xref: /freebsd/sys/dev/alc/if_alc.c (revision 7aa383846770374466b1dcb2cefd71bde9acf463)
1 /*-
2  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR8131/AR8132 PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/rman.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_llc.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 
71 #include <machine/atomic.h>
72 #include <machine/bus.h>
73 #include <machine/in_cksum.h>
74 
75 #include <dev/alc/if_alcreg.h>
76 #include <dev/alc/if_alcvar.h>
77 
78 /* "device miibus" required.  See GENERIC if you get errors here. */
79 #include "miibus_if.h"
80 #undef ALC_USE_CUSTOM_CSUM
81 
82 #ifdef ALC_USE_CUSTOM_CSUM
83 #define	ALC_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
84 #else
85 #define	ALC_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
86 #endif
87 
88 MODULE_DEPEND(alc, pci, 1, 1, 1);
89 MODULE_DEPEND(alc, ether, 1, 1, 1);
90 MODULE_DEPEND(alc, miibus, 1, 1, 1);
91 
92 /* Tunables. */
93 static int msi_disable = 0;
94 static int msix_disable = 0;
95 TUNABLE_INT("hw.alc.msi_disable", &msi_disable);
96 TUNABLE_INT("hw.alc.msix_disable", &msix_disable);
97 
98 /*
99  * Devices supported by this driver.
100  */
101 static struct alc_dev {
102 	uint16_t	alc_vendorid;
103 	uint16_t	alc_deviceid;
104 	const char	*alc_name;
105 } alc_devs[] = {
106 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131,
107 		"Atheros AR8131 PCIe Gigabit Ethernet" },
108 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132,
109 		"Atheros AR8132 PCIe Fast Ethernet" }
110 };
111 
112 static void	alc_aspm(struct alc_softc *);
113 static int	alc_attach(device_t);
114 static int	alc_check_boundary(struct alc_softc *);
115 static int	alc_detach(device_t);
116 static void	alc_disable_l0s_l1(struct alc_softc *);
117 static int	alc_dma_alloc(struct alc_softc *);
118 static void	alc_dma_free(struct alc_softc *);
119 static void	alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
120 static int	alc_encap(struct alc_softc *, struct mbuf **);
121 #ifndef __NO_STRICT_ALIGNMENT
122 static struct mbuf *
123 		alc_fixup_rx(struct ifnet *, struct mbuf *);
124 #endif
125 static void	alc_get_macaddr(struct alc_softc *);
126 static void	alc_init(void *);
127 static void	alc_init_cmb(struct alc_softc *);
128 static void	alc_init_locked(struct alc_softc *);
129 static void	alc_init_rr_ring(struct alc_softc *);
130 static int	alc_init_rx_ring(struct alc_softc *);
131 static void	alc_init_smb(struct alc_softc *);
132 static void	alc_init_tx_ring(struct alc_softc *);
133 static void	alc_int_task(void *, int);
134 static int	alc_intr(void *);
135 static int	alc_ioctl(struct ifnet *, u_long, caddr_t);
136 static void	alc_mac_config(struct alc_softc *);
137 static int	alc_miibus_readreg(device_t, int, int);
138 static void	alc_miibus_statchg(device_t);
139 static int	alc_miibus_writereg(device_t, int, int, int);
140 static int	alc_mediachange(struct ifnet *);
141 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
142 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *);
143 static void	alc_phy_down(struct alc_softc *);
144 static void	alc_phy_reset(struct alc_softc *);
145 static int	alc_probe(device_t);
146 static void	alc_reset(struct alc_softc *);
147 static int	alc_resume(device_t);
148 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
149 static int	alc_rxintr(struct alc_softc *, int);
150 static void	alc_rxfilter(struct alc_softc *);
151 static void	alc_rxvlan(struct alc_softc *);
152 static void	alc_setlinkspeed(struct alc_softc *);
153 static void	alc_setwol(struct alc_softc *);
154 static int	alc_shutdown(device_t);
155 static void	alc_start(struct ifnet *);
156 static void	alc_start_queue(struct alc_softc *);
157 static void	alc_stats_clear(struct alc_softc *);
158 static void	alc_stats_update(struct alc_softc *);
159 static void	alc_stop(struct alc_softc *);
160 static void	alc_stop_mac(struct alc_softc *);
161 static void	alc_stop_queue(struct alc_softc *);
162 static int	alc_suspend(device_t);
163 static void	alc_sysctl_node(struct alc_softc *);
164 static void	alc_tick(void *);
165 static void	alc_tx_task(void *, int);
166 static void	alc_txeof(struct alc_softc *);
167 static void	alc_watchdog(struct alc_softc *);
168 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
169 static int	sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
170 static int	sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
171 
172 static device_method_t alc_methods[] = {
173 	/* Device interface. */
174 	DEVMETHOD(device_probe,		alc_probe),
175 	DEVMETHOD(device_attach,	alc_attach),
176 	DEVMETHOD(device_detach,	alc_detach),
177 	DEVMETHOD(device_shutdown,	alc_shutdown),
178 	DEVMETHOD(device_suspend,	alc_suspend),
179 	DEVMETHOD(device_resume,	alc_resume),
180 
181 	/* MII interface. */
182 	DEVMETHOD(miibus_readreg,	alc_miibus_readreg),
183 	DEVMETHOD(miibus_writereg,	alc_miibus_writereg),
184 	DEVMETHOD(miibus_statchg,	alc_miibus_statchg),
185 
186 	{ NULL, NULL }
187 };
188 
189 static driver_t alc_driver = {
190 	"alc",
191 	alc_methods,
192 	sizeof(struct alc_softc)
193 };
194 
195 static devclass_t alc_devclass;
196 
197 DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, 0, 0);
198 DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, 0, 0);
199 
200 static struct resource_spec alc_res_spec_mem[] = {
201 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
202 	{ -1,			0,		0 }
203 };
204 
205 static struct resource_spec alc_irq_spec_legacy[] = {
206 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
207 	{ -1,			0,		0 }
208 };
209 
210 static struct resource_spec alc_irq_spec_msi[] = {
211 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
212 	{ -1,			0,		0 }
213 };
214 
215 static struct resource_spec alc_irq_spec_msix[] = {
216 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
217 	{ -1,			0,		0 }
218 };
219 
220 static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
221 
222 static int
223 alc_miibus_readreg(device_t dev, int phy, int reg)
224 {
225 	struct alc_softc *sc;
226 	uint32_t v;
227 	int i;
228 
229 	sc = device_get_softc(dev);
230 
231 	if (phy != sc->alc_phyaddr)
232 		return (0);
233 
234 	/*
235 	 * For AR8132 fast ethernet controller, do not report 1000baseT
236 	 * capability to mii(4). Even though AR8132 uses the same
237 	 * model/revision number of F1 gigabit PHY, the PHY has no
238 	 * ability to establish 1000baseT link.
239 	 */
240 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
241 	    reg == MII_EXTSR)
242 		return (0);
243 
244 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
245 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
246 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
247 		DELAY(5);
248 		v = CSR_READ_4(sc, ALC_MDIO);
249 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
250 			break;
251 	}
252 
253 	if (i == 0) {
254 		device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
255 		return (0);
256 	}
257 
258 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
259 }
260 
261 static int
262 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
263 {
264 	struct alc_softc *sc;
265 	uint32_t v;
266 	int i;
267 
268 	sc = device_get_softc(dev);
269 
270 	if (phy != sc->alc_phyaddr)
271 		return (0);
272 
273 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
274 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
275 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
276 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
277 		DELAY(5);
278 		v = CSR_READ_4(sc, ALC_MDIO);
279 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
280 			break;
281 	}
282 
283 	if (i == 0)
284 		device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
285 
286 	return (0);
287 }
288 
289 static void
290 alc_miibus_statchg(device_t dev)
291 {
292 	struct alc_softc *sc;
293 	struct mii_data *mii;
294 	struct ifnet *ifp;
295 	uint32_t reg;
296 
297 	sc = device_get_softc(dev);
298 
299 	mii = device_get_softc(sc->alc_miibus);
300 	ifp = sc->alc_ifp;
301 	if (mii == NULL || ifp == NULL ||
302 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
303 		return;
304 
305 	sc->alc_flags &= ~ALC_FLAG_LINK;
306 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
307 	    (IFM_ACTIVE | IFM_AVALID)) {
308 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
309 		case IFM_10_T:
310 		case IFM_100_TX:
311 			sc->alc_flags |= ALC_FLAG_LINK;
312 			break;
313 		case IFM_1000_T:
314 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
315 				sc->alc_flags |= ALC_FLAG_LINK;
316 			break;
317 		default:
318 			break;
319 		}
320 	}
321 	alc_stop_queue(sc);
322 	/* Stop Rx/Tx MACs. */
323 	alc_stop_mac(sc);
324 
325 	/* Program MACs with resolved speed/duplex/flow-control. */
326 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
327 		alc_start_queue(sc);
328 		alc_mac_config(sc);
329 		/* Re-enable Tx/Rx MACs. */
330 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
331 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
332 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
333 	}
334 	alc_aspm(sc);
335 }
336 
337 static void
338 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
339 {
340 	struct alc_softc *sc;
341 	struct mii_data *mii;
342 
343 	sc = ifp->if_softc;
344 	ALC_LOCK(sc);
345 	if ((ifp->if_flags & IFF_UP) == 0) {
346 		ALC_UNLOCK(sc);
347 		return;
348 	}
349 	mii = device_get_softc(sc->alc_miibus);
350 
351 	mii_pollstat(mii);
352 	ALC_UNLOCK(sc);
353 	ifmr->ifm_status = mii->mii_media_status;
354 	ifmr->ifm_active = mii->mii_media_active;
355 }
356 
357 static int
358 alc_mediachange(struct ifnet *ifp)
359 {
360 	struct alc_softc *sc;
361 	struct mii_data *mii;
362 	struct mii_softc *miisc;
363 	int error;
364 
365 	sc = ifp->if_softc;
366 	ALC_LOCK(sc);
367 	mii = device_get_softc(sc->alc_miibus);
368 	if (mii->mii_instance != 0) {
369 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
370 			mii_phy_reset(miisc);
371 	}
372 	error = mii_mediachg(mii);
373 	ALC_UNLOCK(sc);
374 
375 	return (error);
376 }
377 
378 static int
379 alc_probe(device_t dev)
380 {
381 	struct alc_dev *sp;
382 	int i;
383 	uint16_t vendor, devid;
384 
385 	vendor = pci_get_vendor(dev);
386 	devid = pci_get_device(dev);
387 	sp = alc_devs;
388 	for (i = 0; i < sizeof(alc_devs) / sizeof(alc_devs[0]); i++) {
389 		if (vendor == sp->alc_vendorid &&
390 		    devid == sp->alc_deviceid) {
391 			device_set_desc(dev, sp->alc_name);
392 			return (BUS_PROBE_DEFAULT);
393 		}
394 		sp++;
395 	}
396 
397 	return (ENXIO);
398 }
399 
400 static void
401 alc_get_macaddr(struct alc_softc *sc)
402 {
403 	uint32_t ea[2], opt;
404 	int i;
405 
406 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
407 	if ((CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
408 		/*
409 		 * EEPROM found, let TWSI reload EEPROM configuration.
410 		 * This will set ethernet address of controller.
411 		 */
412 		if ((opt & OPT_CFG_CLK_ENB) == 0) {
413 			opt |= OPT_CFG_CLK_ENB;
414 			CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
415 			CSR_READ_4(sc, ALC_OPT_CFG);
416 			DELAY(1000);
417 		}
418 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
419 		    TWSI_CFG_SW_LD_START);
420 		for (i = 100; i > 0; i--) {
421 			DELAY(1000);
422 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
423 			    TWSI_CFG_SW_LD_START) == 0)
424 				break;
425 		}
426 		if (i == 0)
427 			device_printf(sc->alc_dev,
428 			    "reloading EEPROM timeout!\n");
429 	} else {
430 		if (bootverbose)
431 			device_printf(sc->alc_dev, "EEPROM not found!\n");
432 	}
433 	if ((opt & OPT_CFG_CLK_ENB) != 0) {
434 		opt &= ~OPT_CFG_CLK_ENB;
435 		CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
436 		CSR_READ_4(sc, ALC_OPT_CFG);
437 		DELAY(1000);
438 	}
439 
440 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
441 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
442 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
443 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
444 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
445 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
446 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
447 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
448 }
449 
450 static void
451 alc_disable_l0s_l1(struct alc_softc *sc)
452 {
453 	uint32_t pmcfg;
454 
455 	/* Another magic from vendor. */
456 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
457 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
458 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
459 	    PM_CFG_SERDES_PD_EX_L1);
460 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
461 	    PM_CFG_SERDES_L1_ENB;
462 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
463 }
464 
465 static void
466 alc_phy_reset(struct alc_softc *sc)
467 {
468 	uint16_t data;
469 
470 	/* Reset magic from Linux. */
471 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
472 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
473 	CSR_READ_2(sc, ALC_GPHY_CFG);
474 	DELAY(10 * 1000);
475 
476 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
477 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
478 	    GPHY_CFG_SEL_ANA_RESET);
479 	CSR_READ_2(sc, ALC_GPHY_CFG);
480 	DELAY(10 * 1000);
481 
482 	/* Load DSP codes, vendor magic. */
483 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
484 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
485 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
486 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
487 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
488 	    ALC_MII_DBG_DATA, data);
489 
490 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
491 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
492 	    ANA_SERDES_EN_LCKDT;
493 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
494 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
495 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
496 	    ALC_MII_DBG_DATA, data);
497 
498 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
499 	    ANA_LONG_CABLE_TH_100_MASK) |
500 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
501 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
502 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
503 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
504 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
505 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
506 	    ALC_MII_DBG_DATA, data);
507 
508 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
509 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
510 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
511 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
512 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
513 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
514 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
515 	    ALC_MII_DBG_DATA, data);
516 
517 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
518 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
519 	    ANA_OEN_125M;
520 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
521 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
522 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
523 	    ALC_MII_DBG_DATA, data);
524 	DELAY(1000);
525 }
526 
527 static void
528 alc_phy_down(struct alc_softc *sc)
529 {
530 
531 	/* Force PHY down. */
532 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
533 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
534 	    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW);
535 	DELAY(1000);
536 }
537 
538 static void
539 alc_aspm(struct alc_softc *sc)
540 {
541 	uint32_t pmcfg;
542 
543 	ALC_LOCK_ASSERT(sc);
544 
545 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
546 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
547 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB;
548 	pmcfg |= PM_CFG_SERDES_L1_ENB;
549 	pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
550 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
551 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
552 		pmcfg |= PM_CFG_SERDES_PLL_L1_ENB;
553 		pmcfg &= ~PM_CFG_CLK_SWH_L1;
554 		pmcfg &= ~PM_CFG_ASPM_L1_ENB;
555 		pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
556 	} else {
557 		pmcfg &= ~PM_CFG_SERDES_PLL_L1_ENB;
558 		pmcfg |= PM_CFG_CLK_SWH_L1;
559 		pmcfg &= ~PM_CFG_ASPM_L1_ENB;
560 		pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
561 	}
562 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
563 }
564 
565 static int
566 alc_attach(device_t dev)
567 {
568 	struct alc_softc *sc;
569 	struct ifnet *ifp;
570 	char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/l1" };
571 	uint16_t burst;
572 	int base, error, i, msic, msixc, pmc, state;
573 	uint32_t cap, ctl, val;
574 
575 	error = 0;
576 	sc = device_get_softc(dev);
577 	sc->alc_dev = dev;
578 
579 	mtx_init(&sc->alc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
580 	    MTX_DEF);
581 	callout_init_mtx(&sc->alc_tick_ch, &sc->alc_mtx, 0);
582 	TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc);
583 
584 	/* Map the device. */
585 	pci_enable_busmaster(dev);
586 	sc->alc_res_spec = alc_res_spec_mem;
587 	sc->alc_irq_spec = alc_irq_spec_legacy;
588 	error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res);
589 	if (error != 0) {
590 		device_printf(dev, "cannot allocate memory resources.\n");
591 		goto fail;
592 	}
593 
594 	/* Set PHY address. */
595 	sc->alc_phyaddr = ALC_PHY_ADDR;
596 
597 	/* Initialize DMA parameters. */
598 	sc->alc_dma_rd_burst = 0;
599 	sc->alc_dma_wr_burst = 0;
600 	sc->alc_rcb = DMA_CFG_RCB_64;
601 	if (pci_find_extcap(dev, PCIY_EXPRESS, &base) == 0) {
602 		sc->alc_flags |= ALC_FLAG_PCIE;
603 		burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL);
604 		sc->alc_dma_rd_burst =
605 		    (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12;
606 		sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5;
607 		if (bootverbose) {
608 			device_printf(dev, "Read request size : %u bytes.\n",
609 			    alc_dma_burst[sc->alc_dma_rd_burst]);
610 			device_printf(dev, "TLP payload size : %u bytes.\n",
611 			    alc_dma_burst[sc->alc_dma_wr_burst]);
612 		}
613 		/* Clear data link and flow-control protocol error. */
614 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
615 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
616 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
617 		/* Disable ASPM L0S and L1. */
618 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
619 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
620 			ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
621 			if ((ctl & 0x08) != 0)
622 				sc->alc_rcb = DMA_CFG_RCB_128;
623 			if (bootverbose)
624 				device_printf(dev, "RCB %u bytes\n",
625 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
626 			state = ctl & 0x03;
627 			if (bootverbose)
628 				device_printf(sc->alc_dev, "ASPM %s %s\n",
629 				    aspm_state[state],
630 				    state == 0 ? "disabled" : "enabled");
631 			if (state != 0)
632 				alc_disable_l0s_l1(sc);
633 		}
634 	}
635 
636 	/* Reset PHY. */
637 	alc_phy_reset(sc);
638 
639 	/* Reset the ethernet controller. */
640 	alc_reset(sc);
641 
642 	/*
643 	 * One odd thing is AR8132 uses the same PHY hardware(F1
644 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
645 	 * the PHY supports 1000Mbps but that's not true. The PHY
646 	 * used in AR8132 can't establish gigabit link even if it
647 	 * shows the same PHY model/revision number of AR8131.
648 	 */
649 	if (pci_get_device(dev) == DEVICEID_ATHEROS_AR8132)
650 		sc->alc_flags |= ALC_FLAG_FASTETHER | ALC_FLAG_JUMBO;
651 	else
652 		sc->alc_flags |= ALC_FLAG_JUMBO | ALC_FLAG_ASPM_MON;
653 	/*
654 	 * It seems that AR8131/AR8132 has silicon bug for SMB. In
655 	 * addition, Atheros said that enabling SMB wouldn't improve
656 	 * performance. However I think it's bad to access lots of
657 	 * registers to extract MAC statistics.
658 	 */
659 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
660 	/*
661 	 * Don't use Tx CMB. It is known to have silicon bug.
662 	 */
663 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
664 	sc->alc_rev = pci_get_revid(dev);
665 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
666 	    MASTER_CHIP_REV_SHIFT;
667 	if (bootverbose) {
668 		device_printf(dev, "PCI device revision : 0x%04x\n",
669 		    sc->alc_rev);
670 		device_printf(dev, "Chip id/revision : 0x%04x\n",
671 		    sc->alc_chip_rev);
672 	}
673 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
674 	    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
675 	    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
676 
677 	/* Allocate IRQ resources. */
678 	msixc = pci_msix_count(dev);
679 	msic = pci_msi_count(dev);
680 	if (bootverbose) {
681 		device_printf(dev, "MSIX count : %d\n", msixc);
682 		device_printf(dev, "MSI count : %d\n", msic);
683 	}
684 	/* Prefer MSIX over MSI. */
685 	if (msix_disable == 0 || msi_disable == 0) {
686 		if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES &&
687 		    pci_alloc_msix(dev, &msixc) == 0) {
688 			if (msic == ALC_MSIX_MESSAGES) {
689 				device_printf(dev,
690 				    "Using %d MSIX message(s).\n", msixc);
691 				sc->alc_flags |= ALC_FLAG_MSIX;
692 				sc->alc_irq_spec = alc_irq_spec_msix;
693 			} else
694 				pci_release_msi(dev);
695 		}
696 		if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 &&
697 		    msic == ALC_MSI_MESSAGES &&
698 		    pci_alloc_msi(dev, &msic) == 0) {
699 			if (msic == ALC_MSI_MESSAGES) {
700 				device_printf(dev,
701 				    "Using %d MSI message(s).\n", msic);
702 				sc->alc_flags |= ALC_FLAG_MSI;
703 				sc->alc_irq_spec = alc_irq_spec_msi;
704 			} else
705 				pci_release_msi(dev);
706 		}
707 	}
708 
709 	error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq);
710 	if (error != 0) {
711 		device_printf(dev, "cannot allocate IRQ resources.\n");
712 		goto fail;
713 	}
714 
715 	/* Create device sysctl node. */
716 	alc_sysctl_node(sc);
717 
718 	if ((error = alc_dma_alloc(sc) != 0))
719 		goto fail;
720 
721 	/* Load station address. */
722 	alc_get_macaddr(sc);
723 
724 	ifp = sc->alc_ifp = if_alloc(IFT_ETHER);
725 	if (ifp == NULL) {
726 		device_printf(dev, "cannot allocate ifnet structure.\n");
727 		error = ENXIO;
728 		goto fail;
729 	}
730 
731 	ifp->if_softc = sc;
732 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
733 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
734 	ifp->if_ioctl = alc_ioctl;
735 	ifp->if_start = alc_start;
736 	ifp->if_init = alc_init;
737 	ifp->if_snd.ifq_drv_maxlen = ALC_TX_RING_CNT - 1;
738 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
739 	IFQ_SET_READY(&ifp->if_snd);
740 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
741 	ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO;
742 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
743 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
744 	ifp->if_capenable = ifp->if_capabilities;
745 
746 	/* Set up MII bus. */
747 	if ((error = mii_phy_probe(dev, &sc->alc_miibus, alc_mediachange,
748 	    alc_mediastatus)) != 0) {
749 		device_printf(dev, "no PHY found!\n");
750 		goto fail;
751 	}
752 
753 	ether_ifattach(ifp, sc->alc_eaddr);
754 
755 	/* VLAN capability setup. */
756 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
757 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
758 	ifp->if_capenable = ifp->if_capabilities;
759 	/*
760 	 * XXX
761 	 * It seems enabling Tx checksum offloading makes more trouble.
762 	 * Sometimes the controller does not receive any frames when
763 	 * Tx checksum offloading is enabled. I'm not sure whether this
764 	 * is a bug in Tx checksum offloading logic or I got broken
765 	 * sample boards. To safety, don't enable Tx checksum offloading
766 	 * by default but give chance to users to toggle it if they know
767 	 * their controllers work without problems.
768 	 */
769 	ifp->if_capenable &= ~IFCAP_TXCSUM;
770 	ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
771 
772 	/* Tell the upper layer(s) we support long frames. */
773 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
774 
775 	/* Create local taskq. */
776 	TASK_INIT(&sc->alc_tx_task, 1, alc_tx_task, ifp);
777 	sc->alc_tq = taskqueue_create_fast("alc_taskq", M_WAITOK,
778 	    taskqueue_thread_enqueue, &sc->alc_tq);
779 	if (sc->alc_tq == NULL) {
780 		device_printf(dev, "could not create taskqueue.\n");
781 		ether_ifdetach(ifp);
782 		error = ENXIO;
783 		goto fail;
784 	}
785 	taskqueue_start_threads(&sc->alc_tq, 1, PI_NET, "%s taskq",
786 	    device_get_nameunit(sc->alc_dev));
787 
788 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
789 		msic = ALC_MSIX_MESSAGES;
790 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
791 		msic = ALC_MSI_MESSAGES;
792 	else
793 		msic = 1;
794 	for (i = 0; i < msic; i++) {
795 		error = bus_setup_intr(dev, sc->alc_irq[i],
796 		    INTR_TYPE_NET | INTR_MPSAFE, alc_intr, NULL, sc,
797 		    &sc->alc_intrhand[i]);
798 		if (error != 0)
799 			break;
800 	}
801 	if (error != 0) {
802 		device_printf(dev, "could not set up interrupt handler.\n");
803 		taskqueue_free(sc->alc_tq);
804 		sc->alc_tq = NULL;
805 		ether_ifdetach(ifp);
806 		goto fail;
807 	}
808 
809 fail:
810 	if (error != 0)
811 		alc_detach(dev);
812 
813 	return (error);
814 }
815 
816 static int
817 alc_detach(device_t dev)
818 {
819 	struct alc_softc *sc;
820 	struct ifnet *ifp;
821 	int i, msic;
822 
823 	sc = device_get_softc(dev);
824 
825 	ifp = sc->alc_ifp;
826 	if (device_is_attached(dev)) {
827 		ALC_LOCK(sc);
828 		sc->alc_flags |= ALC_FLAG_DETACH;
829 		alc_stop(sc);
830 		ALC_UNLOCK(sc);
831 		callout_drain(&sc->alc_tick_ch);
832 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
833 		taskqueue_drain(sc->alc_tq, &sc->alc_tx_task);
834 		ether_ifdetach(ifp);
835 	}
836 
837 	if (sc->alc_tq != NULL) {
838 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
839 		taskqueue_free(sc->alc_tq);
840 		sc->alc_tq = NULL;
841 	}
842 
843 	if (sc->alc_miibus != NULL) {
844 		device_delete_child(dev, sc->alc_miibus);
845 		sc->alc_miibus = NULL;
846 	}
847 	bus_generic_detach(dev);
848 	alc_dma_free(sc);
849 
850 	if (ifp != NULL) {
851 		if_free(ifp);
852 		sc->alc_ifp = NULL;
853 	}
854 
855 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
856 		msic = ALC_MSIX_MESSAGES;
857 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
858 		msic = ALC_MSI_MESSAGES;
859 	else
860 		msic = 1;
861 	for (i = 0; i < msic; i++) {
862 		if (sc->alc_intrhand[i] != NULL) {
863 			bus_teardown_intr(dev, sc->alc_irq[i],
864 			    sc->alc_intrhand[i]);
865 			sc->alc_intrhand[i] = NULL;
866 		}
867 	}
868 	if (sc->alc_res[0] != NULL)
869 		alc_phy_down(sc);
870 	bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq);
871 	if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0)
872 		pci_release_msi(dev);
873 	bus_release_resources(dev, sc->alc_res_spec, sc->alc_res);
874 	mtx_destroy(&sc->alc_mtx);
875 
876 	return (0);
877 }
878 
879 #define	ALC_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
880 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
881 #define	ALC_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
882 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
883 
884 static void
885 alc_sysctl_node(struct alc_softc *sc)
886 {
887 	struct sysctl_ctx_list *ctx;
888 	struct sysctl_oid_list *child, *parent;
889 	struct sysctl_oid *tree;
890 	struct alc_hw_stats *stats;
891 	int error;
892 
893 	stats = &sc->alc_stats;
894 	ctx = device_get_sysctl_ctx(sc->alc_dev);
895 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->alc_dev));
896 
897 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
898 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
899 	    sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
900 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
901 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
902 	    sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
903 	/* Pull in device tunables. */
904 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
905 	error = resource_int_value(device_get_name(sc->alc_dev),
906 	    device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
907 	if (error == 0) {
908 		if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
909 		    sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
910 			device_printf(sc->alc_dev, "int_rx_mod value out of "
911 			    "range; using default: %d\n",
912 			    ALC_IM_RX_TIMER_DEFAULT);
913 			sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
914 		}
915 	}
916 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
917 	error = resource_int_value(device_get_name(sc->alc_dev),
918 	    device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
919 	if (error == 0) {
920 		if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
921 		    sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
922 			device_printf(sc->alc_dev, "int_tx_mod value out of "
923 			    "range; using default: %d\n",
924 			    ALC_IM_TX_TIMER_DEFAULT);
925 			sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
926 		}
927 	}
928 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
929 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
930 	    sysctl_hw_alc_proc_limit, "I",
931 	    "max number of Rx events to process");
932 	/* Pull in device tunables. */
933 	sc->alc_process_limit = ALC_PROC_DEFAULT;
934 	error = resource_int_value(device_get_name(sc->alc_dev),
935 	    device_get_unit(sc->alc_dev), "process_limit",
936 	    &sc->alc_process_limit);
937 	if (error == 0) {
938 		if (sc->alc_process_limit < ALC_PROC_MIN ||
939 		    sc->alc_process_limit > ALC_PROC_MAX) {
940 			device_printf(sc->alc_dev,
941 			    "process_limit value out of range; "
942 			    "using default: %d\n", ALC_PROC_DEFAULT);
943 			sc->alc_process_limit = ALC_PROC_DEFAULT;
944 		}
945 	}
946 
947 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
948 	    NULL, "ALC statistics");
949 	parent = SYSCTL_CHILDREN(tree);
950 
951 	/* Rx statistics. */
952 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
953 	    NULL, "Rx MAC statistics");
954 	child = SYSCTL_CHILDREN(tree);
955 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
956 	    &stats->rx_frames, "Good frames");
957 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
958 	    &stats->rx_bcast_frames, "Good broadcast frames");
959 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
960 	    &stats->rx_mcast_frames, "Good multicast frames");
961 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
962 	    &stats->rx_pause_frames, "Pause control frames");
963 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
964 	    &stats->rx_control_frames, "Control frames");
965 	ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
966 	    &stats->rx_crcerrs, "CRC errors");
967 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
968 	    &stats->rx_lenerrs, "Frames with length mismatched");
969 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
970 	    &stats->rx_bytes, "Good octets");
971 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
972 	    &stats->rx_bcast_bytes, "Good broadcast octets");
973 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
974 	    &stats->rx_mcast_bytes, "Good multicast octets");
975 	ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
976 	    &stats->rx_runts, "Too short frames");
977 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
978 	    &stats->rx_fragments, "Fragmented frames");
979 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
980 	    &stats->rx_pkts_64, "64 bytes frames");
981 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
982 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
983 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
984 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
985 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
986 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
987 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
988 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
989 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
990 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
991 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
992 	    &stats->rx_pkts_1519_max, "1519 to max frames");
993 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
994 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
995 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
996 	    &stats->rx_fifo_oflows, "FIFO overflows");
997 	ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
998 	    &stats->rx_rrs_errs, "Return status write-back errors");
999 	ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
1000 	    &stats->rx_alignerrs, "Alignment errors");
1001 	ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
1002 	    &stats->rx_pkts_filtered,
1003 	    "Frames dropped due to address filtering");
1004 
1005 	/* Tx statistics. */
1006 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1007 	    NULL, "Tx MAC statistics");
1008 	child = SYSCTL_CHILDREN(tree);
1009 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1010 	    &stats->tx_frames, "Good frames");
1011 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1012 	    &stats->tx_bcast_frames, "Good broadcast frames");
1013 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1014 	    &stats->tx_mcast_frames, "Good multicast frames");
1015 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1016 	    &stats->tx_pause_frames, "Pause control frames");
1017 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1018 	    &stats->tx_control_frames, "Control frames");
1019 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
1020 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
1021 	ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
1022 	    &stats->tx_excess_defer, "Frames with derferrals");
1023 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1024 	    &stats->tx_bytes, "Good octets");
1025 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1026 	    &stats->tx_bcast_bytes, "Good broadcast octets");
1027 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1028 	    &stats->tx_mcast_bytes, "Good multicast octets");
1029 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1030 	    &stats->tx_pkts_64, "64 bytes frames");
1031 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1032 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
1033 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1034 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
1035 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1036 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
1037 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1038 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
1039 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1040 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
1041 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1042 	    &stats->tx_pkts_1519_max, "1519 to max frames");
1043 	ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
1044 	    &stats->tx_single_colls, "Single collisions");
1045 	ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
1046 	    &stats->tx_multi_colls, "Multiple collisions");
1047 	ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
1048 	    &stats->tx_late_colls, "Late collisions");
1049 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
1050 	    &stats->tx_excess_colls, "Excessive collisions");
1051 	ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
1052 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
1053 	ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
1054 	    &stats->tx_underrun, "FIFO underruns");
1055 	ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
1056 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
1057 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1058 	    &stats->tx_lenerrs, "Frames with length mismatched");
1059 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1060 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
1061 }
1062 
1063 #undef ALC_SYSCTL_STAT_ADD32
1064 #undef ALC_SYSCTL_STAT_ADD64
1065 
1066 struct alc_dmamap_arg {
1067 	bus_addr_t	alc_busaddr;
1068 };
1069 
1070 static void
1071 alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1072 {
1073 	struct alc_dmamap_arg *ctx;
1074 
1075 	if (error != 0)
1076 		return;
1077 
1078 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1079 
1080 	ctx = (struct alc_dmamap_arg *)arg;
1081 	ctx->alc_busaddr = segs[0].ds_addr;
1082 }
1083 
1084 /*
1085  * Normal and high Tx descriptors shares single Tx high address.
1086  * Four Rx descriptor/return rings and CMB shares the same Rx
1087  * high address.
1088  */
1089 static int
1090 alc_check_boundary(struct alc_softc *sc)
1091 {
1092 	bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
1093 
1094 	rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
1095 	rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
1096 	cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
1097 	tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
1098 
1099 	/* 4GB boundary crossing is not allowed. */
1100 	if ((ALC_ADDR_HI(rx_ring_end) !=
1101 	    ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
1102 	    (ALC_ADDR_HI(rr_ring_end) !=
1103 	    ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
1104 	    (ALC_ADDR_HI(cmb_end) !=
1105 	    ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
1106 	    (ALC_ADDR_HI(tx_ring_end) !=
1107 	    ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
1108 		return (EFBIG);
1109 	/*
1110 	 * Make sure Rx return descriptor/Rx descriptor/CMB use
1111 	 * the same high address.
1112 	 */
1113 	if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
1114 	    (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
1115 		return (EFBIG);
1116 
1117 	return (0);
1118 }
1119 
1120 static int
1121 alc_dma_alloc(struct alc_softc *sc)
1122 {
1123 	struct alc_txdesc *txd;
1124 	struct alc_rxdesc *rxd;
1125 	bus_addr_t lowaddr;
1126 	struct alc_dmamap_arg ctx;
1127 	int error, i;
1128 
1129 	lowaddr = BUS_SPACE_MAXADDR;
1130 again:
1131 	/* Create parent DMA tag. */
1132 	error = bus_dma_tag_create(
1133 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1134 	    1, 0,			/* alignment, boundary */
1135 	    lowaddr,			/* lowaddr */
1136 	    BUS_SPACE_MAXADDR,		/* highaddr */
1137 	    NULL, NULL,			/* filter, filterarg */
1138 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1139 	    0,				/* nsegments */
1140 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1141 	    0,				/* flags */
1142 	    NULL, NULL,			/* lockfunc, lockarg */
1143 	    &sc->alc_cdata.alc_parent_tag);
1144 	if (error != 0) {
1145 		device_printf(sc->alc_dev,
1146 		    "could not create parent DMA tag.\n");
1147 		goto fail;
1148 	}
1149 
1150 	/* Create DMA tag for Tx descriptor ring. */
1151 	error = bus_dma_tag_create(
1152 	    sc->alc_cdata.alc_parent_tag, /* parent */
1153 	    ALC_TX_RING_ALIGN, 0,	/* alignment, boundary */
1154 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1155 	    BUS_SPACE_MAXADDR,		/* highaddr */
1156 	    NULL, NULL,			/* filter, filterarg */
1157 	    ALC_TX_RING_SZ,		/* maxsize */
1158 	    1,				/* nsegments */
1159 	    ALC_TX_RING_SZ,		/* maxsegsize */
1160 	    0,				/* flags */
1161 	    NULL, NULL,			/* lockfunc, lockarg */
1162 	    &sc->alc_cdata.alc_tx_ring_tag);
1163 	if (error != 0) {
1164 		device_printf(sc->alc_dev,
1165 		    "could not create Tx ring DMA tag.\n");
1166 		goto fail;
1167 	}
1168 
1169 	/* Create DMA tag for Rx free descriptor ring. */
1170 	error = bus_dma_tag_create(
1171 	    sc->alc_cdata.alc_parent_tag, /* parent */
1172 	    ALC_RX_RING_ALIGN, 0,	/* alignment, boundary */
1173 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1174 	    BUS_SPACE_MAXADDR,		/* highaddr */
1175 	    NULL, NULL,			/* filter, filterarg */
1176 	    ALC_RX_RING_SZ,		/* maxsize */
1177 	    1,				/* nsegments */
1178 	    ALC_RX_RING_SZ,		/* maxsegsize */
1179 	    0,				/* flags */
1180 	    NULL, NULL,			/* lockfunc, lockarg */
1181 	    &sc->alc_cdata.alc_rx_ring_tag);
1182 	if (error != 0) {
1183 		device_printf(sc->alc_dev,
1184 		    "could not create Rx ring DMA tag.\n");
1185 		goto fail;
1186 	}
1187 	/* Create DMA tag for Rx return descriptor ring. */
1188 	error = bus_dma_tag_create(
1189 	    sc->alc_cdata.alc_parent_tag, /* parent */
1190 	    ALC_RR_RING_ALIGN, 0,	/* alignment, boundary */
1191 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1192 	    BUS_SPACE_MAXADDR,		/* highaddr */
1193 	    NULL, NULL,			/* filter, filterarg */
1194 	    ALC_RR_RING_SZ,		/* maxsize */
1195 	    1,				/* nsegments */
1196 	    ALC_RR_RING_SZ,		/* maxsegsize */
1197 	    0,				/* flags */
1198 	    NULL, NULL,			/* lockfunc, lockarg */
1199 	    &sc->alc_cdata.alc_rr_ring_tag);
1200 	if (error != 0) {
1201 		device_printf(sc->alc_dev,
1202 		    "could not create Rx return ring DMA tag.\n");
1203 		goto fail;
1204 	}
1205 
1206 	/* Create DMA tag for coalescing message block. */
1207 	error = bus_dma_tag_create(
1208 	    sc->alc_cdata.alc_parent_tag, /* parent */
1209 	    ALC_CMB_ALIGN, 0,		/* alignment, boundary */
1210 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1211 	    BUS_SPACE_MAXADDR,		/* highaddr */
1212 	    NULL, NULL,			/* filter, filterarg */
1213 	    ALC_CMB_SZ,			/* maxsize */
1214 	    1,				/* nsegments */
1215 	    ALC_CMB_SZ,			/* maxsegsize */
1216 	    0,				/* flags */
1217 	    NULL, NULL,			/* lockfunc, lockarg */
1218 	    &sc->alc_cdata.alc_cmb_tag);
1219 	if (error != 0) {
1220 		device_printf(sc->alc_dev,
1221 		    "could not create CMB DMA tag.\n");
1222 		goto fail;
1223 	}
1224 	/* Create DMA tag for status message block. */
1225 	error = bus_dma_tag_create(
1226 	    sc->alc_cdata.alc_parent_tag, /* parent */
1227 	    ALC_SMB_ALIGN, 0,		/* alignment, boundary */
1228 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1229 	    BUS_SPACE_MAXADDR,		/* highaddr */
1230 	    NULL, NULL,			/* filter, filterarg */
1231 	    ALC_SMB_SZ,			/* maxsize */
1232 	    1,				/* nsegments */
1233 	    ALC_SMB_SZ,			/* maxsegsize */
1234 	    0,				/* flags */
1235 	    NULL, NULL,			/* lockfunc, lockarg */
1236 	    &sc->alc_cdata.alc_smb_tag);
1237 	if (error != 0) {
1238 		device_printf(sc->alc_dev,
1239 		    "could not create SMB DMA tag.\n");
1240 		goto fail;
1241 	}
1242 
1243 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1244 	error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
1245 	    (void **)&sc->alc_rdata.alc_tx_ring,
1246 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1247 	    &sc->alc_cdata.alc_tx_ring_map);
1248 	if (error != 0) {
1249 		device_printf(sc->alc_dev,
1250 		    "could not allocate DMA'able memory for Tx ring.\n");
1251 		goto fail;
1252 	}
1253 	ctx.alc_busaddr = 0;
1254 	error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
1255 	    sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
1256 	    ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1257 	if (error != 0 || ctx.alc_busaddr == 0) {
1258 		device_printf(sc->alc_dev,
1259 		    "could not load DMA'able memory for Tx ring.\n");
1260 		goto fail;
1261 	}
1262 	sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
1263 
1264 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1265 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
1266 	    (void **)&sc->alc_rdata.alc_rx_ring,
1267 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1268 	    &sc->alc_cdata.alc_rx_ring_map);
1269 	if (error != 0) {
1270 		device_printf(sc->alc_dev,
1271 		    "could not allocate DMA'able memory for Rx ring.\n");
1272 		goto fail;
1273 	}
1274 	ctx.alc_busaddr = 0;
1275 	error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
1276 	    sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
1277 	    ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1278 	if (error != 0 || ctx.alc_busaddr == 0) {
1279 		device_printf(sc->alc_dev,
1280 		    "could not load DMA'able memory for Rx ring.\n");
1281 		goto fail;
1282 	}
1283 	sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
1284 
1285 	/* Allocate DMA'able memory and load the DMA map for Rx return ring. */
1286 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
1287 	    (void **)&sc->alc_rdata.alc_rr_ring,
1288 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1289 	    &sc->alc_cdata.alc_rr_ring_map);
1290 	if (error != 0) {
1291 		device_printf(sc->alc_dev,
1292 		    "could not allocate DMA'able memory for Rx return ring.\n");
1293 		goto fail;
1294 	}
1295 	ctx.alc_busaddr = 0;
1296 	error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
1297 	    sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
1298 	    ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
1299 	if (error != 0 || ctx.alc_busaddr == 0) {
1300 		device_printf(sc->alc_dev,
1301 		    "could not load DMA'able memory for Tx ring.\n");
1302 		goto fail;
1303 	}
1304 	sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
1305 
1306 	/* Allocate DMA'able memory and load the DMA map for CMB. */
1307 	error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
1308 	    (void **)&sc->alc_rdata.alc_cmb,
1309 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1310 	    &sc->alc_cdata.alc_cmb_map);
1311 	if (error != 0) {
1312 		device_printf(sc->alc_dev,
1313 		    "could not allocate DMA'able memory for CMB.\n");
1314 		goto fail;
1315 	}
1316 	ctx.alc_busaddr = 0;
1317 	error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
1318 	    sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
1319 	    ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
1320 	if (error != 0 || ctx.alc_busaddr == 0) {
1321 		device_printf(sc->alc_dev,
1322 		    "could not load DMA'able memory for CMB.\n");
1323 		goto fail;
1324 	}
1325 	sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
1326 
1327 	/* Allocate DMA'able memory and load the DMA map for SMB. */
1328 	error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
1329 	    (void **)&sc->alc_rdata.alc_smb,
1330 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1331 	    &sc->alc_cdata.alc_smb_map);
1332 	if (error != 0) {
1333 		device_printf(sc->alc_dev,
1334 		    "could not allocate DMA'able memory for SMB.\n");
1335 		goto fail;
1336 	}
1337 	ctx.alc_busaddr = 0;
1338 	error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
1339 	    sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
1340 	    ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
1341 	if (error != 0 || ctx.alc_busaddr == 0) {
1342 		device_printf(sc->alc_dev,
1343 		    "could not load DMA'able memory for CMB.\n");
1344 		goto fail;
1345 	}
1346 	sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
1347 
1348 	/* Make sure we've not crossed 4GB boundary. */
1349 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1350 	    (error = alc_check_boundary(sc)) != 0) {
1351 		device_printf(sc->alc_dev, "4GB boundary crossed, "
1352 		    "switching to 32bit DMA addressing mode.\n");
1353 		alc_dma_free(sc);
1354 		/*
1355 		 * Limit max allowable DMA address space to 32bit
1356 		 * and try again.
1357 		 */
1358 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1359 		goto again;
1360 	}
1361 
1362 	/*
1363 	 * Create Tx buffer parent tag.
1364 	 * AR8131/AR8132 allows 64bit DMA addressing of Tx/Rx buffers
1365 	 * so it needs separate parent DMA tag as parent DMA address
1366 	 * space could be restricted to be within 32bit address space
1367 	 * by 4GB boundary crossing.
1368 	 */
1369 	error = bus_dma_tag_create(
1370 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1371 	    1, 0,			/* alignment, boundary */
1372 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1373 	    BUS_SPACE_MAXADDR,		/* highaddr */
1374 	    NULL, NULL,			/* filter, filterarg */
1375 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1376 	    0,				/* nsegments */
1377 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1378 	    0,				/* flags */
1379 	    NULL, NULL,			/* lockfunc, lockarg */
1380 	    &sc->alc_cdata.alc_buffer_tag);
1381 	if (error != 0) {
1382 		device_printf(sc->alc_dev,
1383 		    "could not create parent buffer DMA tag.\n");
1384 		goto fail;
1385 	}
1386 
1387 	/* Create DMA tag for Tx buffers. */
1388 	error = bus_dma_tag_create(
1389 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1390 	    1, 0,			/* alignment, boundary */
1391 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1392 	    BUS_SPACE_MAXADDR,		/* highaddr */
1393 	    NULL, NULL,			/* filter, filterarg */
1394 	    ALC_TSO_MAXSIZE,		/* maxsize */
1395 	    ALC_MAXTXSEGS,		/* nsegments */
1396 	    ALC_TSO_MAXSEGSIZE,		/* maxsegsize */
1397 	    0,				/* flags */
1398 	    NULL, NULL,			/* lockfunc, lockarg */
1399 	    &sc->alc_cdata.alc_tx_tag);
1400 	if (error != 0) {
1401 		device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
1402 		goto fail;
1403 	}
1404 
1405 	/* Create DMA tag for Rx buffers. */
1406 	error = bus_dma_tag_create(
1407 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1408 	    ALC_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1409 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1410 	    BUS_SPACE_MAXADDR,		/* highaddr */
1411 	    NULL, NULL,			/* filter, filterarg */
1412 	    MCLBYTES,			/* maxsize */
1413 	    1,				/* nsegments */
1414 	    MCLBYTES,			/* maxsegsize */
1415 	    0,				/* flags */
1416 	    NULL, NULL,			/* lockfunc, lockarg */
1417 	    &sc->alc_cdata.alc_rx_tag);
1418 	if (error != 0) {
1419 		device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
1420 		goto fail;
1421 	}
1422 	/* Create DMA maps for Tx buffers. */
1423 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1424 		txd = &sc->alc_cdata.alc_txdesc[i];
1425 		txd->tx_m = NULL;
1426 		txd->tx_dmamap = NULL;
1427 		error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag, 0,
1428 		    &txd->tx_dmamap);
1429 		if (error != 0) {
1430 			device_printf(sc->alc_dev,
1431 			    "could not create Tx dmamap.\n");
1432 			goto fail;
1433 		}
1434 	}
1435 	/* Create DMA maps for Rx buffers. */
1436 	if ((error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1437 	    &sc->alc_cdata.alc_rx_sparemap)) != 0) {
1438 		device_printf(sc->alc_dev,
1439 		    "could not create spare Rx dmamap.\n");
1440 		goto fail;
1441 	}
1442 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1443 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1444 		rxd->rx_m = NULL;
1445 		rxd->rx_dmamap = NULL;
1446 		error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1447 		    &rxd->rx_dmamap);
1448 		if (error != 0) {
1449 			device_printf(sc->alc_dev,
1450 			    "could not create Rx dmamap.\n");
1451 			goto fail;
1452 		}
1453 	}
1454 
1455 fail:
1456 	return (error);
1457 }
1458 
1459 static void
1460 alc_dma_free(struct alc_softc *sc)
1461 {
1462 	struct alc_txdesc *txd;
1463 	struct alc_rxdesc *rxd;
1464 	int i;
1465 
1466 	/* Tx buffers. */
1467 	if (sc->alc_cdata.alc_tx_tag != NULL) {
1468 		for (i = 0; i < ALC_TX_RING_CNT; i++) {
1469 			txd = &sc->alc_cdata.alc_txdesc[i];
1470 			if (txd->tx_dmamap != NULL) {
1471 				bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
1472 				    txd->tx_dmamap);
1473 				txd->tx_dmamap = NULL;
1474 			}
1475 		}
1476 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
1477 		sc->alc_cdata.alc_tx_tag = NULL;
1478 	}
1479 	/* Rx buffers */
1480 	if (sc->alc_cdata.alc_rx_tag != NULL) {
1481 		for (i = 0; i < ALC_RX_RING_CNT; i++) {
1482 			rxd = &sc->alc_cdata.alc_rxdesc[i];
1483 			if (rxd->rx_dmamap != NULL) {
1484 				bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1485 				    rxd->rx_dmamap);
1486 				rxd->rx_dmamap = NULL;
1487 			}
1488 		}
1489 		if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1490 			bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1491 			    sc->alc_cdata.alc_rx_sparemap);
1492 			sc->alc_cdata.alc_rx_sparemap = NULL;
1493 		}
1494 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
1495 		sc->alc_cdata.alc_rx_tag = NULL;
1496 	}
1497 	/* Tx descriptor ring. */
1498 	if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
1499 		if (sc->alc_cdata.alc_tx_ring_map != NULL)
1500 			bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
1501 			    sc->alc_cdata.alc_tx_ring_map);
1502 		if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1503 		    sc->alc_rdata.alc_tx_ring != NULL)
1504 			bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
1505 			    sc->alc_rdata.alc_tx_ring,
1506 			    sc->alc_cdata.alc_tx_ring_map);
1507 		sc->alc_rdata.alc_tx_ring = NULL;
1508 		sc->alc_cdata.alc_tx_ring_map = NULL;
1509 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
1510 		sc->alc_cdata.alc_tx_ring_tag = NULL;
1511 	}
1512 	/* Rx ring. */
1513 	if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
1514 		if (sc->alc_cdata.alc_rx_ring_map != NULL)
1515 			bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
1516 			    sc->alc_cdata.alc_rx_ring_map);
1517 		if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1518 		    sc->alc_rdata.alc_rx_ring != NULL)
1519 			bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
1520 			    sc->alc_rdata.alc_rx_ring,
1521 			    sc->alc_cdata.alc_rx_ring_map);
1522 		sc->alc_rdata.alc_rx_ring = NULL;
1523 		sc->alc_cdata.alc_rx_ring_map = NULL;
1524 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
1525 		sc->alc_cdata.alc_rx_ring_tag = NULL;
1526 	}
1527 	/* Rx return ring. */
1528 	if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
1529 		if (sc->alc_cdata.alc_rr_ring_map != NULL)
1530 			bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
1531 			    sc->alc_cdata.alc_rr_ring_map);
1532 		if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1533 		    sc->alc_rdata.alc_rr_ring != NULL)
1534 			bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
1535 			    sc->alc_rdata.alc_rr_ring,
1536 			    sc->alc_cdata.alc_rr_ring_map);
1537 		sc->alc_rdata.alc_rr_ring = NULL;
1538 		sc->alc_cdata.alc_rr_ring_map = NULL;
1539 		bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
1540 		sc->alc_cdata.alc_rr_ring_tag = NULL;
1541 	}
1542 	/* CMB block */
1543 	if (sc->alc_cdata.alc_cmb_tag != NULL) {
1544 		if (sc->alc_cdata.alc_cmb_map != NULL)
1545 			bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
1546 			    sc->alc_cdata.alc_cmb_map);
1547 		if (sc->alc_cdata.alc_cmb_map != NULL &&
1548 		    sc->alc_rdata.alc_cmb != NULL)
1549 			bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
1550 			    sc->alc_rdata.alc_cmb,
1551 			    sc->alc_cdata.alc_cmb_map);
1552 		sc->alc_rdata.alc_cmb = NULL;
1553 		sc->alc_cdata.alc_cmb_map = NULL;
1554 		bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
1555 		sc->alc_cdata.alc_cmb_tag = NULL;
1556 	}
1557 	/* SMB block */
1558 	if (sc->alc_cdata.alc_smb_tag != NULL) {
1559 		if (sc->alc_cdata.alc_smb_map != NULL)
1560 			bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
1561 			    sc->alc_cdata.alc_smb_map);
1562 		if (sc->alc_cdata.alc_smb_map != NULL &&
1563 		    sc->alc_rdata.alc_smb != NULL)
1564 			bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
1565 			    sc->alc_rdata.alc_smb,
1566 			    sc->alc_cdata.alc_smb_map);
1567 		sc->alc_rdata.alc_smb = NULL;
1568 		sc->alc_cdata.alc_smb_map = NULL;
1569 		bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
1570 		sc->alc_cdata.alc_smb_tag = NULL;
1571 	}
1572 	if (sc->alc_cdata.alc_buffer_tag != NULL) {
1573 		bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
1574 		sc->alc_cdata.alc_buffer_tag = NULL;
1575 	}
1576 	if (sc->alc_cdata.alc_parent_tag != NULL) {
1577 		bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
1578 		sc->alc_cdata.alc_parent_tag = NULL;
1579 	}
1580 }
1581 
1582 static int
1583 alc_shutdown(device_t dev)
1584 {
1585 
1586 	return (alc_suspend(dev));
1587 }
1588 
1589 /*
1590  * Note, this driver resets the link speed to 10/100Mbps by
1591  * restarting auto-negotiation in suspend/shutdown phase but we
1592  * don't know whether that auto-negotiation would succeed or not
1593  * as driver has no control after powering off/suspend operation.
1594  * If the renegotiation fail WOL may not work. Running at 1Gbps
1595  * will draw more power than 375mA at 3.3V which is specified in
1596  * PCI specification and that would result in complete
1597  * shutdowning power to ethernet controller.
1598  *
1599  * TODO
1600  * Save current negotiated media speed/duplex/flow-control to
1601  * softc and restore the same link again after resuming. PHY
1602  * handling such as power down/resetting to 100Mbps may be better
1603  * handled in suspend method in phy driver.
1604  */
1605 static void
1606 alc_setlinkspeed(struct alc_softc *sc)
1607 {
1608 	struct mii_data *mii;
1609 	int aneg, i;
1610 
1611 	mii = device_get_softc(sc->alc_miibus);
1612 	mii_pollstat(mii);
1613 	aneg = 0;
1614 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1615 	    (IFM_ACTIVE | IFM_AVALID)) {
1616 		switch IFM_SUBTYPE(mii->mii_media_active) {
1617 		case IFM_10_T:
1618 		case IFM_100_TX:
1619 			return;
1620 		case IFM_1000_T:
1621 			aneg++;
1622 			break;
1623 		default:
1624 			break;
1625 		}
1626 	}
1627 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
1628 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1629 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1630 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1631 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1632 	DELAY(1000);
1633 	if (aneg != 0) {
1634 		/*
1635 		 * Poll link state until alc(4) get a 10/100Mbps link.
1636 		 */
1637 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1638 			mii_pollstat(mii);
1639 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1640 			    == (IFM_ACTIVE | IFM_AVALID)) {
1641 				switch (IFM_SUBTYPE(
1642 				    mii->mii_media_active)) {
1643 				case IFM_10_T:
1644 				case IFM_100_TX:
1645 					alc_mac_config(sc);
1646 					return;
1647 				default:
1648 					break;
1649 				}
1650 			}
1651 			ALC_UNLOCK(sc);
1652 			pause("alclnk", hz);
1653 			ALC_LOCK(sc);
1654 		}
1655 		if (i == MII_ANEGTICKS_GIGE)
1656 			device_printf(sc->alc_dev,
1657 			    "establishing a link failed, WOL may not work!");
1658 	}
1659 	/*
1660 	 * No link, force MAC to have 100Mbps, full-duplex link.
1661 	 * This is the last resort and may/may not work.
1662 	 */
1663 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1664 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1665 	alc_mac_config(sc);
1666 }
1667 
1668 static void
1669 alc_setwol(struct alc_softc *sc)
1670 {
1671 	struct ifnet *ifp;
1672 	uint32_t cap, reg, pmcs;
1673 	uint16_t pmstat;
1674 	int base, pmc;
1675 
1676 	ALC_LOCK_ASSERT(sc);
1677 
1678 	if (pci_find_extcap(sc->alc_dev, PCIY_EXPRESS, &base) == 0) {
1679 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
1680 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
1681 			cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
1682 			alc_disable_l0s_l1(sc);
1683 		}
1684 	}
1685 	if (pci_find_extcap(sc->alc_dev, PCIY_PMG, &pmc) != 0) {
1686 		/* Disable WOL. */
1687 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
1688 		reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1689 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1690 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1691 		/* Force PHY power down. */
1692 		alc_phy_down(sc);
1693 		return;
1694 	}
1695 
1696 	ifp = sc->alc_ifp;
1697 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1698 		if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
1699 			alc_setlinkspeed(sc);
1700 		reg = CSR_READ_4(sc, ALC_MASTER_CFG);
1701 		reg &= ~MASTER_CLK_SEL_DIS;
1702 		CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
1703 	}
1704 
1705 	pmcs = 0;
1706 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1707 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1708 	CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
1709 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1710 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1711 	    MAC_CFG_BCAST);
1712 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1713 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1714 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1715 		reg |= MAC_CFG_RX_ENB;
1716 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1717 
1718 	reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1719 	reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1720 	CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1721 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1722 		/* WOL disabled, PHY power down. */
1723 		alc_phy_down(sc);
1724 	}
1725 	/* Request PME. */
1726 	pmstat = pci_read_config(sc->alc_dev, pmc + PCIR_POWER_STATUS, 2);
1727 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1728 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1729 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1730 	pci_write_config(sc->alc_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1731 }
1732 
1733 static int
1734 alc_suspend(device_t dev)
1735 {
1736 	struct alc_softc *sc;
1737 
1738 	sc = device_get_softc(dev);
1739 
1740 	ALC_LOCK(sc);
1741 	alc_stop(sc);
1742 	alc_setwol(sc);
1743 	ALC_UNLOCK(sc);
1744 
1745 	return (0);
1746 }
1747 
1748 static int
1749 alc_resume(device_t dev)
1750 {
1751 	struct alc_softc *sc;
1752 	struct ifnet *ifp;
1753 	int pmc;
1754 	uint16_t pmstat;
1755 
1756 	sc = device_get_softc(dev);
1757 
1758 	ALC_LOCK(sc);
1759 	if (pci_find_extcap(sc->alc_dev, PCIY_PMG, &pmc) == 0) {
1760 		/* Disable PME and clear PME status. */
1761 		pmstat = pci_read_config(sc->alc_dev,
1762 		    pmc + PCIR_POWER_STATUS, 2);
1763 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1764 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1765 			pci_write_config(sc->alc_dev,
1766 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1767 		}
1768 	}
1769 	/* Reset PHY. */
1770 	alc_phy_reset(sc);
1771 	ifp = sc->alc_ifp;
1772 	if ((ifp->if_flags & IFF_UP) != 0) {
1773 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1774 		alc_init_locked(sc);
1775 	}
1776 	ALC_UNLOCK(sc);
1777 
1778 	return (0);
1779 }
1780 
1781 static int
1782 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1783 {
1784 	struct alc_txdesc *txd, *txd_last;
1785 	struct tx_desc *desc;
1786 	struct mbuf *m;
1787 	struct ip *ip;
1788 	struct tcphdr *tcp;
1789 	bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
1790 	bus_dmamap_t map;
1791 	uint32_t cflags, hdrlen, poff, vtag;
1792 	int error, idx, nsegs, prod;
1793 
1794 	ALC_LOCK_ASSERT(sc);
1795 
1796 	M_ASSERTPKTHDR((*m_head));
1797 
1798 	m = *m_head;
1799 	ip = NULL;
1800 	tcp = NULL;
1801 	poff = 0;
1802 	if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
1803 		/*
1804 		 * AR8131/AR8132 requires offset of TCP/UDP header in its
1805 		 * Tx descriptor to perform Tx checksum offloading. TSO
1806 		 * also requires TCP header offset and modification of
1807 		 * IP/TCP header. This kind of operation takes many CPU
1808 		 * cycles on FreeBSD so fast host CPU is required to get
1809 		 * smooth TSO performance.
1810 		 */
1811 
1812 		if (M_WRITABLE(m) == 0) {
1813 			/* Get a writable copy. */
1814 			m = m_dup(*m_head, M_DONTWAIT);
1815 			/* Release original mbufs. */
1816 			m_freem(*m_head);
1817 			if (m == NULL) {
1818 				*m_head = NULL;
1819 				return (ENOBUFS);
1820 			}
1821 			*m_head = m;
1822 		}
1823 
1824 		m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
1825 		if (m == NULL) {
1826 			*m_head = NULL;
1827 			return (ENOBUFS);
1828 		}
1829 		ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
1830 		poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
1831 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1832 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1833 			if (m == NULL) {
1834 				*m_head = NULL;
1835 				return (ENOBUFS);
1836 			}
1837 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1838 			m = m_pullup(m, poff + (tcp->th_off << 2));
1839 			if (m == NULL) {
1840 				*m_head = NULL;
1841 				return (ENOBUFS);
1842 			}
1843 			/*
1844 			 * Due to strict adherence of Microsoft NDIS
1845 			 * Large Send specification, hardware expects
1846 			 * a pseudo TCP checksum inserted by upper
1847 			 * stack. Unfortunately the pseudo TCP
1848 			 * checksum that NDIS refers to does not include
1849 			 * TCP payload length so driver should recompute
1850 			 * the pseudo checksum here. Hopefully this
1851 			 * wouldn't be much burden on modern CPUs.
1852 			 *
1853 			 * Reset IP checksum and recompute TCP pseudo
1854 			 * checksum as NDIS specification said.
1855 			 */
1856 			ip->ip_sum = 0;
1857 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1858 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1859 		}
1860 		*m_head = m;
1861 	}
1862 
1863 	prod = sc->alc_cdata.alc_tx_prod;
1864 	txd = &sc->alc_cdata.alc_txdesc[prod];
1865 	txd_last = txd;
1866 	map = txd->tx_dmamap;
1867 
1868 	error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
1869 	    *m_head, txsegs, &nsegs, 0);
1870 	if (error == EFBIG) {
1871 		m = m_collapse(*m_head, M_DONTWAIT, ALC_MAXTXSEGS);
1872 		if (m == NULL) {
1873 			m_freem(*m_head);
1874 			*m_head = NULL;
1875 			return (ENOMEM);
1876 		}
1877 		*m_head = m;
1878 		error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
1879 		    *m_head, txsegs, &nsegs, 0);
1880 		if (error != 0) {
1881 			m_freem(*m_head);
1882 			*m_head = NULL;
1883 			return (error);
1884 		}
1885 	} else if (error != 0)
1886 		return (error);
1887 	if (nsegs == 0) {
1888 		m_freem(*m_head);
1889 		*m_head = NULL;
1890 		return (EIO);
1891 	}
1892 
1893 	/* Check descriptor overrun. */
1894 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1895 		bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
1896 		return (ENOBUFS);
1897 	}
1898 	bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
1899 
1900 	m = *m_head;
1901 	cflags = TD_ETHERNET;
1902 	vtag = 0;
1903 	desc = NULL;
1904 	idx = 0;
1905 	/* Configure VLAN hardware tag insertion. */
1906 	if ((m->m_flags & M_VLANTAG) != 0) {
1907 		vtag = htons(m->m_pkthdr.ether_vtag);
1908 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1909 		cflags |= TD_INS_VLAN_TAG;
1910 	}
1911 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1912 		/* Request TSO and set MSS. */
1913 		cflags |= TD_TSO | TD_TSO_DESCV1;
1914 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
1915 		    TD_MSS_MASK;
1916 		/* Set TCP header offset. */
1917 		cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
1918 		    TD_TCPHDR_OFFSET_MASK;
1919 		/*
1920 		 * AR8131/AR8132 requires the first buffer should
1921 		 * only hold IP/TCP header data. Payload should
1922 		 * be handled in other descriptors.
1923 		 */
1924 		hdrlen = poff + (tcp->th_off << 2);
1925 		desc = &sc->alc_rdata.alc_tx_ring[prod];
1926 		desc->len = htole32(TX_BYTES(hdrlen | vtag));
1927 		desc->flags = htole32(cflags);
1928 		desc->addr = htole64(txsegs[0].ds_addr);
1929 		sc->alc_cdata.alc_tx_cnt++;
1930 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1931 		if (m->m_len - hdrlen > 0) {
1932 			/* Handle remaining payload of the first fragment. */
1933 			desc = &sc->alc_rdata.alc_tx_ring[prod];
1934 			desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
1935 			    vtag));
1936 			desc->flags = htole32(cflags);
1937 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1938 			sc->alc_cdata.alc_tx_cnt++;
1939 			ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1940 		}
1941 		/* Handle remaining fragments. */
1942 		idx = 1;
1943 	} else if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1944 		/* Configure Tx checksum offload. */
1945 #ifdef ALC_USE_CUSTOM_CSUM
1946 		cflags |= TD_CUSTOM_CSUM;
1947 		/* Set checksum start offset. */
1948 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1949 		    TD_PLOAD_OFFSET_MASK;
1950 		/* Set checksum insertion position of TCP/UDP. */
1951 		cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
1952 		    TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
1953 #else
1954 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1955 			cflags |= TD_IPCSUM;
1956 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1957 			cflags |= TD_TCPCSUM;
1958 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1959 			cflags |= TD_UDPCSUM;
1960 		/* Set TCP/UDP header offset. */
1961 		cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
1962 		    TD_L4HDR_OFFSET_MASK;
1963 #endif
1964 	}
1965 	for (; idx < nsegs; idx++) {
1966 		desc = &sc->alc_rdata.alc_tx_ring[prod];
1967 		desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
1968 		desc->flags = htole32(cflags);
1969 		desc->addr = htole64(txsegs[idx].ds_addr);
1970 		sc->alc_cdata.alc_tx_cnt++;
1971 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1972 	}
1973 	/* Update producer index. */
1974 	sc->alc_cdata.alc_tx_prod = prod;
1975 
1976 	/* Finally set EOP on the last descriptor. */
1977 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1978 	desc = &sc->alc_rdata.alc_tx_ring[prod];
1979 	desc->flags |= htole32(TD_EOP);
1980 
1981 	/* Swap dmamap of the first and the last. */
1982 	txd = &sc->alc_cdata.alc_txdesc[prod];
1983 	map = txd_last->tx_dmamap;
1984 	txd_last->tx_dmamap = txd->tx_dmamap;
1985 	txd->tx_dmamap = map;
1986 	txd->tx_m = m;
1987 
1988 	return (0);
1989 }
1990 
1991 static void
1992 alc_tx_task(void *arg, int pending)
1993 {
1994 	struct ifnet *ifp;
1995 
1996 	ifp = (struct ifnet *)arg;
1997 	alc_start(ifp);
1998 }
1999 
2000 static void
2001 alc_start(struct ifnet *ifp)
2002 {
2003 	struct alc_softc *sc;
2004 	struct mbuf *m_head;
2005 	int enq;
2006 
2007 	sc = ifp->if_softc;
2008 
2009 	ALC_LOCK(sc);
2010 
2011 	/* Reclaim transmitted frames. */
2012 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2013 		alc_txeof(sc);
2014 
2015 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2016 	    IFF_DRV_RUNNING || (sc->alc_flags & ALC_FLAG_LINK) == 0) {
2017 		ALC_UNLOCK(sc);
2018 		return;
2019 	}
2020 
2021 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
2022 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2023 		if (m_head == NULL)
2024 			break;
2025 		/*
2026 		 * Pack the data into the transmit ring. If we
2027 		 * don't have room, set the OACTIVE flag and wait
2028 		 * for the NIC to drain the ring.
2029 		 */
2030 		if (alc_encap(sc, &m_head)) {
2031 			if (m_head == NULL)
2032 				break;
2033 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2034 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2035 			break;
2036 		}
2037 
2038 		enq++;
2039 		/*
2040 		 * If there's a BPF listener, bounce a copy of this frame
2041 		 * to him.
2042 		 */
2043 		ETHER_BPF_MTAP(ifp, m_head);
2044 	}
2045 
2046 	if (enq > 0) {
2047 		/* Sync descriptors. */
2048 		bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2049 		    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
2050 		/* Kick. Assume we're using normal Tx priority queue. */
2051 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2052 		    (sc->alc_cdata.alc_tx_prod <<
2053 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2054 		    MBOX_TD_PROD_LO_IDX_MASK);
2055 		/* Set a timeout in case the chip goes out to lunch. */
2056 		sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
2057 	}
2058 
2059 	ALC_UNLOCK(sc);
2060 }
2061 
2062 static void
2063 alc_watchdog(struct alc_softc *sc)
2064 {
2065 	struct ifnet *ifp;
2066 
2067 	ALC_LOCK_ASSERT(sc);
2068 
2069 	if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
2070 		return;
2071 
2072 	ifp = sc->alc_ifp;
2073 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2074 		if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
2075 		ifp->if_oerrors++;
2076 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2077 		alc_init_locked(sc);
2078 		return;
2079 	}
2080 	if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
2081 	ifp->if_oerrors++;
2082 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2083 	alc_init_locked(sc);
2084 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2085 		taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2086 }
2087 
2088 static int
2089 alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2090 {
2091 	struct alc_softc *sc;
2092 	struct ifreq *ifr;
2093 	struct mii_data *mii;
2094 	int error, mask;
2095 
2096 	sc = ifp->if_softc;
2097 	ifr = (struct ifreq *)data;
2098 	error = 0;
2099 	switch (cmd) {
2100 	case SIOCSIFMTU:
2101 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALC_JUMBO_MTU ||
2102 		    ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
2103 		    ifr->ifr_mtu > ETHERMTU))
2104 			error = EINVAL;
2105 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2106 			ALC_LOCK(sc);
2107 			ifp->if_mtu = ifr->ifr_mtu;
2108 			/* AR8131/AR8132 has 13 bits MSS field. */
2109 			if (ifp->if_mtu > ALC_TSO_MTU &&
2110 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2111 				ifp->if_capenable &= ~IFCAP_TSO4;
2112 				ifp->if_hwassist &= ~CSUM_TSO;
2113 				VLAN_CAPABILITIES(ifp);
2114 			}
2115 			ALC_UNLOCK(sc);
2116 		}
2117 		break;
2118 	case SIOCSIFFLAGS:
2119 		ALC_LOCK(sc);
2120 		if ((ifp->if_flags & IFF_UP) != 0) {
2121 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2122 			    ((ifp->if_flags ^ sc->alc_if_flags) &
2123 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2124 				alc_rxfilter(sc);
2125 			else if ((sc->alc_flags & ALC_FLAG_DETACH) == 0)
2126 				alc_init_locked(sc);
2127 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2128 			alc_stop(sc);
2129 		sc->alc_if_flags = ifp->if_flags;
2130 		ALC_UNLOCK(sc);
2131 		break;
2132 	case SIOCADDMULTI:
2133 	case SIOCDELMULTI:
2134 		ALC_LOCK(sc);
2135 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2136 			alc_rxfilter(sc);
2137 		ALC_UNLOCK(sc);
2138 		break;
2139 	case SIOCSIFMEDIA:
2140 	case SIOCGIFMEDIA:
2141 		mii = device_get_softc(sc->alc_miibus);
2142 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2143 		break;
2144 	case SIOCSIFCAP:
2145 		ALC_LOCK(sc);
2146 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2147 		if ((mask & IFCAP_TXCSUM) != 0 &&
2148 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2149 			ifp->if_capenable ^= IFCAP_TXCSUM;
2150 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2151 				ifp->if_hwassist |= ALC_CSUM_FEATURES;
2152 			else
2153 				ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
2154 		}
2155 		if ((mask & IFCAP_TSO4) != 0 &&
2156 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2157 			ifp->if_capenable ^= IFCAP_TSO4;
2158 			if ((ifp->if_capenable & IFCAP_TSO4) != 0) {
2159 				/* AR8131/AR8132 has 13 bits MSS field. */
2160 				if (ifp->if_mtu > ALC_TSO_MTU) {
2161 					ifp->if_capenable &= ~IFCAP_TSO4;
2162 					ifp->if_hwassist &= ~CSUM_TSO;
2163 				} else
2164 					ifp->if_hwassist |= CSUM_TSO;
2165 			} else
2166 				ifp->if_hwassist &= ~CSUM_TSO;
2167 		}
2168 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2169 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2170 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2171 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2172 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2173 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2174 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2175 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2176 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2177 			alc_rxvlan(sc);
2178 		}
2179 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2180 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2181 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2182 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2183 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2184 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2185 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2186 			ifp->if_capenable &=
2187 			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2188 		ALC_UNLOCK(sc);
2189 		VLAN_CAPABILITIES(ifp);
2190 		break;
2191 	default:
2192 		error = ether_ioctl(ifp, cmd, data);
2193 		break;
2194 	}
2195 
2196 	return (error);
2197 }
2198 
2199 static void
2200 alc_mac_config(struct alc_softc *sc)
2201 {
2202 	struct mii_data *mii;
2203 	uint32_t reg;
2204 
2205 	ALC_LOCK_ASSERT(sc);
2206 
2207 	mii = device_get_softc(sc->alc_miibus);
2208 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2209 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2210 	    MAC_CFG_SPEED_MASK);
2211 	/* Reprogram MAC with resolved speed/duplex. */
2212 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2213 	case IFM_10_T:
2214 	case IFM_100_TX:
2215 		reg |= MAC_CFG_SPEED_10_100;
2216 		break;
2217 	case IFM_1000_T:
2218 		reg |= MAC_CFG_SPEED_1000;
2219 		break;
2220 	}
2221 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2222 		reg |= MAC_CFG_FULL_DUPLEX;
2223 #ifdef notyet
2224 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2225 			reg |= MAC_CFG_TX_FC;
2226 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2227 			reg |= MAC_CFG_RX_FC;
2228 #endif
2229 	}
2230 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2231 }
2232 
2233 static void
2234 alc_stats_clear(struct alc_softc *sc)
2235 {
2236 	struct smb sb, *smb;
2237 	uint32_t *reg;
2238 	int i;
2239 
2240 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2241 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2242 		    sc->alc_cdata.alc_smb_map,
2243 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2244 		smb = sc->alc_rdata.alc_smb;
2245 		/* Update done, clear. */
2246 		smb->updated = 0;
2247 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2248 		    sc->alc_cdata.alc_smb_map,
2249 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2250 	} else {
2251 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2252 		    reg++) {
2253 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2254 			i += sizeof(uint32_t);
2255 		}
2256 		/* Read Tx statistics. */
2257 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2258 		    reg++) {
2259 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2260 			i += sizeof(uint32_t);
2261 		}
2262 	}
2263 }
2264 
2265 static void
2266 alc_stats_update(struct alc_softc *sc)
2267 {
2268 	struct alc_hw_stats *stat;
2269 	struct smb sb, *smb;
2270 	struct ifnet *ifp;
2271 	uint32_t *reg;
2272 	int i;
2273 
2274 	ALC_LOCK_ASSERT(sc);
2275 
2276 	ifp = sc->alc_ifp;
2277 	stat = &sc->alc_stats;
2278 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2279 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2280 		    sc->alc_cdata.alc_smb_map,
2281 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2282 		smb = sc->alc_rdata.alc_smb;
2283 		if (smb->updated == 0)
2284 			return;
2285 	} else {
2286 		smb = &sb;
2287 		/* Read Rx statistics. */
2288 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2289 		    reg++) {
2290 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2291 			i += sizeof(uint32_t);
2292 		}
2293 		/* Read Tx statistics. */
2294 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2295 		    reg++) {
2296 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2297 			i += sizeof(uint32_t);
2298 		}
2299 	}
2300 
2301 	/* Rx stats. */
2302 	stat->rx_frames += smb->rx_frames;
2303 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2304 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2305 	stat->rx_pause_frames += smb->rx_pause_frames;
2306 	stat->rx_control_frames += smb->rx_control_frames;
2307 	stat->rx_crcerrs += smb->rx_crcerrs;
2308 	stat->rx_lenerrs += smb->rx_lenerrs;
2309 	stat->rx_bytes += smb->rx_bytes;
2310 	stat->rx_runts += smb->rx_runts;
2311 	stat->rx_fragments += smb->rx_fragments;
2312 	stat->rx_pkts_64 += smb->rx_pkts_64;
2313 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2314 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2315 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2316 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2317 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2318 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2319 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2320 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2321 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2322 	stat->rx_alignerrs += smb->rx_alignerrs;
2323 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2324 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2325 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2326 
2327 	/* Tx stats. */
2328 	stat->tx_frames += smb->tx_frames;
2329 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2330 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2331 	stat->tx_pause_frames += smb->tx_pause_frames;
2332 	stat->tx_excess_defer += smb->tx_excess_defer;
2333 	stat->tx_control_frames += smb->tx_control_frames;
2334 	stat->tx_deferred += smb->tx_deferred;
2335 	stat->tx_bytes += smb->tx_bytes;
2336 	stat->tx_pkts_64 += smb->tx_pkts_64;
2337 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2338 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2339 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2340 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2341 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2342 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2343 	stat->tx_single_colls += smb->tx_single_colls;
2344 	stat->tx_multi_colls += smb->tx_multi_colls;
2345 	stat->tx_late_colls += smb->tx_late_colls;
2346 	stat->tx_excess_colls += smb->tx_excess_colls;
2347 	stat->tx_abort += smb->tx_abort;
2348 	stat->tx_underrun += smb->tx_underrun;
2349 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2350 	stat->tx_lenerrs += smb->tx_lenerrs;
2351 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2352 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2353 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2354 
2355 	/* Update counters in ifnet. */
2356 	ifp->if_opackets += smb->tx_frames;
2357 
2358 	ifp->if_collisions += smb->tx_single_colls +
2359 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2360 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2361 
2362 	/*
2363 	 * XXX
2364 	 * tx_pkts_truncated counter looks suspicious. It constantly
2365 	 * increments with no sign of Tx errors. This may indicate
2366 	 * the counter name is not correct one so I've removed the
2367 	 * counter in output errors.
2368 	 */
2369 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2370 	    smb->tx_underrun;
2371 
2372 	ifp->if_ipackets += smb->rx_frames;
2373 
2374 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2375 	    smb->rx_runts + smb->rx_pkts_truncated +
2376 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2377 	    smb->rx_alignerrs;
2378 
2379 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2380 		/* Update done, clear. */
2381 		smb->updated = 0;
2382 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2383 		    sc->alc_cdata.alc_smb_map,
2384 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2385 	}
2386 }
2387 
2388 static int
2389 alc_intr(void *arg)
2390 {
2391 	struct alc_softc *sc;
2392 	uint32_t status;
2393 
2394 	sc = (struct alc_softc *)arg;
2395 
2396 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2397 	if ((status & ALC_INTRS) == 0)
2398 		return (FILTER_STRAY);
2399 	/* Disable interrupts. */
2400 	CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT);
2401 	taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2402 
2403 	return (FILTER_HANDLED);
2404 }
2405 
2406 static void
2407 alc_int_task(void *arg, int pending)
2408 {
2409 	struct alc_softc *sc;
2410 	struct ifnet *ifp;
2411 	uint32_t status;
2412 	int more;
2413 
2414 	sc = (struct alc_softc *)arg;
2415 	ifp = sc->alc_ifp;
2416 
2417 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2418 	more = atomic_readandclear_int(&sc->alc_morework);
2419 	if (more != 0)
2420 		status |= INTR_RX_PKT;
2421 	if ((status & ALC_INTRS) == 0)
2422 		goto done;
2423 
2424 	/* Acknowledge interrupts but still disable interrupts. */
2425 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2426 
2427 	more = 0;
2428 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2429 		if ((status & INTR_RX_PKT) != 0) {
2430 			more = alc_rxintr(sc, sc->alc_process_limit);
2431 			if (more == EAGAIN)
2432 				atomic_set_int(&sc->alc_morework, 1);
2433 			else if (more == EIO) {
2434 				ALC_LOCK(sc);
2435 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2436 				alc_init_locked(sc);
2437 				ALC_UNLOCK(sc);
2438 				return;
2439 			}
2440 		}
2441 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2442 		    INTR_TXQ_TO_RST)) != 0) {
2443 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2444 				device_printf(sc->alc_dev,
2445 				    "DMA read error! -- resetting\n");
2446 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2447 				device_printf(sc->alc_dev,
2448 				    "DMA write error! -- resetting\n");
2449 			if ((status & INTR_TXQ_TO_RST) != 0)
2450 				device_printf(sc->alc_dev,
2451 				    "TxQ reset! -- resetting\n");
2452 			ALC_LOCK(sc);
2453 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2454 			alc_init_locked(sc);
2455 			ALC_UNLOCK(sc);
2456 			return;
2457 		}
2458 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2459 		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2460 			taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2461 	}
2462 
2463 	if (more == EAGAIN ||
2464 	    (CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) {
2465 		taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2466 		return;
2467 	}
2468 
2469 done:
2470 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2471 		/* Re-enable interrupts if we're running. */
2472 		CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2473 	}
2474 }
2475 
2476 static void
2477 alc_txeof(struct alc_softc *sc)
2478 {
2479 	struct ifnet *ifp;
2480 	struct alc_txdesc *txd;
2481 	uint32_t cons, prod;
2482 	int prog;
2483 
2484 	ALC_LOCK_ASSERT(sc);
2485 
2486 	ifp = sc->alc_ifp;
2487 
2488 	if (sc->alc_cdata.alc_tx_cnt == 0)
2489 		return;
2490 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2491 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2492 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2493 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2494 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
2495 		prod = sc->alc_rdata.alc_cmb->cons;
2496 	} else
2497 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2498 	/* Assume we're using normal Tx priority queue. */
2499 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2500 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2501 	cons = sc->alc_cdata.alc_tx_cons;
2502 	/*
2503 	 * Go through our Tx list and free mbufs for those
2504 	 * frames which have been transmitted.
2505 	 */
2506 	for (prog = 0; cons != prod; prog++,
2507 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2508 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2509 			break;
2510 		prog++;
2511 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2512 		sc->alc_cdata.alc_tx_cnt--;
2513 		txd = &sc->alc_cdata.alc_txdesc[cons];
2514 		if (txd->tx_m != NULL) {
2515 			/* Reclaim transmitted mbufs. */
2516 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
2517 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2518 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
2519 			    txd->tx_dmamap);
2520 			m_freem(txd->tx_m);
2521 			txd->tx_m = NULL;
2522 		}
2523 	}
2524 
2525 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2526 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2527 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
2528 	sc->alc_cdata.alc_tx_cons = cons;
2529 	/*
2530 	 * Unarm watchdog timer only when there is no pending
2531 	 * frames in Tx queue.
2532 	 */
2533 	if (sc->alc_cdata.alc_tx_cnt == 0)
2534 		sc->alc_watchdog_timer = 0;
2535 }
2536 
2537 static int
2538 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd)
2539 {
2540 	struct mbuf *m;
2541 	bus_dma_segment_t segs[1];
2542 	bus_dmamap_t map;
2543 	int nsegs;
2544 
2545 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2546 	if (m == NULL)
2547 		return (ENOBUFS);
2548 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2549 #ifndef __NO_STRICT_ALIGNMENT
2550 	m_adj(m, sizeof(uint64_t));
2551 #endif
2552 
2553 	if (bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_rx_tag,
2554 	    sc->alc_cdata.alc_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2555 		m_freem(m);
2556 		return (ENOBUFS);
2557 	}
2558 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2559 
2560 	if (rxd->rx_m != NULL) {
2561 		bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2562 		    BUS_DMASYNC_POSTREAD);
2563 		bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
2564 	}
2565 	map = rxd->rx_dmamap;
2566 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2567 	sc->alc_cdata.alc_rx_sparemap = map;
2568 	bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2569 	    BUS_DMASYNC_PREREAD);
2570 	rxd->rx_m = m;
2571 	rxd->rx_desc->addr = htole64(segs[0].ds_addr);
2572 	return (0);
2573 }
2574 
2575 static int
2576 alc_rxintr(struct alc_softc *sc, int count)
2577 {
2578 	struct ifnet *ifp;
2579 	struct rx_rdesc *rrd;
2580 	uint32_t nsegs, status;
2581 	int rr_cons, prog;
2582 
2583 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2584 	    sc->alc_cdata.alc_rr_ring_map,
2585 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2586 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2587 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2588 	rr_cons = sc->alc_cdata.alc_rr_cons;
2589 	ifp = sc->alc_ifp;
2590 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;) {
2591 		if (count-- <= 0)
2592 			break;
2593 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2594 		status = le32toh(rrd->status);
2595 		if ((status & RRD_VALID) == 0)
2596 			break;
2597 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2598 		if (nsegs == 0) {
2599 			/* This should not happen! */
2600 			device_printf(sc->alc_dev,
2601 			    "unexpected segment count -- resetting\n");
2602 			return (EIO);
2603 		}
2604 		alc_rxeof(sc, rrd);
2605 		/* Clear Rx return status. */
2606 		rrd->status = 0;
2607 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2608 		sc->alc_cdata.alc_rx_cons += nsegs;
2609 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2610 		prog += nsegs;
2611 	}
2612 
2613 	if (prog > 0) {
2614 		/* Update the consumer index. */
2615 		sc->alc_cdata.alc_rr_cons = rr_cons;
2616 		/* Sync Rx return descriptors. */
2617 		bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2618 		    sc->alc_cdata.alc_rr_ring_map,
2619 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2620 		/*
2621 		 * Sync updated Rx descriptors such that controller see
2622 		 * modified buffer addresses.
2623 		 */
2624 		bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2625 		    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
2626 		/*
2627 		 * Let controller know availability of new Rx buffers.
2628 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2629 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2630 		 * only when Rx buffer pre-fetching is required. In
2631 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2632 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2633 		 * it still seems that pre-fetching needs more
2634 		 * experimentation.
2635 		 */
2636 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2637 		    sc->alc_cdata.alc_rx_cons);
2638 	}
2639 
2640 	return (count > 0 ? 0 : EAGAIN);
2641 }
2642 
2643 #ifndef __NO_STRICT_ALIGNMENT
2644 static struct mbuf *
2645 alc_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2646 {
2647 	struct mbuf *n;
2648         int i;
2649         uint16_t *src, *dst;
2650 
2651 	src = mtod(m, uint16_t *);
2652 	dst = src - 3;
2653 
2654 	if (m->m_next == NULL) {
2655 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2656 			*dst++ = *src++;
2657 		m->m_data -= 6;
2658 		return (m);
2659 	}
2660 	/*
2661 	 * Append a new mbuf to received mbuf chain and copy ethernet
2662 	 * header from the mbuf chain. This can save lots of CPU
2663 	 * cycles for jumbo frame.
2664 	 */
2665 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2666 	if (n == NULL) {
2667 		ifp->if_iqdrops++;
2668 		m_freem(m);
2669 		return (NULL);
2670 	}
2671 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2672 	m->m_data += ETHER_HDR_LEN;
2673 	m->m_len -= ETHER_HDR_LEN;
2674 	n->m_len = ETHER_HDR_LEN;
2675 	M_MOVE_PKTHDR(n, m);
2676 	n->m_next = m;
2677 	return (n);
2678 }
2679 #endif
2680 
2681 /* Receive a frame. */
2682 static void
2683 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2684 {
2685 	struct alc_rxdesc *rxd;
2686 	struct ifnet *ifp;
2687 	struct mbuf *mp, *m;
2688 	uint32_t rdinfo, status, vtag;
2689 	int count, nsegs, rx_cons;
2690 
2691 	ifp = sc->alc_ifp;
2692 	status = le32toh(rrd->status);
2693 	rdinfo = le32toh(rrd->rdinfo);
2694 	rx_cons = RRD_RD_IDX(rdinfo);
2695 	nsegs = RRD_RD_CNT(rdinfo);
2696 
2697 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2698 	if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
2699 		/*
2700 		 * We want to pass the following frames to upper
2701 		 * layer regardless of error status of Rx return
2702 		 * ring.
2703 		 *
2704 		 *  o IP/TCP/UDP checksum is bad.
2705 		 *  o frame length and protocol specific length
2706 		 *     does not match.
2707 		 *
2708 		 *  Force network stack compute checksum for
2709 		 *  errored frames.
2710 		 */
2711 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2712 		if ((RRD_ERR_CRC | RRD_ERR_ALIGN | RRD_ERR_TRUNC |
2713 		    RRD_ERR_RUNT) != 0)
2714 			return;
2715 	}
2716 
2717 	for (count = 0; count < nsegs; count++,
2718 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2719 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2720 		mp = rxd->rx_m;
2721 		/* Add a new receive buffer to the ring. */
2722 		if (alc_newbuf(sc, rxd) != 0) {
2723 			ifp->if_iqdrops++;
2724 			/* Reuse Rx buffers. */
2725 			if (sc->alc_cdata.alc_rxhead != NULL)
2726 				m_freem(sc->alc_cdata.alc_rxhead);
2727 			break;
2728 		}
2729 
2730 		/*
2731 		 * Assume we've received a full sized frame.
2732 		 * Actual size is fixed when we encounter the end of
2733 		 * multi-segmented frame.
2734 		 */
2735 		mp->m_len = sc->alc_buf_size;
2736 
2737 		/* Chain received mbufs. */
2738 		if (sc->alc_cdata.alc_rxhead == NULL) {
2739 			sc->alc_cdata.alc_rxhead = mp;
2740 			sc->alc_cdata.alc_rxtail = mp;
2741 		} else {
2742 			mp->m_flags &= ~M_PKTHDR;
2743 			sc->alc_cdata.alc_rxprev_tail =
2744 			    sc->alc_cdata.alc_rxtail;
2745 			sc->alc_cdata.alc_rxtail->m_next = mp;
2746 			sc->alc_cdata.alc_rxtail = mp;
2747 		}
2748 
2749 		if (count == nsegs - 1) {
2750 			/* Last desc. for this frame. */
2751 			m = sc->alc_cdata.alc_rxhead;
2752 			m->m_flags |= M_PKTHDR;
2753 			/*
2754 			 * It seems that L1C/L2C controller has no way
2755 			 * to tell hardware to strip CRC bytes.
2756 			 */
2757 			m->m_pkthdr.len =
2758 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2759 			if (nsegs > 1) {
2760 				/* Set last mbuf size. */
2761 				mp->m_len = sc->alc_cdata.alc_rxlen -
2762 				    (nsegs - 1) * sc->alc_buf_size;
2763 				/* Remove the CRC bytes in chained mbufs. */
2764 				if (mp->m_len <= ETHER_CRC_LEN) {
2765 					sc->alc_cdata.alc_rxtail =
2766 					    sc->alc_cdata.alc_rxprev_tail;
2767 					sc->alc_cdata.alc_rxtail->m_len -=
2768 					    (ETHER_CRC_LEN - mp->m_len);
2769 					sc->alc_cdata.alc_rxtail->m_next = NULL;
2770 					m_freem(mp);
2771 				} else {
2772 					mp->m_len -= ETHER_CRC_LEN;
2773 				}
2774 			} else
2775 				m->m_len = m->m_pkthdr.len;
2776 			m->m_pkthdr.rcvif = ifp;
2777 			/*
2778 			 * Due to hardware bugs, Rx checksum offloading
2779 			 * was intentionally disabled.
2780 			 */
2781 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2782 			    (status & RRD_VLAN_TAG) != 0) {
2783 				vtag = RRD_VLAN(le32toh(rrd->vtag));
2784 				m->m_pkthdr.ether_vtag = ntohs(vtag);
2785 				m->m_flags |= M_VLANTAG;
2786 			}
2787 #ifndef __NO_STRICT_ALIGNMENT
2788 			m = alc_fixup_rx(ifp, m);
2789 			if (m != NULL)
2790 #endif
2791 			{
2792 			/* Pass it on. */
2793 			(*ifp->if_input)(ifp, m);
2794 			}
2795 		}
2796 	}
2797 	/* Reset mbuf chains. */
2798 	ALC_RXCHAIN_RESET(sc);
2799 }
2800 
2801 static void
2802 alc_tick(void *arg)
2803 {
2804 	struct alc_softc *sc;
2805 	struct mii_data *mii;
2806 
2807 	sc = (struct alc_softc *)arg;
2808 
2809 	ALC_LOCK_ASSERT(sc);
2810 
2811 	mii = device_get_softc(sc->alc_miibus);
2812 	mii_tick(mii);
2813 	alc_stats_update(sc);
2814 	/*
2815 	 * alc(4) does not rely on Tx completion interrupts to reclaim
2816 	 * transferred buffers. Instead Tx completion interrupts are
2817 	 * used to hint for scheduling Tx task. So it's necessary to
2818 	 * release transmitted buffers by kicking Tx completion
2819 	 * handler. This limits the maximum reclamation delay to a hz.
2820 	 */
2821 	alc_txeof(sc);
2822 	alc_watchdog(sc);
2823 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
2824 }
2825 
2826 static void
2827 alc_reset(struct alc_softc *sc)
2828 {
2829 	uint32_t reg;
2830 	int i;
2831 
2832 	CSR_WRITE_4(sc, ALC_MASTER_CFG, MASTER_RESET);
2833 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2834 		DELAY(10);
2835 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2836 			break;
2837 	}
2838 	if (i == 0)
2839 		device_printf(sc->alc_dev, "master reset timeout!\n");
2840 
2841 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2842 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
2843 			break;
2844 		DELAY(10);
2845 	}
2846 
2847 	if (i == 0)
2848 		device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
2849 }
2850 
2851 static void
2852 alc_init(void *xsc)
2853 {
2854 	struct alc_softc *sc;
2855 
2856 	sc = (struct alc_softc *)xsc;
2857 	ALC_LOCK(sc);
2858 	alc_init_locked(sc);
2859 	ALC_UNLOCK(sc);
2860 }
2861 
2862 static void
2863 alc_init_locked(struct alc_softc *sc)
2864 {
2865 	struct ifnet *ifp;
2866 	struct mii_data *mii;
2867 	uint8_t eaddr[ETHER_ADDR_LEN];
2868 	bus_addr_t paddr;
2869 	uint32_t reg, rxf_hi, rxf_lo;
2870 
2871 	ALC_LOCK_ASSERT(sc);
2872 
2873 	ifp = sc->alc_ifp;
2874 	mii = device_get_softc(sc->alc_miibus);
2875 
2876 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2877 		return;
2878 	/*
2879 	 * Cancel any pending I/O.
2880 	 */
2881 	alc_stop(sc);
2882 	/*
2883 	 * Reset the chip to a known state.
2884 	 */
2885 	alc_reset(sc);
2886 
2887 	/* Initialize Rx descriptors. */
2888 	if (alc_init_rx_ring(sc) != 0) {
2889 		device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
2890 		alc_stop(sc);
2891 		return;
2892 	}
2893 	alc_init_rr_ring(sc);
2894 	alc_init_tx_ring(sc);
2895 	alc_init_cmb(sc);
2896 	alc_init_smb(sc);
2897 
2898 	/* Reprogram the station address. */
2899 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2900 	CSR_WRITE_4(sc, ALC_PAR0,
2901 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2902 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2903 	/*
2904 	 * Clear WOL status and disable all WOL feature as WOL
2905 	 * would interfere Rx operation under normal environments.
2906 	 */
2907 	CSR_READ_4(sc, ALC_WOL_CFG);
2908 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2909 	/* Set Tx descriptor base addresses. */
2910 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
2911 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2912 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2913 	/* We don't use high priority ring. */
2914 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2915 	/* Set Tx descriptor counter. */
2916 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2917 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2918 	/* Set Rx descriptor base addresses. */
2919 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
2920 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2921 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2922 	/* We use one Rx ring. */
2923 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2924 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2925 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2926 	/* Set Rx descriptor counter. */
2927 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2928 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2929 
2930 	/*
2931 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2932 	 * if it do not fit the buffer size. Rx return descriptor holds
2933 	 * a counter that indicates how many fragments were made by the
2934 	 * hardware. The buffer size should be multiple of 8 bytes.
2935 	 * Since hardware has limit on the size of buffer size, always
2936 	 * use the maximum value.
2937 	 * For strict-alignment architectures make sure to reduce buffer
2938 	 * size by 8 bytes to make room for alignment fixup.
2939 	 */
2940 #ifndef __NO_STRICT_ALIGNMENT
2941 	sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t);
2942 #else
2943 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
2944 #endif
2945 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2946 
2947 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
2948 	/* Set Rx return descriptor base addresses. */
2949 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2950 	/* We use one Rx return ring. */
2951 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2952 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2953 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2954 	/* Set Rx return descriptor counter. */
2955 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2956 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2957 	paddr = sc->alc_rdata.alc_cmb_paddr;
2958 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2959 	paddr = sc->alc_rdata.alc_smb_paddr;
2960 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2961 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2962 
2963 	/* Tell hardware that we're ready to load DMA blocks. */
2964 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2965 
2966 	/* Configure interrupt moderation timer. */
2967 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2968 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2969 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2970 	reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2971 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2972 	/*
2973 	 * We don't want to automatic interrupt clear as task queue
2974 	 * for the interrupt should know interrupt status.
2975 	 */
2976 	reg &= ~MASTER_INTR_RD_CLR;
2977 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2978 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2979 		reg |= MASTER_IM_RX_TIMER_ENB;
2980 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
2981 		reg |= MASTER_IM_TX_TIMER_ENB;
2982 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2983 	/*
2984 	 * Disable interrupt re-trigger timer. We don't want automatic
2985 	 * re-triggering of un-ACKed interrupts.
2986 	 */
2987 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2988 	/* Configure CMB. */
2989 	CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2990 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2991 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2992 	else
2993 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2994 	/*
2995 	 * Hardware can be configured to issue SMB interrupt based
2996 	 * on programmed interval. Since there is a callout that is
2997 	 * invoked for every hz in driver we use that instead of
2998 	 * relying on periodic SMB interrupt.
2999 	 */
3000 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
3001 	/* Clear MAC statistics. */
3002 	alc_stats_clear(sc);
3003 
3004 	/*
3005 	 * Always use maximum frame size that controller can support.
3006 	 * Otherwise received frames that has larger frame length
3007 	 * than alc(4) MTU would be silently dropped in hardware. This
3008 	 * would make path-MTU discovery hard as sender wouldn't get
3009 	 * any responses from receiver. alc(4) supports
3010 	 * multi-fragmented frames on Rx path so it has no issue on
3011 	 * assembling fragmented frames. Using maximum frame size also
3012 	 * removes the need to reinitialize hardware when interface
3013 	 * MTU configuration was changed.
3014 	 *
3015 	 * Be conservative in what you do, be liberal in what you
3016 	 * accept from others - RFC 793.
3017 	 */
3018 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, ALC_JUMBO_FRAMELEN);
3019 
3020 	/* Disable header split(?) */
3021 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
3022 
3023 	/* Configure IPG/IFG parameters. */
3024 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
3025 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
3026 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
3027 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
3028 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
3029 	/* Set parameters for half-duplex media. */
3030 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
3031 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
3032 	    HDPX_CFG_LCOL_MASK) |
3033 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
3034 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
3035 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
3036 	    HDPX_CFG_ABEBT_MASK) |
3037 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3038 	    HDPX_CFG_JAMIPG_MASK));
3039 	/*
3040 	 * Set TSO/checksum offload threshold. For frames that is
3041 	 * larger than this threshold, hardware wouldn't do
3042 	 * TSO/checksum offloading.
3043 	 */
3044 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
3045 	    (ALC_JUMBO_FRAMELEN >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3046 	    TSO_OFFLOAD_THRESH_MASK);
3047 	/* Configure TxQ. */
3048 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3049 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3050 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3051 	    TXQ_CFG_TD_BURST_MASK;
3052 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3053 
3054 	/* Configure Rx free descriptor pre-fetching. */
3055 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3056 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
3057 	    RX_RD_FREE_THRESH_HI_MASK) |
3058 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
3059 	    RX_RD_FREE_THRESH_LO_MASK));
3060 
3061 	/*
3062 	 * Configure flow control parameters.
3063 	 * XON  : 80% of Rx FIFO
3064 	 * XOFF : 30% of Rx FIFO
3065 	 */
3066 	reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3067 	rxf_hi = (reg * 8) / 10;
3068 	rxf_lo = (reg * 3)/ 10;
3069 	CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3070 	    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3071 	    RX_FIFO_PAUSE_THRESH_LO_MASK) |
3072 	    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3073 	     RX_FIFO_PAUSE_THRESH_HI_MASK));
3074 
3075 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
3076 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3077 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3078 
3079 	/* Configure RxQ. */
3080 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3081 	    RXQ_CFG_RD_BURST_MASK;
3082 	reg |= RXQ_CFG_RSS_MODE_DIS;
3083 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
3084 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_100M;
3085 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3086 
3087 	/* Configure Rx DMAW request thresold. */
3088 	CSR_WRITE_4(sc, ALC_RD_DMA_CFG,
3089 	    ((RD_DMA_CFG_THRESH_DEFAULT << RD_DMA_CFG_THRESH_SHIFT) &
3090 	    RD_DMA_CFG_THRESH_MASK) |
3091 	    ((ALC_RD_DMA_CFG_USECS(0) << RD_DMA_CFG_TIMER_SHIFT) &
3092 	    RD_DMA_CFG_TIMER_MASK));
3093 	/* Configure DMA parameters. */
3094 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3095 	reg |= sc->alc_rcb;
3096 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3097 		reg |= DMA_CFG_CMB_ENB;
3098 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3099 		reg |= DMA_CFG_SMB_ENB;
3100 	else
3101 		reg |= DMA_CFG_SMB_DIS;
3102 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3103 	    DMA_CFG_RD_BURST_SHIFT;
3104 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3105 	    DMA_CFG_WR_BURST_SHIFT;
3106 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3107 	    DMA_CFG_RD_DELAY_CNT_MASK;
3108 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3109 	    DMA_CFG_WR_DELAY_CNT_MASK;
3110 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3111 
3112 	/*
3113 	 * Configure Tx/Rx MACs.
3114 	 *  - Auto-padding for short frames.
3115 	 *  - Enable CRC generation.
3116 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3117 	 *  is followed after detection of link establishment.
3118 	 *  AR8131/AR8132 always does checksum computation regardless
3119 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3120 	 *  have bug in protocol field in Rx return structure so
3121 	 *  these controllers can't handle fragmented frames. Disable
3122 	 *  Rx checksum offloading until there is a newer controller
3123 	 *  that has sane implementation.
3124 	 */
3125 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3126 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3127 	    MAC_CFG_PREAMBLE_MASK);
3128 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3129 		reg |= MAC_CFG_SPEED_10_100;
3130 	else
3131 		reg |= MAC_CFG_SPEED_1000;
3132 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3133 
3134 	/* Set up the receive filter. */
3135 	alc_rxfilter(sc);
3136 	alc_rxvlan(sc);
3137 
3138 	/* Acknowledge all pending interrupts and clear it. */
3139 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3140 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3141 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3142 
3143 	sc->alc_flags &= ~ALC_FLAG_LINK;
3144 	/* Switch to the current media. */
3145 	mii_mediachg(mii);
3146 
3147 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3148 
3149 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3150 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3151 }
3152 
3153 static void
3154 alc_stop(struct alc_softc *sc)
3155 {
3156 	struct ifnet *ifp;
3157 	struct alc_txdesc *txd;
3158 	struct alc_rxdesc *rxd;
3159 	uint32_t reg;
3160 	int i;
3161 
3162 	ALC_LOCK_ASSERT(sc);
3163 	/*
3164 	 * Mark the interface down and cancel the watchdog timer.
3165 	 */
3166 	ifp = sc->alc_ifp;
3167 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3168 	sc->alc_flags &= ~ALC_FLAG_LINK;
3169 	callout_stop(&sc->alc_tick_ch);
3170 	sc->alc_watchdog_timer = 0;
3171 	alc_stats_update(sc);
3172 	/* Disable interrupts. */
3173 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3174 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3175 	alc_stop_queue(sc);
3176 	/* Disable DMA. */
3177 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3178 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3179 	reg |= DMA_CFG_SMB_DIS;
3180 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3181 	DELAY(1000);
3182 	/* Stop Rx/Tx MACs. */
3183 	alc_stop_mac(sc);
3184 	/* Disable interrupts which might be touched in taskq handler. */
3185 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3186 
3187 	/* Reclaim Rx buffers that have been processed. */
3188 	if (sc->alc_cdata.alc_rxhead != NULL)
3189 		m_freem(sc->alc_cdata.alc_rxhead);
3190 	ALC_RXCHAIN_RESET(sc);
3191 	/*
3192 	 * Free Tx/Rx mbufs still in the queues.
3193 	 */
3194 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3195 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3196 		if (rxd->rx_m != NULL) {
3197 			bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
3198 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3199 			bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
3200 			    rxd->rx_dmamap);
3201 			m_freem(rxd->rx_m);
3202 			rxd->rx_m = NULL;
3203 		}
3204 	}
3205 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3206 		txd = &sc->alc_cdata.alc_txdesc[i];
3207 		if (txd->tx_m != NULL) {
3208 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
3209 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3210 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
3211 			    txd->tx_dmamap);
3212 			m_freem(txd->tx_m);
3213 			txd->tx_m = NULL;
3214 		}
3215 	}
3216 }
3217 
3218 static void
3219 alc_stop_mac(struct alc_softc *sc)
3220 {
3221 	uint32_t reg;
3222 	int i;
3223 
3224 	ALC_LOCK_ASSERT(sc);
3225 
3226 	/* Disable Rx/Tx MAC. */
3227 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3228 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3229 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
3230 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3231 	}
3232 	for (i = ALC_TIMEOUT; i > 0; i--) {
3233 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3234 		if (reg == 0)
3235 			break;
3236 		DELAY(10);
3237 	}
3238 	if (i == 0)
3239 		device_printf(sc->alc_dev,
3240 		    "could not disable Rx/Tx MAC(0x%08x)!\n", reg);
3241 }
3242 
3243 static void
3244 alc_start_queue(struct alc_softc *sc)
3245 {
3246 	uint32_t qcfg[] = {
3247 		0,
3248 		RXQ_CFG_QUEUE0_ENB,
3249 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3250 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3251 		RXQ_CFG_ENB
3252 	};
3253 	uint32_t cfg;
3254 
3255 	ALC_LOCK_ASSERT(sc);
3256 
3257 	/* Enable RxQ. */
3258 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3259 	cfg &= ~RXQ_CFG_ENB;
3260 	cfg |= qcfg[1];
3261 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3262 	/* Enable TxQ. */
3263 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3264 	cfg |= TXQ_CFG_ENB;
3265 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3266 }
3267 
3268 static void
3269 alc_stop_queue(struct alc_softc *sc)
3270 {
3271 	uint32_t reg;
3272 	int i;
3273 
3274 	ALC_LOCK_ASSERT(sc);
3275 
3276 	/* Disable RxQ. */
3277 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3278 	if ((reg & RXQ_CFG_ENB) != 0) {
3279 		reg &= ~RXQ_CFG_ENB;
3280 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3281 	}
3282 	/* Disable TxQ. */
3283 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3284 	if ((reg & TXQ_CFG_ENB) == 0) {
3285 		reg &= ~TXQ_CFG_ENB;
3286 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3287 	}
3288 	for (i = ALC_TIMEOUT; i > 0; i--) {
3289 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3290 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3291 			break;
3292 		DELAY(10);
3293 	}
3294 	if (i == 0)
3295 		device_printf(sc->alc_dev,
3296 		    "could not disable RxQ/TxQ (0x%08x)!\n", reg);
3297 }
3298 
3299 static void
3300 alc_init_tx_ring(struct alc_softc *sc)
3301 {
3302 	struct alc_ring_data *rd;
3303 	struct alc_txdesc *txd;
3304 	int i;
3305 
3306 	ALC_LOCK_ASSERT(sc);
3307 
3308 	sc->alc_cdata.alc_tx_prod = 0;
3309 	sc->alc_cdata.alc_tx_cons = 0;
3310 	sc->alc_cdata.alc_tx_cnt = 0;
3311 
3312 	rd = &sc->alc_rdata;
3313 	bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
3314 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3315 		txd = &sc->alc_cdata.alc_txdesc[i];
3316 		txd->tx_m = NULL;
3317 	}
3318 
3319 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
3320 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
3321 }
3322 
3323 static int
3324 alc_init_rx_ring(struct alc_softc *sc)
3325 {
3326 	struct alc_ring_data *rd;
3327 	struct alc_rxdesc *rxd;
3328 	int i;
3329 
3330 	ALC_LOCK_ASSERT(sc);
3331 
3332 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3333 	sc->alc_morework = 0;
3334 	rd = &sc->alc_rdata;
3335 	bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
3336 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3337 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3338 		rxd->rx_m = NULL;
3339 		rxd->rx_desc = &rd->alc_rx_ring[i];
3340 		if (alc_newbuf(sc, rxd) != 0)
3341 			return (ENOBUFS);
3342 	}
3343 
3344 	/*
3345 	 * Since controller does not update Rx descriptors, driver
3346 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3347 	 * is enough to ensure coherence.
3348 	 */
3349 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
3350 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
3351 	/* Let controller know availability of new Rx buffers. */
3352 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3353 
3354 	return (0);
3355 }
3356 
3357 static void
3358 alc_init_rr_ring(struct alc_softc *sc)
3359 {
3360 	struct alc_ring_data *rd;
3361 
3362 	ALC_LOCK_ASSERT(sc);
3363 
3364 	sc->alc_cdata.alc_rr_cons = 0;
3365 	ALC_RXCHAIN_RESET(sc);
3366 
3367 	rd = &sc->alc_rdata;
3368 	bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
3369 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
3370 	    sc->alc_cdata.alc_rr_ring_map,
3371 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3372 }
3373 
3374 static void
3375 alc_init_cmb(struct alc_softc *sc)
3376 {
3377 	struct alc_ring_data *rd;
3378 
3379 	ALC_LOCK_ASSERT(sc);
3380 
3381 	rd = &sc->alc_rdata;
3382 	bzero(rd->alc_cmb, ALC_CMB_SZ);
3383 	bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
3384 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3385 }
3386 
3387 static void
3388 alc_init_smb(struct alc_softc *sc)
3389 {
3390 	struct alc_ring_data *rd;
3391 
3392 	ALC_LOCK_ASSERT(sc);
3393 
3394 	rd = &sc->alc_rdata;
3395 	bzero(rd->alc_smb, ALC_SMB_SZ);
3396 	bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
3397 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3398 }
3399 
3400 static void
3401 alc_rxvlan(struct alc_softc *sc)
3402 {
3403 	struct ifnet *ifp;
3404 	uint32_t reg;
3405 
3406 	ALC_LOCK_ASSERT(sc);
3407 
3408 	ifp = sc->alc_ifp;
3409 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3410 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3411 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3412 	else
3413 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3414 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3415 }
3416 
3417 static void
3418 alc_rxfilter(struct alc_softc *sc)
3419 {
3420 	struct ifnet *ifp;
3421 	struct ifmultiaddr *ifma;
3422 	uint32_t crc;
3423 	uint32_t mchash[2];
3424 	uint32_t rxcfg;
3425 
3426 	ALC_LOCK_ASSERT(sc);
3427 
3428 	ifp = sc->alc_ifp;
3429 
3430 	bzero(mchash, sizeof(mchash));
3431 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3432 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3433 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3434 		rxcfg |= MAC_CFG_BCAST;
3435 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3436 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3437 			rxcfg |= MAC_CFG_PROMISC;
3438 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3439 			rxcfg |= MAC_CFG_ALLMULTI;
3440 		mchash[0] = 0xFFFFFFFF;
3441 		mchash[1] = 0xFFFFFFFF;
3442 		goto chipit;
3443 	}
3444 
3445 	if_maddr_rlock(ifp);
3446 	TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
3447 		if (ifma->ifma_addr->sa_family != AF_LINK)
3448 			continue;
3449 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3450 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3451 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3452 	}
3453 	if_maddr_runlock(ifp);
3454 
3455 chipit:
3456 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3457 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3458 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3459 }
3460 
3461 static int
3462 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3463 {
3464 	int error, value;
3465 
3466 	if (arg1 == NULL)
3467 		return (EINVAL);
3468 	value = *(int *)arg1;
3469 	error = sysctl_handle_int(oidp, &value, 0, req);
3470 	if (error || req->newptr == NULL)
3471 		return (error);
3472 	if (value < low || value > high)
3473 		return (EINVAL);
3474 	*(int *)arg1 = value;
3475 
3476 	return (0);
3477 }
3478 
3479 static int
3480 sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
3481 {
3482 	return (sysctl_int_range(oidp, arg1, arg2, req,
3483 	    ALC_PROC_MIN, ALC_PROC_MAX));
3484 }
3485 
3486 static int
3487 sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
3488 {
3489 
3490 	return (sysctl_int_range(oidp, arg1, arg2, req,
3491 	    ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));
3492 }
3493