)); 2080 if (m == NULL) { 2081 *m_head = NULL; 2082 return (ENOBUFS); 2083 } 2084 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 2085 m = m_pullup(m, poff + (tcp->th_off << 2)); 2086 if (m == NULL) { 2087 *m_head = NULL; 2088 return (ENOBUFS); 2089 } 2090 /* 2091 * Due to strict adherence of Microsoft NDIS 2092 * Large Send specification, hardware expects 2093 * a pseudo TCP checksum inserted by upper 2094 * stack. Unfortunately the pseudo TCP 2095 * checksum that NDIS refers to does not include 2096 * TCP payload length so driver should recompute 2097 * the pseudo checksum here. Hopefully this 2098 * wouldn't be much burden on modern CPUs. 2099 * 2100 * Reset IP checksum and recompute TCP pseudo 2101 * checksum as NDIS specification said. 2102 */ 2103 ip = (struct ip *)(mtod(m, char *) + ip_off); 2104 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 2105 ip->ip_sum = 0; 2106 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 2107 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 2108 } 2109 *m_head = m; 2110 } 2111 2112 prod = sc->alc_cdata.alc_tx_prod; 2113 txd = &sc->alc_cdata.alc_txdesc[prod]; 2114 txd_last = txd; 2115 map = txd->tx_dmamap; 2116 2117 error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map, 2118 *m_head, txsegs, &nsegs, 0); 2119 if (error == EFBIG) { 2120 m = m_collapse(*m_head, M_DONTWAIT, ALC_MAXTXSEGS); 2121 if (m == NULL) { 2122 m_freem(*m_head); 2123 *m_head = NULL; 2124 return (ENOMEM); 2125 } 2126 *m_head = m; 2127 error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map, 2128 *m_head, txsegs, &nsegs, 0); 2129 if (error != 0) { 2130 m_freem(*m_head); 2131 *m_head = NULL; 2132 return (error); 2133 } 2134 } else if (error != 0) 2135 return (error); 2136 if (nsegs == 0) { 2137 m_freem(*m_head); 2138 *m_head = NULL; 2139 return (EIO); 2140 } 2141 2142 /* Check descriptor overrun. */ 2143 if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) { 2144 bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map); 2145 return (ENOBUFS); 2146 } 2147 bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE); 2148 2149 m = *m_head; 2150 cflags = TD_ETHERNET; 2151 vtag = 0; 2152 desc = NULL; 2153 idx = 0; 2154 /* Configure VLAN hardware tag insertion. */ 2155 if ((m->m_flags & M_VLANTAG) != 0) { 2156 vtag = htons(m->m_pkthdr.ether_vtag); 2157 vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK; 2158 cflags |= TD_INS_VLAN_TAG; 2159 } 2160 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2161 /* Request TSO and set MSS. */ 2162 cflags |= TD_TSO | TD_TSO_DESCV1; 2163 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) & 2164 TD_MSS_MASK; 2165 /* Set TCP header offset. */ 2166 cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) & 2167 TD_TCPHDR_OFFSET_MASK; 2168 /* 2169 * AR813x/AR815x requires the first buffer should 2170 * only hold IP/TCP header data. Payload should 2171 * be handled in other descriptors. 2172 */ 2173 hdrlen = poff + (tcp->th_off << 2); 2174 desc = &sc->alc_rdata.alc_tx_ring[prod]; 2175 desc->len = htole32(TX_BYTES(hdrlen | vtag)); 2176 desc->flags = htole32(cflags); 2177 desc->addr = htole64(txsegs[0].ds_addr); 2178 sc->alc_cdata.alc_tx_cnt++; 2179 ALC_DESC_INC(prod, ALC_TX_RING_CNT); 2180 if (m->m_len - hdrlen > 0) { 2181 /* Handle remaining payload of the first fragment. */ 2182 desc = &sc->alc_rdata.alc_tx_ring[prod]; 2183 desc->len = htole32(TX_BYTES((m->m_len - hdrlen) | 2184 vtag)); 2185 desc->flags = htole32(cflags); 2186 desc->addr = htole64(txsegs[0].ds_addr + hdrlen); 2187 sc->alc_cdata.alc_tx_cnt++; 2188 ALC_DESC_INC(prod, ALC_TX_RING_CNT); 2189 } 2190 /* Handle remaining fragments. */ 2191 idx = 1; 2192 } else if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) { 2193 /* Configure Tx checksum offload. */ 2194 #ifdef ALC_USE_CUSTOM_CSUM 2195 cflags |= TD_CUSTOM_CSUM; 2196 /* Set checksum start offset. */ 2197 cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) & 2198 TD_PLOAD_OFFSET_MASK; 2199 /* Set checksum insertion position of TCP/UDP. */ 2200 cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) << 2201 TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK; 2202 #else 2203 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) 2204 cflags |= TD_IPCSUM; 2205 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 2206 cflags |= TD_TCPCSUM; 2207 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 2208 cflags |= TD_UDPCSUM; 2209 /* Set TCP/UDP header offset. */ 2210 cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) & 2211 TD_L4HDR_OFFSET_MASK; 2212 #endif 2213 } 2214 for (; idx < nsegs; idx++) { 2215 desc = &sc->alc_rdata.alc_tx_ring[prod]; 2216 desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag); 2217 desc->flags = htole32(cflags); 2218 desc->addr = htole64(txsegs[idx].ds_addr); 2219 sc->alc_cdata.alc_tx_cnt++; 2220 ALC_DESC_INC(prod, ALC_TX_RING_CNT); 2221 } 2222 /* Update producer index. */ 2223 sc->alc_cdata.alc_tx_prod = prod; 2224 2225 /* Finally set EOP on the last descriptor. */ 2226 prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT; 2227 desc = &sc->alc_rdata.alc_tx_ring[prod]; 2228 desc->flags |= htole32(TD_EOP); 2229 2230 /* Swap dmamap of the first and the last. */ 2231 txd = &sc->alc_cdata.alc_txdesc[prod]; 2232 map = txd_last->tx_dmamap; 2233 txd_last->tx_dmamap = txd->tx_dmamap; 2234 txd->tx_dmamap = map; 2235 txd->tx_m = m; 2236 2237 return (0); 2238 } 2239 2240 static void 2241 alc_tx_task(void *arg, int pending) 2242 { 2243 struct ifnet *ifp; 2244 2245 ifp = (struct ifnet *)arg; 2246 alc_start(ifp); 2247 } 2248 2249 static void 2250 alc_start(struct ifnet *ifp) 2251 { 2252 struct alc_softc *sc; 2253 struct mbuf *m_head; 2254 int enq; 2255 2256 sc = ifp->if_softc; 2257 2258 ALC_LOCK(sc); 2259 2260 /* Reclaim transmitted frames. */ 2261 if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT) 2262 alc_txeof(sc); 2263 2264 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2265 IFF_DRV_RUNNING || (sc->alc_flags & ALC_FLAG_LINK) == 0) { 2266 ALC_UNLOCK(sc); 2267 return; 2268 } 2269 2270 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 2271 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2272 if (m_head == NULL) 2273 break; 2274 /* 2275 * Pack the data into the transmit ring. If we 2276 * don't have room, set the OACTIVE flag and wait 2277 * for the NIC to drain the ring. 2278 */ 2279 if (alc_encap(sc, &m_head)) { 2280 if (m_head == NULL) 2281 break; 2282 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2283 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2284 break; 2285 } 2286 2287 enq++; 2288 /* 2289 * If there's a BPF listener, bounce a copy of this frame 2290 * to him. 2291 */ 2292 ETHER_BPF_MTAP(ifp, m_head); 2293 } 2294 2295 if (enq > 0) { 2296 /* Sync descriptors. */ 2297 bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag, 2298 sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE); 2299 /* Kick. Assume we're using normal Tx priority queue. */ 2300 CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX, 2301 (sc->alc_cdata.alc_tx_prod << 2302 MBOX_TD_PROD_LO_IDX_SHIFT) & 2303 MBOX_TD_PROD_LO_IDX_MASK); 2304 /* Set a timeout in case the chip goes out to lunch. */ 2305 sc->alc_watchdog_timer = ALC_TX_TIMEOUT; 2306 } 2307 2308 ALC_UNLOCK(sc); 2309 } 2310 2311 static void 2312 alc_watchdog(struct alc_softc *sc) 2313 { 2314 struct ifnet *ifp; 2315 2316 ALC_LOCK_ASSERT(sc); 2317 2318 if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer) 2319 return; 2320 2321 ifp = sc->alc_ifp; 2322 if ((sc->alc_flags & ALC_FLAG_LINK) == 0) { 2323 if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n"); 2324 ifp->if_oerrors++; 2325 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2326 alc_init_locked(sc); 2327 return; 2328 } 2329 if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n"); 2330 ifp->if_oerrors++; 2331 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2332 alc_init_locked(sc); 2333 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2334 taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task); 2335 } 2336 2337 static int 2338 alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2339 { 2340 struct alc_softc *sc; 2341 struct ifreq *ifr; 2342 struct mii_data *mii; 2343 int error, mask; 2344 2345 sc = ifp->if_softc; 2346 ifr = (struct ifreq *)data; 2347 error = 0; 2348 switch (cmd) { 2349 case SIOCSIFMTU: 2350 if (ifr->ifr_mtu < ETHERMIN || 2351 ifr->ifr_mtu > (sc->alc_ident->max_framelen - 2352 sizeof(struct ether_vlan_header) - ETHER_CRC_LEN) || 2353 ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 && 2354 ifr->ifr_mtu > ETHERMTU)) 2355 error = EINVAL; 2356 else if (ifp->if_mtu != ifr->ifr_mtu) { 2357 ALC_LOCK(sc); 2358 ifp->if_mtu = ifr->ifr_mtu; 2359 /* AR813x/AR815x has 13 bits MSS field. */ 2360 if (ifp->if_mtu > ALC_TSO_MTU && 2361 (ifp->if_capenable & IFCAP_TSO4) != 0) { 2362 ifp->if_capenable &= ~IFCAP_TSO4; 2363 ifp->if_hwassist &= ~CSUM_TSO; 2364 VLAN_CAPABILITIES(ifp); 2365 } 2366 ALC_UNLOCK(sc); 2367 } 2368 break; 2369 case SIOCSIFFLAGS: 2370 ALC_LOCK(sc); 2371 if ((ifp->if_flags & IFF_UP) != 0) { 2372 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 2373 ((ifp->if_flags ^ sc->alc_if_flags) & 2374 (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2375 alc_rxfilter(sc); 2376 else if ((sc->alc_flags & ALC_FLAG_DETACH) == 0) 2377 alc_init_locked(sc); 2378 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2379 alc_stop(sc); 2380 sc->alc_if_flags = ifp->if_flags; 2381 ALC_UNLOCK(sc); 2382 break; 2383 case SIOCADDMULTI: 2384 case SIOCDELMULTI: 2385 ALC_LOCK(sc); 2386 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2387 alc_rxfilter(sc); 2388 ALC_UNLOCK(sc); 2389 break; 2390 case SIOCSIFMEDIA: 2391 case SIOCGIFMEDIA: 2392 mii = device_get_softc(sc->alc_miibus); 2393 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 2394 break; 2395 case SIOCSIFCAP: 2396 ALC_LOCK(sc); 2397 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2398 if ((mask & IFCAP_TXCSUM) != 0 && 2399 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 2400 ifp->if_capenable ^= IFCAP_TXCSUM; 2401 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 2402 ifp->if_hwassist |= ALC_CSUM_FEATURES; 2403 else 2404 ifp->if_hwassist &= ~ALC_CSUM_FEATURES; 2405 } 2406 if ((mask & IFCAP_TSO4) != 0 && 2407 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 2408 ifp->if_capenable ^= IFCAP_TSO4; 2409 if ((ifp->if_capenable & IFCAP_TSO4) != 0) { 2410 /* AR813x/AR815x has 13 bits MSS field. */ 2411 if (ifp->if_mtu > ALC_TSO_MTU) { 2412 ifp->if_capenable &= ~IFCAP_TSO4; 2413 ifp->if_hwassist &= ~CSUM_TSO; 2414 } else 2415 ifp->if_hwassist |= CSUM_TSO; 2416 } else 2417 ifp->if_hwassist &= ~CSUM_TSO; 2418 } 2419 if ((mask & IFCAP_WOL_MCAST) != 0 && 2420 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) 2421 ifp->if_capenable ^= IFCAP_WOL_MCAST; 2422 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2423 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 2424 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2425 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2426 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 2427 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2428 alc_rxvlan(sc); 2429 } 2430 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2431 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 2432 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2433 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2434 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 2435 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2436 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 2437 ifp->if_capenable &= 2438 ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM); 2439 ALC_UNLOCK(sc); 2440 VLAN_CAPABILITIES(ifp); 2441 break; 2442 default: 2443 error = ether_ioctl(ifp, cmd, data); 2444 break; 2445 } 2446 2447 return (error); 2448 } 2449 2450 static void 2451 alc_mac_config(struct alc_softc *sc) 2452 { 2453 struct mii_data *mii; 2454 uint32_t reg; 2455 2456 ALC_LOCK_ASSERT(sc); 2457 2458 mii = device_get_softc(sc->alc_miibus); 2459 reg = CSR_READ_4(sc, ALC_MAC_CFG); 2460 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC | 2461 MAC_CFG_SPEED_MASK); 2462 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 || 2463 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 || 2464 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) 2465 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW; 2466 /* Reprogram MAC with resolved speed/duplex. */ 2467 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2468 case IFM_10_T: 2469 case IFM_100_TX: 2470 reg |= MAC_CFG_SPEED_10_100; 2471 break; 2472 case IFM_1000_T: 2473 reg |= MAC_CFG_SPEED_1000; 2474 break; 2475 } 2476 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 2477 reg |= MAC_CFG_FULL_DUPLEX; 2478 #ifdef notyet 2479 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 2480 reg |= MAC_CFG_TX_FC; 2481 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 2482 reg |= MAC_CFG_RX_FC; 2483 #endif 2484 } 2485 CSR_WRITE_4(sc, ALC_MAC_CFG, reg); 2486 } 2487 2488 static void 2489 alc_stats_clear(struct alc_softc *sc) 2490 { 2491 struct smb sb, *smb; 2492 uint32_t *reg; 2493 int i; 2494 2495 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) { 2496 bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, 2497 sc->alc_cdata.alc_smb_map, 2498 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2499 smb = sc->alc_rdata.alc_smb; 2500 /* Update done, clear. */ 2501 smb->updated = 0; 2502 bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, 2503 sc->alc_cdata.alc_smb_map, 2504 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2505 } else { 2506 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; 2507 reg++) { 2508 CSR_READ_4(sc, ALC_RX_MIB_BASE + i); 2509 i += sizeof(uint32_t); 2510 } 2511 /* Read Tx statistics. */ 2512 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; 2513 reg++) { 2514 CSR_READ_4(sc, ALC_TX_MIB_BASE + i); 2515 i += sizeof(uint32_t); 2516 } 2517 } 2518 } 2519 2520 static void 2521 alc_stats_update(struct alc_softc *sc) 2522 { 2523 struct alc_hw_stats *stat; 2524 struct smb sb, *smb; 2525 struct ifnet *ifp; 2526 uint32_t *reg; 2527 int i; 2528 2529 ALC_LOCK_ASSERT(sc); 2530 2531 ifp = sc->alc_ifp; 2532 stat = &sc->alc_stats; 2533 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) { 2534 bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, 2535 sc->alc_cdata.alc_smb_map, 2536 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2537 smb = sc->alc_rdata.alc_smb; 2538 if (smb->updated == 0) 2539 return; 2540 } else { 2541 smb = &sb; 2542 /* Read Rx statistics. */ 2543 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; 2544 reg++) { 2545 *reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i); 2546 i += sizeof(uint32_t); 2547 } 2548 /* Read Tx statistics. */ 2549 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; 2550 reg++) { 2551 *reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i); 2552 i += sizeof(uint32_t); 2553 } 2554 } 2555 2556 /* Rx stats. */ 2557 stat->rx_frames += smb->rx_frames; 2558 stat->rx_bcast_frames += smb->rx_bcast_frames; 2559 stat->rx_mcast_frames += smb->rx_mcast_frames; 2560 stat->rx_pause_frames += smb->rx_pause_frames; 2561 stat->rx_control_frames += smb->rx_control_frames; 2562 stat->rx_crcerrs += smb->rx_crcerrs; 2563 stat->rx_lenerrs += smb->rx_lenerrs; 2564 stat->rx_bytes += smb->rx_bytes; 2565 stat->rx_runts += smb->rx_runts; 2566 stat->rx_fragments += smb->rx_fragments; 2567 stat->rx_pkts_64 += smb->rx_pkts_64; 2568 stat->rx_pkts_65_127 += smb->rx_pkts_65_127; 2569 stat->rx_pkts_128_255 += smb->rx_pkts_128_255; 2570 stat->rx_pkts_256_511 += smb->rx_pkts_256_511; 2571 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; 2572 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; 2573 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; 2574 stat->rx_pkts_truncated += smb->rx_pkts_truncated; 2575 stat->rx_fifo_oflows += smb->rx_fifo_oflows; 2576 stat->rx_rrs_errs += smb->rx_rrs_errs; 2577 stat->rx_alignerrs += smb->rx_alignerrs; 2578 stat->rx_bcast_bytes += smb->rx_bcast_bytes; 2579 stat->rx_mcast_bytes += smb->rx_mcast_bytes; 2580 stat->rx_pkts_filtered += smb->rx_pkts_filtered; 2581 2582 /* Tx stats. */ 2583 stat->tx_frames += smb->tx_frames; 2584 stat->tx_bcast_frames += smb->tx_bcast_frames; 2585 stat->tx_mcast_frames += smb->tx_mcast_frames; 2586 stat->tx_pause_frames += smb->tx_pause_frames; 2587 stat->tx_excess_defer += smb->tx_excess_defer; 2588 stat->tx_control_frames += smb->tx_control_frames; 2589 stat->tx_deferred += smb->tx_deferred; 2590 stat->tx_bytes += smb->tx_bytes; 2591 stat->tx_pkts_64 += smb->tx_pkts_64; 2592 stat->tx_pkts_65_127 += smb->tx_pkts_65_127; 2593 stat->tx_pkts_128_255 += smb->tx_pkts_128_255; 2594 stat->tx_pkts_256_511 += smb->tx_pkts_256_511; 2595 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; 2596 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; 2597 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; 2598 stat->tx_single_colls += smb->tx_single_colls; 2599 stat->tx_multi_colls += smb->tx_multi_colls; 2600 stat->tx_late_colls += smb->tx_late_colls; 2601 stat->tx_excess_colls += smb->tx_excess_colls; 2602 stat->tx_abort += smb->tx_abort; 2603 stat->tx_underrun += smb->tx_underrun; 2604 stat->tx_desc_underrun += smb->tx_desc_underrun; 2605 stat->tx_lenerrs += smb->tx_lenerrs; 2606 stat->tx_pkts_truncated += smb->tx_pkts_truncated; 2607 stat->tx_bcast_bytes += smb->tx_bcast_bytes; 2608 stat->tx_mcast_bytes += smb->tx_mcast_bytes; 2609 2610 /* Update counters in ifnet. */ 2611 ifp->if_opackets += smb->tx_frames; 2612 2613 ifp->if_collisions += smb->tx_single_colls + 2614 smb->tx_multi_colls * 2 + smb->tx_late_colls + 2615 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT; 2616 2617 /* 2618 * XXX 2619 * tx_pkts_truncated counter looks suspicious. It constantly 2620 * increments with no sign of Tx errors. This may indicate 2621 * the counter name is not correct one so I've removed the 2622 * counter in output errors. 2623 */ 2624 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls + 2625 smb->tx_underrun; 2626 2627 ifp->if_ipackets += smb->rx_frames; 2628 2629 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + 2630 smb->rx_runts + smb->rx_pkts_truncated + 2631 smb->rx_fifo_oflows + smb->rx_rrs_errs + 2632 smb->rx_alignerrs; 2633 2634 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) { 2635 /* Update done, clear. */ 2636 smb->updated = 0; 2637 bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, 2638 sc->alc_cdata.alc_smb_map, 2639 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2640 } 2641 } 2642 2643 static int 2644 alc_intr(void *arg) 2645 { 2646 struct alc_softc *sc; 2647 uint32_t status; 2648 2649 sc = (struct alc_softc *)arg; 2650 2651 status = CSR_READ_4(sc, ALC_INTR_STATUS); 2652 if ((status & ALC_INTRS) == 0) 2653 return (FILTER_STRAY); 2654 /* Disable interrupts. */ 2655 CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT); 2656 taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task); 2657 2658 return (FILTER_HANDLED); 2659 } 2660 2661 static void 2662 alc_int_task(void *arg, int pending) 2663 { 2664 struct alc_softc *sc; 2665 struct ifnet *ifp; 2666 uint32_t status; 2667 int more; 2668 2669 sc = (struct alc_softc *)arg; 2670 ifp = sc->alc_ifp; 2671 2672 status = CSR_READ_4(sc, ALC_INTR_STATUS); 2673 more = atomic_readandclear_int(&sc->alc_morework); 2674 if (more != 0) 2675 status |= INTR_RX_PKT; 2676 if ((status & ALC_INTRS) == 0) 2677 goto done; 2678 2679 /* Acknowledge interrupts but still disable interrupts. */ 2680 CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT); 2681 2682 more = 0; 2683 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2684 if ((status & INTR_RX_PKT) != 0) { 2685 more = alc_rxintr(sc, sc->alc_process_limit); 2686 if (more == EAGAIN) 2687 atomic_set_int(&sc->alc_morework, 1); 2688 else if (more == EIO) { 2689 ALC_LOCK(sc); 2690 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2691 alc_init_locked(sc); 2692 ALC_UNLOCK(sc); 2693 return; 2694 } 2695 } 2696 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST | 2697 INTR_TXQ_TO_RST)) != 0) { 2698 if ((status & INTR_DMA_RD_TO_RST) != 0) 2699 device_printf(sc->alc_dev, 2700 "DMA read error! -- resetting\n"); 2701 if ((status & INTR_DMA_WR_TO_RST) != 0) 2702 device_printf(sc->alc_dev, 2703 "DMA write error! -- resetting\n"); 2704 if ((status & INTR_TXQ_TO_RST) != 0) 2705 device_printf(sc->alc_dev, 2706 "TxQ reset! -- resetting\n"); 2707 ALC_LOCK(sc); 2708 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2709 alc_init_locked(sc); 2710 ALC_UNLOCK(sc); 2711 return; 2712 } 2713 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 2714 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2715 taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task); 2716 } 2717 2718 if (more == EAGAIN || 2719 (CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) { 2720 taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task); 2721 return; 2722 } 2723 2724 done: 2725 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2726 /* Re-enable interrupts if we're running. */ 2727 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF); 2728 } 2729 } 2730 2731 static void 2732 alc_txeof(struct alc_softc *sc) 2733 { 2734 struct ifnet *ifp; 2735 struct alc_txdesc *txd; 2736 uint32_t cons, prod; 2737 int prog; 2738 2739 ALC_LOCK_ASSERT(sc); 2740 2741 ifp = sc->alc_ifp; 2742 2743 if (sc->alc_cdata.alc_tx_cnt == 0) 2744 return; 2745 bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag, 2746 sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE); 2747 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) { 2748 bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, 2749 sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD); 2750 prod = sc->alc_rdata.alc_cmb->cons; 2751 } else 2752 prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX); 2753 /* Assume we're using normal Tx priority queue. */ 2754 prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >> 2755 MBOX_TD_CONS_LO_IDX_SHIFT; 2756 cons = sc->alc_cdata.alc_tx_cons; 2757 /* 2758 * Go through our Tx list and free mbufs for those 2759 * frames which have been transmitted. 2760 */ 2761 for (prog = 0; cons != prod; prog++, 2762 ALC_DESC_INC(cons, ALC_TX_RING_CNT)) { 2763 if (sc->alc_cdata.alc_tx_cnt <= 0) 2764 break; 2765 prog++; 2766 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2767 sc->alc_cdata.alc_tx_cnt--; 2768 txd = &sc->alc_cdata.alc_txdesc[cons]; 2769 if (txd->tx_m != NULL) { 2770 /* Reclaim transmitted mbufs. */ 2771 bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, 2772 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2773 bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, 2774 txd->tx_dmamap); 2775 m_freem(txd->tx_m); 2776 txd->tx_m = NULL; 2777 } 2778 } 2779 2780 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) 2781 bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, 2782 sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD); 2783 sc->alc_cdata.alc_tx_cons = cons; 2784 /* 2785 * Unarm watchdog timer only when there is no pending 2786 * frames in Tx queue. 2787 */ 2788 if (sc->alc_cdata.alc_tx_cnt == 0) 2789 sc->alc_watchdog_timer = 0; 2790 } 2791 2792 static int 2793 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd) 2794 { 2795 struct mbuf *m; 2796 bus_dma_segment_t segs[1]; 2797 bus_dmamap_t map; 2798 int nsegs; 2799 2800 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2801 if (m == NULL) 2802 return (ENOBUFS); 2803 m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX; 2804 #ifndef __NO_STRICT_ALIGNMENT 2805 m_adj(m, sizeof(uint64_t)); 2806 #endif 2807 2808 if (bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_rx_tag, 2809 sc->alc_cdata.alc_rx_sparemap, m, segs, &nsegs, 0) != 0) { 2810 m_freem(m); 2811 return (ENOBUFS); 2812 } 2813 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 2814 2815 if (rxd->rx_m != NULL) { 2816 bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap, 2817 BUS_DMASYNC_POSTREAD); 2818 bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap); 2819 } 2820 map = rxd->rx_dmamap; 2821 rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap; 2822 sc->alc_cdata.alc_rx_sparemap = map; 2823 bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap, 2824 BUS_DMASYNC_PREREAD); 2825 rxd->rx_m = m; 2826 rxd->rx_desc->addr = htole64(segs[0].ds_addr); 2827 return (0); 2828 } 2829 2830 static int 2831 alc_rxintr(struct alc_softc *sc, int count) 2832 { 2833 struct ifnet *ifp; 2834 struct rx_rdesc *rrd; 2835 uint32_t nsegs, status; 2836 int rr_cons, prog; 2837 2838 bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag, 2839 sc->alc_cdata.alc_rr_ring_map, 2840 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2841 bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag, 2842 sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE); 2843 rr_cons = sc->alc_cdata.alc_rr_cons; 2844 ifp = sc->alc_ifp; 2845 for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;) { 2846 if (count-- <= 0) 2847 break; 2848 rrd = &sc->alc_rdata.alc_rr_ring[rr_cons]; 2849 status = le32toh(rrd->status); 2850 if ((status & RRD_VALID) == 0) 2851 break; 2852 nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo)); 2853 if (nsegs == 0) { 2854 /* This should not happen! */ 2855 device_printf(sc->alc_dev, 2856 "unexpected segment count -- resetting\n"); 2857 return (EIO); 2858 } 2859 alc_rxeof(sc, rrd); 2860 /* Clear Rx return status. */ 2861 rrd->status = 0; 2862 ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT); 2863 sc->alc_cdata.alc_rx_cons += nsegs; 2864 sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT; 2865 prog += nsegs; 2866 } 2867 2868 if (prog > 0) { 2869 /* Update the consumer index. */ 2870 sc->alc_cdata.alc_rr_cons = rr_cons; 2871 /* Sync Rx return descriptors. */ 2872 bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag, 2873 sc->alc_cdata.alc_rr_ring_map, 2874 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2875 /* 2876 * Sync updated Rx descriptors such that controller see 2877 * modified buffer addresses. 2878 */ 2879 bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag, 2880 sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE); 2881 /* 2882 * Let controller know availability of new Rx buffers. 2883 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors 2884 * it may be possible to update ALC_MBOX_RD0_PROD_IDX 2885 * only when Rx buffer pre-fetching is required. In 2886 * addition we already set ALC_RX_RD_FREE_THRESH to 2887 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However 2888 * it still seems that pre-fetching needs more 2889 * experimentation. 2890 */ 2891 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, 2892 sc->alc_cdata.alc_rx_cons); 2893 } 2894 2895 return (count > 0 ? 0 : EAGAIN); 2896 } 2897 2898 #ifndef __NO_STRICT_ALIGNMENT 2899 static struct mbuf * 2900 alc_fixup_rx(struct ifnet *ifp, struct mbuf *m) 2901 { 2902 struct mbuf *n; 2903 int i; 2904 uint16_t *src, *dst; 2905 2906 src = mtod(m, uint16_t *); 2907 dst = src - 3; 2908 2909 if (m->m_next == NULL) { 2910 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 2911 *dst++ = *src++; 2912 m->m_data -= 6; 2913 return (m); 2914 } 2915 /* 2916 * Append a new mbuf to received mbuf chain and copy ethernet 2917 * header from the mbuf chain. This can save lots of CPU 2918 * cycles for jumbo frame. 2919 */ 2920 MGETHDR(n, M_DONTWAIT, MT_DATA); 2921 if (n == NULL) { 2922 ifp->if_iqdrops++; 2923 m_freem(m); 2924 return (NULL); 2925 } 2926 bcopy(m->m_data, n->m_data, ETHER_HDR_LEN); 2927 m->m_data += ETHER_HDR_LEN; 2928 m->m_len -= ETHER_HDR_LEN; 2929 n->m_len = ETHER_HDR_LEN; 2930 M_MOVE_PKTHDR(n, m); 2931 n->m_next = m; 2932 return (n); 2933 } 2934 #endif 2935 2936 /* Receive a frame. */ 2937 static void 2938 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd) 2939 { 2940 struct alc_rxdesc *rxd; 2941 struct ifnet *ifp; 2942 struct mbuf *mp, *m; 2943 uint32_t rdinfo, status, vtag; 2944 int count, nsegs, rx_cons; 2945 2946 ifp = sc->alc_ifp; 2947 status = le32toh(rrd->status); 2948 rdinfo = le32toh(rrd->rdinfo); 2949 rx_cons = RRD_RD_IDX(rdinfo); 2950 nsegs = RRD_RD_CNT(rdinfo); 2951 2952 sc->alc_cdata.alc_rxlen = RRD_BYTES(status); 2953 if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) { 2954 /* 2955 * We want to pass the following frames to upper 2956 * layer regardless of error status of Rx return 2957 * ring. 2958 * 2959 * o IP/TCP/UDP checksum is bad. 2960 * o frame length and protocol specific length 2961 * does not match. 2962 * 2963 * Force network stack compute checksum for 2964 * errored frames. 2965 */ 2966 status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK; 2967 if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN | 2968 RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0) 2969 return; 2970 } 2971 2972 for (count = 0; count < nsegs; count++, 2973 ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) { 2974 rxd = &sc->alc_cdata.alc_rxdesc[rx_cons]; 2975 mp = rxd->rx_m; 2976 /* Add a new receive buffer to the ring. */ 2977 if (alc_newbuf(sc, rxd) != 0) { 2978 ifp->if_iqdrops++; 2979 /* Reuse Rx buffers. */ 2980 if (sc->alc_cdata.alc_rxhead != NULL) 2981 m_freem(sc->alc_cdata.alc_rxhead); 2982 break; 2983 } 2984 2985 /* 2986 * Assume we've received a full sized frame. 2987 * Actual size is fixed when we encounter the end of 2988 * multi-segmented frame. 2989 */ 2990 mp->m_len = sc->alc_buf_size; 2991 2992 /* Chain received mbufs. */ 2993 if (sc->alc_cdata.alc_rxhead == NULL) { 2994 sc->alc_cdata.alc_rxhead = mp; 2995 sc->alc_cdata.alc_rxtail = mp; 2996 } else { 2997 mp->m_flags &= ~M_PKTHDR; 2998 sc->alc_cdata.alc_rxprev_tail = 2999 sc->alc_cdata.alc_rxtail; 3000 sc->alc_cdata.alc_rxtail->m_next = mp; 3001 sc->alc_cdata.alc_rxtail = mp; 3002 } 3003 3004 if (count == nsegs - 1) { 3005 /* Last desc. for this frame. */ 3006 m = sc->alc_cdata.alc_rxhead; 3007 m->m_flags |= M_PKTHDR; 3008 /* 3009 * It seems that L1C/L2C controller has no way 3010 * to tell hardware to strip CRC bytes. 3011 */ 3012 m->m_pkthdr.len = 3013 sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN; 3014 if (nsegs > 1) { 3015 /* Set last mbuf size. */ 3016 mp->m_len = sc->alc_cdata.alc_rxlen - 3017 (nsegs - 1) * sc->alc_buf_size; 3018 /* Remove the CRC bytes in chained mbufs. */ 3019 if (mp->m_len <= ETHER_CRC_LEN) { 3020 sc->alc_cdata.alc_rxtail = 3021 sc->alc_cdata.alc_rxprev_tail; 3022 sc->alc_cdata.alc_rxtail->m_len -= 3023 (ETHER_CRC_LEN - mp->m_len); 3024 sc->alc_cdata.alc_rxtail->m_next = NULL; 3025 m_freem(mp); 3026 } else { 3027 mp->m_len -= ETHER_CRC_LEN; 3028 } 3029 } else 3030 m->m_len = m->m_pkthdr.len; 3031 m->m_pkthdr.rcvif = ifp; 3032 /* 3033 * Due to hardware bugs, Rx checksum offloading 3034 * was intentionally disabled. 3035 */ 3036 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 3037 (status & RRD_VLAN_TAG) != 0) { 3038 vtag = RRD_VLAN(le32toh(rrd->vtag)); 3039 m->m_pkthdr.ether_vtag = ntohs(vtag); 3040 m->m_flags |= M_VLANTAG; 3041 } 3042 #ifndef __NO_STRICT_ALIGNMENT 3043 m = alc_fixup_rx(ifp, m); 3044 if (m != NULL) 3045 #endif 3046 { 3047 /* Pass it on. */ 3048 (*ifp->if_input)(ifp, m); 3049 } 3050 } 3051 } 3052 /* Reset mbuf chains. */ 3053 ALC_RXCHAIN_RESET(sc); 3054 } 3055 3056 static void 3057 alc_tick(void *arg) 3058 { 3059 struct alc_softc *sc; 3060 struct mii_data *mii; 3061 3062 sc = (struct alc_softc *)arg; 3063 3064 ALC_LOCK_ASSERT(sc); 3065 3066 mii = device_get_softc(sc->alc_miibus); 3067 mii_tick(mii); 3068 alc_stats_update(sc); 3069 /* 3070 * alc(4) does not rely on Tx completion interrupts to reclaim 3071 * transferred buffers. Instead Tx completion interrupts are 3072 * used to hint for scheduling Tx task. So it's necessary to 3073 * release transmitted buffers by kicking Tx completion 3074 * handler. This limits the maximum reclamation delay to a hz. 3075 */ 3076 alc_txeof(sc); 3077 alc_watchdog(sc); 3078 callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc); 3079 } 3080 3081 static void 3082 alc_reset(struct alc_softc *sc) 3083 { 3084 uint32_t reg; 3085 int i; 3086 3087 reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF; 3088 reg |= MASTER_OOB_DIS_OFF | MASTER_RESET; 3089 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg); 3090 for (i = ALC_RESET_TIMEOUT; i > 0; i--) { 3091 DELAY(10); 3092 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0) 3093 break; 3094 } 3095 if (i == 0) 3096 device_printf(sc->alc_dev, "master reset timeout!\n"); 3097 3098 for (i = ALC_RESET_TIMEOUT; i > 0; i--) { 3099 if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0) 3100 break; 3101 DELAY(10); 3102 } 3103 3104 if (i == 0) 3105 device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg); 3106 } 3107 3108 static void 3109 alc_init(void *xsc) 3110 { 3111 struct alc_softc *sc; 3112 3113 sc = (struct alc_softc *)xsc; 3114 ALC_LOCK(sc); 3115 alc_init_locked(sc); 3116 ALC_UNLOCK(sc); 3117 } 3118 3119 static void 3120 alc_init_locked(struct alc_softc *sc) 3121 { 3122 struct ifnet *ifp; 3123 struct mii_data *mii; 3124 uint8_t eaddr[ETHER_ADDR_LEN]; 3125 bus_addr_t paddr; 3126 uint32_t reg, rxf_hi, rxf_lo; 3127 3128 ALC_LOCK_ASSERT(sc); 3129 3130 ifp = sc->alc_ifp; 3131 mii = device_get_softc(sc->alc_miibus); 3132 3133 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 3134 return; 3135 /* 3136 * Cancel any pending I/O. 3137 */ 3138 alc_stop(sc); 3139 /* 3140 * Reset the chip to a known state. 3141 */ 3142 alc_reset(sc); 3143 3144 /* Initialize Rx descriptors. */ 3145 if (alc_init_rx_ring(sc) != 0) { 3146 device_printf(sc->alc_dev, "no memory for Rx buffers.\n"); 3147 alc_stop(sc); 3148 return; 3149 } 3150 alc_init_rr_ring(sc); 3151 alc_init_tx_ring(sc); 3152 alc_init_cmb(sc); 3153 alc_init_smb(sc); 3154 3155 /* Reprogram the station address. */ 3156 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 3157 CSR_WRITE_4(sc, ALC_PAR0, 3158 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); 3159 CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]); 3160 /* 3161 * Clear WOL status and disable all WOL feature as WOL 3162 * would interfere Rx operation under normal environments. 3163 */ 3164 CSR_READ_4(sc, ALC_WOL_CFG); 3165 CSR_WRITE_4(sc, ALC_WOL_CFG, 0); 3166 /* Set Tx descriptor base addresses. */ 3167 paddr = sc->alc_rdata.alc_tx_ring_paddr; 3168 CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr)); 3169 CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr)); 3170 /* We don't use high priority ring. */ 3171 CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0); 3172 /* Set Tx descriptor counter. */ 3173 CSR_WRITE_4(sc, ALC_TD_RING_CNT, 3174 (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK); 3175 /* Set Rx descriptor base addresses. */ 3176 paddr = sc->alc_rdata.alc_rx_ring_paddr; 3177 CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr)); 3178 CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr)); 3179 /* We use one Rx ring. */ 3180 CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0); 3181 CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0); 3182 CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0); 3183 /* Set Rx descriptor counter. */ 3184 CSR_WRITE_4(sc, ALC_RD_RING_CNT, 3185 (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK); 3186 3187 /* 3188 * Let hardware split jumbo frames into alc_max_buf_sized chunks. 3189 * if it do not fit the buffer size. Rx return descriptor holds 3190 * a counter that indicates how many fragments were made by the 3191 * hardware. The buffer size should be multiple of 8 bytes. 3192 * Since hardware has limit on the size of buffer size, always 3193 * use the maximum value. 3194 * For strict-alignment architectures make sure to reduce buffer 3195 * size by 8 bytes to make room for alignment fixup. 3196 */ 3197 #ifndef __NO_STRICT_ALIGNMENT 3198 sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t); 3199 #else 3200 sc->alc_buf_size = RX_BUF_SIZE_MAX; 3201 #endif 3202 CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size); 3203 3204 paddr = sc->alc_rdata.alc_rr_ring_paddr; 3205 /* Set Rx return descriptor base addresses. */ 3206 CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr)); 3207 /* We use one Rx return ring. */ 3208 CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0); 3209 CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0); 3210 CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0); 3211 /* Set Rx return descriptor counter. */ 3212 CSR_WRITE_4(sc, ALC_RRD_RING_CNT, 3213 (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK); 3214 paddr = sc->alc_rdata.alc_cmb_paddr; 3215 CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr)); 3216 paddr = sc->alc_rdata.alc_smb_paddr; 3217 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr)); 3218 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr)); 3219 3220 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) { 3221 /* Reconfigure SRAM - Vendor magic. */ 3222 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0); 3223 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100); 3224 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000); 3225 CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0); 3226 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0); 3227 CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0); 3228 CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000); 3229 CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000); 3230 } 3231 3232 /* Tell hardware that we're ready to load DMA blocks. */ 3233 CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD); 3234 3235 /* Configure interrupt moderation timer. */ 3236 reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT; 3237 reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT; 3238 CSR_WRITE_4(sc, ALC_IM_TIMER, reg); 3239 /* 3240 * We don't want to automatic interrupt clear as task queue 3241 * for the interrupt should know interrupt status. 3242 */ 3243 reg = MASTER_SA_TIMER_ENB; 3244 if (ALC_USECS(sc->alc_int_rx_mod) != 0) 3245 reg |= MASTER_IM_RX_TIMER_ENB; 3246 if (ALC_USECS(sc->alc_int_tx_mod) != 0) 3247 reg |= MASTER_IM_TX_TIMER_ENB; 3248 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg); 3249 /* 3250 * Disable interrupt re-trigger timer. We don't want automatic 3251 * re-triggering of un-ACKed interrupts. 3252 */ 3253 CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0)); 3254 /* Configure CMB. */ 3255 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) { 3256 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4); 3257 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000)); 3258 } else 3259 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0)); 3260 /* 3261 * Hardware can be configured to issue SMB interrupt based 3262 * on programmed interval. Since there is a callout that is 3263 * invoked for every hz in driver we use that instead of 3264 * relying on periodic SMB interrupt. 3265 */ 3266 CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0)); 3267 /* Clear MAC statistics. */ 3268 alc_stats_clear(sc); 3269 3270 /* 3271 * Always use maximum frame size that controller can support. 3272 * Otherwise received frames that has larger frame length 3273 * than alc(4) MTU would be silently dropped in hardware. This 3274 * would make path-MTU discovery hard as sender wouldn't get 3275 * any responses from receiver. alc(4) supports 3276 * multi-fragmented frames on Rx path so it has no issue on 3277 * assembling fragmented frames. Using maximum frame size also 3278 * removes the need to reinitialize hardware when interface 3279 * MTU configuration was changed. 3280 * 3281 * Be conservative in what you do, be liberal in what you 3282 * accept from others - RFC 793. 3283 */ 3284 CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen); 3285 3286 /* Disable header split(?) */ 3287 CSR_WRITE_4(sc, ALC_HDS_CFG, 0); 3288 3289 /* Configure IPG/IFG parameters. */ 3290 CSR_WRITE_4(sc, ALC_IPG_IFG_CFG, 3291 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) | 3292 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | 3293 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | 3294 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK)); 3295 /* Set parameters for half-duplex media. */ 3296 CSR_WRITE_4(sc, ALC_HDPX_CFG, 3297 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & 3298 HDPX_CFG_LCOL_MASK) | 3299 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & 3300 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | 3301 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & 3302 HDPX_CFG_ABEBT_MASK) | 3303 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & 3304 HDPX_CFG_JAMIPG_MASK)); 3305 /* 3306 * Set TSO/checksum offload threshold. For frames that is 3307 * larger than this threshold, hardware wouldn't do 3308 * TSO/checksum offloading. 3309 */ 3310 CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH, 3311 (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) & 3312 TSO_OFFLOAD_THRESH_MASK); 3313 /* Configure TxQ. */ 3314 reg = (alc_dma_burst[sc->alc_dma_rd_burst] << 3315 TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK; 3316 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B || 3317 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) 3318 reg >>= 1; 3319 reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) & 3320 TXQ_CFG_TD_BURST_MASK; 3321 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE); 3322 3323 /* Configure Rx free descriptor pre-fetching. */ 3324 CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH, 3325 ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) & 3326 RX_RD_FREE_THRESH_HI_MASK) | 3327 ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) & 3328 RX_RD_FREE_THRESH_LO_MASK)); 3329 3330 /* 3331 * Configure flow control parameters. 3332 * XON : 80% of Rx FIFO 3333 * XOFF : 30% of Rx FIFO 3334 */ 3335 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 || 3336 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132) { 3337 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN); 3338 rxf_hi = (reg * 8) / 10; 3339 rxf_lo = (reg * 3) / 10; 3340 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH, 3341 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) & 3342 RX_FIFO_PAUSE_THRESH_LO_MASK) | 3343 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) & 3344 RX_FIFO_PAUSE_THRESH_HI_MASK)); 3345 } 3346 3347 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B || 3348 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2) 3349 CSR_WRITE_4(sc, ALC_SERDES_LOCK, 3350 CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN | 3351 SERDES_PHY_CLK_SLOWDOWN); 3352 3353 /* Disable RSS until I understand L1C/L2C's RSS logic. */ 3354 CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0); 3355 CSR_WRITE_4(sc, ALC_RSS_CPU, 0); 3356 3357 /* Configure RxQ. */ 3358 reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) & 3359 RXQ_CFG_RD_BURST_MASK; 3360 reg |= RXQ_CFG_RSS_MODE_DIS; 3361 if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0) 3362 reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M; 3363 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg); 3364 3365 /* Configure DMA parameters. */ 3366 reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI; 3367 reg |= sc->alc_rcb; 3368 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) 3369 reg |= DMA_CFG_CMB_ENB; 3370 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) 3371 reg |= DMA_CFG_SMB_ENB; 3372 else 3373 reg |= DMA_CFG_SMB_DIS; 3374 reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) << 3375 DMA_CFG_RD_BURST_SHIFT; 3376 reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) << 3377 DMA_CFG_WR_BURST_SHIFT; 3378 reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) & 3379 DMA_CFG_RD_DELAY_CNT_MASK; 3380 reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) & 3381 DMA_CFG_WR_DELAY_CNT_MASK; 3382 CSR_WRITE_4(sc, ALC_DMA_CFG, reg); 3383 3384 /* 3385 * Configure Tx/Rx MACs. 3386 * - Auto-padding for short frames. 3387 * - Enable CRC generation. 3388 * Actual reconfiguration of MAC for resolved speed/duplex 3389 * is followed after detection of link establishment. 3390 * AR813x/AR815x always does checksum computation regardless 3391 * of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to 3392 * have bug in protocol field in Rx return structure so 3393 * these controllers can't handle fragmented frames. Disable 3394 * Rx checksum offloading until there is a newer controller 3395 * that has sane implementation. 3396 */ 3397 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX | 3398 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & 3399 MAC_CFG_PREAMBLE_MASK); 3400 if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 || 3401 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 || 3402 sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) 3403 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW; 3404 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0) 3405 reg |= MAC_CFG_SPEED_10_100; 3406 else 3407 reg |= MAC_CFG_SPEED_1000; 3408 CSR_WRITE_4(sc, ALC_MAC_CFG, reg); 3409 3410 /* Set up the receive filter. */ 3411 alc_rxfilter(sc); 3412 alc_rxvlan(sc); 3413 3414 /* Acknowledge all pending interrupts and clear it. */ 3415 CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS); 3416 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF); 3417 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0); 3418 3419 sc->alc_flags &= ~ALC_FLAG_LINK; 3420 /* Switch to the current media. */ 3421 mii_mediachg(mii); 3422 3423 callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc); 3424 3425 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3426 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3427 } 3428 3429 static void 3430 alc_stop(struct alc_softc *sc) 3431 { 3432 struct ifnet *ifp; 3433 struct alc_txdesc *txd; 3434 struct alc_rxdesc *rxd; 3435 uint32_t reg; 3436 int i; 3437 3438 ALC_LOCK_ASSERT(sc); 3439 /* 3440 * Mark the interface down and cancel the watchdog timer. 3441 */ 3442 ifp = sc->alc_ifp; 3443 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3444 sc->alc_flags &= ~ALC_FLAG_LINK; 3445 callout_stop(&sc->alc_tick_ch); 3446 sc->alc_watchdog_timer = 0; 3447 alc_stats_update(sc); 3448 /* Disable interrupts. */ 3449 CSR_WRITE_4(sc, ALC_INTR_MASK, 0); 3450 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF); 3451 alc_stop_queue(sc); 3452 /* Disable DMA. */ 3453 reg = CSR_READ_4(sc, ALC_DMA_CFG); 3454 reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB); 3455 reg |= DMA_CFG_SMB_DIS; 3456 CSR_WRITE_4(sc, ALC_DMA_CFG, reg); 3457 DELAY(1000); 3458 /* Stop Rx/Tx MACs. */ 3459 alc_stop_mac(sc); 3460 /* Disable interrupts which might be touched in taskq handler. */ 3461 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF); 3462 3463 /* Reclaim Rx buffers that have been processed. */ 3464 if (sc->alc_cdata.alc_rxhead != NULL) 3465 m_freem(sc->alc_cdata.alc_rxhead); 3466 ALC_RXCHAIN_RESET(sc); 3467 /* 3468 * Free Tx/Rx mbufs still in the queues. 3469 */ 3470 for (i = 0; i < ALC_RX_RING_CNT; i++) { 3471 rxd = &sc->alc_cdata.alc_rxdesc[i]; 3472 if (rxd->rx_m != NULL) { 3473 bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, 3474 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3475 bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, 3476 rxd->rx_dmamap); 3477 m_freem(rxd->rx_m); 3478 rxd->rx_m = NULL; 3479 } 3480 } 3481 for (i = 0; i < ALC_TX_RING_CNT; i++) { 3482 txd = &sc->alc_cdata.alc_txdesc[i]; 3483 if (txd->tx_m != NULL) { 3484 bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, 3485 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 3486 bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, 3487 txd->tx_dmamap); 3488 m_freem(txd->tx_m); 3489 txd->tx_m = NULL; 3490 } 3491 } 3492 } 3493 3494 static void 3495 alc_stop_mac(struct alc_softc *sc) 3496 { 3497 uint32_t reg; 3498 int i; 3499 3500 ALC_LOCK_ASSERT(sc); 3501 3502 /* Disable Rx/Tx MAC. */ 3503 reg = CSR_READ_4(sc, ALC_MAC_CFG); 3504 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) { 3505 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); 3506 CSR_WRITE_4(sc, ALC_MAC_CFG, reg); 3507 } 3508 for (i = ALC_TIMEOUT; i > 0; i--) { 3509 reg = CSR_READ_4(sc, ALC_IDLE_STATUS); 3510 if (reg == 0) 3511 break; 3512 DELAY(10); 3513 } 3514 if (i == 0) 3515 device_printf(sc->alc_dev, 3516 "could not disable Rx/Tx MAC(0x%08x)!\n", reg); 3517 } 3518 3519 static void 3520 alc_start_queue(struct alc_softc *sc) 3521 { 3522 uint32_t qcfg[] = { 3523 0, 3524 RXQ_CFG_QUEUE0_ENB, 3525 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB, 3526 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB, 3527 RXQ_CFG_ENB 3528 }; 3529 uint32_t cfg; 3530 3531 ALC_LOCK_ASSERT(sc); 3532 3533 /* Enable RxQ. */ 3534 cfg = CSR_READ_4(sc, ALC_RXQ_CFG); 3535 cfg &= ~RXQ_CFG_ENB; 3536 cfg |= qcfg[1]; 3537 CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg); 3538 /* Enable TxQ. */ 3539 cfg = CSR_READ_4(sc, ALC_TXQ_CFG); 3540 cfg |= TXQ_CFG_ENB; 3541 CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg); 3542 } 3543 3544 static void 3545 alc_stop_queue(struct alc_softc *sc) 3546 { 3547 uint32_t reg; 3548 int i; 3549 3550 ALC_LOCK_ASSERT(sc); 3551 3552 /* Disable RxQ. */ 3553 reg = CSR_READ_4(sc, ALC_RXQ_CFG); 3554 if ((reg & RXQ_CFG_ENB) != 0) { 3555 reg &= ~RXQ_CFG_ENB; 3556 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg); 3557 } 3558 /* Disable TxQ. */ 3559 reg = CSR_READ_4(sc, ALC_TXQ_CFG); 3560 if ((reg & TXQ_CFG_ENB) == 0) { 3561 reg &= ~TXQ_CFG_ENB; 3562 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg); 3563 } 3564 for (i = ALC_TIMEOUT; i > 0; i--) { 3565 reg = CSR_READ_4(sc, ALC_IDLE_STATUS); 3566 if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0) 3567 break; 3568 DELAY(10); 3569 } 3570 if (i == 0) 3571 device_printf(sc->alc_dev, 3572 "could not disable RxQ/TxQ (0x%08x)!\n", reg); 3573 } 3574 3575 static void 3576 alc_init_tx_ring(struct alc_softc *sc) 3577 { 3578 struct alc_ring_data *rd; 3579 struct alc_txdesc *txd; 3580 int i; 3581 3582 ALC_LOCK_ASSERT(sc); 3583 3584 sc->alc_cdata.alc_tx_prod = 0; 3585 sc->alc_cdata.alc_tx_cons = 0; 3586 sc->alc_cdata.alc_tx_cnt = 0; 3587 3588 rd = &sc->alc_rdata; 3589 bzero(rd->alc_tx_ring, ALC_TX_RING_SZ); 3590 for (i = 0; i < ALC_TX_RING_CNT; i++) { 3591 txd = &sc->alc_cdata.alc_txdesc[i]; 3592 txd->tx_m = NULL; 3593 } 3594 3595 bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag, 3596 sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE); 3597 } 3598 3599 static int 3600 alc_init_rx_ring(struct alc_softc *sc) 3601 { 3602 struct alc_ring_data *rd; 3603 struct alc_rxdesc *rxd; 3604 int i; 3605 3606 ALC_LOCK_ASSERT(sc); 3607 3608 sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1; 3609 sc->alc_morework = 0; 3610 rd = &sc->alc_rdata; 3611 bzero(rd->alc_rx_ring, ALC_RX_RING_SZ); 3612 for (i = 0; i < ALC_RX_RING_CNT; i++) { 3613 rxd = &sc->alc_cdata.alc_rxdesc[i]; 3614 rxd->rx_m = NULL; 3615 rxd->rx_desc = &rd->alc_rx_ring[i]; 3616 if (alc_newbuf(sc, rxd) != 0) 3617 return (ENOBUFS); 3618 } 3619 3620 /* 3621 * Since controller does not update Rx descriptors, driver 3622 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE 3623 * is enough to ensure coherence. 3624 */ 3625 bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag, 3626 sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE); 3627 /* Let controller know availability of new Rx buffers. */ 3628 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons); 3629 3630 return (0); 3631 } 3632 3633 static void 3634 alc_init_rr_ring(struct alc_softc *sc) 3635 { 3636 struct alc_ring_data *rd; 3637 3638 ALC_LOCK_ASSERT(sc); 3639 3640 sc->alc_cdata.alc_rr_cons = 0; 3641 ALC_RXCHAIN_RESET(sc); 3642 3643 rd = &sc->alc_rdata; 3644 bzero(rd->alc_rr_ring, ALC_RR_RING_SZ); 3645 bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag, 3646 sc->alc_cdata.alc_rr_ring_map, 3647 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3648 } 3649 3650 static void 3651 alc_init_cmb(struct alc_softc *sc) 3652 { 3653 struct alc_ring_data *rd; 3654 3655 ALC_LOCK_ASSERT(sc); 3656 3657 rd = &sc->alc_rdata; 3658 bzero(rd->alc_cmb, ALC_CMB_SZ); 3659 bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map, 3660 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3661 } 3662 3663 static void 3664 alc_init_smb(struct alc_softc *sc) 3665 { 3666 struct alc_ring_data *rd; 3667 3668 ALC_LOCK_ASSERT(sc); 3669 3670 rd = &sc->alc_rdata; 3671 bzero(rd->alc_smb, ALC_SMB_SZ); 3672 bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map, 3673 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3674 } 3675 3676 static void 3677 alc_rxvlan(struct alc_softc *sc) 3678 { 3679 struct ifnet *ifp; 3680 uint32_t reg; 3681 3682 ALC_LOCK_ASSERT(sc); 3683 3684 ifp = sc->alc_ifp; 3685 reg = CSR_READ_4(sc, ALC_MAC_CFG); 3686 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3687 reg |= MAC_CFG_VLAN_TAG_STRIP; 3688 else 3689 reg &= ~MAC_CFG_VLAN_TAG_STRIP; 3690 CSR_WRITE_4(sc, ALC_MAC_CFG, reg); 3691 } 3692 3693 static void 3694 alc_rxfilter(struct alc_softc *sc) 3695 { 3696 struct ifnet *ifp; 3697 struct ifmultiaddr *ifma; 3698 uint32_t crc; 3699 uint32_t mchash[2]; 3700 uint32_t rxcfg; 3701 3702 ALC_LOCK_ASSERT(sc); 3703 3704 ifp = sc->alc_ifp; 3705 3706 bzero(mchash, sizeof(mchash)); 3707 rxcfg = CSR_READ_4(sc, ALC_MAC_CFG); 3708 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); 3709 if ((ifp->if_flags & IFF_BROADCAST) != 0) 3710 rxcfg |= MAC_CFG_BCAST; 3711 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3712 if ((ifp->if_flags & IFF_PROMISC) != 0) 3713 rxcfg |= MAC_CFG_PROMISC; 3714 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 3715 rxcfg |= MAC_CFG_ALLMULTI; 3716 mchash[0] = 0xFFFFFFFF; 3717 mchash[1] = 0xFFFFFFFF; 3718 goto chipit; 3719 } 3720 3721 if_maddr_rlock(ifp); 3722 TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) { 3723 if (ifma->ifma_addr->sa_family != AF_LINK) 3724 continue; 3725 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 3726 ifma->ifma_addr), ETHER_ADDR_LEN); 3727 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 3728 } 3729 if_maddr_runlock(ifp); 3730 3731 chipit: 3732 CSR_WRITE_4(sc, ALC_MAR0, mchash[0]); 3733 CSR_WRITE_4(sc, ALC_MAR1, mchash[1]); 3734 CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg); 3735 } 3736 3737 static int 3738 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3739 { 3740 int error, value; 3741 3742 if (arg1 == NULL) 3743 return (EINVAL); 3744 value = *(int *)arg1; 3745 error = sysctl_handle_int(oidp, &value, 0, req); 3746 if (error || req->newptr == NULL) 3747 return (error); 3748 if (value < low || value > high) 3749 return (EINVAL); 3750 *(int *)arg1 = value; 3751 3752 return (0); 3753 } 3754 3755 static int 3756 sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS) 3757 { 3758 return (sysctl_int_range(oidp, arg1, arg2, req, 3759 ALC_PROC_MIN, ALC_PROC_MAX)); 3760 } 3761 3762 static int 3763 sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS) 3764 { 3765 3766 return (sysctl_int_range(oidp, arg1, arg2, req, 3767 ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX)); 3768 } 3769