xref: /freebsd/sys/dev/alc/if_alc.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/rman.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_llc.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 
71 #include <machine/atomic.h>
72 #include <machine/bus.h>
73 #include <machine/in_cksum.h>
74 
75 #include <dev/alc/if_alcreg.h>
76 #include <dev/alc/if_alcvar.h>
77 
78 /* "device miibus" required.  See GENERIC if you get errors here. */
79 #include "miibus_if.h"
80 #undef ALC_USE_CUSTOM_CSUM
81 
82 #ifdef ALC_USE_CUSTOM_CSUM
83 #define	ALC_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
84 #else
85 #define	ALC_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
86 #endif
87 
88 MODULE_DEPEND(alc, pci, 1, 1, 1);
89 MODULE_DEPEND(alc, ether, 1, 1, 1);
90 MODULE_DEPEND(alc, miibus, 1, 1, 1);
91 
92 /* Tunables. */
93 static int msi_disable = 0;
94 static int msix_disable = 0;
95 TUNABLE_INT("hw.alc.msi_disable", &msi_disable);
96 TUNABLE_INT("hw.alc.msix_disable", &msix_disable);
97 
98 /*
99  * Devices supported by this driver.
100  */
101 static struct alc_ident alc_ident_table[] = {
102 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131, 9 * 1024,
103 		"Atheros AR8131 PCIe Gigabit Ethernet" },
104 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132, 9 * 1024,
105 		"Atheros AR8132 PCIe Fast Ethernet" },
106 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151, 6 * 1024,
107 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
108 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151_V2, 6 * 1024,
109 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
110 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B, 6 * 1024,
111 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
112 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B2, 6 * 1024,
113 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
114 	{ 0, 0, 0, NULL}
115 };
116 
117 static void	alc_aspm(struct alc_softc *, int);
118 static int	alc_attach(device_t);
119 static int	alc_check_boundary(struct alc_softc *);
120 static int	alc_detach(device_t);
121 static void	alc_disable_l0s_l1(struct alc_softc *);
122 static int	alc_dma_alloc(struct alc_softc *);
123 static void	alc_dma_free(struct alc_softc *);
124 static void	alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
125 static int	alc_encap(struct alc_softc *, struct mbuf **);
126 static struct alc_ident *
127 		alc_find_ident(device_t);
128 #ifndef __NO_STRICT_ALIGNMENT
129 static struct mbuf *
130 		alc_fixup_rx(struct ifnet *, struct mbuf *);
131 #endif
132 static void	alc_get_macaddr(struct alc_softc *);
133 static void	alc_init(void *);
134 static void	alc_init_cmb(struct alc_softc *);
135 static void	alc_init_locked(struct alc_softc *);
136 static void	alc_init_rr_ring(struct alc_softc *);
137 static int	alc_init_rx_ring(struct alc_softc *);
138 static void	alc_init_smb(struct alc_softc *);
139 static void	alc_init_tx_ring(struct alc_softc *);
140 static void	alc_int_task(void *, int);
141 static int	alc_intr(void *);
142 static int	alc_ioctl(struct ifnet *, u_long, caddr_t);
143 static void	alc_mac_config(struct alc_softc *);
144 static int	alc_miibus_readreg(device_t, int, int);
145 static void	alc_miibus_statchg(device_t);
146 static int	alc_miibus_writereg(device_t, int, int, int);
147 static int	alc_mediachange(struct ifnet *);
148 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
149 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *);
150 static void	alc_phy_down(struct alc_softc *);
151 static void	alc_phy_reset(struct alc_softc *);
152 static int	alc_probe(device_t);
153 static void	alc_reset(struct alc_softc *);
154 static int	alc_resume(device_t);
155 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
156 static int	alc_rxintr(struct alc_softc *, int);
157 static void	alc_rxfilter(struct alc_softc *);
158 static void	alc_rxvlan(struct alc_softc *);
159 static void	alc_setlinkspeed(struct alc_softc *);
160 static void	alc_setwol(struct alc_softc *);
161 static int	alc_shutdown(device_t);
162 static void	alc_start(struct ifnet *);
163 static void	alc_start_queue(struct alc_softc *);
164 static void	alc_stats_clear(struct alc_softc *);
165 static void	alc_stats_update(struct alc_softc *);
166 static void	alc_stop(struct alc_softc *);
167 static void	alc_stop_mac(struct alc_softc *);
168 static void	alc_stop_queue(struct alc_softc *);
169 static int	alc_suspend(device_t);
170 static void	alc_sysctl_node(struct alc_softc *);
171 static void	alc_tick(void *);
172 static void	alc_tx_task(void *, int);
173 static void	alc_txeof(struct alc_softc *);
174 static void	alc_watchdog(struct alc_softc *);
175 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
176 static int	sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
177 static int	sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
178 
179 static device_method_t alc_methods[] = {
180 	/* Device interface. */
181 	DEVMETHOD(device_probe,		alc_probe),
182 	DEVMETHOD(device_attach,	alc_attach),
183 	DEVMETHOD(device_detach,	alc_detach),
184 	DEVMETHOD(device_shutdown,	alc_shutdown),
185 	DEVMETHOD(device_suspend,	alc_suspend),
186 	DEVMETHOD(device_resume,	alc_resume),
187 
188 	/* MII interface. */
189 	DEVMETHOD(miibus_readreg,	alc_miibus_readreg),
190 	DEVMETHOD(miibus_writereg,	alc_miibus_writereg),
191 	DEVMETHOD(miibus_statchg,	alc_miibus_statchg),
192 
193 	{ NULL, NULL }
194 };
195 
196 static driver_t alc_driver = {
197 	"alc",
198 	alc_methods,
199 	sizeof(struct alc_softc)
200 };
201 
202 static devclass_t alc_devclass;
203 
204 DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, 0, 0);
205 DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, 0, 0);
206 
207 static struct resource_spec alc_res_spec_mem[] = {
208 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
209 	{ -1,			0,		0 }
210 };
211 
212 static struct resource_spec alc_irq_spec_legacy[] = {
213 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
214 	{ -1,			0,		0 }
215 };
216 
217 static struct resource_spec alc_irq_spec_msi[] = {
218 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
219 	{ -1,			0,		0 }
220 };
221 
222 static struct resource_spec alc_irq_spec_msix[] = {
223 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
224 	{ -1,			0,		0 }
225 };
226 
227 static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
228 
229 static int
230 alc_miibus_readreg(device_t dev, int phy, int reg)
231 {
232 	struct alc_softc *sc;
233 	uint32_t v;
234 	int i;
235 
236 	sc = device_get_softc(dev);
237 
238 	/*
239 	 * For AR8132 fast ethernet controller, do not report 1000baseT
240 	 * capability to mii(4). Even though AR8132 uses the same
241 	 * model/revision number of F1 gigabit PHY, the PHY has no
242 	 * ability to establish 1000baseT link.
243 	 */
244 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
245 	    reg == MII_EXTSR)
246 		return (0);
247 
248 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
249 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
250 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
251 		DELAY(5);
252 		v = CSR_READ_4(sc, ALC_MDIO);
253 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
254 			break;
255 	}
256 
257 	if (i == 0) {
258 		device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
259 		return (0);
260 	}
261 
262 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
263 }
264 
265 static int
266 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
267 {
268 	struct alc_softc *sc;
269 	uint32_t v;
270 	int i;
271 
272 	sc = device_get_softc(dev);
273 
274 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
275 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
276 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
277 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
278 		DELAY(5);
279 		v = CSR_READ_4(sc, ALC_MDIO);
280 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
281 			break;
282 	}
283 
284 	if (i == 0)
285 		device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
286 
287 	return (0);
288 }
289 
290 static void
291 alc_miibus_statchg(device_t dev)
292 {
293 	struct alc_softc *sc;
294 	struct mii_data *mii;
295 	struct ifnet *ifp;
296 	uint32_t reg;
297 
298 	sc = device_get_softc(dev);
299 
300 	mii = device_get_softc(sc->alc_miibus);
301 	ifp = sc->alc_ifp;
302 	if (mii == NULL || ifp == NULL ||
303 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
304 		return;
305 
306 	sc->alc_flags &= ~ALC_FLAG_LINK;
307 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
308 	    (IFM_ACTIVE | IFM_AVALID)) {
309 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
310 		case IFM_10_T:
311 		case IFM_100_TX:
312 			sc->alc_flags |= ALC_FLAG_LINK;
313 			break;
314 		case IFM_1000_T:
315 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
316 				sc->alc_flags |= ALC_FLAG_LINK;
317 			break;
318 		default:
319 			break;
320 		}
321 	}
322 	alc_stop_queue(sc);
323 	/* Stop Rx/Tx MACs. */
324 	alc_stop_mac(sc);
325 
326 	/* Program MACs with resolved speed/duplex/flow-control. */
327 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
328 		alc_start_queue(sc);
329 		alc_mac_config(sc);
330 		/* Re-enable Tx/Rx MACs. */
331 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
332 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
333 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
334 		alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
335 	}
336 }
337 
338 static void
339 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
340 {
341 	struct alc_softc *sc;
342 	struct mii_data *mii;
343 
344 	sc = ifp->if_softc;
345 	ALC_LOCK(sc);
346 	if ((ifp->if_flags & IFF_UP) == 0) {
347 		ALC_UNLOCK(sc);
348 		return;
349 	}
350 	mii = device_get_softc(sc->alc_miibus);
351 
352 	mii_pollstat(mii);
353 	ALC_UNLOCK(sc);
354 	ifmr->ifm_status = mii->mii_media_status;
355 	ifmr->ifm_active = mii->mii_media_active;
356 }
357 
358 static int
359 alc_mediachange(struct ifnet *ifp)
360 {
361 	struct alc_softc *sc;
362 	struct mii_data *mii;
363 	struct mii_softc *miisc;
364 	int error;
365 
366 	sc = ifp->if_softc;
367 	ALC_LOCK(sc);
368 	mii = device_get_softc(sc->alc_miibus);
369 	if (mii->mii_instance != 0) {
370 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
371 			mii_phy_reset(miisc);
372 	}
373 	error = mii_mediachg(mii);
374 	ALC_UNLOCK(sc);
375 
376 	return (error);
377 }
378 
379 static struct alc_ident *
380 alc_find_ident(device_t dev)
381 {
382 	struct alc_ident *ident;
383 	uint16_t vendor, devid;
384 
385 	vendor = pci_get_vendor(dev);
386 	devid = pci_get_device(dev);
387 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
388 		if (vendor == ident->vendorid && devid == ident->deviceid)
389 			return (ident);
390 	}
391 
392 	return (NULL);
393 }
394 
395 static int
396 alc_probe(device_t dev)
397 {
398 	struct alc_ident *ident;
399 
400 	ident = alc_find_ident(dev);
401 	if (ident != NULL) {
402 		device_set_desc(dev, ident->name);
403 		return (BUS_PROBE_DEFAULT);
404 	}
405 
406 	return (ENXIO);
407 }
408 
409 static void
410 alc_get_macaddr(struct alc_softc *sc)
411 {
412 	uint32_t ea[2], opt;
413 	uint16_t val;
414 	int eeprom, i;
415 
416 	eeprom = 0;
417 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
418 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
419 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
420 		/*
421 		 * EEPROM found, let TWSI reload EEPROM configuration.
422 		 * This will set ethernet address of controller.
423 		 */
424 		eeprom++;
425 		switch (sc->alc_ident->deviceid) {
426 		case DEVICEID_ATHEROS_AR8131:
427 		case DEVICEID_ATHEROS_AR8132:
428 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
429 				opt |= OPT_CFG_CLK_ENB;
430 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
431 				CSR_READ_4(sc, ALC_OPT_CFG);
432 				DELAY(1000);
433 			}
434 			break;
435 		case DEVICEID_ATHEROS_AR8151:
436 		case DEVICEID_ATHEROS_AR8151_V2:
437 		case DEVICEID_ATHEROS_AR8152_B:
438 		case DEVICEID_ATHEROS_AR8152_B2:
439 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
440 			    ALC_MII_DBG_ADDR, 0x00);
441 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
442 			    ALC_MII_DBG_DATA);
443 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
444 			    ALC_MII_DBG_DATA, val & 0xFF7F);
445 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
446 			    ALC_MII_DBG_ADDR, 0x3B);
447 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
448 			    ALC_MII_DBG_DATA);
449 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
450 			    ALC_MII_DBG_DATA, val | 0x0008);
451 			DELAY(20);
452 			break;
453 		}
454 
455 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
456 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
457 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
458 		CSR_READ_4(sc, ALC_WOL_CFG);
459 
460 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
461 		    TWSI_CFG_SW_LD_START);
462 		for (i = 100; i > 0; i--) {
463 			DELAY(1000);
464 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
465 			    TWSI_CFG_SW_LD_START) == 0)
466 				break;
467 		}
468 		if (i == 0)
469 			device_printf(sc->alc_dev,
470 			    "reloading EEPROM timeout!\n");
471 	} else {
472 		if (bootverbose)
473 			device_printf(sc->alc_dev, "EEPROM not found!\n");
474 	}
475 	if (eeprom != 0) {
476 		switch (sc->alc_ident->deviceid) {
477 		case DEVICEID_ATHEROS_AR8131:
478 		case DEVICEID_ATHEROS_AR8132:
479 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
480 				opt &= ~OPT_CFG_CLK_ENB;
481 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
482 				CSR_READ_4(sc, ALC_OPT_CFG);
483 				DELAY(1000);
484 			}
485 			break;
486 		case DEVICEID_ATHEROS_AR8151:
487 		case DEVICEID_ATHEROS_AR8151_V2:
488 		case DEVICEID_ATHEROS_AR8152_B:
489 		case DEVICEID_ATHEROS_AR8152_B2:
490 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
491 			    ALC_MII_DBG_ADDR, 0x00);
492 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
493 			    ALC_MII_DBG_DATA);
494 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
495 			    ALC_MII_DBG_DATA, val | 0x0080);
496 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
497 			    ALC_MII_DBG_ADDR, 0x3B);
498 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
499 			    ALC_MII_DBG_DATA);
500 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
501 			    ALC_MII_DBG_DATA, val & 0xFFF7);
502 			DELAY(20);
503 			break;
504 		}
505 	}
506 
507 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
508 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
509 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
510 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
511 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
512 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
513 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
514 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
515 }
516 
517 static void
518 alc_disable_l0s_l1(struct alc_softc *sc)
519 {
520 	uint32_t pmcfg;
521 
522 	/* Another magic from vendor. */
523 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
524 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
525 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
526 	    PM_CFG_SERDES_PD_EX_L1);
527 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
528 	    PM_CFG_SERDES_L1_ENB;
529 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
530 }
531 
532 static void
533 alc_phy_reset(struct alc_softc *sc)
534 {
535 	uint16_t data;
536 
537 	/* Reset magic from Linux. */
538 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
539 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
540 	CSR_READ_2(sc, ALC_GPHY_CFG);
541 	DELAY(10 * 1000);
542 
543 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
544 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
545 	    GPHY_CFG_SEL_ANA_RESET);
546 	CSR_READ_2(sc, ALC_GPHY_CFG);
547 	DELAY(10 * 1000);
548 
549 	/* DSP fixup, Vendor magic. */
550 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
551 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
552 		    ALC_MII_DBG_ADDR, 0x000A);
553 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
554 		    ALC_MII_DBG_DATA);
555 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
556 		    ALC_MII_DBG_DATA, data & 0xDFFF);
557 	}
558 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
559 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
560 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
561 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
562 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
563 		    ALC_MII_DBG_ADDR, 0x003B);
564 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
565 		    ALC_MII_DBG_DATA);
566 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
567 		    ALC_MII_DBG_DATA, data & 0xFFF7);
568 		DELAY(20 * 1000);
569 	}
570 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151) {
571 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
572 		    ALC_MII_DBG_ADDR, 0x0029);
573 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
574 		    ALC_MII_DBG_DATA, 0x929D);
575 	}
576 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
577 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132 ||
578 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
579 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
580 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
581 		    ALC_MII_DBG_ADDR, 0x0029);
582 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
583 		    ALC_MII_DBG_DATA, 0xB6DD);
584 	}
585 
586 	/* Load DSP codes, vendor magic. */
587 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
588 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
589 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
590 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
591 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
592 	    ALC_MII_DBG_DATA, data);
593 
594 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
595 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
596 	    ANA_SERDES_EN_LCKDT;
597 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
598 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
599 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
600 	    ALC_MII_DBG_DATA, data);
601 
602 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
603 	    ANA_LONG_CABLE_TH_100_MASK) |
604 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
605 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
606 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
607 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
608 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
609 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
610 	    ALC_MII_DBG_DATA, data);
611 
612 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
613 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
614 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
615 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
616 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
617 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
618 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
619 	    ALC_MII_DBG_DATA, data);
620 
621 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
622 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
623 	    ANA_OEN_125M;
624 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
625 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
626 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
627 	    ALC_MII_DBG_DATA, data);
628 	DELAY(1000);
629 }
630 
631 static void
632 alc_phy_down(struct alc_softc *sc)
633 {
634 
635 	switch (sc->alc_ident->deviceid) {
636 	case DEVICEID_ATHEROS_AR8151:
637 	case DEVICEID_ATHEROS_AR8151_V2:
638 		/*
639 		 * GPHY power down caused more problems on AR8151 v2.0.
640 		 * When driver is reloaded after GPHY power down,
641 		 * accesses to PHY/MAC registers hung the system. Only
642 		 * cold boot recovered from it.  I'm not sure whether
643 		 * AR8151 v1.0 also requires this one though.  I don't
644 		 * have AR8151 v1.0 controller in hand.
645 		 * The only option left is to isolate the PHY and
646 		 * initiates power down the PHY which in turn saves
647 		 * more power when driver is unloaded.
648 		 */
649 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
650 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
651 		break;
652 	default:
653 		/* Force PHY down. */
654 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
655 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
656 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
657 		    GPHY_CFG_PWDOWN_HW);
658 		DELAY(1000);
659 		break;
660 	}
661 }
662 
663 static void
664 alc_aspm(struct alc_softc *sc, int media)
665 {
666 	uint32_t pmcfg;
667 	uint16_t linkcfg;
668 
669 	ALC_LOCK_ASSERT(sc);
670 
671 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
672 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
673 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
674 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
675 		    PCIR_EXPRESS_LINK_CTL);
676 	else
677 		linkcfg = 0;
678 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
679 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
680 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
681 	pmcfg |= PM_CFG_SERDES_ENB | PM_CFG_RBER_ENB;
682 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
683 
684 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
685 		/* Disable extended sync except AR8152 B v1.0 */
686 		linkcfg &= ~0x80;
687 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
688 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
689 			linkcfg |= 0x80;
690 		CSR_WRITE_2(sc, sc->alc_expcap + PCIR_EXPRESS_LINK_CTL,
691 		    linkcfg);
692 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
693 		    PM_CFG_HOTRST);
694 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
695 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
696 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
697 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
698 		    PM_CFG_PM_REQ_TIMER_SHIFT);
699 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
700 	}
701 
702 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
703 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
704 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
705 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
706 			pmcfg |= PM_CFG_ASPM_L1_ENB;
707 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
708 			if (sc->alc_ident->deviceid ==
709 			    DEVICEID_ATHEROS_AR8152_B)
710 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
711 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
712 			    PM_CFG_SERDES_PLL_L1_ENB |
713 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
714 			pmcfg |= PM_CFG_CLK_SWH_L1;
715 			if (media == IFM_100_TX || media == IFM_1000_T) {
716 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
717 				switch (sc->alc_ident->deviceid) {
718 				case DEVICEID_ATHEROS_AR8152_B:
719 					pmcfg |= (7 <<
720 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
721 					break;
722 				case DEVICEID_ATHEROS_AR8152_B2:
723 				case DEVICEID_ATHEROS_AR8151_V2:
724 					pmcfg |= (4 <<
725 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
726 					break;
727 				default:
728 					pmcfg |= (15 <<
729 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
730 					break;
731 				}
732 			}
733 		} else {
734 			pmcfg |= PM_CFG_SERDES_L1_ENB |
735 			    PM_CFG_SERDES_PLL_L1_ENB |
736 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
737 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
738 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
739 		}
740 	} else {
741 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
742 		    PM_CFG_SERDES_PLL_L1_ENB);
743 		pmcfg |= PM_CFG_CLK_SWH_L1;
744 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
745 			pmcfg |= PM_CFG_ASPM_L1_ENB;
746 	}
747 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
748 }
749 
750 static int
751 alc_attach(device_t dev)
752 {
753 	struct alc_softc *sc;
754 	struct ifnet *ifp;
755 	char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
756 	uint16_t burst;
757 	int base, error, i, msic, msixc, state;
758 	uint32_t cap, ctl, val;
759 
760 	error = 0;
761 	sc = device_get_softc(dev);
762 	sc->alc_dev = dev;
763 
764 	mtx_init(&sc->alc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
765 	    MTX_DEF);
766 	callout_init_mtx(&sc->alc_tick_ch, &sc->alc_mtx, 0);
767 	TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc);
768 	sc->alc_ident = alc_find_ident(dev);
769 
770 	/* Map the device. */
771 	pci_enable_busmaster(dev);
772 	sc->alc_res_spec = alc_res_spec_mem;
773 	sc->alc_irq_spec = alc_irq_spec_legacy;
774 	error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res);
775 	if (error != 0) {
776 		device_printf(dev, "cannot allocate memory resources.\n");
777 		goto fail;
778 	}
779 
780 	/* Set PHY address. */
781 	sc->alc_phyaddr = ALC_PHY_ADDR;
782 
783 	/* Initialize DMA parameters. */
784 	sc->alc_dma_rd_burst = 0;
785 	sc->alc_dma_wr_burst = 0;
786 	sc->alc_rcb = DMA_CFG_RCB_64;
787 	if (pci_find_extcap(dev, PCIY_EXPRESS, &base) == 0) {
788 		sc->alc_flags |= ALC_FLAG_PCIE;
789 		sc->alc_expcap = base;
790 		burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL);
791 		sc->alc_dma_rd_burst =
792 		    (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12;
793 		sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5;
794 		if (bootverbose) {
795 			device_printf(dev, "Read request size : %u bytes.\n",
796 			    alc_dma_burst[sc->alc_dma_rd_burst]);
797 			device_printf(dev, "TLP payload size : %u bytes.\n",
798 			    alc_dma_burst[sc->alc_dma_wr_burst]);
799 		}
800 		if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
801 			sc->alc_dma_rd_burst = 3;
802 		if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
803 			sc->alc_dma_wr_burst = 3;
804 		/* Clear data link and flow-control protocol error. */
805 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
806 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
807 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
808 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
809 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
810 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
811 		    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
812 		    PCIE_PHYMISC_FORCE_RCV_DET);
813 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
814 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
815 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
816 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
817 			    PCIE_PHYMISC2_SERDES_TH_MASK);
818 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
819 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
820 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
821 		}
822 		/* Disable ASPM L0S and L1. */
823 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
824 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
825 			ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
826 			if ((ctl & 0x08) != 0)
827 				sc->alc_rcb = DMA_CFG_RCB_128;
828 			if (bootverbose)
829 				device_printf(dev, "RCB %u bytes\n",
830 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
831 			state = ctl & 0x03;
832 			if (state & 0x01)
833 				sc->alc_flags |= ALC_FLAG_L0S;
834 			if (state & 0x02)
835 				sc->alc_flags |= ALC_FLAG_L1S;
836 			if (bootverbose)
837 				device_printf(sc->alc_dev, "ASPM %s %s\n",
838 				    aspm_state[state],
839 				    state == 0 ? "disabled" : "enabled");
840 			alc_disable_l0s_l1(sc);
841 		} else {
842 			if (bootverbose)
843 				device_printf(sc->alc_dev,
844 				    "no ASPM support\n");
845 		}
846 	}
847 
848 	/* Reset PHY. */
849 	alc_phy_reset(sc);
850 
851 	/* Reset the ethernet controller. */
852 	alc_reset(sc);
853 
854 	/*
855 	 * One odd thing is AR8132 uses the same PHY hardware(F1
856 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
857 	 * the PHY supports 1000Mbps but that's not true. The PHY
858 	 * used in AR8132 can't establish gigabit link even if it
859 	 * shows the same PHY model/revision number of AR8131.
860 	 */
861 	switch (sc->alc_ident->deviceid) {
862 	case DEVICEID_ATHEROS_AR8152_B:
863 	case DEVICEID_ATHEROS_AR8152_B2:
864 		sc->alc_flags |= ALC_FLAG_APS;
865 		/* FALLTHROUGH */
866 	case DEVICEID_ATHEROS_AR8132:
867 		sc->alc_flags |= ALC_FLAG_FASTETHER;
868 		break;
869 	case DEVICEID_ATHEROS_AR8151:
870 	case DEVICEID_ATHEROS_AR8151_V2:
871 		sc->alc_flags |= ALC_FLAG_APS;
872 		/* FALLTHROUGH */
873 	default:
874 		break;
875 	}
876 	sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO;
877 
878 	/*
879 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
880 	 * addition, Atheros said that enabling SMB wouldn't improve
881 	 * performance. However I think it's bad to access lots of
882 	 * registers to extract MAC statistics.
883 	 */
884 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
885 	/*
886 	 * Don't use Tx CMB. It is known to have silicon bug.
887 	 */
888 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
889 	sc->alc_rev = pci_get_revid(dev);
890 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
891 	    MASTER_CHIP_REV_SHIFT;
892 	if (bootverbose) {
893 		device_printf(dev, "PCI device revision : 0x%04x\n",
894 		    sc->alc_rev);
895 		device_printf(dev, "Chip id/revision : 0x%04x\n",
896 		    sc->alc_chip_rev);
897 	}
898 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
899 	    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
900 	    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
901 
902 	/* Allocate IRQ resources. */
903 	msixc = pci_msix_count(dev);
904 	msic = pci_msi_count(dev);
905 	if (bootverbose) {
906 		device_printf(dev, "MSIX count : %d\n", msixc);
907 		device_printf(dev, "MSI count : %d\n", msic);
908 	}
909 	/* Prefer MSIX over MSI. */
910 	if (msix_disable == 0 || msi_disable == 0) {
911 		if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES &&
912 		    pci_alloc_msix(dev, &msixc) == 0) {
913 			if (msic == ALC_MSIX_MESSAGES) {
914 				device_printf(dev,
915 				    "Using %d MSIX message(s).\n", msixc);
916 				sc->alc_flags |= ALC_FLAG_MSIX;
917 				sc->alc_irq_spec = alc_irq_spec_msix;
918 			} else
919 				pci_release_msi(dev);
920 		}
921 		if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 &&
922 		    msic == ALC_MSI_MESSAGES &&
923 		    pci_alloc_msi(dev, &msic) == 0) {
924 			if (msic == ALC_MSI_MESSAGES) {
925 				device_printf(dev,
926 				    "Using %d MSI message(s).\n", msic);
927 				sc->alc_flags |= ALC_FLAG_MSI;
928 				sc->alc_irq_spec = alc_irq_spec_msi;
929 			} else
930 				pci_release_msi(dev);
931 		}
932 	}
933 
934 	error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq);
935 	if (error != 0) {
936 		device_printf(dev, "cannot allocate IRQ resources.\n");
937 		goto fail;
938 	}
939 
940 	/* Create device sysctl node. */
941 	alc_sysctl_node(sc);
942 
943 	if ((error = alc_dma_alloc(sc) != 0))
944 		goto fail;
945 
946 	/* Load station address. */
947 	alc_get_macaddr(sc);
948 
949 	ifp = sc->alc_ifp = if_alloc(IFT_ETHER);
950 	if (ifp == NULL) {
951 		device_printf(dev, "cannot allocate ifnet structure.\n");
952 		error = ENXIO;
953 		goto fail;
954 	}
955 
956 	ifp->if_softc = sc;
957 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
958 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
959 	ifp->if_ioctl = alc_ioctl;
960 	ifp->if_start = alc_start;
961 	ifp->if_init = alc_init;
962 	ifp->if_snd.ifq_drv_maxlen = ALC_TX_RING_CNT - 1;
963 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
964 	IFQ_SET_READY(&ifp->if_snd);
965 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
966 	ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO;
967 	if (pci_find_extcap(dev, PCIY_PMG, &base) == 0) {
968 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
969 		sc->alc_flags |= ALC_FLAG_PM;
970 		sc->alc_pmcap = base;
971 	}
972 	ifp->if_capenable = ifp->if_capabilities;
973 
974 	/* Set up MII bus. */
975 	error = mii_attach(dev, &sc->alc_miibus, ifp, alc_mediachange,
976 	    alc_mediastatus, BMSR_DEFCAPMASK, sc->alc_phyaddr, MII_OFFSET_ANY,
977 	    0);
978 	if (error != 0) {
979 		device_printf(dev, "attaching PHYs failed\n");
980 		goto fail;
981 	}
982 
983 	ether_ifattach(ifp, sc->alc_eaddr);
984 
985 	/* VLAN capability setup. */
986 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
987 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
988 	ifp->if_capenable = ifp->if_capabilities;
989 	/*
990 	 * XXX
991 	 * It seems enabling Tx checksum offloading makes more trouble.
992 	 * Sometimes the controller does not receive any frames when
993 	 * Tx checksum offloading is enabled. I'm not sure whether this
994 	 * is a bug in Tx checksum offloading logic or I got broken
995 	 * sample boards. To safety, don't enable Tx checksum offloading
996 	 * by default but give chance to users to toggle it if they know
997 	 * their controllers work without problems.
998 	 */
999 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1000 	ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
1001 
1002 	/* Tell the upper layer(s) we support long frames. */
1003 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1004 
1005 	/* Create local taskq. */
1006 	TASK_INIT(&sc->alc_tx_task, 1, alc_tx_task, ifp);
1007 	sc->alc_tq = taskqueue_create_fast("alc_taskq", M_WAITOK,
1008 	    taskqueue_thread_enqueue, &sc->alc_tq);
1009 	if (sc->alc_tq == NULL) {
1010 		device_printf(dev, "could not create taskqueue.\n");
1011 		ether_ifdetach(ifp);
1012 		error = ENXIO;
1013 		goto fail;
1014 	}
1015 	taskqueue_start_threads(&sc->alc_tq, 1, PI_NET, "%s taskq",
1016 	    device_get_nameunit(sc->alc_dev));
1017 
1018 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1019 		msic = ALC_MSIX_MESSAGES;
1020 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1021 		msic = ALC_MSI_MESSAGES;
1022 	else
1023 		msic = 1;
1024 	for (i = 0; i < msic; i++) {
1025 		error = bus_setup_intr(dev, sc->alc_irq[i],
1026 		    INTR_TYPE_NET | INTR_MPSAFE, alc_intr, NULL, sc,
1027 		    &sc->alc_intrhand[i]);
1028 		if (error != 0)
1029 			break;
1030 	}
1031 	if (error != 0) {
1032 		device_printf(dev, "could not set up interrupt handler.\n");
1033 		taskqueue_free(sc->alc_tq);
1034 		sc->alc_tq = NULL;
1035 		ether_ifdetach(ifp);
1036 		goto fail;
1037 	}
1038 
1039 fail:
1040 	if (error != 0)
1041 		alc_detach(dev);
1042 
1043 	return (error);
1044 }
1045 
1046 static int
1047 alc_detach(device_t dev)
1048 {
1049 	struct alc_softc *sc;
1050 	struct ifnet *ifp;
1051 	int i, msic;
1052 
1053 	sc = device_get_softc(dev);
1054 
1055 	ifp = sc->alc_ifp;
1056 	if (device_is_attached(dev)) {
1057 		ALC_LOCK(sc);
1058 		sc->alc_flags |= ALC_FLAG_DETACH;
1059 		alc_stop(sc);
1060 		ALC_UNLOCK(sc);
1061 		callout_drain(&sc->alc_tick_ch);
1062 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1063 		taskqueue_drain(sc->alc_tq, &sc->alc_tx_task);
1064 		ether_ifdetach(ifp);
1065 	}
1066 
1067 	if (sc->alc_tq != NULL) {
1068 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1069 		taskqueue_free(sc->alc_tq);
1070 		sc->alc_tq = NULL;
1071 	}
1072 
1073 	if (sc->alc_miibus != NULL) {
1074 		device_delete_child(dev, sc->alc_miibus);
1075 		sc->alc_miibus = NULL;
1076 	}
1077 	bus_generic_detach(dev);
1078 	alc_dma_free(sc);
1079 
1080 	if (ifp != NULL) {
1081 		if_free(ifp);
1082 		sc->alc_ifp = NULL;
1083 	}
1084 
1085 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1086 		msic = ALC_MSIX_MESSAGES;
1087 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1088 		msic = ALC_MSI_MESSAGES;
1089 	else
1090 		msic = 1;
1091 	for (i = 0; i < msic; i++) {
1092 		if (sc->alc_intrhand[i] != NULL) {
1093 			bus_teardown_intr(dev, sc->alc_irq[i],
1094 			    sc->alc_intrhand[i]);
1095 			sc->alc_intrhand[i] = NULL;
1096 		}
1097 	}
1098 	if (sc->alc_res[0] != NULL)
1099 		alc_phy_down(sc);
1100 	bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq);
1101 	if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0)
1102 		pci_release_msi(dev);
1103 	bus_release_resources(dev, sc->alc_res_spec, sc->alc_res);
1104 	mtx_destroy(&sc->alc_mtx);
1105 
1106 	return (0);
1107 }
1108 
1109 #define	ALC_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
1110 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
1111 #define	ALC_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
1112 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
1113 
1114 static void
1115 alc_sysctl_node(struct alc_softc *sc)
1116 {
1117 	struct sysctl_ctx_list *ctx;
1118 	struct sysctl_oid_list *child, *parent;
1119 	struct sysctl_oid *tree;
1120 	struct alc_hw_stats *stats;
1121 	int error;
1122 
1123 	stats = &sc->alc_stats;
1124 	ctx = device_get_sysctl_ctx(sc->alc_dev);
1125 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->alc_dev));
1126 
1127 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
1128 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
1129 	    sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
1130 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
1131 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
1132 	    sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
1133 	/* Pull in device tunables. */
1134 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1135 	error = resource_int_value(device_get_name(sc->alc_dev),
1136 	    device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
1137 	if (error == 0) {
1138 		if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
1139 		    sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
1140 			device_printf(sc->alc_dev, "int_rx_mod value out of "
1141 			    "range; using default: %d\n",
1142 			    ALC_IM_RX_TIMER_DEFAULT);
1143 			sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1144 		}
1145 	}
1146 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1147 	error = resource_int_value(device_get_name(sc->alc_dev),
1148 	    device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
1149 	if (error == 0) {
1150 		if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
1151 		    sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
1152 			device_printf(sc->alc_dev, "int_tx_mod value out of "
1153 			    "range; using default: %d\n",
1154 			    ALC_IM_TX_TIMER_DEFAULT);
1155 			sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1156 		}
1157 	}
1158 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1159 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
1160 	    sysctl_hw_alc_proc_limit, "I",
1161 	    "max number of Rx events to process");
1162 	/* Pull in device tunables. */
1163 	sc->alc_process_limit = ALC_PROC_DEFAULT;
1164 	error = resource_int_value(device_get_name(sc->alc_dev),
1165 	    device_get_unit(sc->alc_dev), "process_limit",
1166 	    &sc->alc_process_limit);
1167 	if (error == 0) {
1168 		if (sc->alc_process_limit < ALC_PROC_MIN ||
1169 		    sc->alc_process_limit > ALC_PROC_MAX) {
1170 			device_printf(sc->alc_dev,
1171 			    "process_limit value out of range; "
1172 			    "using default: %d\n", ALC_PROC_DEFAULT);
1173 			sc->alc_process_limit = ALC_PROC_DEFAULT;
1174 		}
1175 	}
1176 
1177 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1178 	    NULL, "ALC statistics");
1179 	parent = SYSCTL_CHILDREN(tree);
1180 
1181 	/* Rx statistics. */
1182 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1183 	    NULL, "Rx MAC statistics");
1184 	child = SYSCTL_CHILDREN(tree);
1185 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1186 	    &stats->rx_frames, "Good frames");
1187 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1188 	    &stats->rx_bcast_frames, "Good broadcast frames");
1189 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1190 	    &stats->rx_mcast_frames, "Good multicast frames");
1191 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1192 	    &stats->rx_pause_frames, "Pause control frames");
1193 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1194 	    &stats->rx_control_frames, "Control frames");
1195 	ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1196 	    &stats->rx_crcerrs, "CRC errors");
1197 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1198 	    &stats->rx_lenerrs, "Frames with length mismatched");
1199 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1200 	    &stats->rx_bytes, "Good octets");
1201 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1202 	    &stats->rx_bcast_bytes, "Good broadcast octets");
1203 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1204 	    &stats->rx_mcast_bytes, "Good multicast octets");
1205 	ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
1206 	    &stats->rx_runts, "Too short frames");
1207 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
1208 	    &stats->rx_fragments, "Fragmented frames");
1209 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1210 	    &stats->rx_pkts_64, "64 bytes frames");
1211 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1212 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
1213 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1214 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
1215 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1216 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
1217 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1218 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
1219 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1220 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
1221 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1222 	    &stats->rx_pkts_1519_max, "1519 to max frames");
1223 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1224 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
1225 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1226 	    &stats->rx_fifo_oflows, "FIFO overflows");
1227 	ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
1228 	    &stats->rx_rrs_errs, "Return status write-back errors");
1229 	ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
1230 	    &stats->rx_alignerrs, "Alignment errors");
1231 	ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
1232 	    &stats->rx_pkts_filtered,
1233 	    "Frames dropped due to address filtering");
1234 
1235 	/* Tx statistics. */
1236 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1237 	    NULL, "Tx MAC statistics");
1238 	child = SYSCTL_CHILDREN(tree);
1239 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1240 	    &stats->tx_frames, "Good frames");
1241 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1242 	    &stats->tx_bcast_frames, "Good broadcast frames");
1243 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1244 	    &stats->tx_mcast_frames, "Good multicast frames");
1245 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1246 	    &stats->tx_pause_frames, "Pause control frames");
1247 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1248 	    &stats->tx_control_frames, "Control frames");
1249 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
1250 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
1251 	ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
1252 	    &stats->tx_excess_defer, "Frames with derferrals");
1253 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1254 	    &stats->tx_bytes, "Good octets");
1255 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1256 	    &stats->tx_bcast_bytes, "Good broadcast octets");
1257 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1258 	    &stats->tx_mcast_bytes, "Good multicast octets");
1259 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1260 	    &stats->tx_pkts_64, "64 bytes frames");
1261 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1262 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
1263 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1264 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
1265 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1266 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
1267 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1268 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
1269 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1270 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
1271 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1272 	    &stats->tx_pkts_1519_max, "1519 to max frames");
1273 	ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
1274 	    &stats->tx_single_colls, "Single collisions");
1275 	ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
1276 	    &stats->tx_multi_colls, "Multiple collisions");
1277 	ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
1278 	    &stats->tx_late_colls, "Late collisions");
1279 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
1280 	    &stats->tx_excess_colls, "Excessive collisions");
1281 	ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
1282 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
1283 	ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
1284 	    &stats->tx_underrun, "FIFO underruns");
1285 	ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
1286 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
1287 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1288 	    &stats->tx_lenerrs, "Frames with length mismatched");
1289 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1290 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
1291 }
1292 
1293 #undef ALC_SYSCTL_STAT_ADD32
1294 #undef ALC_SYSCTL_STAT_ADD64
1295 
1296 struct alc_dmamap_arg {
1297 	bus_addr_t	alc_busaddr;
1298 };
1299 
1300 static void
1301 alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1302 {
1303 	struct alc_dmamap_arg *ctx;
1304 
1305 	if (error != 0)
1306 		return;
1307 
1308 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1309 
1310 	ctx = (struct alc_dmamap_arg *)arg;
1311 	ctx->alc_busaddr = segs[0].ds_addr;
1312 }
1313 
1314 /*
1315  * Normal and high Tx descriptors shares single Tx high address.
1316  * Four Rx descriptor/return rings and CMB shares the same Rx
1317  * high address.
1318  */
1319 static int
1320 alc_check_boundary(struct alc_softc *sc)
1321 {
1322 	bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
1323 
1324 	rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
1325 	rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
1326 	cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
1327 	tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
1328 
1329 	/* 4GB boundary crossing is not allowed. */
1330 	if ((ALC_ADDR_HI(rx_ring_end) !=
1331 	    ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
1332 	    (ALC_ADDR_HI(rr_ring_end) !=
1333 	    ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
1334 	    (ALC_ADDR_HI(cmb_end) !=
1335 	    ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
1336 	    (ALC_ADDR_HI(tx_ring_end) !=
1337 	    ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
1338 		return (EFBIG);
1339 	/*
1340 	 * Make sure Rx return descriptor/Rx descriptor/CMB use
1341 	 * the same high address.
1342 	 */
1343 	if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
1344 	    (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
1345 		return (EFBIG);
1346 
1347 	return (0);
1348 }
1349 
1350 static int
1351 alc_dma_alloc(struct alc_softc *sc)
1352 {
1353 	struct alc_txdesc *txd;
1354 	struct alc_rxdesc *rxd;
1355 	bus_addr_t lowaddr;
1356 	struct alc_dmamap_arg ctx;
1357 	int error, i;
1358 
1359 	lowaddr = BUS_SPACE_MAXADDR;
1360 again:
1361 	/* Create parent DMA tag. */
1362 	error = bus_dma_tag_create(
1363 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1364 	    1, 0,			/* alignment, boundary */
1365 	    lowaddr,			/* lowaddr */
1366 	    BUS_SPACE_MAXADDR,		/* highaddr */
1367 	    NULL, NULL,			/* filter, filterarg */
1368 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1369 	    0,				/* nsegments */
1370 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1371 	    0,				/* flags */
1372 	    NULL, NULL,			/* lockfunc, lockarg */
1373 	    &sc->alc_cdata.alc_parent_tag);
1374 	if (error != 0) {
1375 		device_printf(sc->alc_dev,
1376 		    "could not create parent DMA tag.\n");
1377 		goto fail;
1378 	}
1379 
1380 	/* Create DMA tag for Tx descriptor ring. */
1381 	error = bus_dma_tag_create(
1382 	    sc->alc_cdata.alc_parent_tag, /* parent */
1383 	    ALC_TX_RING_ALIGN, 0,	/* alignment, boundary */
1384 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1385 	    BUS_SPACE_MAXADDR,		/* highaddr */
1386 	    NULL, NULL,			/* filter, filterarg */
1387 	    ALC_TX_RING_SZ,		/* maxsize */
1388 	    1,				/* nsegments */
1389 	    ALC_TX_RING_SZ,		/* maxsegsize */
1390 	    0,				/* flags */
1391 	    NULL, NULL,			/* lockfunc, lockarg */
1392 	    &sc->alc_cdata.alc_tx_ring_tag);
1393 	if (error != 0) {
1394 		device_printf(sc->alc_dev,
1395 		    "could not create Tx ring DMA tag.\n");
1396 		goto fail;
1397 	}
1398 
1399 	/* Create DMA tag for Rx free descriptor ring. */
1400 	error = bus_dma_tag_create(
1401 	    sc->alc_cdata.alc_parent_tag, /* parent */
1402 	    ALC_RX_RING_ALIGN, 0,	/* alignment, boundary */
1403 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1404 	    BUS_SPACE_MAXADDR,		/* highaddr */
1405 	    NULL, NULL,			/* filter, filterarg */
1406 	    ALC_RX_RING_SZ,		/* maxsize */
1407 	    1,				/* nsegments */
1408 	    ALC_RX_RING_SZ,		/* maxsegsize */
1409 	    0,				/* flags */
1410 	    NULL, NULL,			/* lockfunc, lockarg */
1411 	    &sc->alc_cdata.alc_rx_ring_tag);
1412 	if (error != 0) {
1413 		device_printf(sc->alc_dev,
1414 		    "could not create Rx ring DMA tag.\n");
1415 		goto fail;
1416 	}
1417 	/* Create DMA tag for Rx return descriptor ring. */
1418 	error = bus_dma_tag_create(
1419 	    sc->alc_cdata.alc_parent_tag, /* parent */
1420 	    ALC_RR_RING_ALIGN, 0,	/* alignment, boundary */
1421 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1422 	    BUS_SPACE_MAXADDR,		/* highaddr */
1423 	    NULL, NULL,			/* filter, filterarg */
1424 	    ALC_RR_RING_SZ,		/* maxsize */
1425 	    1,				/* nsegments */
1426 	    ALC_RR_RING_SZ,		/* maxsegsize */
1427 	    0,				/* flags */
1428 	    NULL, NULL,			/* lockfunc, lockarg */
1429 	    &sc->alc_cdata.alc_rr_ring_tag);
1430 	if (error != 0) {
1431 		device_printf(sc->alc_dev,
1432 		    "could not create Rx return ring DMA tag.\n");
1433 		goto fail;
1434 	}
1435 
1436 	/* Create DMA tag for coalescing message block. */
1437 	error = bus_dma_tag_create(
1438 	    sc->alc_cdata.alc_parent_tag, /* parent */
1439 	    ALC_CMB_ALIGN, 0,		/* alignment, boundary */
1440 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1441 	    BUS_SPACE_MAXADDR,		/* highaddr */
1442 	    NULL, NULL,			/* filter, filterarg */
1443 	    ALC_CMB_SZ,			/* maxsize */
1444 	    1,				/* nsegments */
1445 	    ALC_CMB_SZ,			/* maxsegsize */
1446 	    0,				/* flags */
1447 	    NULL, NULL,			/* lockfunc, lockarg */
1448 	    &sc->alc_cdata.alc_cmb_tag);
1449 	if (error != 0) {
1450 		device_printf(sc->alc_dev,
1451 		    "could not create CMB DMA tag.\n");
1452 		goto fail;
1453 	}
1454 	/* Create DMA tag for status message block. */
1455 	error = bus_dma_tag_create(
1456 	    sc->alc_cdata.alc_parent_tag, /* parent */
1457 	    ALC_SMB_ALIGN, 0,		/* alignment, boundary */
1458 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1459 	    BUS_SPACE_MAXADDR,		/* highaddr */
1460 	    NULL, NULL,			/* filter, filterarg */
1461 	    ALC_SMB_SZ,			/* maxsize */
1462 	    1,				/* nsegments */
1463 	    ALC_SMB_SZ,			/* maxsegsize */
1464 	    0,				/* flags */
1465 	    NULL, NULL,			/* lockfunc, lockarg */
1466 	    &sc->alc_cdata.alc_smb_tag);
1467 	if (error != 0) {
1468 		device_printf(sc->alc_dev,
1469 		    "could not create SMB DMA tag.\n");
1470 		goto fail;
1471 	}
1472 
1473 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1474 	error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
1475 	    (void **)&sc->alc_rdata.alc_tx_ring,
1476 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1477 	    &sc->alc_cdata.alc_tx_ring_map);
1478 	if (error != 0) {
1479 		device_printf(sc->alc_dev,
1480 		    "could not allocate DMA'able memory for Tx ring.\n");
1481 		goto fail;
1482 	}
1483 	ctx.alc_busaddr = 0;
1484 	error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
1485 	    sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
1486 	    ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1487 	if (error != 0 || ctx.alc_busaddr == 0) {
1488 		device_printf(sc->alc_dev,
1489 		    "could not load DMA'able memory for Tx ring.\n");
1490 		goto fail;
1491 	}
1492 	sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
1493 
1494 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1495 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
1496 	    (void **)&sc->alc_rdata.alc_rx_ring,
1497 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1498 	    &sc->alc_cdata.alc_rx_ring_map);
1499 	if (error != 0) {
1500 		device_printf(sc->alc_dev,
1501 		    "could not allocate DMA'able memory for Rx ring.\n");
1502 		goto fail;
1503 	}
1504 	ctx.alc_busaddr = 0;
1505 	error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
1506 	    sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
1507 	    ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1508 	if (error != 0 || ctx.alc_busaddr == 0) {
1509 		device_printf(sc->alc_dev,
1510 		    "could not load DMA'able memory for Rx ring.\n");
1511 		goto fail;
1512 	}
1513 	sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
1514 
1515 	/* Allocate DMA'able memory and load the DMA map for Rx return ring. */
1516 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
1517 	    (void **)&sc->alc_rdata.alc_rr_ring,
1518 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1519 	    &sc->alc_cdata.alc_rr_ring_map);
1520 	if (error != 0) {
1521 		device_printf(sc->alc_dev,
1522 		    "could not allocate DMA'able memory for Rx return ring.\n");
1523 		goto fail;
1524 	}
1525 	ctx.alc_busaddr = 0;
1526 	error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
1527 	    sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
1528 	    ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
1529 	if (error != 0 || ctx.alc_busaddr == 0) {
1530 		device_printf(sc->alc_dev,
1531 		    "could not load DMA'able memory for Tx ring.\n");
1532 		goto fail;
1533 	}
1534 	sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
1535 
1536 	/* Allocate DMA'able memory and load the DMA map for CMB. */
1537 	error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
1538 	    (void **)&sc->alc_rdata.alc_cmb,
1539 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1540 	    &sc->alc_cdata.alc_cmb_map);
1541 	if (error != 0) {
1542 		device_printf(sc->alc_dev,
1543 		    "could not allocate DMA'able memory for CMB.\n");
1544 		goto fail;
1545 	}
1546 	ctx.alc_busaddr = 0;
1547 	error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
1548 	    sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
1549 	    ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
1550 	if (error != 0 || ctx.alc_busaddr == 0) {
1551 		device_printf(sc->alc_dev,
1552 		    "could not load DMA'able memory for CMB.\n");
1553 		goto fail;
1554 	}
1555 	sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
1556 
1557 	/* Allocate DMA'able memory and load the DMA map for SMB. */
1558 	error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
1559 	    (void **)&sc->alc_rdata.alc_smb,
1560 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1561 	    &sc->alc_cdata.alc_smb_map);
1562 	if (error != 0) {
1563 		device_printf(sc->alc_dev,
1564 		    "could not allocate DMA'able memory for SMB.\n");
1565 		goto fail;
1566 	}
1567 	ctx.alc_busaddr = 0;
1568 	error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
1569 	    sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
1570 	    ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
1571 	if (error != 0 || ctx.alc_busaddr == 0) {
1572 		device_printf(sc->alc_dev,
1573 		    "could not load DMA'able memory for CMB.\n");
1574 		goto fail;
1575 	}
1576 	sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
1577 
1578 	/* Make sure we've not crossed 4GB boundary. */
1579 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1580 	    (error = alc_check_boundary(sc)) != 0) {
1581 		device_printf(sc->alc_dev, "4GB boundary crossed, "
1582 		    "switching to 32bit DMA addressing mode.\n");
1583 		alc_dma_free(sc);
1584 		/*
1585 		 * Limit max allowable DMA address space to 32bit
1586 		 * and try again.
1587 		 */
1588 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1589 		goto again;
1590 	}
1591 
1592 	/*
1593 	 * Create Tx buffer parent tag.
1594 	 * AR813x/AR815x allows 64bit DMA addressing of Tx/Rx buffers
1595 	 * so it needs separate parent DMA tag as parent DMA address
1596 	 * space could be restricted to be within 32bit address space
1597 	 * by 4GB boundary crossing.
1598 	 */
1599 	error = bus_dma_tag_create(
1600 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1601 	    1, 0,			/* alignment, boundary */
1602 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1603 	    BUS_SPACE_MAXADDR,		/* highaddr */
1604 	    NULL, NULL,			/* filter, filterarg */
1605 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1606 	    0,				/* nsegments */
1607 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1608 	    0,				/* flags */
1609 	    NULL, NULL,			/* lockfunc, lockarg */
1610 	    &sc->alc_cdata.alc_buffer_tag);
1611 	if (error != 0) {
1612 		device_printf(sc->alc_dev,
1613 		    "could not create parent buffer DMA tag.\n");
1614 		goto fail;
1615 	}
1616 
1617 	/* Create DMA tag for Tx buffers. */
1618 	error = bus_dma_tag_create(
1619 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1620 	    1, 0,			/* alignment, boundary */
1621 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1622 	    BUS_SPACE_MAXADDR,		/* highaddr */
1623 	    NULL, NULL,			/* filter, filterarg */
1624 	    ALC_TSO_MAXSIZE,		/* maxsize */
1625 	    ALC_MAXTXSEGS,		/* nsegments */
1626 	    ALC_TSO_MAXSEGSIZE,		/* maxsegsize */
1627 	    0,				/* flags */
1628 	    NULL, NULL,			/* lockfunc, lockarg */
1629 	    &sc->alc_cdata.alc_tx_tag);
1630 	if (error != 0) {
1631 		device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
1632 		goto fail;
1633 	}
1634 
1635 	/* Create DMA tag for Rx buffers. */
1636 	error = bus_dma_tag_create(
1637 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1638 	    ALC_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1639 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1640 	    BUS_SPACE_MAXADDR,		/* highaddr */
1641 	    NULL, NULL,			/* filter, filterarg */
1642 	    MCLBYTES,			/* maxsize */
1643 	    1,				/* nsegments */
1644 	    MCLBYTES,			/* maxsegsize */
1645 	    0,				/* flags */
1646 	    NULL, NULL,			/* lockfunc, lockarg */
1647 	    &sc->alc_cdata.alc_rx_tag);
1648 	if (error != 0) {
1649 		device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
1650 		goto fail;
1651 	}
1652 	/* Create DMA maps for Tx buffers. */
1653 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1654 		txd = &sc->alc_cdata.alc_txdesc[i];
1655 		txd->tx_m = NULL;
1656 		txd->tx_dmamap = NULL;
1657 		error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag, 0,
1658 		    &txd->tx_dmamap);
1659 		if (error != 0) {
1660 			device_printf(sc->alc_dev,
1661 			    "could not create Tx dmamap.\n");
1662 			goto fail;
1663 		}
1664 	}
1665 	/* Create DMA maps for Rx buffers. */
1666 	if ((error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1667 	    &sc->alc_cdata.alc_rx_sparemap)) != 0) {
1668 		device_printf(sc->alc_dev,
1669 		    "could not create spare Rx dmamap.\n");
1670 		goto fail;
1671 	}
1672 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1673 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1674 		rxd->rx_m = NULL;
1675 		rxd->rx_dmamap = NULL;
1676 		error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1677 		    &rxd->rx_dmamap);
1678 		if (error != 0) {
1679 			device_printf(sc->alc_dev,
1680 			    "could not create Rx dmamap.\n");
1681 			goto fail;
1682 		}
1683 	}
1684 
1685 fail:
1686 	return (error);
1687 }
1688 
1689 static void
1690 alc_dma_free(struct alc_softc *sc)
1691 {
1692 	struct alc_txdesc *txd;
1693 	struct alc_rxdesc *rxd;
1694 	int i;
1695 
1696 	/* Tx buffers. */
1697 	if (sc->alc_cdata.alc_tx_tag != NULL) {
1698 		for (i = 0; i < ALC_TX_RING_CNT; i++) {
1699 			txd = &sc->alc_cdata.alc_txdesc[i];
1700 			if (txd->tx_dmamap != NULL) {
1701 				bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
1702 				    txd->tx_dmamap);
1703 				txd->tx_dmamap = NULL;
1704 			}
1705 		}
1706 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
1707 		sc->alc_cdata.alc_tx_tag = NULL;
1708 	}
1709 	/* Rx buffers */
1710 	if (sc->alc_cdata.alc_rx_tag != NULL) {
1711 		for (i = 0; i < ALC_RX_RING_CNT; i++) {
1712 			rxd = &sc->alc_cdata.alc_rxdesc[i];
1713 			if (rxd->rx_dmamap != NULL) {
1714 				bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1715 				    rxd->rx_dmamap);
1716 				rxd->rx_dmamap = NULL;
1717 			}
1718 		}
1719 		if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1720 			bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1721 			    sc->alc_cdata.alc_rx_sparemap);
1722 			sc->alc_cdata.alc_rx_sparemap = NULL;
1723 		}
1724 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
1725 		sc->alc_cdata.alc_rx_tag = NULL;
1726 	}
1727 	/* Tx descriptor ring. */
1728 	if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
1729 		if (sc->alc_cdata.alc_tx_ring_map != NULL)
1730 			bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
1731 			    sc->alc_cdata.alc_tx_ring_map);
1732 		if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1733 		    sc->alc_rdata.alc_tx_ring != NULL)
1734 			bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
1735 			    sc->alc_rdata.alc_tx_ring,
1736 			    sc->alc_cdata.alc_tx_ring_map);
1737 		sc->alc_rdata.alc_tx_ring = NULL;
1738 		sc->alc_cdata.alc_tx_ring_map = NULL;
1739 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
1740 		sc->alc_cdata.alc_tx_ring_tag = NULL;
1741 	}
1742 	/* Rx ring. */
1743 	if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
1744 		if (sc->alc_cdata.alc_rx_ring_map != NULL)
1745 			bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
1746 			    sc->alc_cdata.alc_rx_ring_map);
1747 		if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1748 		    sc->alc_rdata.alc_rx_ring != NULL)
1749 			bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
1750 			    sc->alc_rdata.alc_rx_ring,
1751 			    sc->alc_cdata.alc_rx_ring_map);
1752 		sc->alc_rdata.alc_rx_ring = NULL;
1753 		sc->alc_cdata.alc_rx_ring_map = NULL;
1754 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
1755 		sc->alc_cdata.alc_rx_ring_tag = NULL;
1756 	}
1757 	/* Rx return ring. */
1758 	if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
1759 		if (sc->alc_cdata.alc_rr_ring_map != NULL)
1760 			bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
1761 			    sc->alc_cdata.alc_rr_ring_map);
1762 		if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1763 		    sc->alc_rdata.alc_rr_ring != NULL)
1764 			bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
1765 			    sc->alc_rdata.alc_rr_ring,
1766 			    sc->alc_cdata.alc_rr_ring_map);
1767 		sc->alc_rdata.alc_rr_ring = NULL;
1768 		sc->alc_cdata.alc_rr_ring_map = NULL;
1769 		bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
1770 		sc->alc_cdata.alc_rr_ring_tag = NULL;
1771 	}
1772 	/* CMB block */
1773 	if (sc->alc_cdata.alc_cmb_tag != NULL) {
1774 		if (sc->alc_cdata.alc_cmb_map != NULL)
1775 			bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
1776 			    sc->alc_cdata.alc_cmb_map);
1777 		if (sc->alc_cdata.alc_cmb_map != NULL &&
1778 		    sc->alc_rdata.alc_cmb != NULL)
1779 			bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
1780 			    sc->alc_rdata.alc_cmb,
1781 			    sc->alc_cdata.alc_cmb_map);
1782 		sc->alc_rdata.alc_cmb = NULL;
1783 		sc->alc_cdata.alc_cmb_map = NULL;
1784 		bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
1785 		sc->alc_cdata.alc_cmb_tag = NULL;
1786 	}
1787 	/* SMB block */
1788 	if (sc->alc_cdata.alc_smb_tag != NULL) {
1789 		if (sc->alc_cdata.alc_smb_map != NULL)
1790 			bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
1791 			    sc->alc_cdata.alc_smb_map);
1792 		if (sc->alc_cdata.alc_smb_map != NULL &&
1793 		    sc->alc_rdata.alc_smb != NULL)
1794 			bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
1795 			    sc->alc_rdata.alc_smb,
1796 			    sc->alc_cdata.alc_smb_map);
1797 		sc->alc_rdata.alc_smb = NULL;
1798 		sc->alc_cdata.alc_smb_map = NULL;
1799 		bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
1800 		sc->alc_cdata.alc_smb_tag = NULL;
1801 	}
1802 	if (sc->alc_cdata.alc_buffer_tag != NULL) {
1803 		bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
1804 		sc->alc_cdata.alc_buffer_tag = NULL;
1805 	}
1806 	if (sc->alc_cdata.alc_parent_tag != NULL) {
1807 		bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
1808 		sc->alc_cdata.alc_parent_tag = NULL;
1809 	}
1810 }
1811 
1812 static int
1813 alc_shutdown(device_t dev)
1814 {
1815 
1816 	return (alc_suspend(dev));
1817 }
1818 
1819 /*
1820  * Note, this driver resets the link speed to 10/100Mbps by
1821  * restarting auto-negotiation in suspend/shutdown phase but we
1822  * don't know whether that auto-negotiation would succeed or not
1823  * as driver has no control after powering off/suspend operation.
1824  * If the renegotiation fail WOL may not work. Running at 1Gbps
1825  * will draw more power than 375mA at 3.3V which is specified in
1826  * PCI specification and that would result in complete
1827  * shutdowning power to ethernet controller.
1828  *
1829  * TODO
1830  * Save current negotiated media speed/duplex/flow-control to
1831  * softc and restore the same link again after resuming. PHY
1832  * handling such as power down/resetting to 100Mbps may be better
1833  * handled in suspend method in phy driver.
1834  */
1835 static void
1836 alc_setlinkspeed(struct alc_softc *sc)
1837 {
1838 	struct mii_data *mii;
1839 	int aneg, i;
1840 
1841 	mii = device_get_softc(sc->alc_miibus);
1842 	mii_pollstat(mii);
1843 	aneg = 0;
1844 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1845 	    (IFM_ACTIVE | IFM_AVALID)) {
1846 		switch IFM_SUBTYPE(mii->mii_media_active) {
1847 		case IFM_10_T:
1848 		case IFM_100_TX:
1849 			return;
1850 		case IFM_1000_T:
1851 			aneg++;
1852 			break;
1853 		default:
1854 			break;
1855 		}
1856 	}
1857 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
1858 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1859 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1860 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1861 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1862 	DELAY(1000);
1863 	if (aneg != 0) {
1864 		/*
1865 		 * Poll link state until alc(4) get a 10/100Mbps link.
1866 		 */
1867 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1868 			mii_pollstat(mii);
1869 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1870 			    == (IFM_ACTIVE | IFM_AVALID)) {
1871 				switch (IFM_SUBTYPE(
1872 				    mii->mii_media_active)) {
1873 				case IFM_10_T:
1874 				case IFM_100_TX:
1875 					alc_mac_config(sc);
1876 					return;
1877 				default:
1878 					break;
1879 				}
1880 			}
1881 			ALC_UNLOCK(sc);
1882 			pause("alclnk", hz);
1883 			ALC_LOCK(sc);
1884 		}
1885 		if (i == MII_ANEGTICKS_GIGE)
1886 			device_printf(sc->alc_dev,
1887 			    "establishing a link failed, WOL may not work!");
1888 	}
1889 	/*
1890 	 * No link, force MAC to have 100Mbps, full-duplex link.
1891 	 * This is the last resort and may/may not work.
1892 	 */
1893 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1894 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1895 	alc_mac_config(sc);
1896 }
1897 
1898 static void
1899 alc_setwol(struct alc_softc *sc)
1900 {
1901 	struct ifnet *ifp;
1902 	uint32_t reg, pmcs;
1903 	uint16_t pmstat;
1904 
1905 	ALC_LOCK_ASSERT(sc);
1906 
1907 	alc_disable_l0s_l1(sc);
1908 	ifp = sc->alc_ifp;
1909 	if ((sc->alc_flags & ALC_FLAG_PM) == 0) {
1910 		/* Disable WOL. */
1911 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
1912 		reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1913 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1914 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1915 		/* Force PHY power down. */
1916 		alc_phy_down(sc);
1917 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1918 		    CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1919 		return;
1920 	}
1921 
1922 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1923 		if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
1924 			alc_setlinkspeed(sc);
1925 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1926 		    CSR_READ_4(sc, ALC_MASTER_CFG) & ~MASTER_CLK_SEL_DIS);
1927 	}
1928 
1929 	pmcs = 0;
1930 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1931 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1932 	CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
1933 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1934 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1935 	    MAC_CFG_BCAST);
1936 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1937 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1938 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1939 		reg |= MAC_CFG_RX_ENB;
1940 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1941 
1942 	reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1943 	reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1944 	CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1945 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1946 		/* WOL disabled, PHY power down. */
1947 		alc_phy_down(sc);
1948 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1949 		    CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1950 	}
1951 	/* Request PME. */
1952 	pmstat = pci_read_config(sc->alc_dev,
1953 	    sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1954 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1955 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1956 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1957 	pci_write_config(sc->alc_dev,
1958 	    sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1959 }
1960 
1961 static int
1962 alc_suspend(device_t dev)
1963 {
1964 	struct alc_softc *sc;
1965 
1966 	sc = device_get_softc(dev);
1967 
1968 	ALC_LOCK(sc);
1969 	alc_stop(sc);
1970 	alc_setwol(sc);
1971 	ALC_UNLOCK(sc);
1972 
1973 	return (0);
1974 }
1975 
1976 static int
1977 alc_resume(device_t dev)
1978 {
1979 	struct alc_softc *sc;
1980 	struct ifnet *ifp;
1981 	uint16_t pmstat;
1982 
1983 	sc = device_get_softc(dev);
1984 
1985 	ALC_LOCK(sc);
1986 	if ((sc->alc_flags & ALC_FLAG_PM) != 0) {
1987 		/* Disable PME and clear PME status. */
1988 		pmstat = pci_read_config(sc->alc_dev,
1989 		    sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1990 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1991 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1992 			pci_write_config(sc->alc_dev,
1993 			    sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1994 		}
1995 	}
1996 	/* Reset PHY. */
1997 	alc_phy_reset(sc);
1998 	ifp = sc->alc_ifp;
1999 	if ((ifp->if_flags & IFF_UP) != 0) {
2000 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2001 		alc_init_locked(sc);
2002 	}
2003 	ALC_UNLOCK(sc);
2004 
2005 	return (0);
2006 }
2007 
2008 static int
2009 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
2010 {
2011 	struct alc_txdesc *txd, *txd_last;
2012 	struct tx_desc *desc;
2013 	struct mbuf *m;
2014 	struct ip *ip;
2015 	struct tcphdr *tcp;
2016 	bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
2017 	bus_dmamap_t map;
2018 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
2019 	int error, idx, nsegs, prod;
2020 
2021 	ALC_LOCK_ASSERT(sc);
2022 
2023 	M_ASSERTPKTHDR((*m_head));
2024 
2025 	m = *m_head;
2026 	ip = NULL;
2027 	tcp = NULL;
2028 	ip_off = poff = 0;
2029 	if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
2030 		/*
2031 		 * AR813x/AR815x requires offset of TCP/UDP header in its
2032 		 * Tx descriptor to perform Tx checksum offloading. TSO
2033 		 * also requires TCP header offset and modification of
2034 		 * IP/TCP header. This kind of operation takes many CPU
2035 		 * cycles on FreeBSD so fast host CPU is required to get
2036 		 * smooth TSO performance.
2037 		 */
2038 		struct ether_header *eh;
2039 
2040 		if (M_WRITABLE(m) == 0) {
2041 			/* Get a writable copy. */
2042 			m = m_dup(*m_head, M_DONTWAIT);
2043 			/* Release original mbufs. */
2044 			m_freem(*m_head);
2045 			if (m == NULL) {
2046 				*m_head = NULL;
2047 				return (ENOBUFS);
2048 			}
2049 			*m_head = m;
2050 		}
2051 
2052 		ip_off = sizeof(struct ether_header);
2053 		m = m_pullup(m, ip_off);
2054 		if (m == NULL) {
2055 			*m_head = NULL;
2056 			return (ENOBUFS);
2057 		}
2058 		eh = mtod(m, struct ether_header *);
2059 		/*
2060 		 * Check if hardware VLAN insertion is off.
2061 		 * Additional check for LLC/SNAP frame?
2062 		 */
2063 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2064 			ip_off = sizeof(struct ether_vlan_header);
2065 			m = m_pullup(m, ip_off);
2066 			if (m == NULL) {
2067 				*m_head = NULL;
2068 				return (ENOBUFS);
2069 			}
2070 		}
2071 		m = m_pullup(m, ip_off + sizeof(struct ip));
2072 		if (m == NULL) {
2073 			*m_head = NULL;
2074 			return (ENOBUFS);
2075 		}
2076 		ip = (struct ip *)(mtod(m, char *) + ip_off);
2077 		poff = ip_off + (ip->ip_hl << 2);
2078 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2079 			m = m_pullup(m, poff + sizeof(struct tcphdr));
2080 			if (m == NULL) {
2081 				*m_head = NULL;
2082 				return (ENOBUFS);
2083 			}
2084 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
2085 			m = m_pullup(m, poff + (tcp->th_off << 2));
2086 			if (m == NULL) {
2087 				*m_head = NULL;
2088 				return (ENOBUFS);
2089 			}
2090 			/*
2091 			 * Due to strict adherence of Microsoft NDIS
2092 			 * Large Send specification, hardware expects
2093 			 * a pseudo TCP checksum inserted by upper
2094 			 * stack. Unfortunately the pseudo TCP
2095 			 * checksum that NDIS refers to does not include
2096 			 * TCP payload length so driver should recompute
2097 			 * the pseudo checksum here. Hopefully this
2098 			 * wouldn't be much burden on modern CPUs.
2099 			 *
2100 			 * Reset IP checksum and recompute TCP pseudo
2101 			 * checksum as NDIS specification said.
2102 			 */
2103 			ip = (struct ip *)(mtod(m, char *) + ip_off);
2104 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
2105 			ip->ip_sum = 0;
2106 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
2107 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
2108 		}
2109 		*m_head = m;
2110 	}
2111 
2112 	prod = sc->alc_cdata.alc_tx_prod;
2113 	txd = &sc->alc_cdata.alc_txdesc[prod];
2114 	txd_last = txd;
2115 	map = txd->tx_dmamap;
2116 
2117 	error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
2118 	    *m_head, txsegs, &nsegs, 0);
2119 	if (error == EFBIG) {
2120 		m = m_collapse(*m_head, M_DONTWAIT, ALC_MAXTXSEGS);
2121 		if (m == NULL) {
2122 			m_freem(*m_head);
2123 			*m_head = NULL;
2124 			return (ENOMEM);
2125 		}
2126 		*m_head = m;
2127 		error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
2128 		    *m_head, txsegs, &nsegs, 0);
2129 		if (error != 0) {
2130 			m_freem(*m_head);
2131 			*m_head = NULL;
2132 			return (error);
2133 		}
2134 	} else if (error != 0)
2135 		return (error);
2136 	if (nsegs == 0) {
2137 		m_freem(*m_head);
2138 		*m_head = NULL;
2139 		return (EIO);
2140 	}
2141 
2142 	/* Check descriptor overrun. */
2143 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
2144 		bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
2145 		return (ENOBUFS);
2146 	}
2147 	bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
2148 
2149 	m = *m_head;
2150 	cflags = TD_ETHERNET;
2151 	vtag = 0;
2152 	desc = NULL;
2153 	idx = 0;
2154 	/* Configure VLAN hardware tag insertion. */
2155 	if ((m->m_flags & M_VLANTAG) != 0) {
2156 		vtag = htons(m->m_pkthdr.ether_vtag);
2157 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
2158 		cflags |= TD_INS_VLAN_TAG;
2159 	}
2160 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2161 		/* Request TSO and set MSS. */
2162 		cflags |= TD_TSO | TD_TSO_DESCV1;
2163 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
2164 		    TD_MSS_MASK;
2165 		/* Set TCP header offset. */
2166 		cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
2167 		    TD_TCPHDR_OFFSET_MASK;
2168 		/*
2169 		 * AR813x/AR815x requires the first buffer should
2170 		 * only hold IP/TCP header data. Payload should
2171 		 * be handled in other descriptors.
2172 		 */
2173 		hdrlen = poff + (tcp->th_off << 2);
2174 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2175 		desc->len = htole32(TX_BYTES(hdrlen | vtag));
2176 		desc->flags = htole32(cflags);
2177 		desc->addr = htole64(txsegs[0].ds_addr);
2178 		sc->alc_cdata.alc_tx_cnt++;
2179 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2180 		if (m->m_len - hdrlen > 0) {
2181 			/* Handle remaining payload of the first fragment. */
2182 			desc = &sc->alc_rdata.alc_tx_ring[prod];
2183 			desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
2184 			    vtag));
2185 			desc->flags = htole32(cflags);
2186 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
2187 			sc->alc_cdata.alc_tx_cnt++;
2188 			ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2189 		}
2190 		/* Handle remaining fragments. */
2191 		idx = 1;
2192 	} else if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
2193 		/* Configure Tx checksum offload. */
2194 #ifdef ALC_USE_CUSTOM_CSUM
2195 		cflags |= TD_CUSTOM_CSUM;
2196 		/* Set checksum start offset. */
2197 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
2198 		    TD_PLOAD_OFFSET_MASK;
2199 		/* Set checksum insertion position of TCP/UDP. */
2200 		cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
2201 		    TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
2202 #else
2203 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2204 			cflags |= TD_IPCSUM;
2205 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2206 			cflags |= TD_TCPCSUM;
2207 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2208 			cflags |= TD_UDPCSUM;
2209 		/* Set TCP/UDP header offset. */
2210 		cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
2211 		    TD_L4HDR_OFFSET_MASK;
2212 #endif
2213 	}
2214 	for (; idx < nsegs; idx++) {
2215 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2216 		desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
2217 		desc->flags = htole32(cflags);
2218 		desc->addr = htole64(txsegs[idx].ds_addr);
2219 		sc->alc_cdata.alc_tx_cnt++;
2220 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2221 	}
2222 	/* Update producer index. */
2223 	sc->alc_cdata.alc_tx_prod = prod;
2224 
2225 	/* Finally set EOP on the last descriptor. */
2226 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
2227 	desc = &sc->alc_rdata.alc_tx_ring[prod];
2228 	desc->flags |= htole32(TD_EOP);
2229 
2230 	/* Swap dmamap of the first and the last. */
2231 	txd = &sc->alc_cdata.alc_txdesc[prod];
2232 	map = txd_last->tx_dmamap;
2233 	txd_last->tx_dmamap = txd->tx_dmamap;
2234 	txd->tx_dmamap = map;
2235 	txd->tx_m = m;
2236 
2237 	return (0);
2238 }
2239 
2240 static void
2241 alc_tx_task(void *arg, int pending)
2242 {
2243 	struct ifnet *ifp;
2244 
2245 	ifp = (struct ifnet *)arg;
2246 	alc_start(ifp);
2247 }
2248 
2249 static void
2250 alc_start(struct ifnet *ifp)
2251 {
2252 	struct alc_softc *sc;
2253 	struct mbuf *m_head;
2254 	int enq;
2255 
2256 	sc = ifp->if_softc;
2257 
2258 	ALC_LOCK(sc);
2259 
2260 	/* Reclaim transmitted frames. */
2261 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2262 		alc_txeof(sc);
2263 
2264 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2265 	    IFF_DRV_RUNNING || (sc->alc_flags & ALC_FLAG_LINK) == 0) {
2266 		ALC_UNLOCK(sc);
2267 		return;
2268 	}
2269 
2270 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
2271 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2272 		if (m_head == NULL)
2273 			break;
2274 		/*
2275 		 * Pack the data into the transmit ring. If we
2276 		 * don't have room, set the OACTIVE flag and wait
2277 		 * for the NIC to drain the ring.
2278 		 */
2279 		if (alc_encap(sc, &m_head)) {
2280 			if (m_head == NULL)
2281 				break;
2282 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2283 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2284 			break;
2285 		}
2286 
2287 		enq++;
2288 		/*
2289 		 * If there's a BPF listener, bounce a copy of this frame
2290 		 * to him.
2291 		 */
2292 		ETHER_BPF_MTAP(ifp, m_head);
2293 	}
2294 
2295 	if (enq > 0) {
2296 		/* Sync descriptors. */
2297 		bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2298 		    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
2299 		/* Kick. Assume we're using normal Tx priority queue. */
2300 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2301 		    (sc->alc_cdata.alc_tx_prod <<
2302 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2303 		    MBOX_TD_PROD_LO_IDX_MASK);
2304 		/* Set a timeout in case the chip goes out to lunch. */
2305 		sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
2306 	}
2307 
2308 	ALC_UNLOCK(sc);
2309 }
2310 
2311 static void
2312 alc_watchdog(struct alc_softc *sc)
2313 {
2314 	struct ifnet *ifp;
2315 
2316 	ALC_LOCK_ASSERT(sc);
2317 
2318 	if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
2319 		return;
2320 
2321 	ifp = sc->alc_ifp;
2322 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2323 		if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
2324 		ifp->if_oerrors++;
2325 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2326 		alc_init_locked(sc);
2327 		return;
2328 	}
2329 	if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
2330 	ifp->if_oerrors++;
2331 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2332 	alc_init_locked(sc);
2333 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2334 		taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2335 }
2336 
2337 static int
2338 alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2339 {
2340 	struct alc_softc *sc;
2341 	struct ifreq *ifr;
2342 	struct mii_data *mii;
2343 	int error, mask;
2344 
2345 	sc = ifp->if_softc;
2346 	ifr = (struct ifreq *)data;
2347 	error = 0;
2348 	switch (cmd) {
2349 	case SIOCSIFMTU:
2350 		if (ifr->ifr_mtu < ETHERMIN ||
2351 		    ifr->ifr_mtu > (sc->alc_ident->max_framelen -
2352 		    sizeof(struct ether_vlan_header) - ETHER_CRC_LEN) ||
2353 		    ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
2354 		    ifr->ifr_mtu > ETHERMTU))
2355 			error = EINVAL;
2356 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2357 			ALC_LOCK(sc);
2358 			ifp->if_mtu = ifr->ifr_mtu;
2359 			/* AR813x/AR815x has 13 bits MSS field. */
2360 			if (ifp->if_mtu > ALC_TSO_MTU &&
2361 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2362 				ifp->if_capenable &= ~IFCAP_TSO4;
2363 				ifp->if_hwassist &= ~CSUM_TSO;
2364 				VLAN_CAPABILITIES(ifp);
2365 			}
2366 			ALC_UNLOCK(sc);
2367 		}
2368 		break;
2369 	case SIOCSIFFLAGS:
2370 		ALC_LOCK(sc);
2371 		if ((ifp->if_flags & IFF_UP) != 0) {
2372 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2373 			    ((ifp->if_flags ^ sc->alc_if_flags) &
2374 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2375 				alc_rxfilter(sc);
2376 			else if ((sc->alc_flags & ALC_FLAG_DETACH) == 0)
2377 				alc_init_locked(sc);
2378 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2379 			alc_stop(sc);
2380 		sc->alc_if_flags = ifp->if_flags;
2381 		ALC_UNLOCK(sc);
2382 		break;
2383 	case SIOCADDMULTI:
2384 	case SIOCDELMULTI:
2385 		ALC_LOCK(sc);
2386 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2387 			alc_rxfilter(sc);
2388 		ALC_UNLOCK(sc);
2389 		break;
2390 	case SIOCSIFMEDIA:
2391 	case SIOCGIFMEDIA:
2392 		mii = device_get_softc(sc->alc_miibus);
2393 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2394 		break;
2395 	case SIOCSIFCAP:
2396 		ALC_LOCK(sc);
2397 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2398 		if ((mask & IFCAP_TXCSUM) != 0 &&
2399 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2400 			ifp->if_capenable ^= IFCAP_TXCSUM;
2401 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2402 				ifp->if_hwassist |= ALC_CSUM_FEATURES;
2403 			else
2404 				ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
2405 		}
2406 		if ((mask & IFCAP_TSO4) != 0 &&
2407 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2408 			ifp->if_capenable ^= IFCAP_TSO4;
2409 			if ((ifp->if_capenable & IFCAP_TSO4) != 0) {
2410 				/* AR813x/AR815x has 13 bits MSS field. */
2411 				if (ifp->if_mtu > ALC_TSO_MTU) {
2412 					ifp->if_capenable &= ~IFCAP_TSO4;
2413 					ifp->if_hwassist &= ~CSUM_TSO;
2414 				} else
2415 					ifp->if_hwassist |= CSUM_TSO;
2416 			} else
2417 				ifp->if_hwassist &= ~CSUM_TSO;
2418 		}
2419 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2420 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2421 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2422 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2423 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2424 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2425 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2426 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2427 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2428 			alc_rxvlan(sc);
2429 		}
2430 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2431 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2432 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2433 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2434 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2435 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2436 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2437 			ifp->if_capenable &=
2438 			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2439 		ALC_UNLOCK(sc);
2440 		VLAN_CAPABILITIES(ifp);
2441 		break;
2442 	default:
2443 		error = ether_ioctl(ifp, cmd, data);
2444 		break;
2445 	}
2446 
2447 	return (error);
2448 }
2449 
2450 static void
2451 alc_mac_config(struct alc_softc *sc)
2452 {
2453 	struct mii_data *mii;
2454 	uint32_t reg;
2455 
2456 	ALC_LOCK_ASSERT(sc);
2457 
2458 	mii = device_get_softc(sc->alc_miibus);
2459 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2460 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2461 	    MAC_CFG_SPEED_MASK);
2462 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
2463 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
2464 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
2465 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2466 	/* Reprogram MAC with resolved speed/duplex. */
2467 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2468 	case IFM_10_T:
2469 	case IFM_100_TX:
2470 		reg |= MAC_CFG_SPEED_10_100;
2471 		break;
2472 	case IFM_1000_T:
2473 		reg |= MAC_CFG_SPEED_1000;
2474 		break;
2475 	}
2476 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2477 		reg |= MAC_CFG_FULL_DUPLEX;
2478 #ifdef notyet
2479 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2480 			reg |= MAC_CFG_TX_FC;
2481 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2482 			reg |= MAC_CFG_RX_FC;
2483 #endif
2484 	}
2485 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2486 }
2487 
2488 static void
2489 alc_stats_clear(struct alc_softc *sc)
2490 {
2491 	struct smb sb, *smb;
2492 	uint32_t *reg;
2493 	int i;
2494 
2495 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2496 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2497 		    sc->alc_cdata.alc_smb_map,
2498 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2499 		smb = sc->alc_rdata.alc_smb;
2500 		/* Update done, clear. */
2501 		smb->updated = 0;
2502 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2503 		    sc->alc_cdata.alc_smb_map,
2504 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2505 	} else {
2506 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2507 		    reg++) {
2508 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2509 			i += sizeof(uint32_t);
2510 		}
2511 		/* Read Tx statistics. */
2512 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2513 		    reg++) {
2514 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2515 			i += sizeof(uint32_t);
2516 		}
2517 	}
2518 }
2519 
2520 static void
2521 alc_stats_update(struct alc_softc *sc)
2522 {
2523 	struct alc_hw_stats *stat;
2524 	struct smb sb, *smb;
2525 	struct ifnet *ifp;
2526 	uint32_t *reg;
2527 	int i;
2528 
2529 	ALC_LOCK_ASSERT(sc);
2530 
2531 	ifp = sc->alc_ifp;
2532 	stat = &sc->alc_stats;
2533 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2534 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2535 		    sc->alc_cdata.alc_smb_map,
2536 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2537 		smb = sc->alc_rdata.alc_smb;
2538 		if (smb->updated == 0)
2539 			return;
2540 	} else {
2541 		smb = &sb;
2542 		/* Read Rx statistics. */
2543 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2544 		    reg++) {
2545 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2546 			i += sizeof(uint32_t);
2547 		}
2548 		/* Read Tx statistics. */
2549 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2550 		    reg++) {
2551 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2552 			i += sizeof(uint32_t);
2553 		}
2554 	}
2555 
2556 	/* Rx stats. */
2557 	stat->rx_frames += smb->rx_frames;
2558 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2559 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2560 	stat->rx_pause_frames += smb->rx_pause_frames;
2561 	stat->rx_control_frames += smb->rx_control_frames;
2562 	stat->rx_crcerrs += smb->rx_crcerrs;
2563 	stat->rx_lenerrs += smb->rx_lenerrs;
2564 	stat->rx_bytes += smb->rx_bytes;
2565 	stat->rx_runts += smb->rx_runts;
2566 	stat->rx_fragments += smb->rx_fragments;
2567 	stat->rx_pkts_64 += smb->rx_pkts_64;
2568 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2569 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2570 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2571 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2572 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2573 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2574 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2575 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2576 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2577 	stat->rx_alignerrs += smb->rx_alignerrs;
2578 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2579 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2580 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2581 
2582 	/* Tx stats. */
2583 	stat->tx_frames += smb->tx_frames;
2584 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2585 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2586 	stat->tx_pause_frames += smb->tx_pause_frames;
2587 	stat->tx_excess_defer += smb->tx_excess_defer;
2588 	stat->tx_control_frames += smb->tx_control_frames;
2589 	stat->tx_deferred += smb->tx_deferred;
2590 	stat->tx_bytes += smb->tx_bytes;
2591 	stat->tx_pkts_64 += smb->tx_pkts_64;
2592 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2593 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2594 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2595 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2596 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2597 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2598 	stat->tx_single_colls += smb->tx_single_colls;
2599 	stat->tx_multi_colls += smb->tx_multi_colls;
2600 	stat->tx_late_colls += smb->tx_late_colls;
2601 	stat->tx_excess_colls += smb->tx_excess_colls;
2602 	stat->tx_abort += smb->tx_abort;
2603 	stat->tx_underrun += smb->tx_underrun;
2604 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2605 	stat->tx_lenerrs += smb->tx_lenerrs;
2606 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2607 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2608 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2609 
2610 	/* Update counters in ifnet. */
2611 	ifp->if_opackets += smb->tx_frames;
2612 
2613 	ifp->if_collisions += smb->tx_single_colls +
2614 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2615 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2616 
2617 	/*
2618 	 * XXX
2619 	 * tx_pkts_truncated counter looks suspicious. It constantly
2620 	 * increments with no sign of Tx errors. This may indicate
2621 	 * the counter name is not correct one so I've removed the
2622 	 * counter in output errors.
2623 	 */
2624 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2625 	    smb->tx_underrun;
2626 
2627 	ifp->if_ipackets += smb->rx_frames;
2628 
2629 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2630 	    smb->rx_runts + smb->rx_pkts_truncated +
2631 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2632 	    smb->rx_alignerrs;
2633 
2634 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2635 		/* Update done, clear. */
2636 		smb->updated = 0;
2637 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2638 		    sc->alc_cdata.alc_smb_map,
2639 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2640 	}
2641 }
2642 
2643 static int
2644 alc_intr(void *arg)
2645 {
2646 	struct alc_softc *sc;
2647 	uint32_t status;
2648 
2649 	sc = (struct alc_softc *)arg;
2650 
2651 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2652 	if ((status & ALC_INTRS) == 0)
2653 		return (FILTER_STRAY);
2654 	/* Disable interrupts. */
2655 	CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT);
2656 	taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2657 
2658 	return (FILTER_HANDLED);
2659 }
2660 
2661 static void
2662 alc_int_task(void *arg, int pending)
2663 {
2664 	struct alc_softc *sc;
2665 	struct ifnet *ifp;
2666 	uint32_t status;
2667 	int more;
2668 
2669 	sc = (struct alc_softc *)arg;
2670 	ifp = sc->alc_ifp;
2671 
2672 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2673 	more = atomic_readandclear_int(&sc->alc_morework);
2674 	if (more != 0)
2675 		status |= INTR_RX_PKT;
2676 	if ((status & ALC_INTRS) == 0)
2677 		goto done;
2678 
2679 	/* Acknowledge interrupts but still disable interrupts. */
2680 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2681 
2682 	more = 0;
2683 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2684 		if ((status & INTR_RX_PKT) != 0) {
2685 			more = alc_rxintr(sc, sc->alc_process_limit);
2686 			if (more == EAGAIN)
2687 				atomic_set_int(&sc->alc_morework, 1);
2688 			else if (more == EIO) {
2689 				ALC_LOCK(sc);
2690 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2691 				alc_init_locked(sc);
2692 				ALC_UNLOCK(sc);
2693 				return;
2694 			}
2695 		}
2696 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2697 		    INTR_TXQ_TO_RST)) != 0) {
2698 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2699 				device_printf(sc->alc_dev,
2700 				    "DMA read error! -- resetting\n");
2701 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2702 				device_printf(sc->alc_dev,
2703 				    "DMA write error! -- resetting\n");
2704 			if ((status & INTR_TXQ_TO_RST) != 0)
2705 				device_printf(sc->alc_dev,
2706 				    "TxQ reset! -- resetting\n");
2707 			ALC_LOCK(sc);
2708 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2709 			alc_init_locked(sc);
2710 			ALC_UNLOCK(sc);
2711 			return;
2712 		}
2713 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2714 		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2715 			taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2716 	}
2717 
2718 	if (more == EAGAIN ||
2719 	    (CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) {
2720 		taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2721 		return;
2722 	}
2723 
2724 done:
2725 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2726 		/* Re-enable interrupts if we're running. */
2727 		CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2728 	}
2729 }
2730 
2731 static void
2732 alc_txeof(struct alc_softc *sc)
2733 {
2734 	struct ifnet *ifp;
2735 	struct alc_txdesc *txd;
2736 	uint32_t cons, prod;
2737 	int prog;
2738 
2739 	ALC_LOCK_ASSERT(sc);
2740 
2741 	ifp = sc->alc_ifp;
2742 
2743 	if (sc->alc_cdata.alc_tx_cnt == 0)
2744 		return;
2745 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2746 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2747 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2748 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2749 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
2750 		prod = sc->alc_rdata.alc_cmb->cons;
2751 	} else
2752 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2753 	/* Assume we're using normal Tx priority queue. */
2754 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2755 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2756 	cons = sc->alc_cdata.alc_tx_cons;
2757 	/*
2758 	 * Go through our Tx list and free mbufs for those
2759 	 * frames which have been transmitted.
2760 	 */
2761 	for (prog = 0; cons != prod; prog++,
2762 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2763 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2764 			break;
2765 		prog++;
2766 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2767 		sc->alc_cdata.alc_tx_cnt--;
2768 		txd = &sc->alc_cdata.alc_txdesc[cons];
2769 		if (txd->tx_m != NULL) {
2770 			/* Reclaim transmitted mbufs. */
2771 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
2772 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2773 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
2774 			    txd->tx_dmamap);
2775 			m_freem(txd->tx_m);
2776 			txd->tx_m = NULL;
2777 		}
2778 	}
2779 
2780 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2781 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2782 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
2783 	sc->alc_cdata.alc_tx_cons = cons;
2784 	/*
2785 	 * Unarm watchdog timer only when there is no pending
2786 	 * frames in Tx queue.
2787 	 */
2788 	if (sc->alc_cdata.alc_tx_cnt == 0)
2789 		sc->alc_watchdog_timer = 0;
2790 }
2791 
2792 static int
2793 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd)
2794 {
2795 	struct mbuf *m;
2796 	bus_dma_segment_t segs[1];
2797 	bus_dmamap_t map;
2798 	int nsegs;
2799 
2800 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2801 	if (m == NULL)
2802 		return (ENOBUFS);
2803 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2804 #ifndef __NO_STRICT_ALIGNMENT
2805 	m_adj(m, sizeof(uint64_t));
2806 #endif
2807 
2808 	if (bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_rx_tag,
2809 	    sc->alc_cdata.alc_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2810 		m_freem(m);
2811 		return (ENOBUFS);
2812 	}
2813 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2814 
2815 	if (rxd->rx_m != NULL) {
2816 		bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2817 		    BUS_DMASYNC_POSTREAD);
2818 		bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
2819 	}
2820 	map = rxd->rx_dmamap;
2821 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2822 	sc->alc_cdata.alc_rx_sparemap = map;
2823 	bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2824 	    BUS_DMASYNC_PREREAD);
2825 	rxd->rx_m = m;
2826 	rxd->rx_desc->addr = htole64(segs[0].ds_addr);
2827 	return (0);
2828 }
2829 
2830 static int
2831 alc_rxintr(struct alc_softc *sc, int count)
2832 {
2833 	struct ifnet *ifp;
2834 	struct rx_rdesc *rrd;
2835 	uint32_t nsegs, status;
2836 	int rr_cons, prog;
2837 
2838 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2839 	    sc->alc_cdata.alc_rr_ring_map,
2840 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2841 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2842 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2843 	rr_cons = sc->alc_cdata.alc_rr_cons;
2844 	ifp = sc->alc_ifp;
2845 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;) {
2846 		if (count-- <= 0)
2847 			break;
2848 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2849 		status = le32toh(rrd->status);
2850 		if ((status & RRD_VALID) == 0)
2851 			break;
2852 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2853 		if (nsegs == 0) {
2854 			/* This should not happen! */
2855 			device_printf(sc->alc_dev,
2856 			    "unexpected segment count -- resetting\n");
2857 			return (EIO);
2858 		}
2859 		alc_rxeof(sc, rrd);
2860 		/* Clear Rx return status. */
2861 		rrd->status = 0;
2862 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2863 		sc->alc_cdata.alc_rx_cons += nsegs;
2864 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2865 		prog += nsegs;
2866 	}
2867 
2868 	if (prog > 0) {
2869 		/* Update the consumer index. */
2870 		sc->alc_cdata.alc_rr_cons = rr_cons;
2871 		/* Sync Rx return descriptors. */
2872 		bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2873 		    sc->alc_cdata.alc_rr_ring_map,
2874 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2875 		/*
2876 		 * Sync updated Rx descriptors such that controller see
2877 		 * modified buffer addresses.
2878 		 */
2879 		bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2880 		    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
2881 		/*
2882 		 * Let controller know availability of new Rx buffers.
2883 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2884 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2885 		 * only when Rx buffer pre-fetching is required. In
2886 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2887 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2888 		 * it still seems that pre-fetching needs more
2889 		 * experimentation.
2890 		 */
2891 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2892 		    sc->alc_cdata.alc_rx_cons);
2893 	}
2894 
2895 	return (count > 0 ? 0 : EAGAIN);
2896 }
2897 
2898 #ifndef __NO_STRICT_ALIGNMENT
2899 static struct mbuf *
2900 alc_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2901 {
2902 	struct mbuf *n;
2903         int i;
2904         uint16_t *src, *dst;
2905 
2906 	src = mtod(m, uint16_t *);
2907 	dst = src - 3;
2908 
2909 	if (m->m_next == NULL) {
2910 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2911 			*dst++ = *src++;
2912 		m->m_data -= 6;
2913 		return (m);
2914 	}
2915 	/*
2916 	 * Append a new mbuf to received mbuf chain and copy ethernet
2917 	 * header from the mbuf chain. This can save lots of CPU
2918 	 * cycles for jumbo frame.
2919 	 */
2920 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2921 	if (n == NULL) {
2922 		ifp->if_iqdrops++;
2923 		m_freem(m);
2924 		return (NULL);
2925 	}
2926 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2927 	m->m_data += ETHER_HDR_LEN;
2928 	m->m_len -= ETHER_HDR_LEN;
2929 	n->m_len = ETHER_HDR_LEN;
2930 	M_MOVE_PKTHDR(n, m);
2931 	n->m_next = m;
2932 	return (n);
2933 }
2934 #endif
2935 
2936 /* Receive a frame. */
2937 static void
2938 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2939 {
2940 	struct alc_rxdesc *rxd;
2941 	struct ifnet *ifp;
2942 	struct mbuf *mp, *m;
2943 	uint32_t rdinfo, status, vtag;
2944 	int count, nsegs, rx_cons;
2945 
2946 	ifp = sc->alc_ifp;
2947 	status = le32toh(rrd->status);
2948 	rdinfo = le32toh(rrd->rdinfo);
2949 	rx_cons = RRD_RD_IDX(rdinfo);
2950 	nsegs = RRD_RD_CNT(rdinfo);
2951 
2952 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2953 	if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
2954 		/*
2955 		 * We want to pass the following frames to upper
2956 		 * layer regardless of error status of Rx return
2957 		 * ring.
2958 		 *
2959 		 *  o IP/TCP/UDP checksum is bad.
2960 		 *  o frame length and protocol specific length
2961 		 *     does not match.
2962 		 *
2963 		 *  Force network stack compute checksum for
2964 		 *  errored frames.
2965 		 */
2966 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2967 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
2968 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
2969 			return;
2970 	}
2971 
2972 	for (count = 0; count < nsegs; count++,
2973 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2974 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2975 		mp = rxd->rx_m;
2976 		/* Add a new receive buffer to the ring. */
2977 		if (alc_newbuf(sc, rxd) != 0) {
2978 			ifp->if_iqdrops++;
2979 			/* Reuse Rx buffers. */
2980 			if (sc->alc_cdata.alc_rxhead != NULL)
2981 				m_freem(sc->alc_cdata.alc_rxhead);
2982 			break;
2983 		}
2984 
2985 		/*
2986 		 * Assume we've received a full sized frame.
2987 		 * Actual size is fixed when we encounter the end of
2988 		 * multi-segmented frame.
2989 		 */
2990 		mp->m_len = sc->alc_buf_size;
2991 
2992 		/* Chain received mbufs. */
2993 		if (sc->alc_cdata.alc_rxhead == NULL) {
2994 			sc->alc_cdata.alc_rxhead = mp;
2995 			sc->alc_cdata.alc_rxtail = mp;
2996 		} else {
2997 			mp->m_flags &= ~M_PKTHDR;
2998 			sc->alc_cdata.alc_rxprev_tail =
2999 			    sc->alc_cdata.alc_rxtail;
3000 			sc->alc_cdata.alc_rxtail->m_next = mp;
3001 			sc->alc_cdata.alc_rxtail = mp;
3002 		}
3003 
3004 		if (count == nsegs - 1) {
3005 			/* Last desc. for this frame. */
3006 			m = sc->alc_cdata.alc_rxhead;
3007 			m->m_flags |= M_PKTHDR;
3008 			/*
3009 			 * It seems that L1C/L2C controller has no way
3010 			 * to tell hardware to strip CRC bytes.
3011 			 */
3012 			m->m_pkthdr.len =
3013 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
3014 			if (nsegs > 1) {
3015 				/* Set last mbuf size. */
3016 				mp->m_len = sc->alc_cdata.alc_rxlen -
3017 				    (nsegs - 1) * sc->alc_buf_size;
3018 				/* Remove the CRC bytes in chained mbufs. */
3019 				if (mp->m_len <= ETHER_CRC_LEN) {
3020 					sc->alc_cdata.alc_rxtail =
3021 					    sc->alc_cdata.alc_rxprev_tail;
3022 					sc->alc_cdata.alc_rxtail->m_len -=
3023 					    (ETHER_CRC_LEN - mp->m_len);
3024 					sc->alc_cdata.alc_rxtail->m_next = NULL;
3025 					m_freem(mp);
3026 				} else {
3027 					mp->m_len -= ETHER_CRC_LEN;
3028 				}
3029 			} else
3030 				m->m_len = m->m_pkthdr.len;
3031 			m->m_pkthdr.rcvif = ifp;
3032 			/*
3033 			 * Due to hardware bugs, Rx checksum offloading
3034 			 * was intentionally disabled.
3035 			 */
3036 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
3037 			    (status & RRD_VLAN_TAG) != 0) {
3038 				vtag = RRD_VLAN(le32toh(rrd->vtag));
3039 				m->m_pkthdr.ether_vtag = ntohs(vtag);
3040 				m->m_flags |= M_VLANTAG;
3041 			}
3042 #ifndef __NO_STRICT_ALIGNMENT
3043 			m = alc_fixup_rx(ifp, m);
3044 			if (m != NULL)
3045 #endif
3046 			{
3047 			/* Pass it on. */
3048 			(*ifp->if_input)(ifp, m);
3049 			}
3050 		}
3051 	}
3052 	/* Reset mbuf chains. */
3053 	ALC_RXCHAIN_RESET(sc);
3054 }
3055 
3056 static void
3057 alc_tick(void *arg)
3058 {
3059 	struct alc_softc *sc;
3060 	struct mii_data *mii;
3061 
3062 	sc = (struct alc_softc *)arg;
3063 
3064 	ALC_LOCK_ASSERT(sc);
3065 
3066 	mii = device_get_softc(sc->alc_miibus);
3067 	mii_tick(mii);
3068 	alc_stats_update(sc);
3069 	/*
3070 	 * alc(4) does not rely on Tx completion interrupts to reclaim
3071 	 * transferred buffers. Instead Tx completion interrupts are
3072 	 * used to hint for scheduling Tx task. So it's necessary to
3073 	 * release transmitted buffers by kicking Tx completion
3074 	 * handler. This limits the maximum reclamation delay to a hz.
3075 	 */
3076 	alc_txeof(sc);
3077 	alc_watchdog(sc);
3078 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3079 }
3080 
3081 static void
3082 alc_reset(struct alc_softc *sc)
3083 {
3084 	uint32_t reg;
3085 	int i;
3086 
3087 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
3088 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
3089 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3090 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3091 		DELAY(10);
3092 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
3093 			break;
3094 	}
3095 	if (i == 0)
3096 		device_printf(sc->alc_dev, "master reset timeout!\n");
3097 
3098 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3099 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
3100 			break;
3101 		DELAY(10);
3102 	}
3103 
3104 	if (i == 0)
3105 		device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
3106 }
3107 
3108 static void
3109 alc_init(void *xsc)
3110 {
3111 	struct alc_softc *sc;
3112 
3113 	sc = (struct alc_softc *)xsc;
3114 	ALC_LOCK(sc);
3115 	alc_init_locked(sc);
3116 	ALC_UNLOCK(sc);
3117 }
3118 
3119 static void
3120 alc_init_locked(struct alc_softc *sc)
3121 {
3122 	struct ifnet *ifp;
3123 	struct mii_data *mii;
3124 	uint8_t eaddr[ETHER_ADDR_LEN];
3125 	bus_addr_t paddr;
3126 	uint32_t reg, rxf_hi, rxf_lo;
3127 
3128 	ALC_LOCK_ASSERT(sc);
3129 
3130 	ifp = sc->alc_ifp;
3131 	mii = device_get_softc(sc->alc_miibus);
3132 
3133 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3134 		return;
3135 	/*
3136 	 * Cancel any pending I/O.
3137 	 */
3138 	alc_stop(sc);
3139 	/*
3140 	 * Reset the chip to a known state.
3141 	 */
3142 	alc_reset(sc);
3143 
3144 	/* Initialize Rx descriptors. */
3145 	if (alc_init_rx_ring(sc) != 0) {
3146 		device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
3147 		alc_stop(sc);
3148 		return;
3149 	}
3150 	alc_init_rr_ring(sc);
3151 	alc_init_tx_ring(sc);
3152 	alc_init_cmb(sc);
3153 	alc_init_smb(sc);
3154 
3155 	/* Reprogram the station address. */
3156 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3157 	CSR_WRITE_4(sc, ALC_PAR0,
3158 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
3159 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
3160 	/*
3161 	 * Clear WOL status and disable all WOL feature as WOL
3162 	 * would interfere Rx operation under normal environments.
3163 	 */
3164 	CSR_READ_4(sc, ALC_WOL_CFG);
3165 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
3166 	/* Set Tx descriptor base addresses. */
3167 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
3168 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3169 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3170 	/* We don't use high priority ring. */
3171 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
3172 	/* Set Tx descriptor counter. */
3173 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
3174 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
3175 	/* Set Rx descriptor base addresses. */
3176 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
3177 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3178 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3179 	/* We use one Rx ring. */
3180 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
3181 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
3182 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
3183 	/* Set Rx descriptor counter. */
3184 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
3185 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
3186 
3187 	/*
3188 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
3189 	 * if it do not fit the buffer size. Rx return descriptor holds
3190 	 * a counter that indicates how many fragments were made by the
3191 	 * hardware. The buffer size should be multiple of 8 bytes.
3192 	 * Since hardware has limit on the size of buffer size, always
3193 	 * use the maximum value.
3194 	 * For strict-alignment architectures make sure to reduce buffer
3195 	 * size by 8 bytes to make room for alignment fixup.
3196 	 */
3197 #ifndef __NO_STRICT_ALIGNMENT
3198 	sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t);
3199 #else
3200 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
3201 #endif
3202 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
3203 
3204 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
3205 	/* Set Rx return descriptor base addresses. */
3206 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3207 	/* We use one Rx return ring. */
3208 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
3209 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
3210 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
3211 	/* Set Rx return descriptor counter. */
3212 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
3213 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
3214 	paddr = sc->alc_rdata.alc_cmb_paddr;
3215 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3216 	paddr = sc->alc_rdata.alc_smb_paddr;
3217 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3218 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3219 
3220 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
3221 		/* Reconfigure SRAM - Vendor magic. */
3222 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
3223 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
3224 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
3225 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
3226 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
3227 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
3228 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
3229 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
3230 	}
3231 
3232 	/* Tell hardware that we're ready to load DMA blocks. */
3233 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
3234 
3235 	/* Configure interrupt moderation timer. */
3236 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
3237 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
3238 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
3239 	/*
3240 	 * We don't want to automatic interrupt clear as task queue
3241 	 * for the interrupt should know interrupt status.
3242 	 */
3243 	reg = MASTER_SA_TIMER_ENB;
3244 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
3245 		reg |= MASTER_IM_RX_TIMER_ENB;
3246 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
3247 		reg |= MASTER_IM_TX_TIMER_ENB;
3248 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3249 	/*
3250 	 * Disable interrupt re-trigger timer. We don't want automatic
3251 	 * re-triggering of un-ACKed interrupts.
3252 	 */
3253 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
3254 	/* Configure CMB. */
3255 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
3256 		CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
3257 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
3258 	} else
3259 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
3260 	/*
3261 	 * Hardware can be configured to issue SMB interrupt based
3262 	 * on programmed interval. Since there is a callout that is
3263 	 * invoked for every hz in driver we use that instead of
3264 	 * relying on periodic SMB interrupt.
3265 	 */
3266 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
3267 	/* Clear MAC statistics. */
3268 	alc_stats_clear(sc);
3269 
3270 	/*
3271 	 * Always use maximum frame size that controller can support.
3272 	 * Otherwise received frames that has larger frame length
3273 	 * than alc(4) MTU would be silently dropped in hardware. This
3274 	 * would make path-MTU discovery hard as sender wouldn't get
3275 	 * any responses from receiver. alc(4) supports
3276 	 * multi-fragmented frames on Rx path so it has no issue on
3277 	 * assembling fragmented frames. Using maximum frame size also
3278 	 * removes the need to reinitialize hardware when interface
3279 	 * MTU configuration was changed.
3280 	 *
3281 	 * Be conservative in what you do, be liberal in what you
3282 	 * accept from others - RFC 793.
3283 	 */
3284 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
3285 
3286 	/* Disable header split(?) */
3287 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
3288 
3289 	/* Configure IPG/IFG parameters. */
3290 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
3291 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
3292 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
3293 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
3294 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
3295 	/* Set parameters for half-duplex media. */
3296 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
3297 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
3298 	    HDPX_CFG_LCOL_MASK) |
3299 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
3300 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
3301 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
3302 	    HDPX_CFG_ABEBT_MASK) |
3303 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3304 	    HDPX_CFG_JAMIPG_MASK));
3305 	/*
3306 	 * Set TSO/checksum offload threshold. For frames that is
3307 	 * larger than this threshold, hardware wouldn't do
3308 	 * TSO/checksum offloading.
3309 	 */
3310 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
3311 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3312 	    TSO_OFFLOAD_THRESH_MASK);
3313 	/* Configure TxQ. */
3314 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3315 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3316 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3317 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
3318 		reg >>= 1;
3319 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3320 	    TXQ_CFG_TD_BURST_MASK;
3321 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3322 
3323 	/* Configure Rx free descriptor pre-fetching. */
3324 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3325 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
3326 	    RX_RD_FREE_THRESH_HI_MASK) |
3327 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
3328 	    RX_RD_FREE_THRESH_LO_MASK));
3329 
3330 	/*
3331 	 * Configure flow control parameters.
3332 	 * XON  : 80% of Rx FIFO
3333 	 * XOFF : 30% of Rx FIFO
3334 	 */
3335 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
3336 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132) {
3337 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3338 		rxf_hi = (reg * 8) / 10;
3339 		rxf_lo = (reg * 3) / 10;
3340 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3341 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3342 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
3343 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3344 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
3345 	}
3346 
3347 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3348 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2)
3349 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
3350 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
3351 		    SERDES_PHY_CLK_SLOWDOWN);
3352 
3353 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
3354 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3355 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3356 
3357 	/* Configure RxQ. */
3358 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3359 	    RXQ_CFG_RD_BURST_MASK;
3360 	reg |= RXQ_CFG_RSS_MODE_DIS;
3361 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
3362 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3363 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3364 
3365 	/* Configure DMA parameters. */
3366 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3367 	reg |= sc->alc_rcb;
3368 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3369 		reg |= DMA_CFG_CMB_ENB;
3370 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3371 		reg |= DMA_CFG_SMB_ENB;
3372 	else
3373 		reg |= DMA_CFG_SMB_DIS;
3374 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3375 	    DMA_CFG_RD_BURST_SHIFT;
3376 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3377 	    DMA_CFG_WR_BURST_SHIFT;
3378 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3379 	    DMA_CFG_RD_DELAY_CNT_MASK;
3380 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3381 	    DMA_CFG_WR_DELAY_CNT_MASK;
3382 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3383 
3384 	/*
3385 	 * Configure Tx/Rx MACs.
3386 	 *  - Auto-padding for short frames.
3387 	 *  - Enable CRC generation.
3388 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3389 	 *  is followed after detection of link establishment.
3390 	 *  AR813x/AR815x always does checksum computation regardless
3391 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3392 	 *  have bug in protocol field in Rx return structure so
3393 	 *  these controllers can't handle fragmented frames. Disable
3394 	 *  Rx checksum offloading until there is a newer controller
3395 	 *  that has sane implementation.
3396 	 */
3397 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3398 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3399 	    MAC_CFG_PREAMBLE_MASK);
3400 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
3401 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
3402 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
3403 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3404 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3405 		reg |= MAC_CFG_SPEED_10_100;
3406 	else
3407 		reg |= MAC_CFG_SPEED_1000;
3408 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3409 
3410 	/* Set up the receive filter. */
3411 	alc_rxfilter(sc);
3412 	alc_rxvlan(sc);
3413 
3414 	/* Acknowledge all pending interrupts and clear it. */
3415 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3416 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3417 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3418 
3419 	sc->alc_flags &= ~ALC_FLAG_LINK;
3420 	/* Switch to the current media. */
3421 	mii_mediachg(mii);
3422 
3423 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3424 
3425 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3426 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3427 }
3428 
3429 static void
3430 alc_stop(struct alc_softc *sc)
3431 {
3432 	struct ifnet *ifp;
3433 	struct alc_txdesc *txd;
3434 	struct alc_rxdesc *rxd;
3435 	uint32_t reg;
3436 	int i;
3437 
3438 	ALC_LOCK_ASSERT(sc);
3439 	/*
3440 	 * Mark the interface down and cancel the watchdog timer.
3441 	 */
3442 	ifp = sc->alc_ifp;
3443 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3444 	sc->alc_flags &= ~ALC_FLAG_LINK;
3445 	callout_stop(&sc->alc_tick_ch);
3446 	sc->alc_watchdog_timer = 0;
3447 	alc_stats_update(sc);
3448 	/* Disable interrupts. */
3449 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3450 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3451 	alc_stop_queue(sc);
3452 	/* Disable DMA. */
3453 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3454 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3455 	reg |= DMA_CFG_SMB_DIS;
3456 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3457 	DELAY(1000);
3458 	/* Stop Rx/Tx MACs. */
3459 	alc_stop_mac(sc);
3460 	/* Disable interrupts which might be touched in taskq handler. */
3461 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3462 
3463 	/* Reclaim Rx buffers that have been processed. */
3464 	if (sc->alc_cdata.alc_rxhead != NULL)
3465 		m_freem(sc->alc_cdata.alc_rxhead);
3466 	ALC_RXCHAIN_RESET(sc);
3467 	/*
3468 	 * Free Tx/Rx mbufs still in the queues.
3469 	 */
3470 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3471 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3472 		if (rxd->rx_m != NULL) {
3473 			bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
3474 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3475 			bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
3476 			    rxd->rx_dmamap);
3477 			m_freem(rxd->rx_m);
3478 			rxd->rx_m = NULL;
3479 		}
3480 	}
3481 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3482 		txd = &sc->alc_cdata.alc_txdesc[i];
3483 		if (txd->tx_m != NULL) {
3484 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
3485 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3486 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
3487 			    txd->tx_dmamap);
3488 			m_freem(txd->tx_m);
3489 			txd->tx_m = NULL;
3490 		}
3491 	}
3492 }
3493 
3494 static void
3495 alc_stop_mac(struct alc_softc *sc)
3496 {
3497 	uint32_t reg;
3498 	int i;
3499 
3500 	ALC_LOCK_ASSERT(sc);
3501 
3502 	/* Disable Rx/Tx MAC. */
3503 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3504 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3505 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
3506 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3507 	}
3508 	for (i = ALC_TIMEOUT; i > 0; i--) {
3509 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3510 		if (reg == 0)
3511 			break;
3512 		DELAY(10);
3513 	}
3514 	if (i == 0)
3515 		device_printf(sc->alc_dev,
3516 		    "could not disable Rx/Tx MAC(0x%08x)!\n", reg);
3517 }
3518 
3519 static void
3520 alc_start_queue(struct alc_softc *sc)
3521 {
3522 	uint32_t qcfg[] = {
3523 		0,
3524 		RXQ_CFG_QUEUE0_ENB,
3525 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3526 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3527 		RXQ_CFG_ENB
3528 	};
3529 	uint32_t cfg;
3530 
3531 	ALC_LOCK_ASSERT(sc);
3532 
3533 	/* Enable RxQ. */
3534 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3535 	cfg &= ~RXQ_CFG_ENB;
3536 	cfg |= qcfg[1];
3537 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3538 	/* Enable TxQ. */
3539 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3540 	cfg |= TXQ_CFG_ENB;
3541 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3542 }
3543 
3544 static void
3545 alc_stop_queue(struct alc_softc *sc)
3546 {
3547 	uint32_t reg;
3548 	int i;
3549 
3550 	ALC_LOCK_ASSERT(sc);
3551 
3552 	/* Disable RxQ. */
3553 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3554 	if ((reg & RXQ_CFG_ENB) != 0) {
3555 		reg &= ~RXQ_CFG_ENB;
3556 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3557 	}
3558 	/* Disable TxQ. */
3559 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3560 	if ((reg & TXQ_CFG_ENB) == 0) {
3561 		reg &= ~TXQ_CFG_ENB;
3562 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3563 	}
3564 	for (i = ALC_TIMEOUT; i > 0; i--) {
3565 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3566 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3567 			break;
3568 		DELAY(10);
3569 	}
3570 	if (i == 0)
3571 		device_printf(sc->alc_dev,
3572 		    "could not disable RxQ/TxQ (0x%08x)!\n", reg);
3573 }
3574 
3575 static void
3576 alc_init_tx_ring(struct alc_softc *sc)
3577 {
3578 	struct alc_ring_data *rd;
3579 	struct alc_txdesc *txd;
3580 	int i;
3581 
3582 	ALC_LOCK_ASSERT(sc);
3583 
3584 	sc->alc_cdata.alc_tx_prod = 0;
3585 	sc->alc_cdata.alc_tx_cons = 0;
3586 	sc->alc_cdata.alc_tx_cnt = 0;
3587 
3588 	rd = &sc->alc_rdata;
3589 	bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
3590 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3591 		txd = &sc->alc_cdata.alc_txdesc[i];
3592 		txd->tx_m = NULL;
3593 	}
3594 
3595 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
3596 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
3597 }
3598 
3599 static int
3600 alc_init_rx_ring(struct alc_softc *sc)
3601 {
3602 	struct alc_ring_data *rd;
3603 	struct alc_rxdesc *rxd;
3604 	int i;
3605 
3606 	ALC_LOCK_ASSERT(sc);
3607 
3608 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3609 	sc->alc_morework = 0;
3610 	rd = &sc->alc_rdata;
3611 	bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
3612 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3613 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3614 		rxd->rx_m = NULL;
3615 		rxd->rx_desc = &rd->alc_rx_ring[i];
3616 		if (alc_newbuf(sc, rxd) != 0)
3617 			return (ENOBUFS);
3618 	}
3619 
3620 	/*
3621 	 * Since controller does not update Rx descriptors, driver
3622 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3623 	 * is enough to ensure coherence.
3624 	 */
3625 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
3626 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
3627 	/* Let controller know availability of new Rx buffers. */
3628 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3629 
3630 	return (0);
3631 }
3632 
3633 static void
3634 alc_init_rr_ring(struct alc_softc *sc)
3635 {
3636 	struct alc_ring_data *rd;
3637 
3638 	ALC_LOCK_ASSERT(sc);
3639 
3640 	sc->alc_cdata.alc_rr_cons = 0;
3641 	ALC_RXCHAIN_RESET(sc);
3642 
3643 	rd = &sc->alc_rdata;
3644 	bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
3645 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
3646 	    sc->alc_cdata.alc_rr_ring_map,
3647 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3648 }
3649 
3650 static void
3651 alc_init_cmb(struct alc_softc *sc)
3652 {
3653 	struct alc_ring_data *rd;
3654 
3655 	ALC_LOCK_ASSERT(sc);
3656 
3657 	rd = &sc->alc_rdata;
3658 	bzero(rd->alc_cmb, ALC_CMB_SZ);
3659 	bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
3660 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3661 }
3662 
3663 static void
3664 alc_init_smb(struct alc_softc *sc)
3665 {
3666 	struct alc_ring_data *rd;
3667 
3668 	ALC_LOCK_ASSERT(sc);
3669 
3670 	rd = &sc->alc_rdata;
3671 	bzero(rd->alc_smb, ALC_SMB_SZ);
3672 	bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
3673 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3674 }
3675 
3676 static void
3677 alc_rxvlan(struct alc_softc *sc)
3678 {
3679 	struct ifnet *ifp;
3680 	uint32_t reg;
3681 
3682 	ALC_LOCK_ASSERT(sc);
3683 
3684 	ifp = sc->alc_ifp;
3685 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3686 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3687 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3688 	else
3689 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3690 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3691 }
3692 
3693 static void
3694 alc_rxfilter(struct alc_softc *sc)
3695 {
3696 	struct ifnet *ifp;
3697 	struct ifmultiaddr *ifma;
3698 	uint32_t crc;
3699 	uint32_t mchash[2];
3700 	uint32_t rxcfg;
3701 
3702 	ALC_LOCK_ASSERT(sc);
3703 
3704 	ifp = sc->alc_ifp;
3705 
3706 	bzero(mchash, sizeof(mchash));
3707 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3708 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3709 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3710 		rxcfg |= MAC_CFG_BCAST;
3711 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3712 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3713 			rxcfg |= MAC_CFG_PROMISC;
3714 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3715 			rxcfg |= MAC_CFG_ALLMULTI;
3716 		mchash[0] = 0xFFFFFFFF;
3717 		mchash[1] = 0xFFFFFFFF;
3718 		goto chipit;
3719 	}
3720 
3721 	if_maddr_rlock(ifp);
3722 	TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
3723 		if (ifma->ifma_addr->sa_family != AF_LINK)
3724 			continue;
3725 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3726 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3727 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3728 	}
3729 	if_maddr_runlock(ifp);
3730 
3731 chipit:
3732 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3733 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3734 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3735 }
3736 
3737 static int
3738 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3739 {
3740 	int error, value;
3741 
3742 	if (arg1 == NULL)
3743 		return (EINVAL);
3744 	value = *(int *)arg1;
3745 	error = sysctl_handle_int(oidp, &value, 0, req);
3746 	if (error || req->newptr == NULL)
3747 		return (error);
3748 	if (value < low || value > high)
3749 		return (EINVAL);
3750 	*(int *)arg1 = value;
3751 
3752 	return (0);
3753 }
3754 
3755 static int
3756 sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
3757 {
3758 	return (sysctl_int_range(oidp, arg1, arg2, req,
3759 	    ALC_PROC_MIN, ALC_PROC_MAX));
3760 }
3761 
3762 static int
3763 sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
3764 {
3765 
3766 	return (sysctl_int_range(oidp, arg1, arg2, req,
3767 	    ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));
3768 }
3769