xref: /freebsd/sys/dev/alc/if_alc.c (revision 0e1497aefd602cea581d2380d22e67dfdcac6b4e)
1 /*-
2  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/rman.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_llc.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 
71 #include <machine/bus.h>
72 #include <machine/in_cksum.h>
73 
74 #include <dev/alc/if_alcreg.h>
75 #include <dev/alc/if_alcvar.h>
76 
77 /* "device miibus" required.  See GENERIC if you get errors here. */
78 #include "miibus_if.h"
79 #undef ALC_USE_CUSTOM_CSUM
80 
81 #ifdef ALC_USE_CUSTOM_CSUM
82 #define	ALC_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
83 #else
84 #define	ALC_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
85 #endif
86 
87 MODULE_DEPEND(alc, pci, 1, 1, 1);
88 MODULE_DEPEND(alc, ether, 1, 1, 1);
89 MODULE_DEPEND(alc, miibus, 1, 1, 1);
90 
91 /* Tunables. */
92 static int msi_disable = 0;
93 static int msix_disable = 0;
94 TUNABLE_INT("hw.alc.msi_disable", &msi_disable);
95 TUNABLE_INT("hw.alc.msix_disable", &msix_disable);
96 
97 /*
98  * Devices supported by this driver.
99  */
100 static struct alc_ident alc_ident_table[] = {
101 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131, 9 * 1024,
102 		"Atheros AR8131 PCIe Gigabit Ethernet" },
103 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132, 9 * 1024,
104 		"Atheros AR8132 PCIe Fast Ethernet" },
105 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151, 6 * 1024,
106 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
107 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151_V2, 6 * 1024,
108 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
109 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B, 6 * 1024,
110 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
111 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B2, 6 * 1024,
112 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
113 	{ 0, 0, 0, NULL}
114 };
115 
116 static void	alc_aspm(struct alc_softc *, int);
117 static int	alc_attach(device_t);
118 static int	alc_check_boundary(struct alc_softc *);
119 static int	alc_detach(device_t);
120 static void	alc_disable_l0s_l1(struct alc_softc *);
121 static int	alc_dma_alloc(struct alc_softc *);
122 static void	alc_dma_free(struct alc_softc *);
123 static void	alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
124 static int	alc_encap(struct alc_softc *, struct mbuf **);
125 static struct alc_ident *
126 		alc_find_ident(device_t);
127 #ifndef __NO_STRICT_ALIGNMENT
128 static struct mbuf *
129 		alc_fixup_rx(struct ifnet *, struct mbuf *);
130 #endif
131 static void	alc_get_macaddr(struct alc_softc *);
132 static void	alc_init(void *);
133 static void	alc_init_cmb(struct alc_softc *);
134 static void	alc_init_locked(struct alc_softc *);
135 static void	alc_init_rr_ring(struct alc_softc *);
136 static int	alc_init_rx_ring(struct alc_softc *);
137 static void	alc_init_smb(struct alc_softc *);
138 static void	alc_init_tx_ring(struct alc_softc *);
139 static void	alc_int_task(void *, int);
140 static int	alc_intr(void *);
141 static int	alc_ioctl(struct ifnet *, u_long, caddr_t);
142 static void	alc_mac_config(struct alc_softc *);
143 static int	alc_miibus_readreg(device_t, int, int);
144 static void	alc_miibus_statchg(device_t);
145 static int	alc_miibus_writereg(device_t, int, int, int);
146 static int	alc_mediachange(struct ifnet *);
147 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
148 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *);
149 static void	alc_phy_down(struct alc_softc *);
150 static void	alc_phy_reset(struct alc_softc *);
151 static int	alc_probe(device_t);
152 static void	alc_reset(struct alc_softc *);
153 static int	alc_resume(device_t);
154 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
155 static int	alc_rxintr(struct alc_softc *, int);
156 static void	alc_rxfilter(struct alc_softc *);
157 static void	alc_rxvlan(struct alc_softc *);
158 static void	alc_setlinkspeed(struct alc_softc *);
159 static void	alc_setwol(struct alc_softc *);
160 static int	alc_shutdown(device_t);
161 static void	alc_start(struct ifnet *);
162 static void	alc_start_queue(struct alc_softc *);
163 static void	alc_stats_clear(struct alc_softc *);
164 static void	alc_stats_update(struct alc_softc *);
165 static void	alc_stop(struct alc_softc *);
166 static void	alc_stop_mac(struct alc_softc *);
167 static void	alc_stop_queue(struct alc_softc *);
168 static int	alc_suspend(device_t);
169 static void	alc_sysctl_node(struct alc_softc *);
170 static void	alc_tick(void *);
171 static void	alc_tx_task(void *, int);
172 static void	alc_txeof(struct alc_softc *);
173 static void	alc_watchdog(struct alc_softc *);
174 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
175 static int	sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
176 static int	sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
177 
178 static device_method_t alc_methods[] = {
179 	/* Device interface. */
180 	DEVMETHOD(device_probe,		alc_probe),
181 	DEVMETHOD(device_attach,	alc_attach),
182 	DEVMETHOD(device_detach,	alc_detach),
183 	DEVMETHOD(device_shutdown,	alc_shutdown),
184 	DEVMETHOD(device_suspend,	alc_suspend),
185 	DEVMETHOD(device_resume,	alc_resume),
186 
187 	/* MII interface. */
188 	DEVMETHOD(miibus_readreg,	alc_miibus_readreg),
189 	DEVMETHOD(miibus_writereg,	alc_miibus_writereg),
190 	DEVMETHOD(miibus_statchg,	alc_miibus_statchg),
191 
192 	{ NULL, NULL }
193 };
194 
195 static driver_t alc_driver = {
196 	"alc",
197 	alc_methods,
198 	sizeof(struct alc_softc)
199 };
200 
201 static devclass_t alc_devclass;
202 
203 DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, 0, 0);
204 DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, 0, 0);
205 
206 static struct resource_spec alc_res_spec_mem[] = {
207 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
208 	{ -1,			0,		0 }
209 };
210 
211 static struct resource_spec alc_irq_spec_legacy[] = {
212 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
213 	{ -1,			0,		0 }
214 };
215 
216 static struct resource_spec alc_irq_spec_msi[] = {
217 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
218 	{ -1,			0,		0 }
219 };
220 
221 static struct resource_spec alc_irq_spec_msix[] = {
222 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
223 	{ -1,			0,		0 }
224 };
225 
226 static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
227 
228 static int
229 alc_miibus_readreg(device_t dev, int phy, int reg)
230 {
231 	struct alc_softc *sc;
232 	uint32_t v;
233 	int i;
234 
235 	sc = device_get_softc(dev);
236 
237 	/*
238 	 * For AR8132 fast ethernet controller, do not report 1000baseT
239 	 * capability to mii(4). Even though AR8132 uses the same
240 	 * model/revision number of F1 gigabit PHY, the PHY has no
241 	 * ability to establish 1000baseT link.
242 	 */
243 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
244 	    reg == MII_EXTSR)
245 		return (0);
246 
247 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
248 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
249 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
250 		DELAY(5);
251 		v = CSR_READ_4(sc, ALC_MDIO);
252 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
253 			break;
254 	}
255 
256 	if (i == 0) {
257 		device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
258 		return (0);
259 	}
260 
261 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
262 }
263 
264 static int
265 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
266 {
267 	struct alc_softc *sc;
268 	uint32_t v;
269 	int i;
270 
271 	sc = device_get_softc(dev);
272 
273 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
274 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
275 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
276 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
277 		DELAY(5);
278 		v = CSR_READ_4(sc, ALC_MDIO);
279 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
280 			break;
281 	}
282 
283 	if (i == 0)
284 		device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
285 
286 	return (0);
287 }
288 
289 static void
290 alc_miibus_statchg(device_t dev)
291 {
292 	struct alc_softc *sc;
293 	struct mii_data *mii;
294 	struct ifnet *ifp;
295 	uint32_t reg;
296 
297 	sc = device_get_softc(dev);
298 
299 	mii = device_get_softc(sc->alc_miibus);
300 	ifp = sc->alc_ifp;
301 	if (mii == NULL || ifp == NULL ||
302 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
303 		return;
304 
305 	sc->alc_flags &= ~ALC_FLAG_LINK;
306 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
307 	    (IFM_ACTIVE | IFM_AVALID)) {
308 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
309 		case IFM_10_T:
310 		case IFM_100_TX:
311 			sc->alc_flags |= ALC_FLAG_LINK;
312 			break;
313 		case IFM_1000_T:
314 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
315 				sc->alc_flags |= ALC_FLAG_LINK;
316 			break;
317 		default:
318 			break;
319 		}
320 	}
321 	alc_stop_queue(sc);
322 	/* Stop Rx/Tx MACs. */
323 	alc_stop_mac(sc);
324 
325 	/* Program MACs with resolved speed/duplex/flow-control. */
326 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
327 		alc_start_queue(sc);
328 		alc_mac_config(sc);
329 		/* Re-enable Tx/Rx MACs. */
330 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
331 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
332 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
333 		alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
334 	}
335 }
336 
337 static void
338 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
339 {
340 	struct alc_softc *sc;
341 	struct mii_data *mii;
342 
343 	sc = ifp->if_softc;
344 	ALC_LOCK(sc);
345 	if ((ifp->if_flags & IFF_UP) == 0) {
346 		ALC_UNLOCK(sc);
347 		return;
348 	}
349 	mii = device_get_softc(sc->alc_miibus);
350 
351 	mii_pollstat(mii);
352 	ALC_UNLOCK(sc);
353 	ifmr->ifm_status = mii->mii_media_status;
354 	ifmr->ifm_active = mii->mii_media_active;
355 }
356 
357 static int
358 alc_mediachange(struct ifnet *ifp)
359 {
360 	struct alc_softc *sc;
361 	struct mii_data *mii;
362 	struct mii_softc *miisc;
363 	int error;
364 
365 	sc = ifp->if_softc;
366 	ALC_LOCK(sc);
367 	mii = device_get_softc(sc->alc_miibus);
368 	if (mii->mii_instance != 0) {
369 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
370 			mii_phy_reset(miisc);
371 	}
372 	error = mii_mediachg(mii);
373 	ALC_UNLOCK(sc);
374 
375 	return (error);
376 }
377 
378 static struct alc_ident *
379 alc_find_ident(device_t dev)
380 {
381 	struct alc_ident *ident;
382 	uint16_t vendor, devid;
383 
384 	vendor = pci_get_vendor(dev);
385 	devid = pci_get_device(dev);
386 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
387 		if (vendor == ident->vendorid && devid == ident->deviceid)
388 			return (ident);
389 	}
390 
391 	return (NULL);
392 }
393 
394 static int
395 alc_probe(device_t dev)
396 {
397 	struct alc_ident *ident;
398 
399 	ident = alc_find_ident(dev);
400 	if (ident != NULL) {
401 		device_set_desc(dev, ident->name);
402 		return (BUS_PROBE_DEFAULT);
403 	}
404 
405 	return (ENXIO);
406 }
407 
408 static void
409 alc_get_macaddr(struct alc_softc *sc)
410 {
411 	uint32_t ea[2], opt;
412 	uint16_t val;
413 	int eeprom, i;
414 
415 	eeprom = 0;
416 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
417 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
418 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
419 		/*
420 		 * EEPROM found, let TWSI reload EEPROM configuration.
421 		 * This will set ethernet address of controller.
422 		 */
423 		eeprom++;
424 		switch (sc->alc_ident->deviceid) {
425 		case DEVICEID_ATHEROS_AR8131:
426 		case DEVICEID_ATHEROS_AR8132:
427 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
428 				opt |= OPT_CFG_CLK_ENB;
429 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
430 				CSR_READ_4(sc, ALC_OPT_CFG);
431 				DELAY(1000);
432 			}
433 			break;
434 		case DEVICEID_ATHEROS_AR8151:
435 		case DEVICEID_ATHEROS_AR8151_V2:
436 		case DEVICEID_ATHEROS_AR8152_B:
437 		case DEVICEID_ATHEROS_AR8152_B2:
438 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
439 			    ALC_MII_DBG_ADDR, 0x00);
440 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
441 			    ALC_MII_DBG_DATA);
442 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
443 			    ALC_MII_DBG_DATA, val & 0xFF7F);
444 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
445 			    ALC_MII_DBG_ADDR, 0x3B);
446 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
447 			    ALC_MII_DBG_DATA);
448 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
449 			    ALC_MII_DBG_DATA, val | 0x0008);
450 			DELAY(20);
451 			break;
452 		}
453 
454 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
455 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
456 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
457 		CSR_READ_4(sc, ALC_WOL_CFG);
458 
459 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
460 		    TWSI_CFG_SW_LD_START);
461 		for (i = 100; i > 0; i--) {
462 			DELAY(1000);
463 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
464 			    TWSI_CFG_SW_LD_START) == 0)
465 				break;
466 		}
467 		if (i == 0)
468 			device_printf(sc->alc_dev,
469 			    "reloading EEPROM timeout!\n");
470 	} else {
471 		if (bootverbose)
472 			device_printf(sc->alc_dev, "EEPROM not found!\n");
473 	}
474 	if (eeprom != 0) {
475 		switch (sc->alc_ident->deviceid) {
476 		case DEVICEID_ATHEROS_AR8131:
477 		case DEVICEID_ATHEROS_AR8132:
478 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
479 				opt &= ~OPT_CFG_CLK_ENB;
480 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
481 				CSR_READ_4(sc, ALC_OPT_CFG);
482 				DELAY(1000);
483 			}
484 			break;
485 		case DEVICEID_ATHEROS_AR8151:
486 		case DEVICEID_ATHEROS_AR8151_V2:
487 		case DEVICEID_ATHEROS_AR8152_B:
488 		case DEVICEID_ATHEROS_AR8152_B2:
489 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
490 			    ALC_MII_DBG_ADDR, 0x00);
491 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
492 			    ALC_MII_DBG_DATA);
493 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
494 			    ALC_MII_DBG_DATA, val | 0x0080);
495 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
496 			    ALC_MII_DBG_ADDR, 0x3B);
497 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
498 			    ALC_MII_DBG_DATA);
499 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
500 			    ALC_MII_DBG_DATA, val & 0xFFF7);
501 			DELAY(20);
502 			break;
503 		}
504 	}
505 
506 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
507 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
508 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
509 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
510 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
511 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
512 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
513 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
514 }
515 
516 static void
517 alc_disable_l0s_l1(struct alc_softc *sc)
518 {
519 	uint32_t pmcfg;
520 
521 	/* Another magic from vendor. */
522 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
523 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
524 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
525 	    PM_CFG_SERDES_PD_EX_L1);
526 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
527 	    PM_CFG_SERDES_L1_ENB;
528 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
529 }
530 
531 static void
532 alc_phy_reset(struct alc_softc *sc)
533 {
534 	uint16_t data;
535 
536 	/* Reset magic from Linux. */
537 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
538 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
539 	CSR_READ_2(sc, ALC_GPHY_CFG);
540 	DELAY(10 * 1000);
541 
542 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
543 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
544 	    GPHY_CFG_SEL_ANA_RESET);
545 	CSR_READ_2(sc, ALC_GPHY_CFG);
546 	DELAY(10 * 1000);
547 
548 	/* DSP fixup, Vendor magic. */
549 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
550 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
551 		    ALC_MII_DBG_ADDR, 0x000A);
552 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
553 		    ALC_MII_DBG_DATA);
554 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
555 		    ALC_MII_DBG_DATA, data & 0xDFFF);
556 	}
557 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
558 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
559 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
560 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
561 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
562 		    ALC_MII_DBG_ADDR, 0x003B);
563 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
564 		    ALC_MII_DBG_DATA);
565 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
566 		    ALC_MII_DBG_DATA, data & 0xFFF7);
567 		DELAY(20 * 1000);
568 	}
569 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151) {
570 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
571 		    ALC_MII_DBG_ADDR, 0x0029);
572 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
573 		    ALC_MII_DBG_DATA, 0x929D);
574 	}
575 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
576 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132 ||
577 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
578 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
579 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
580 		    ALC_MII_DBG_ADDR, 0x0029);
581 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
582 		    ALC_MII_DBG_DATA, 0xB6DD);
583 	}
584 
585 	/* Load DSP codes, vendor magic. */
586 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
587 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
588 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
589 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
590 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
591 	    ALC_MII_DBG_DATA, data);
592 
593 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
594 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
595 	    ANA_SERDES_EN_LCKDT;
596 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
597 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
598 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
599 	    ALC_MII_DBG_DATA, data);
600 
601 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
602 	    ANA_LONG_CABLE_TH_100_MASK) |
603 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
604 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
605 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
606 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
607 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
608 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
609 	    ALC_MII_DBG_DATA, data);
610 
611 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
612 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
613 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
614 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
615 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
616 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
617 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
618 	    ALC_MII_DBG_DATA, data);
619 
620 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
621 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
622 	    ANA_OEN_125M;
623 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
624 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
625 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
626 	    ALC_MII_DBG_DATA, data);
627 	DELAY(1000);
628 }
629 
630 static void
631 alc_phy_down(struct alc_softc *sc)
632 {
633 
634 	switch (sc->alc_ident->deviceid) {
635 	case DEVICEID_ATHEROS_AR8151:
636 	case DEVICEID_ATHEROS_AR8151_V2:
637 		/*
638 		 * GPHY power down caused more problems on AR8151 v2.0.
639 		 * When driver is reloaded after GPHY power down,
640 		 * accesses to PHY/MAC registers hung the system. Only
641 		 * cold boot recovered from it.  I'm not sure whether
642 		 * AR8151 v1.0 also requires this one though.  I don't
643 		 * have AR8151 v1.0 controller in hand.
644 		 * The only option left is to isolate the PHY and
645 		 * initiates power down the PHY which in turn saves
646 		 * more power when driver is unloaded.
647 		 */
648 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
649 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
650 		break;
651 	default:
652 		/* Force PHY down. */
653 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
654 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
655 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
656 		    GPHY_CFG_PWDOWN_HW);
657 		DELAY(1000);
658 		break;
659 	}
660 }
661 
662 static void
663 alc_aspm(struct alc_softc *sc, int media)
664 {
665 	uint32_t pmcfg;
666 	uint16_t linkcfg;
667 
668 	ALC_LOCK_ASSERT(sc);
669 
670 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
671 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
672 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
673 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
674 		    PCIR_EXPRESS_LINK_CTL);
675 	else
676 		linkcfg = 0;
677 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
678 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
679 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
680 	pmcfg |= PM_CFG_SERDES_ENB | PM_CFG_RBER_ENB;
681 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
682 
683 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
684 		/* Disable extended sync except AR8152 B v1.0 */
685 		linkcfg &= ~0x80;
686 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
687 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
688 			linkcfg |= 0x80;
689 		CSR_WRITE_2(sc, sc->alc_expcap + PCIR_EXPRESS_LINK_CTL,
690 		    linkcfg);
691 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
692 		    PM_CFG_HOTRST);
693 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
694 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
695 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
696 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
697 		    PM_CFG_PM_REQ_TIMER_SHIFT);
698 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
699 	}
700 
701 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
702 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
703 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
704 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
705 			pmcfg |= PM_CFG_ASPM_L1_ENB;
706 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
707 			if (sc->alc_ident->deviceid ==
708 			    DEVICEID_ATHEROS_AR8152_B)
709 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
710 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
711 			    PM_CFG_SERDES_PLL_L1_ENB |
712 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
713 			pmcfg |= PM_CFG_CLK_SWH_L1;
714 			if (media == IFM_100_TX || media == IFM_1000_T) {
715 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
716 				switch (sc->alc_ident->deviceid) {
717 				case DEVICEID_ATHEROS_AR8152_B:
718 					pmcfg |= (7 <<
719 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
720 					break;
721 				case DEVICEID_ATHEROS_AR8152_B2:
722 				case DEVICEID_ATHEROS_AR8151_V2:
723 					pmcfg |= (4 <<
724 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
725 					break;
726 				default:
727 					pmcfg |= (15 <<
728 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
729 					break;
730 				}
731 			}
732 		} else {
733 			pmcfg |= PM_CFG_SERDES_L1_ENB |
734 			    PM_CFG_SERDES_PLL_L1_ENB |
735 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
736 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
737 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
738 		}
739 	} else {
740 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
741 		    PM_CFG_SERDES_PLL_L1_ENB);
742 		pmcfg |= PM_CFG_CLK_SWH_L1;
743 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
744 			pmcfg |= PM_CFG_ASPM_L1_ENB;
745 	}
746 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
747 }
748 
749 static int
750 alc_attach(device_t dev)
751 {
752 	struct alc_softc *sc;
753 	struct ifnet *ifp;
754 	char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
755 	uint16_t burst;
756 	int base, error, i, msic, msixc, state;
757 	uint32_t cap, ctl, val;
758 
759 	error = 0;
760 	sc = device_get_softc(dev);
761 	sc->alc_dev = dev;
762 
763 	mtx_init(&sc->alc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
764 	    MTX_DEF);
765 	callout_init_mtx(&sc->alc_tick_ch, &sc->alc_mtx, 0);
766 	TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc);
767 	sc->alc_ident = alc_find_ident(dev);
768 
769 	/* Map the device. */
770 	pci_enable_busmaster(dev);
771 	sc->alc_res_spec = alc_res_spec_mem;
772 	sc->alc_irq_spec = alc_irq_spec_legacy;
773 	error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res);
774 	if (error != 0) {
775 		device_printf(dev, "cannot allocate memory resources.\n");
776 		goto fail;
777 	}
778 
779 	/* Set PHY address. */
780 	sc->alc_phyaddr = ALC_PHY_ADDR;
781 
782 	/* Initialize DMA parameters. */
783 	sc->alc_dma_rd_burst = 0;
784 	sc->alc_dma_wr_burst = 0;
785 	sc->alc_rcb = DMA_CFG_RCB_64;
786 	if (pci_find_extcap(dev, PCIY_EXPRESS, &base) == 0) {
787 		sc->alc_flags |= ALC_FLAG_PCIE;
788 		sc->alc_expcap = base;
789 		burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL);
790 		sc->alc_dma_rd_burst =
791 		    (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12;
792 		sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5;
793 		if (bootverbose) {
794 			device_printf(dev, "Read request size : %u bytes.\n",
795 			    alc_dma_burst[sc->alc_dma_rd_burst]);
796 			device_printf(dev, "TLP payload size : %u bytes.\n",
797 			    alc_dma_burst[sc->alc_dma_wr_burst]);
798 		}
799 		if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
800 			sc->alc_dma_rd_burst = 3;
801 		if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
802 			sc->alc_dma_wr_burst = 3;
803 		/* Clear data link and flow-control protocol error. */
804 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
805 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
806 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
807 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
808 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
809 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
810 		    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
811 		    PCIE_PHYMISC_FORCE_RCV_DET);
812 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
813 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
814 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
815 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
816 			    PCIE_PHYMISC2_SERDES_TH_MASK);
817 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
818 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
819 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
820 		}
821 		/* Disable ASPM L0S and L1. */
822 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
823 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
824 			ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
825 			if ((ctl & 0x08) != 0)
826 				sc->alc_rcb = DMA_CFG_RCB_128;
827 			if (bootverbose)
828 				device_printf(dev, "RCB %u bytes\n",
829 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
830 			state = ctl & 0x03;
831 			if (state & 0x01)
832 				sc->alc_flags |= ALC_FLAG_L0S;
833 			if (state & 0x02)
834 				sc->alc_flags |= ALC_FLAG_L1S;
835 			if (bootverbose)
836 				device_printf(sc->alc_dev, "ASPM %s %s\n",
837 				    aspm_state[state],
838 				    state == 0 ? "disabled" : "enabled");
839 			alc_disable_l0s_l1(sc);
840 		} else {
841 			if (bootverbose)
842 				device_printf(sc->alc_dev,
843 				    "no ASPM support\n");
844 		}
845 	}
846 
847 	/* Reset PHY. */
848 	alc_phy_reset(sc);
849 
850 	/* Reset the ethernet controller. */
851 	alc_reset(sc);
852 
853 	/*
854 	 * One odd thing is AR8132 uses the same PHY hardware(F1
855 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
856 	 * the PHY supports 1000Mbps but that's not true. The PHY
857 	 * used in AR8132 can't establish gigabit link even if it
858 	 * shows the same PHY model/revision number of AR8131.
859 	 */
860 	switch (sc->alc_ident->deviceid) {
861 	case DEVICEID_ATHEROS_AR8152_B:
862 	case DEVICEID_ATHEROS_AR8152_B2:
863 		sc->alc_flags |= ALC_FLAG_APS;
864 		/* FALLTHROUGH */
865 	case DEVICEID_ATHEROS_AR8132:
866 		sc->alc_flags |= ALC_FLAG_FASTETHER;
867 		break;
868 	case DEVICEID_ATHEROS_AR8151:
869 	case DEVICEID_ATHEROS_AR8151_V2:
870 		sc->alc_flags |= ALC_FLAG_APS;
871 		/* FALLTHROUGH */
872 	default:
873 		break;
874 	}
875 	sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO;
876 
877 	/*
878 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
879 	 * addition, Atheros said that enabling SMB wouldn't improve
880 	 * performance. However I think it's bad to access lots of
881 	 * registers to extract MAC statistics.
882 	 */
883 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
884 	/*
885 	 * Don't use Tx CMB. It is known to have silicon bug.
886 	 */
887 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
888 	sc->alc_rev = pci_get_revid(dev);
889 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
890 	    MASTER_CHIP_REV_SHIFT;
891 	if (bootverbose) {
892 		device_printf(dev, "PCI device revision : 0x%04x\n",
893 		    sc->alc_rev);
894 		device_printf(dev, "Chip id/revision : 0x%04x\n",
895 		    sc->alc_chip_rev);
896 	}
897 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
898 	    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
899 	    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
900 
901 	/* Allocate IRQ resources. */
902 	msixc = pci_msix_count(dev);
903 	msic = pci_msi_count(dev);
904 	if (bootverbose) {
905 		device_printf(dev, "MSIX count : %d\n", msixc);
906 		device_printf(dev, "MSI count : %d\n", msic);
907 	}
908 	/* Prefer MSIX over MSI. */
909 	if (msix_disable == 0 || msi_disable == 0) {
910 		if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES &&
911 		    pci_alloc_msix(dev, &msixc) == 0) {
912 			if (msic == ALC_MSIX_MESSAGES) {
913 				device_printf(dev,
914 				    "Using %d MSIX message(s).\n", msixc);
915 				sc->alc_flags |= ALC_FLAG_MSIX;
916 				sc->alc_irq_spec = alc_irq_spec_msix;
917 			} else
918 				pci_release_msi(dev);
919 		}
920 		if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 &&
921 		    msic == ALC_MSI_MESSAGES &&
922 		    pci_alloc_msi(dev, &msic) == 0) {
923 			if (msic == ALC_MSI_MESSAGES) {
924 				device_printf(dev,
925 				    "Using %d MSI message(s).\n", msic);
926 				sc->alc_flags |= ALC_FLAG_MSI;
927 				sc->alc_irq_spec = alc_irq_spec_msi;
928 			} else
929 				pci_release_msi(dev);
930 		}
931 	}
932 
933 	error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq);
934 	if (error != 0) {
935 		device_printf(dev, "cannot allocate IRQ resources.\n");
936 		goto fail;
937 	}
938 
939 	/* Create device sysctl node. */
940 	alc_sysctl_node(sc);
941 
942 	if ((error = alc_dma_alloc(sc) != 0))
943 		goto fail;
944 
945 	/* Load station address. */
946 	alc_get_macaddr(sc);
947 
948 	ifp = sc->alc_ifp = if_alloc(IFT_ETHER);
949 	if (ifp == NULL) {
950 		device_printf(dev, "cannot allocate ifnet structure.\n");
951 		error = ENXIO;
952 		goto fail;
953 	}
954 
955 	ifp->if_softc = sc;
956 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
957 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
958 	ifp->if_ioctl = alc_ioctl;
959 	ifp->if_start = alc_start;
960 	ifp->if_init = alc_init;
961 	ifp->if_snd.ifq_drv_maxlen = ALC_TX_RING_CNT - 1;
962 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
963 	IFQ_SET_READY(&ifp->if_snd);
964 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
965 	ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO;
966 	if (pci_find_extcap(dev, PCIY_PMG, &base) == 0) {
967 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
968 		sc->alc_flags |= ALC_FLAG_PM;
969 		sc->alc_pmcap = base;
970 	}
971 	ifp->if_capenable = ifp->if_capabilities;
972 
973 	/* Set up MII bus. */
974 	error = mii_attach(dev, &sc->alc_miibus, ifp, alc_mediachange,
975 	    alc_mediastatus, BMSR_DEFCAPMASK, sc->alc_phyaddr, MII_OFFSET_ANY,
976 	    MIIF_DOPAUSE);
977 	if (error != 0) {
978 		device_printf(dev, "attaching PHYs failed\n");
979 		goto fail;
980 	}
981 
982 	ether_ifattach(ifp, sc->alc_eaddr);
983 
984 	/* VLAN capability setup. */
985 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
986 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
987 	ifp->if_capenable = ifp->if_capabilities;
988 	/*
989 	 * XXX
990 	 * It seems enabling Tx checksum offloading makes more trouble.
991 	 * Sometimes the controller does not receive any frames when
992 	 * Tx checksum offloading is enabled. I'm not sure whether this
993 	 * is a bug in Tx checksum offloading logic or I got broken
994 	 * sample boards. To safety, don't enable Tx checksum offloading
995 	 * by default but give chance to users to toggle it if they know
996 	 * their controllers work without problems.
997 	 */
998 	ifp->if_capenable &= ~IFCAP_TXCSUM;
999 	ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
1000 
1001 	/* Tell the upper layer(s) we support long frames. */
1002 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1003 
1004 	/* Create local taskq. */
1005 	TASK_INIT(&sc->alc_tx_task, 1, alc_tx_task, ifp);
1006 	sc->alc_tq = taskqueue_create_fast("alc_taskq", M_WAITOK,
1007 	    taskqueue_thread_enqueue, &sc->alc_tq);
1008 	if (sc->alc_tq == NULL) {
1009 		device_printf(dev, "could not create taskqueue.\n");
1010 		ether_ifdetach(ifp);
1011 		error = ENXIO;
1012 		goto fail;
1013 	}
1014 	taskqueue_start_threads(&sc->alc_tq, 1, PI_NET, "%s taskq",
1015 	    device_get_nameunit(sc->alc_dev));
1016 
1017 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1018 		msic = ALC_MSIX_MESSAGES;
1019 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1020 		msic = ALC_MSI_MESSAGES;
1021 	else
1022 		msic = 1;
1023 	for (i = 0; i < msic; i++) {
1024 		error = bus_setup_intr(dev, sc->alc_irq[i],
1025 		    INTR_TYPE_NET | INTR_MPSAFE, alc_intr, NULL, sc,
1026 		    &sc->alc_intrhand[i]);
1027 		if (error != 0)
1028 			break;
1029 	}
1030 	if (error != 0) {
1031 		device_printf(dev, "could not set up interrupt handler.\n");
1032 		taskqueue_free(sc->alc_tq);
1033 		sc->alc_tq = NULL;
1034 		ether_ifdetach(ifp);
1035 		goto fail;
1036 	}
1037 
1038 fail:
1039 	if (error != 0)
1040 		alc_detach(dev);
1041 
1042 	return (error);
1043 }
1044 
1045 static int
1046 alc_detach(device_t dev)
1047 {
1048 	struct alc_softc *sc;
1049 	struct ifnet *ifp;
1050 	int i, msic;
1051 
1052 	sc = device_get_softc(dev);
1053 
1054 	ifp = sc->alc_ifp;
1055 	if (device_is_attached(dev)) {
1056 		ALC_LOCK(sc);
1057 		sc->alc_flags |= ALC_FLAG_DETACH;
1058 		alc_stop(sc);
1059 		ALC_UNLOCK(sc);
1060 		callout_drain(&sc->alc_tick_ch);
1061 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1062 		taskqueue_drain(sc->alc_tq, &sc->alc_tx_task);
1063 		ether_ifdetach(ifp);
1064 	}
1065 
1066 	if (sc->alc_tq != NULL) {
1067 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1068 		taskqueue_free(sc->alc_tq);
1069 		sc->alc_tq = NULL;
1070 	}
1071 
1072 	if (sc->alc_miibus != NULL) {
1073 		device_delete_child(dev, sc->alc_miibus);
1074 		sc->alc_miibus = NULL;
1075 	}
1076 	bus_generic_detach(dev);
1077 	alc_dma_free(sc);
1078 
1079 	if (ifp != NULL) {
1080 		if_free(ifp);
1081 		sc->alc_ifp = NULL;
1082 	}
1083 
1084 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1085 		msic = ALC_MSIX_MESSAGES;
1086 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1087 		msic = ALC_MSI_MESSAGES;
1088 	else
1089 		msic = 1;
1090 	for (i = 0; i < msic; i++) {
1091 		if (sc->alc_intrhand[i] != NULL) {
1092 			bus_teardown_intr(dev, sc->alc_irq[i],
1093 			    sc->alc_intrhand[i]);
1094 			sc->alc_intrhand[i] = NULL;
1095 		}
1096 	}
1097 	if (sc->alc_res[0] != NULL)
1098 		alc_phy_down(sc);
1099 	bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq);
1100 	if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0)
1101 		pci_release_msi(dev);
1102 	bus_release_resources(dev, sc->alc_res_spec, sc->alc_res);
1103 	mtx_destroy(&sc->alc_mtx);
1104 
1105 	return (0);
1106 }
1107 
1108 #define	ALC_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
1109 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
1110 #define	ALC_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
1111 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
1112 
1113 static void
1114 alc_sysctl_node(struct alc_softc *sc)
1115 {
1116 	struct sysctl_ctx_list *ctx;
1117 	struct sysctl_oid_list *child, *parent;
1118 	struct sysctl_oid *tree;
1119 	struct alc_hw_stats *stats;
1120 	int error;
1121 
1122 	stats = &sc->alc_stats;
1123 	ctx = device_get_sysctl_ctx(sc->alc_dev);
1124 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->alc_dev));
1125 
1126 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
1127 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
1128 	    sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
1129 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
1130 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
1131 	    sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
1132 	/* Pull in device tunables. */
1133 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1134 	error = resource_int_value(device_get_name(sc->alc_dev),
1135 	    device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
1136 	if (error == 0) {
1137 		if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
1138 		    sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
1139 			device_printf(sc->alc_dev, "int_rx_mod value out of "
1140 			    "range; using default: %d\n",
1141 			    ALC_IM_RX_TIMER_DEFAULT);
1142 			sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1143 		}
1144 	}
1145 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1146 	error = resource_int_value(device_get_name(sc->alc_dev),
1147 	    device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
1148 	if (error == 0) {
1149 		if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
1150 		    sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
1151 			device_printf(sc->alc_dev, "int_tx_mod value out of "
1152 			    "range; using default: %d\n",
1153 			    ALC_IM_TX_TIMER_DEFAULT);
1154 			sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1155 		}
1156 	}
1157 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1158 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
1159 	    sysctl_hw_alc_proc_limit, "I",
1160 	    "max number of Rx events to process");
1161 	/* Pull in device tunables. */
1162 	sc->alc_process_limit = ALC_PROC_DEFAULT;
1163 	error = resource_int_value(device_get_name(sc->alc_dev),
1164 	    device_get_unit(sc->alc_dev), "process_limit",
1165 	    &sc->alc_process_limit);
1166 	if (error == 0) {
1167 		if (sc->alc_process_limit < ALC_PROC_MIN ||
1168 		    sc->alc_process_limit > ALC_PROC_MAX) {
1169 			device_printf(sc->alc_dev,
1170 			    "process_limit value out of range; "
1171 			    "using default: %d\n", ALC_PROC_DEFAULT);
1172 			sc->alc_process_limit = ALC_PROC_DEFAULT;
1173 		}
1174 	}
1175 
1176 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1177 	    NULL, "ALC statistics");
1178 	parent = SYSCTL_CHILDREN(tree);
1179 
1180 	/* Rx statistics. */
1181 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1182 	    NULL, "Rx MAC statistics");
1183 	child = SYSCTL_CHILDREN(tree);
1184 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1185 	    &stats->rx_frames, "Good frames");
1186 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1187 	    &stats->rx_bcast_frames, "Good broadcast frames");
1188 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1189 	    &stats->rx_mcast_frames, "Good multicast frames");
1190 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1191 	    &stats->rx_pause_frames, "Pause control frames");
1192 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1193 	    &stats->rx_control_frames, "Control frames");
1194 	ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1195 	    &stats->rx_crcerrs, "CRC errors");
1196 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1197 	    &stats->rx_lenerrs, "Frames with length mismatched");
1198 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1199 	    &stats->rx_bytes, "Good octets");
1200 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1201 	    &stats->rx_bcast_bytes, "Good broadcast octets");
1202 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1203 	    &stats->rx_mcast_bytes, "Good multicast octets");
1204 	ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
1205 	    &stats->rx_runts, "Too short frames");
1206 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
1207 	    &stats->rx_fragments, "Fragmented frames");
1208 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1209 	    &stats->rx_pkts_64, "64 bytes frames");
1210 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1211 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
1212 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1213 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
1214 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1215 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
1216 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1217 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
1218 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1219 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
1220 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1221 	    &stats->rx_pkts_1519_max, "1519 to max frames");
1222 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1223 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
1224 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1225 	    &stats->rx_fifo_oflows, "FIFO overflows");
1226 	ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
1227 	    &stats->rx_rrs_errs, "Return status write-back errors");
1228 	ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
1229 	    &stats->rx_alignerrs, "Alignment errors");
1230 	ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
1231 	    &stats->rx_pkts_filtered,
1232 	    "Frames dropped due to address filtering");
1233 
1234 	/* Tx statistics. */
1235 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1236 	    NULL, "Tx MAC statistics");
1237 	child = SYSCTL_CHILDREN(tree);
1238 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1239 	    &stats->tx_frames, "Good frames");
1240 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1241 	    &stats->tx_bcast_frames, "Good broadcast frames");
1242 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1243 	    &stats->tx_mcast_frames, "Good multicast frames");
1244 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1245 	    &stats->tx_pause_frames, "Pause control frames");
1246 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1247 	    &stats->tx_control_frames, "Control frames");
1248 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
1249 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
1250 	ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
1251 	    &stats->tx_excess_defer, "Frames with derferrals");
1252 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1253 	    &stats->tx_bytes, "Good octets");
1254 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1255 	    &stats->tx_bcast_bytes, "Good broadcast octets");
1256 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1257 	    &stats->tx_mcast_bytes, "Good multicast octets");
1258 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1259 	    &stats->tx_pkts_64, "64 bytes frames");
1260 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1261 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
1262 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1263 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
1264 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1265 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
1266 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1267 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
1268 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1269 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
1270 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1271 	    &stats->tx_pkts_1519_max, "1519 to max frames");
1272 	ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
1273 	    &stats->tx_single_colls, "Single collisions");
1274 	ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
1275 	    &stats->tx_multi_colls, "Multiple collisions");
1276 	ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
1277 	    &stats->tx_late_colls, "Late collisions");
1278 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
1279 	    &stats->tx_excess_colls, "Excessive collisions");
1280 	ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
1281 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
1282 	ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
1283 	    &stats->tx_underrun, "FIFO underruns");
1284 	ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
1285 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
1286 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1287 	    &stats->tx_lenerrs, "Frames with length mismatched");
1288 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1289 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
1290 }
1291 
1292 #undef ALC_SYSCTL_STAT_ADD32
1293 #undef ALC_SYSCTL_STAT_ADD64
1294 
1295 struct alc_dmamap_arg {
1296 	bus_addr_t	alc_busaddr;
1297 };
1298 
1299 static void
1300 alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1301 {
1302 	struct alc_dmamap_arg *ctx;
1303 
1304 	if (error != 0)
1305 		return;
1306 
1307 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1308 
1309 	ctx = (struct alc_dmamap_arg *)arg;
1310 	ctx->alc_busaddr = segs[0].ds_addr;
1311 }
1312 
1313 /*
1314  * Normal and high Tx descriptors shares single Tx high address.
1315  * Four Rx descriptor/return rings and CMB shares the same Rx
1316  * high address.
1317  */
1318 static int
1319 alc_check_boundary(struct alc_softc *sc)
1320 {
1321 	bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
1322 
1323 	rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
1324 	rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
1325 	cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
1326 	tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
1327 
1328 	/* 4GB boundary crossing is not allowed. */
1329 	if ((ALC_ADDR_HI(rx_ring_end) !=
1330 	    ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
1331 	    (ALC_ADDR_HI(rr_ring_end) !=
1332 	    ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
1333 	    (ALC_ADDR_HI(cmb_end) !=
1334 	    ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
1335 	    (ALC_ADDR_HI(tx_ring_end) !=
1336 	    ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
1337 		return (EFBIG);
1338 	/*
1339 	 * Make sure Rx return descriptor/Rx descriptor/CMB use
1340 	 * the same high address.
1341 	 */
1342 	if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
1343 	    (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
1344 		return (EFBIG);
1345 
1346 	return (0);
1347 }
1348 
1349 static int
1350 alc_dma_alloc(struct alc_softc *sc)
1351 {
1352 	struct alc_txdesc *txd;
1353 	struct alc_rxdesc *rxd;
1354 	bus_addr_t lowaddr;
1355 	struct alc_dmamap_arg ctx;
1356 	int error, i;
1357 
1358 	lowaddr = BUS_SPACE_MAXADDR;
1359 again:
1360 	/* Create parent DMA tag. */
1361 	error = bus_dma_tag_create(
1362 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1363 	    1, 0,			/* alignment, boundary */
1364 	    lowaddr,			/* lowaddr */
1365 	    BUS_SPACE_MAXADDR,		/* highaddr */
1366 	    NULL, NULL,			/* filter, filterarg */
1367 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1368 	    0,				/* nsegments */
1369 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1370 	    0,				/* flags */
1371 	    NULL, NULL,			/* lockfunc, lockarg */
1372 	    &sc->alc_cdata.alc_parent_tag);
1373 	if (error != 0) {
1374 		device_printf(sc->alc_dev,
1375 		    "could not create parent DMA tag.\n");
1376 		goto fail;
1377 	}
1378 
1379 	/* Create DMA tag for Tx descriptor ring. */
1380 	error = bus_dma_tag_create(
1381 	    sc->alc_cdata.alc_parent_tag, /* parent */
1382 	    ALC_TX_RING_ALIGN, 0,	/* alignment, boundary */
1383 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1384 	    BUS_SPACE_MAXADDR,		/* highaddr */
1385 	    NULL, NULL,			/* filter, filterarg */
1386 	    ALC_TX_RING_SZ,		/* maxsize */
1387 	    1,				/* nsegments */
1388 	    ALC_TX_RING_SZ,		/* maxsegsize */
1389 	    0,				/* flags */
1390 	    NULL, NULL,			/* lockfunc, lockarg */
1391 	    &sc->alc_cdata.alc_tx_ring_tag);
1392 	if (error != 0) {
1393 		device_printf(sc->alc_dev,
1394 		    "could not create Tx ring DMA tag.\n");
1395 		goto fail;
1396 	}
1397 
1398 	/* Create DMA tag for Rx free descriptor ring. */
1399 	error = bus_dma_tag_create(
1400 	    sc->alc_cdata.alc_parent_tag, /* parent */
1401 	    ALC_RX_RING_ALIGN, 0,	/* alignment, boundary */
1402 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1403 	    BUS_SPACE_MAXADDR,		/* highaddr */
1404 	    NULL, NULL,			/* filter, filterarg */
1405 	    ALC_RX_RING_SZ,		/* maxsize */
1406 	    1,				/* nsegments */
1407 	    ALC_RX_RING_SZ,		/* maxsegsize */
1408 	    0,				/* flags */
1409 	    NULL, NULL,			/* lockfunc, lockarg */
1410 	    &sc->alc_cdata.alc_rx_ring_tag);
1411 	if (error != 0) {
1412 		device_printf(sc->alc_dev,
1413 		    "could not create Rx ring DMA tag.\n");
1414 		goto fail;
1415 	}
1416 	/* Create DMA tag for Rx return descriptor ring. */
1417 	error = bus_dma_tag_create(
1418 	    sc->alc_cdata.alc_parent_tag, /* parent */
1419 	    ALC_RR_RING_ALIGN, 0,	/* alignment, boundary */
1420 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1421 	    BUS_SPACE_MAXADDR,		/* highaddr */
1422 	    NULL, NULL,			/* filter, filterarg */
1423 	    ALC_RR_RING_SZ,		/* maxsize */
1424 	    1,				/* nsegments */
1425 	    ALC_RR_RING_SZ,		/* maxsegsize */
1426 	    0,				/* flags */
1427 	    NULL, NULL,			/* lockfunc, lockarg */
1428 	    &sc->alc_cdata.alc_rr_ring_tag);
1429 	if (error != 0) {
1430 		device_printf(sc->alc_dev,
1431 		    "could not create Rx return ring DMA tag.\n");
1432 		goto fail;
1433 	}
1434 
1435 	/* Create DMA tag for coalescing message block. */
1436 	error = bus_dma_tag_create(
1437 	    sc->alc_cdata.alc_parent_tag, /* parent */
1438 	    ALC_CMB_ALIGN, 0,		/* alignment, boundary */
1439 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1440 	    BUS_SPACE_MAXADDR,		/* highaddr */
1441 	    NULL, NULL,			/* filter, filterarg */
1442 	    ALC_CMB_SZ,			/* maxsize */
1443 	    1,				/* nsegments */
1444 	    ALC_CMB_SZ,			/* maxsegsize */
1445 	    0,				/* flags */
1446 	    NULL, NULL,			/* lockfunc, lockarg */
1447 	    &sc->alc_cdata.alc_cmb_tag);
1448 	if (error != 0) {
1449 		device_printf(sc->alc_dev,
1450 		    "could not create CMB DMA tag.\n");
1451 		goto fail;
1452 	}
1453 	/* Create DMA tag for status message block. */
1454 	error = bus_dma_tag_create(
1455 	    sc->alc_cdata.alc_parent_tag, /* parent */
1456 	    ALC_SMB_ALIGN, 0,		/* alignment, boundary */
1457 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1458 	    BUS_SPACE_MAXADDR,		/* highaddr */
1459 	    NULL, NULL,			/* filter, filterarg */
1460 	    ALC_SMB_SZ,			/* maxsize */
1461 	    1,				/* nsegments */
1462 	    ALC_SMB_SZ,			/* maxsegsize */
1463 	    0,				/* flags */
1464 	    NULL, NULL,			/* lockfunc, lockarg */
1465 	    &sc->alc_cdata.alc_smb_tag);
1466 	if (error != 0) {
1467 		device_printf(sc->alc_dev,
1468 		    "could not create SMB DMA tag.\n");
1469 		goto fail;
1470 	}
1471 
1472 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1473 	error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
1474 	    (void **)&sc->alc_rdata.alc_tx_ring,
1475 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1476 	    &sc->alc_cdata.alc_tx_ring_map);
1477 	if (error != 0) {
1478 		device_printf(sc->alc_dev,
1479 		    "could not allocate DMA'able memory for Tx ring.\n");
1480 		goto fail;
1481 	}
1482 	ctx.alc_busaddr = 0;
1483 	error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
1484 	    sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
1485 	    ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1486 	if (error != 0 || ctx.alc_busaddr == 0) {
1487 		device_printf(sc->alc_dev,
1488 		    "could not load DMA'able memory for Tx ring.\n");
1489 		goto fail;
1490 	}
1491 	sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
1492 
1493 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1494 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
1495 	    (void **)&sc->alc_rdata.alc_rx_ring,
1496 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1497 	    &sc->alc_cdata.alc_rx_ring_map);
1498 	if (error != 0) {
1499 		device_printf(sc->alc_dev,
1500 		    "could not allocate DMA'able memory for Rx ring.\n");
1501 		goto fail;
1502 	}
1503 	ctx.alc_busaddr = 0;
1504 	error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
1505 	    sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
1506 	    ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1507 	if (error != 0 || ctx.alc_busaddr == 0) {
1508 		device_printf(sc->alc_dev,
1509 		    "could not load DMA'able memory for Rx ring.\n");
1510 		goto fail;
1511 	}
1512 	sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
1513 
1514 	/* Allocate DMA'able memory and load the DMA map for Rx return ring. */
1515 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
1516 	    (void **)&sc->alc_rdata.alc_rr_ring,
1517 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1518 	    &sc->alc_cdata.alc_rr_ring_map);
1519 	if (error != 0) {
1520 		device_printf(sc->alc_dev,
1521 		    "could not allocate DMA'able memory for Rx return ring.\n");
1522 		goto fail;
1523 	}
1524 	ctx.alc_busaddr = 0;
1525 	error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
1526 	    sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
1527 	    ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
1528 	if (error != 0 || ctx.alc_busaddr == 0) {
1529 		device_printf(sc->alc_dev,
1530 		    "could not load DMA'able memory for Tx ring.\n");
1531 		goto fail;
1532 	}
1533 	sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
1534 
1535 	/* Allocate DMA'able memory and load the DMA map for CMB. */
1536 	error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
1537 	    (void **)&sc->alc_rdata.alc_cmb,
1538 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1539 	    &sc->alc_cdata.alc_cmb_map);
1540 	if (error != 0) {
1541 		device_printf(sc->alc_dev,
1542 		    "could not allocate DMA'able memory for CMB.\n");
1543 		goto fail;
1544 	}
1545 	ctx.alc_busaddr = 0;
1546 	error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
1547 	    sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
1548 	    ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
1549 	if (error != 0 || ctx.alc_busaddr == 0) {
1550 		device_printf(sc->alc_dev,
1551 		    "could not load DMA'able memory for CMB.\n");
1552 		goto fail;
1553 	}
1554 	sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
1555 
1556 	/* Allocate DMA'able memory and load the DMA map for SMB. */
1557 	error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
1558 	    (void **)&sc->alc_rdata.alc_smb,
1559 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1560 	    &sc->alc_cdata.alc_smb_map);
1561 	if (error != 0) {
1562 		device_printf(sc->alc_dev,
1563 		    "could not allocate DMA'able memory for SMB.\n");
1564 		goto fail;
1565 	}
1566 	ctx.alc_busaddr = 0;
1567 	error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
1568 	    sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
1569 	    ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
1570 	if (error != 0 || ctx.alc_busaddr == 0) {
1571 		device_printf(sc->alc_dev,
1572 		    "could not load DMA'able memory for CMB.\n");
1573 		goto fail;
1574 	}
1575 	sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
1576 
1577 	/* Make sure we've not crossed 4GB boundary. */
1578 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1579 	    (error = alc_check_boundary(sc)) != 0) {
1580 		device_printf(sc->alc_dev, "4GB boundary crossed, "
1581 		    "switching to 32bit DMA addressing mode.\n");
1582 		alc_dma_free(sc);
1583 		/*
1584 		 * Limit max allowable DMA address space to 32bit
1585 		 * and try again.
1586 		 */
1587 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1588 		goto again;
1589 	}
1590 
1591 	/*
1592 	 * Create Tx buffer parent tag.
1593 	 * AR813x/AR815x allows 64bit DMA addressing of Tx/Rx buffers
1594 	 * so it needs separate parent DMA tag as parent DMA address
1595 	 * space could be restricted to be within 32bit address space
1596 	 * by 4GB boundary crossing.
1597 	 */
1598 	error = bus_dma_tag_create(
1599 	    bus_get_dma_tag(sc->alc_dev), /* parent */
1600 	    1, 0,			/* alignment, boundary */
1601 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1602 	    BUS_SPACE_MAXADDR,		/* highaddr */
1603 	    NULL, NULL,			/* filter, filterarg */
1604 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1605 	    0,				/* nsegments */
1606 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1607 	    0,				/* flags */
1608 	    NULL, NULL,			/* lockfunc, lockarg */
1609 	    &sc->alc_cdata.alc_buffer_tag);
1610 	if (error != 0) {
1611 		device_printf(sc->alc_dev,
1612 		    "could not create parent buffer DMA tag.\n");
1613 		goto fail;
1614 	}
1615 
1616 	/* Create DMA tag for Tx buffers. */
1617 	error = bus_dma_tag_create(
1618 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1619 	    1, 0,			/* alignment, boundary */
1620 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1621 	    BUS_SPACE_MAXADDR,		/* highaddr */
1622 	    NULL, NULL,			/* filter, filterarg */
1623 	    ALC_TSO_MAXSIZE,		/* maxsize */
1624 	    ALC_MAXTXSEGS,		/* nsegments */
1625 	    ALC_TSO_MAXSEGSIZE,		/* maxsegsize */
1626 	    0,				/* flags */
1627 	    NULL, NULL,			/* lockfunc, lockarg */
1628 	    &sc->alc_cdata.alc_tx_tag);
1629 	if (error != 0) {
1630 		device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
1631 		goto fail;
1632 	}
1633 
1634 	/* Create DMA tag for Rx buffers. */
1635 	error = bus_dma_tag_create(
1636 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1637 	    ALC_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1638 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1639 	    BUS_SPACE_MAXADDR,		/* highaddr */
1640 	    NULL, NULL,			/* filter, filterarg */
1641 	    MCLBYTES,			/* maxsize */
1642 	    1,				/* nsegments */
1643 	    MCLBYTES,			/* maxsegsize */
1644 	    0,				/* flags */
1645 	    NULL, NULL,			/* lockfunc, lockarg */
1646 	    &sc->alc_cdata.alc_rx_tag);
1647 	if (error != 0) {
1648 		device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
1649 		goto fail;
1650 	}
1651 	/* Create DMA maps for Tx buffers. */
1652 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1653 		txd = &sc->alc_cdata.alc_txdesc[i];
1654 		txd->tx_m = NULL;
1655 		txd->tx_dmamap = NULL;
1656 		error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag, 0,
1657 		    &txd->tx_dmamap);
1658 		if (error != 0) {
1659 			device_printf(sc->alc_dev,
1660 			    "could not create Tx dmamap.\n");
1661 			goto fail;
1662 		}
1663 	}
1664 	/* Create DMA maps for Rx buffers. */
1665 	if ((error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1666 	    &sc->alc_cdata.alc_rx_sparemap)) != 0) {
1667 		device_printf(sc->alc_dev,
1668 		    "could not create spare Rx dmamap.\n");
1669 		goto fail;
1670 	}
1671 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1672 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1673 		rxd->rx_m = NULL;
1674 		rxd->rx_dmamap = NULL;
1675 		error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag, 0,
1676 		    &rxd->rx_dmamap);
1677 		if (error != 0) {
1678 			device_printf(sc->alc_dev,
1679 			    "could not create Rx dmamap.\n");
1680 			goto fail;
1681 		}
1682 	}
1683 
1684 fail:
1685 	return (error);
1686 }
1687 
1688 static void
1689 alc_dma_free(struct alc_softc *sc)
1690 {
1691 	struct alc_txdesc *txd;
1692 	struct alc_rxdesc *rxd;
1693 	int i;
1694 
1695 	/* Tx buffers. */
1696 	if (sc->alc_cdata.alc_tx_tag != NULL) {
1697 		for (i = 0; i < ALC_TX_RING_CNT; i++) {
1698 			txd = &sc->alc_cdata.alc_txdesc[i];
1699 			if (txd->tx_dmamap != NULL) {
1700 				bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
1701 				    txd->tx_dmamap);
1702 				txd->tx_dmamap = NULL;
1703 			}
1704 		}
1705 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
1706 		sc->alc_cdata.alc_tx_tag = NULL;
1707 	}
1708 	/* Rx buffers */
1709 	if (sc->alc_cdata.alc_rx_tag != NULL) {
1710 		for (i = 0; i < ALC_RX_RING_CNT; i++) {
1711 			rxd = &sc->alc_cdata.alc_rxdesc[i];
1712 			if (rxd->rx_dmamap != NULL) {
1713 				bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1714 				    rxd->rx_dmamap);
1715 				rxd->rx_dmamap = NULL;
1716 			}
1717 		}
1718 		if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1719 			bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1720 			    sc->alc_cdata.alc_rx_sparemap);
1721 			sc->alc_cdata.alc_rx_sparemap = NULL;
1722 		}
1723 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
1724 		sc->alc_cdata.alc_rx_tag = NULL;
1725 	}
1726 	/* Tx descriptor ring. */
1727 	if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
1728 		if (sc->alc_cdata.alc_tx_ring_map != NULL)
1729 			bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
1730 			    sc->alc_cdata.alc_tx_ring_map);
1731 		if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1732 		    sc->alc_rdata.alc_tx_ring != NULL)
1733 			bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
1734 			    sc->alc_rdata.alc_tx_ring,
1735 			    sc->alc_cdata.alc_tx_ring_map);
1736 		sc->alc_rdata.alc_tx_ring = NULL;
1737 		sc->alc_cdata.alc_tx_ring_map = NULL;
1738 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
1739 		sc->alc_cdata.alc_tx_ring_tag = NULL;
1740 	}
1741 	/* Rx ring. */
1742 	if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
1743 		if (sc->alc_cdata.alc_rx_ring_map != NULL)
1744 			bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
1745 			    sc->alc_cdata.alc_rx_ring_map);
1746 		if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1747 		    sc->alc_rdata.alc_rx_ring != NULL)
1748 			bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
1749 			    sc->alc_rdata.alc_rx_ring,
1750 			    sc->alc_cdata.alc_rx_ring_map);
1751 		sc->alc_rdata.alc_rx_ring = NULL;
1752 		sc->alc_cdata.alc_rx_ring_map = NULL;
1753 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
1754 		sc->alc_cdata.alc_rx_ring_tag = NULL;
1755 	}
1756 	/* Rx return ring. */
1757 	if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
1758 		if (sc->alc_cdata.alc_rr_ring_map != NULL)
1759 			bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
1760 			    sc->alc_cdata.alc_rr_ring_map);
1761 		if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1762 		    sc->alc_rdata.alc_rr_ring != NULL)
1763 			bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
1764 			    sc->alc_rdata.alc_rr_ring,
1765 			    sc->alc_cdata.alc_rr_ring_map);
1766 		sc->alc_rdata.alc_rr_ring = NULL;
1767 		sc->alc_cdata.alc_rr_ring_map = NULL;
1768 		bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
1769 		sc->alc_cdata.alc_rr_ring_tag = NULL;
1770 	}
1771 	/* CMB block */
1772 	if (sc->alc_cdata.alc_cmb_tag != NULL) {
1773 		if (sc->alc_cdata.alc_cmb_map != NULL)
1774 			bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
1775 			    sc->alc_cdata.alc_cmb_map);
1776 		if (sc->alc_cdata.alc_cmb_map != NULL &&
1777 		    sc->alc_rdata.alc_cmb != NULL)
1778 			bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
1779 			    sc->alc_rdata.alc_cmb,
1780 			    sc->alc_cdata.alc_cmb_map);
1781 		sc->alc_rdata.alc_cmb = NULL;
1782 		sc->alc_cdata.alc_cmb_map = NULL;
1783 		bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
1784 		sc->alc_cdata.alc_cmb_tag = NULL;
1785 	}
1786 	/* SMB block */
1787 	if (sc->alc_cdata.alc_smb_tag != NULL) {
1788 		if (sc->alc_cdata.alc_smb_map != NULL)
1789 			bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
1790 			    sc->alc_cdata.alc_smb_map);
1791 		if (sc->alc_cdata.alc_smb_map != NULL &&
1792 		    sc->alc_rdata.alc_smb != NULL)
1793 			bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
1794 			    sc->alc_rdata.alc_smb,
1795 			    sc->alc_cdata.alc_smb_map);
1796 		sc->alc_rdata.alc_smb = NULL;
1797 		sc->alc_cdata.alc_smb_map = NULL;
1798 		bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
1799 		sc->alc_cdata.alc_smb_tag = NULL;
1800 	}
1801 	if (sc->alc_cdata.alc_buffer_tag != NULL) {
1802 		bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
1803 		sc->alc_cdata.alc_buffer_tag = NULL;
1804 	}
1805 	if (sc->alc_cdata.alc_parent_tag != NULL) {
1806 		bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
1807 		sc->alc_cdata.alc_parent_tag = NULL;
1808 	}
1809 }
1810 
1811 static int
1812 alc_shutdown(device_t dev)
1813 {
1814 
1815 	return (alc_suspend(dev));
1816 }
1817 
1818 /*
1819  * Note, this driver resets the link speed to 10/100Mbps by
1820  * restarting auto-negotiation in suspend/shutdown phase but we
1821  * don't know whether that auto-negotiation would succeed or not
1822  * as driver has no control after powering off/suspend operation.
1823  * If the renegotiation fail WOL may not work. Running at 1Gbps
1824  * will draw more power than 375mA at 3.3V which is specified in
1825  * PCI specification and that would result in complete
1826  * shutdowning power to ethernet controller.
1827  *
1828  * TODO
1829  * Save current negotiated media speed/duplex/flow-control to
1830  * softc and restore the same link again after resuming. PHY
1831  * handling such as power down/resetting to 100Mbps may be better
1832  * handled in suspend method in phy driver.
1833  */
1834 static void
1835 alc_setlinkspeed(struct alc_softc *sc)
1836 {
1837 	struct mii_data *mii;
1838 	int aneg, i;
1839 
1840 	mii = device_get_softc(sc->alc_miibus);
1841 	mii_pollstat(mii);
1842 	aneg = 0;
1843 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1844 	    (IFM_ACTIVE | IFM_AVALID)) {
1845 		switch IFM_SUBTYPE(mii->mii_media_active) {
1846 		case IFM_10_T:
1847 		case IFM_100_TX:
1848 			return;
1849 		case IFM_1000_T:
1850 			aneg++;
1851 			break;
1852 		default:
1853 			break;
1854 		}
1855 	}
1856 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
1857 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1858 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1859 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1860 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1861 	DELAY(1000);
1862 	if (aneg != 0) {
1863 		/*
1864 		 * Poll link state until alc(4) get a 10/100Mbps link.
1865 		 */
1866 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1867 			mii_pollstat(mii);
1868 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1869 			    == (IFM_ACTIVE | IFM_AVALID)) {
1870 				switch (IFM_SUBTYPE(
1871 				    mii->mii_media_active)) {
1872 				case IFM_10_T:
1873 				case IFM_100_TX:
1874 					alc_mac_config(sc);
1875 					return;
1876 				default:
1877 					break;
1878 				}
1879 			}
1880 			ALC_UNLOCK(sc);
1881 			pause("alclnk", hz);
1882 			ALC_LOCK(sc);
1883 		}
1884 		if (i == MII_ANEGTICKS_GIGE)
1885 			device_printf(sc->alc_dev,
1886 			    "establishing a link failed, WOL may not work!");
1887 	}
1888 	/*
1889 	 * No link, force MAC to have 100Mbps, full-duplex link.
1890 	 * This is the last resort and may/may not work.
1891 	 */
1892 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1893 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1894 	alc_mac_config(sc);
1895 }
1896 
1897 static void
1898 alc_setwol(struct alc_softc *sc)
1899 {
1900 	struct ifnet *ifp;
1901 	uint32_t reg, pmcs;
1902 	uint16_t pmstat;
1903 
1904 	ALC_LOCK_ASSERT(sc);
1905 
1906 	alc_disable_l0s_l1(sc);
1907 	ifp = sc->alc_ifp;
1908 	if ((sc->alc_flags & ALC_FLAG_PM) == 0) {
1909 		/* Disable WOL. */
1910 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
1911 		reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1912 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1913 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1914 		/* Force PHY power down. */
1915 		alc_phy_down(sc);
1916 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1917 		    CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1918 		return;
1919 	}
1920 
1921 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1922 		if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
1923 			alc_setlinkspeed(sc);
1924 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1925 		    CSR_READ_4(sc, ALC_MASTER_CFG) & ~MASTER_CLK_SEL_DIS);
1926 	}
1927 
1928 	pmcs = 0;
1929 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1930 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1931 	CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
1932 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1933 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1934 	    MAC_CFG_BCAST);
1935 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1936 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1937 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1938 		reg |= MAC_CFG_RX_ENB;
1939 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1940 
1941 	reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1942 	reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1943 	CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1944 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1945 		/* WOL disabled, PHY power down. */
1946 		alc_phy_down(sc);
1947 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1948 		    CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1949 	}
1950 	/* Request PME. */
1951 	pmstat = pci_read_config(sc->alc_dev,
1952 	    sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1953 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1954 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1955 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1956 	pci_write_config(sc->alc_dev,
1957 	    sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1958 }
1959 
1960 static int
1961 alc_suspend(device_t dev)
1962 {
1963 	struct alc_softc *sc;
1964 
1965 	sc = device_get_softc(dev);
1966 
1967 	ALC_LOCK(sc);
1968 	alc_stop(sc);
1969 	alc_setwol(sc);
1970 	ALC_UNLOCK(sc);
1971 
1972 	return (0);
1973 }
1974 
1975 static int
1976 alc_resume(device_t dev)
1977 {
1978 	struct alc_softc *sc;
1979 	struct ifnet *ifp;
1980 	uint16_t pmstat;
1981 
1982 	sc = device_get_softc(dev);
1983 
1984 	ALC_LOCK(sc);
1985 	if ((sc->alc_flags & ALC_FLAG_PM) != 0) {
1986 		/* Disable PME and clear PME status. */
1987 		pmstat = pci_read_config(sc->alc_dev,
1988 		    sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1989 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1990 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1991 			pci_write_config(sc->alc_dev,
1992 			    sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1993 		}
1994 	}
1995 	/* Reset PHY. */
1996 	alc_phy_reset(sc);
1997 	ifp = sc->alc_ifp;
1998 	if ((ifp->if_flags & IFF_UP) != 0) {
1999 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2000 		alc_init_locked(sc);
2001 	}
2002 	ALC_UNLOCK(sc);
2003 
2004 	return (0);
2005 }
2006 
2007 static int
2008 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
2009 {
2010 	struct alc_txdesc *txd, *txd_last;
2011 	struct tx_desc *desc;
2012 	struct mbuf *m;
2013 	struct ip *ip;
2014 	struct tcphdr *tcp;
2015 	bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
2016 	bus_dmamap_t map;
2017 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
2018 	int error, idx, nsegs, prod;
2019 
2020 	ALC_LOCK_ASSERT(sc);
2021 
2022 	M_ASSERTPKTHDR((*m_head));
2023 
2024 	m = *m_head;
2025 	ip = NULL;
2026 	tcp = NULL;
2027 	ip_off = poff = 0;
2028 	if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
2029 		/*
2030 		 * AR813x/AR815x requires offset of TCP/UDP header in its
2031 		 * Tx descriptor to perform Tx checksum offloading. TSO
2032 		 * also requires TCP header offset and modification of
2033 		 * IP/TCP header. This kind of operation takes many CPU
2034 		 * cycles on FreeBSD so fast host CPU is required to get
2035 		 * smooth TSO performance.
2036 		 */
2037 		struct ether_header *eh;
2038 
2039 		if (M_WRITABLE(m) == 0) {
2040 			/* Get a writable copy. */
2041 			m = m_dup(*m_head, M_DONTWAIT);
2042 			/* Release original mbufs. */
2043 			m_freem(*m_head);
2044 			if (m == NULL) {
2045 				*m_head = NULL;
2046 				return (ENOBUFS);
2047 			}
2048 			*m_head = m;
2049 		}
2050 
2051 		ip_off = sizeof(struct ether_header);
2052 		m = m_pullup(m, ip_off);
2053 		if (m == NULL) {
2054 			*m_head = NULL;
2055 			return (ENOBUFS);
2056 		}
2057 		eh = mtod(m, struct ether_header *);
2058 		/*
2059 		 * Check if hardware VLAN insertion is off.
2060 		 * Additional check for LLC/SNAP frame?
2061 		 */
2062 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2063 			ip_off = sizeof(struct ether_vlan_header);
2064 			m = m_pullup(m, ip_off);
2065 			if (m == NULL) {
2066 				*m_head = NULL;
2067 				return (ENOBUFS);
2068 			}
2069 		}
2070 		m = m_pullup(m, ip_off + sizeof(struct ip));
2071 		if (m == NULL) {
2072 			*m_head = NULL;
2073 			return (ENOBUFS);
2074 		}
2075 		ip = (struct ip *)(mtod(m, char *) + ip_off);
2076 		poff = ip_off + (ip->ip_hl << 2);
2077 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2078 			m = m_pullup(m, poff + sizeof(struct tcphdr));
2079 			if (m == NULL) {
2080 				*m_head = NULL;
2081 				return (ENOBUFS);
2082 			}
2083 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
2084 			m = m_pullup(m, poff + (tcp->th_off << 2));
2085 			if (m == NULL) {
2086 				*m_head = NULL;
2087 				return (ENOBUFS);
2088 			}
2089 			/*
2090 			 * Due to strict adherence of Microsoft NDIS
2091 			 * Large Send specification, hardware expects
2092 			 * a pseudo TCP checksum inserted by upper
2093 			 * stack. Unfortunately the pseudo TCP
2094 			 * checksum that NDIS refers to does not include
2095 			 * TCP payload length so driver should recompute
2096 			 * the pseudo checksum here. Hopefully this
2097 			 * wouldn't be much burden on modern CPUs.
2098 			 *
2099 			 * Reset IP checksum and recompute TCP pseudo
2100 			 * checksum as NDIS specification said.
2101 			 */
2102 			ip = (struct ip *)(mtod(m, char *) + ip_off);
2103 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
2104 			ip->ip_sum = 0;
2105 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
2106 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
2107 		}
2108 		*m_head = m;
2109 	}
2110 
2111 	prod = sc->alc_cdata.alc_tx_prod;
2112 	txd = &sc->alc_cdata.alc_txdesc[prod];
2113 	txd_last = txd;
2114 	map = txd->tx_dmamap;
2115 
2116 	error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
2117 	    *m_head, txsegs, &nsegs, 0);
2118 	if (error == EFBIG) {
2119 		m = m_collapse(*m_head, M_DONTWAIT, ALC_MAXTXSEGS);
2120 		if (m == NULL) {
2121 			m_freem(*m_head);
2122 			*m_head = NULL;
2123 			return (ENOMEM);
2124 		}
2125 		*m_head = m;
2126 		error = bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_tx_tag, map,
2127 		    *m_head, txsegs, &nsegs, 0);
2128 		if (error != 0) {
2129 			m_freem(*m_head);
2130 			*m_head = NULL;
2131 			return (error);
2132 		}
2133 	} else if (error != 0)
2134 		return (error);
2135 	if (nsegs == 0) {
2136 		m_freem(*m_head);
2137 		*m_head = NULL;
2138 		return (EIO);
2139 	}
2140 
2141 	/* Check descriptor overrun. */
2142 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
2143 		bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
2144 		return (ENOBUFS);
2145 	}
2146 	bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
2147 
2148 	m = *m_head;
2149 	cflags = TD_ETHERNET;
2150 	vtag = 0;
2151 	desc = NULL;
2152 	idx = 0;
2153 	/* Configure VLAN hardware tag insertion. */
2154 	if ((m->m_flags & M_VLANTAG) != 0) {
2155 		vtag = htons(m->m_pkthdr.ether_vtag);
2156 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
2157 		cflags |= TD_INS_VLAN_TAG;
2158 	}
2159 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2160 		/* Request TSO and set MSS. */
2161 		cflags |= TD_TSO | TD_TSO_DESCV1;
2162 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
2163 		    TD_MSS_MASK;
2164 		/* Set TCP header offset. */
2165 		cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
2166 		    TD_TCPHDR_OFFSET_MASK;
2167 		/*
2168 		 * AR813x/AR815x requires the first buffer should
2169 		 * only hold IP/TCP header data. Payload should
2170 		 * be handled in other descriptors.
2171 		 */
2172 		hdrlen = poff + (tcp->th_off << 2);
2173 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2174 		desc->len = htole32(TX_BYTES(hdrlen | vtag));
2175 		desc->flags = htole32(cflags);
2176 		desc->addr = htole64(txsegs[0].ds_addr);
2177 		sc->alc_cdata.alc_tx_cnt++;
2178 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2179 		if (m->m_len - hdrlen > 0) {
2180 			/* Handle remaining payload of the first fragment. */
2181 			desc = &sc->alc_rdata.alc_tx_ring[prod];
2182 			desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
2183 			    vtag));
2184 			desc->flags = htole32(cflags);
2185 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
2186 			sc->alc_cdata.alc_tx_cnt++;
2187 			ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2188 		}
2189 		/* Handle remaining fragments. */
2190 		idx = 1;
2191 	} else if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
2192 		/* Configure Tx checksum offload. */
2193 #ifdef ALC_USE_CUSTOM_CSUM
2194 		cflags |= TD_CUSTOM_CSUM;
2195 		/* Set checksum start offset. */
2196 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
2197 		    TD_PLOAD_OFFSET_MASK;
2198 		/* Set checksum insertion position of TCP/UDP. */
2199 		cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
2200 		    TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
2201 #else
2202 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2203 			cflags |= TD_IPCSUM;
2204 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2205 			cflags |= TD_TCPCSUM;
2206 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2207 			cflags |= TD_UDPCSUM;
2208 		/* Set TCP/UDP header offset. */
2209 		cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
2210 		    TD_L4HDR_OFFSET_MASK;
2211 #endif
2212 	}
2213 	for (; idx < nsegs; idx++) {
2214 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2215 		desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
2216 		desc->flags = htole32(cflags);
2217 		desc->addr = htole64(txsegs[idx].ds_addr);
2218 		sc->alc_cdata.alc_tx_cnt++;
2219 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2220 	}
2221 	/* Update producer index. */
2222 	sc->alc_cdata.alc_tx_prod = prod;
2223 
2224 	/* Finally set EOP on the last descriptor. */
2225 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
2226 	desc = &sc->alc_rdata.alc_tx_ring[prod];
2227 	desc->flags |= htole32(TD_EOP);
2228 
2229 	/* Swap dmamap of the first and the last. */
2230 	txd = &sc->alc_cdata.alc_txdesc[prod];
2231 	map = txd_last->tx_dmamap;
2232 	txd_last->tx_dmamap = txd->tx_dmamap;
2233 	txd->tx_dmamap = map;
2234 	txd->tx_m = m;
2235 
2236 	return (0);
2237 }
2238 
2239 static void
2240 alc_tx_task(void *arg, int pending)
2241 {
2242 	struct ifnet *ifp;
2243 
2244 	ifp = (struct ifnet *)arg;
2245 	alc_start(ifp);
2246 }
2247 
2248 static void
2249 alc_start(struct ifnet *ifp)
2250 {
2251 	struct alc_softc *sc;
2252 	struct mbuf *m_head;
2253 	int enq;
2254 
2255 	sc = ifp->if_softc;
2256 
2257 	ALC_LOCK(sc);
2258 
2259 	/* Reclaim transmitted frames. */
2260 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2261 		alc_txeof(sc);
2262 
2263 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2264 	    IFF_DRV_RUNNING || (sc->alc_flags & ALC_FLAG_LINK) == 0) {
2265 		ALC_UNLOCK(sc);
2266 		return;
2267 	}
2268 
2269 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
2270 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2271 		if (m_head == NULL)
2272 			break;
2273 		/*
2274 		 * Pack the data into the transmit ring. If we
2275 		 * don't have room, set the OACTIVE flag and wait
2276 		 * for the NIC to drain the ring.
2277 		 */
2278 		if (alc_encap(sc, &m_head)) {
2279 			if (m_head == NULL)
2280 				break;
2281 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2282 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2283 			break;
2284 		}
2285 
2286 		enq++;
2287 		/*
2288 		 * If there's a BPF listener, bounce a copy of this frame
2289 		 * to him.
2290 		 */
2291 		ETHER_BPF_MTAP(ifp, m_head);
2292 	}
2293 
2294 	if (enq > 0) {
2295 		/* Sync descriptors. */
2296 		bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2297 		    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
2298 		/* Kick. Assume we're using normal Tx priority queue. */
2299 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2300 		    (sc->alc_cdata.alc_tx_prod <<
2301 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2302 		    MBOX_TD_PROD_LO_IDX_MASK);
2303 		/* Set a timeout in case the chip goes out to lunch. */
2304 		sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
2305 	}
2306 
2307 	ALC_UNLOCK(sc);
2308 }
2309 
2310 static void
2311 alc_watchdog(struct alc_softc *sc)
2312 {
2313 	struct ifnet *ifp;
2314 
2315 	ALC_LOCK_ASSERT(sc);
2316 
2317 	if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
2318 		return;
2319 
2320 	ifp = sc->alc_ifp;
2321 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2322 		if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
2323 		ifp->if_oerrors++;
2324 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2325 		alc_init_locked(sc);
2326 		return;
2327 	}
2328 	if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
2329 	ifp->if_oerrors++;
2330 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2331 	alc_init_locked(sc);
2332 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2333 		taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2334 }
2335 
2336 static int
2337 alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2338 {
2339 	struct alc_softc *sc;
2340 	struct ifreq *ifr;
2341 	struct mii_data *mii;
2342 	int error, mask;
2343 
2344 	sc = ifp->if_softc;
2345 	ifr = (struct ifreq *)data;
2346 	error = 0;
2347 	switch (cmd) {
2348 	case SIOCSIFMTU:
2349 		if (ifr->ifr_mtu < ETHERMIN ||
2350 		    ifr->ifr_mtu > (sc->alc_ident->max_framelen -
2351 		    sizeof(struct ether_vlan_header) - ETHER_CRC_LEN) ||
2352 		    ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
2353 		    ifr->ifr_mtu > ETHERMTU))
2354 			error = EINVAL;
2355 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2356 			ALC_LOCK(sc);
2357 			ifp->if_mtu = ifr->ifr_mtu;
2358 			/* AR813x/AR815x has 13 bits MSS field. */
2359 			if (ifp->if_mtu > ALC_TSO_MTU &&
2360 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2361 				ifp->if_capenable &= ~IFCAP_TSO4;
2362 				ifp->if_hwassist &= ~CSUM_TSO;
2363 				VLAN_CAPABILITIES(ifp);
2364 			}
2365 			ALC_UNLOCK(sc);
2366 		}
2367 		break;
2368 	case SIOCSIFFLAGS:
2369 		ALC_LOCK(sc);
2370 		if ((ifp->if_flags & IFF_UP) != 0) {
2371 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2372 			    ((ifp->if_flags ^ sc->alc_if_flags) &
2373 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2374 				alc_rxfilter(sc);
2375 			else if ((sc->alc_flags & ALC_FLAG_DETACH) == 0)
2376 				alc_init_locked(sc);
2377 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2378 			alc_stop(sc);
2379 		sc->alc_if_flags = ifp->if_flags;
2380 		ALC_UNLOCK(sc);
2381 		break;
2382 	case SIOCADDMULTI:
2383 	case SIOCDELMULTI:
2384 		ALC_LOCK(sc);
2385 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2386 			alc_rxfilter(sc);
2387 		ALC_UNLOCK(sc);
2388 		break;
2389 	case SIOCSIFMEDIA:
2390 	case SIOCGIFMEDIA:
2391 		mii = device_get_softc(sc->alc_miibus);
2392 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2393 		break;
2394 	case SIOCSIFCAP:
2395 		ALC_LOCK(sc);
2396 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2397 		if ((mask & IFCAP_TXCSUM) != 0 &&
2398 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2399 			ifp->if_capenable ^= IFCAP_TXCSUM;
2400 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2401 				ifp->if_hwassist |= ALC_CSUM_FEATURES;
2402 			else
2403 				ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
2404 		}
2405 		if ((mask & IFCAP_TSO4) != 0 &&
2406 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2407 			ifp->if_capenable ^= IFCAP_TSO4;
2408 			if ((ifp->if_capenable & IFCAP_TSO4) != 0) {
2409 				/* AR813x/AR815x has 13 bits MSS field. */
2410 				if (ifp->if_mtu > ALC_TSO_MTU) {
2411 					ifp->if_capenable &= ~IFCAP_TSO4;
2412 					ifp->if_hwassist &= ~CSUM_TSO;
2413 				} else
2414 					ifp->if_hwassist |= CSUM_TSO;
2415 			} else
2416 				ifp->if_hwassist &= ~CSUM_TSO;
2417 		}
2418 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2419 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2420 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2421 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2422 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2423 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2424 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2425 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2426 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2427 			alc_rxvlan(sc);
2428 		}
2429 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2430 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2431 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2432 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2433 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2434 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2435 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2436 			ifp->if_capenable &=
2437 			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2438 		ALC_UNLOCK(sc);
2439 		VLAN_CAPABILITIES(ifp);
2440 		break;
2441 	default:
2442 		error = ether_ioctl(ifp, cmd, data);
2443 		break;
2444 	}
2445 
2446 	return (error);
2447 }
2448 
2449 static void
2450 alc_mac_config(struct alc_softc *sc)
2451 {
2452 	struct mii_data *mii;
2453 	uint32_t reg;
2454 
2455 	ALC_LOCK_ASSERT(sc);
2456 
2457 	mii = device_get_softc(sc->alc_miibus);
2458 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2459 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2460 	    MAC_CFG_SPEED_MASK);
2461 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
2462 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
2463 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
2464 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2465 	/* Reprogram MAC with resolved speed/duplex. */
2466 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2467 	case IFM_10_T:
2468 	case IFM_100_TX:
2469 		reg |= MAC_CFG_SPEED_10_100;
2470 		break;
2471 	case IFM_1000_T:
2472 		reg |= MAC_CFG_SPEED_1000;
2473 		break;
2474 	}
2475 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2476 		reg |= MAC_CFG_FULL_DUPLEX;
2477 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2478 			reg |= MAC_CFG_TX_FC;
2479 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2480 			reg |= MAC_CFG_RX_FC;
2481 	}
2482 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2483 }
2484 
2485 static void
2486 alc_stats_clear(struct alc_softc *sc)
2487 {
2488 	struct smb sb, *smb;
2489 	uint32_t *reg;
2490 	int i;
2491 
2492 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2493 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2494 		    sc->alc_cdata.alc_smb_map,
2495 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2496 		smb = sc->alc_rdata.alc_smb;
2497 		/* Update done, clear. */
2498 		smb->updated = 0;
2499 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2500 		    sc->alc_cdata.alc_smb_map,
2501 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2502 	} else {
2503 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2504 		    reg++) {
2505 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2506 			i += sizeof(uint32_t);
2507 		}
2508 		/* Read Tx statistics. */
2509 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2510 		    reg++) {
2511 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2512 			i += sizeof(uint32_t);
2513 		}
2514 	}
2515 }
2516 
2517 static void
2518 alc_stats_update(struct alc_softc *sc)
2519 {
2520 	struct alc_hw_stats *stat;
2521 	struct smb sb, *smb;
2522 	struct ifnet *ifp;
2523 	uint32_t *reg;
2524 	int i;
2525 
2526 	ALC_LOCK_ASSERT(sc);
2527 
2528 	ifp = sc->alc_ifp;
2529 	stat = &sc->alc_stats;
2530 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2531 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2532 		    sc->alc_cdata.alc_smb_map,
2533 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2534 		smb = sc->alc_rdata.alc_smb;
2535 		if (smb->updated == 0)
2536 			return;
2537 	} else {
2538 		smb = &sb;
2539 		/* Read Rx statistics. */
2540 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2541 		    reg++) {
2542 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2543 			i += sizeof(uint32_t);
2544 		}
2545 		/* Read Tx statistics. */
2546 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2547 		    reg++) {
2548 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2549 			i += sizeof(uint32_t);
2550 		}
2551 	}
2552 
2553 	/* Rx stats. */
2554 	stat->rx_frames += smb->rx_frames;
2555 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2556 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2557 	stat->rx_pause_frames += smb->rx_pause_frames;
2558 	stat->rx_control_frames += smb->rx_control_frames;
2559 	stat->rx_crcerrs += smb->rx_crcerrs;
2560 	stat->rx_lenerrs += smb->rx_lenerrs;
2561 	stat->rx_bytes += smb->rx_bytes;
2562 	stat->rx_runts += smb->rx_runts;
2563 	stat->rx_fragments += smb->rx_fragments;
2564 	stat->rx_pkts_64 += smb->rx_pkts_64;
2565 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2566 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2567 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2568 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2569 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2570 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2571 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2572 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2573 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2574 	stat->rx_alignerrs += smb->rx_alignerrs;
2575 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2576 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2577 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2578 
2579 	/* Tx stats. */
2580 	stat->tx_frames += smb->tx_frames;
2581 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2582 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2583 	stat->tx_pause_frames += smb->tx_pause_frames;
2584 	stat->tx_excess_defer += smb->tx_excess_defer;
2585 	stat->tx_control_frames += smb->tx_control_frames;
2586 	stat->tx_deferred += smb->tx_deferred;
2587 	stat->tx_bytes += smb->tx_bytes;
2588 	stat->tx_pkts_64 += smb->tx_pkts_64;
2589 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2590 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2591 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2592 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2593 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2594 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2595 	stat->tx_single_colls += smb->tx_single_colls;
2596 	stat->tx_multi_colls += smb->tx_multi_colls;
2597 	stat->tx_late_colls += smb->tx_late_colls;
2598 	stat->tx_excess_colls += smb->tx_excess_colls;
2599 	stat->tx_abort += smb->tx_abort;
2600 	stat->tx_underrun += smb->tx_underrun;
2601 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2602 	stat->tx_lenerrs += smb->tx_lenerrs;
2603 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2604 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2605 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2606 
2607 	/* Update counters in ifnet. */
2608 	ifp->if_opackets += smb->tx_frames;
2609 
2610 	ifp->if_collisions += smb->tx_single_colls +
2611 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2612 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2613 
2614 	/*
2615 	 * XXX
2616 	 * tx_pkts_truncated counter looks suspicious. It constantly
2617 	 * increments with no sign of Tx errors. This may indicate
2618 	 * the counter name is not correct one so I've removed the
2619 	 * counter in output errors.
2620 	 */
2621 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2622 	    smb->tx_underrun;
2623 
2624 	ifp->if_ipackets += smb->rx_frames;
2625 
2626 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2627 	    smb->rx_runts + smb->rx_pkts_truncated +
2628 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2629 	    smb->rx_alignerrs;
2630 
2631 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2632 		/* Update done, clear. */
2633 		smb->updated = 0;
2634 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2635 		    sc->alc_cdata.alc_smb_map,
2636 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2637 	}
2638 }
2639 
2640 static int
2641 alc_intr(void *arg)
2642 {
2643 	struct alc_softc *sc;
2644 	uint32_t status;
2645 
2646 	sc = (struct alc_softc *)arg;
2647 
2648 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2649 	if ((status & ALC_INTRS) == 0)
2650 		return (FILTER_STRAY);
2651 	/* Disable interrupts. */
2652 	CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT);
2653 	taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2654 
2655 	return (FILTER_HANDLED);
2656 }
2657 
2658 static void
2659 alc_int_task(void *arg, int pending)
2660 {
2661 	struct alc_softc *sc;
2662 	struct ifnet *ifp;
2663 	uint32_t status;
2664 	int more;
2665 
2666 	sc = (struct alc_softc *)arg;
2667 	ifp = sc->alc_ifp;
2668 
2669 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2670 	if (sc->alc_morework != 0) {
2671 		sc->alc_morework = 0;
2672 		status |= INTR_RX_PKT;
2673 	}
2674 	if ((status & ALC_INTRS) == 0)
2675 		goto done;
2676 
2677 	/* Acknowledge interrupts but still disable interrupts. */
2678 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2679 
2680 	more = 0;
2681 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2682 		if ((status & INTR_RX_PKT) != 0) {
2683 			more = alc_rxintr(sc, sc->alc_process_limit);
2684 			if (more == EAGAIN)
2685 				sc->alc_morework = 1;
2686 			else if (more == EIO) {
2687 				ALC_LOCK(sc);
2688 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2689 				alc_init_locked(sc);
2690 				ALC_UNLOCK(sc);
2691 				return;
2692 			}
2693 		}
2694 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2695 		    INTR_TXQ_TO_RST)) != 0) {
2696 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2697 				device_printf(sc->alc_dev,
2698 				    "DMA read error! -- resetting\n");
2699 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2700 				device_printf(sc->alc_dev,
2701 				    "DMA write error! -- resetting\n");
2702 			if ((status & INTR_TXQ_TO_RST) != 0)
2703 				device_printf(sc->alc_dev,
2704 				    "TxQ reset! -- resetting\n");
2705 			ALC_LOCK(sc);
2706 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2707 			alc_init_locked(sc);
2708 			ALC_UNLOCK(sc);
2709 			return;
2710 		}
2711 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2712 		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2713 			taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2714 	}
2715 
2716 	if (more == EAGAIN ||
2717 	    (CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) {
2718 		taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2719 		return;
2720 	}
2721 
2722 done:
2723 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2724 		/* Re-enable interrupts if we're running. */
2725 		CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2726 	}
2727 }
2728 
2729 static void
2730 alc_txeof(struct alc_softc *sc)
2731 {
2732 	struct ifnet *ifp;
2733 	struct alc_txdesc *txd;
2734 	uint32_t cons, prod;
2735 	int prog;
2736 
2737 	ALC_LOCK_ASSERT(sc);
2738 
2739 	ifp = sc->alc_ifp;
2740 
2741 	if (sc->alc_cdata.alc_tx_cnt == 0)
2742 		return;
2743 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2744 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2745 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2746 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2747 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
2748 		prod = sc->alc_rdata.alc_cmb->cons;
2749 	} else
2750 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2751 	/* Assume we're using normal Tx priority queue. */
2752 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2753 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2754 	cons = sc->alc_cdata.alc_tx_cons;
2755 	/*
2756 	 * Go through our Tx list and free mbufs for those
2757 	 * frames which have been transmitted.
2758 	 */
2759 	for (prog = 0; cons != prod; prog++,
2760 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2761 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2762 			break;
2763 		prog++;
2764 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2765 		sc->alc_cdata.alc_tx_cnt--;
2766 		txd = &sc->alc_cdata.alc_txdesc[cons];
2767 		if (txd->tx_m != NULL) {
2768 			/* Reclaim transmitted mbufs. */
2769 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
2770 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2771 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
2772 			    txd->tx_dmamap);
2773 			m_freem(txd->tx_m);
2774 			txd->tx_m = NULL;
2775 		}
2776 	}
2777 
2778 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2779 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2780 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
2781 	sc->alc_cdata.alc_tx_cons = cons;
2782 	/*
2783 	 * Unarm watchdog timer only when there is no pending
2784 	 * frames in Tx queue.
2785 	 */
2786 	if (sc->alc_cdata.alc_tx_cnt == 0)
2787 		sc->alc_watchdog_timer = 0;
2788 }
2789 
2790 static int
2791 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd)
2792 {
2793 	struct mbuf *m;
2794 	bus_dma_segment_t segs[1];
2795 	bus_dmamap_t map;
2796 	int nsegs;
2797 
2798 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2799 	if (m == NULL)
2800 		return (ENOBUFS);
2801 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2802 #ifndef __NO_STRICT_ALIGNMENT
2803 	m_adj(m, sizeof(uint64_t));
2804 #endif
2805 
2806 	if (bus_dmamap_load_mbuf_sg(sc->alc_cdata.alc_rx_tag,
2807 	    sc->alc_cdata.alc_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2808 		m_freem(m);
2809 		return (ENOBUFS);
2810 	}
2811 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2812 
2813 	if (rxd->rx_m != NULL) {
2814 		bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2815 		    BUS_DMASYNC_POSTREAD);
2816 		bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
2817 	}
2818 	map = rxd->rx_dmamap;
2819 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2820 	sc->alc_cdata.alc_rx_sparemap = map;
2821 	bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2822 	    BUS_DMASYNC_PREREAD);
2823 	rxd->rx_m = m;
2824 	rxd->rx_desc->addr = htole64(segs[0].ds_addr);
2825 	return (0);
2826 }
2827 
2828 static int
2829 alc_rxintr(struct alc_softc *sc, int count)
2830 {
2831 	struct ifnet *ifp;
2832 	struct rx_rdesc *rrd;
2833 	uint32_t nsegs, status;
2834 	int rr_cons, prog;
2835 
2836 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2837 	    sc->alc_cdata.alc_rr_ring_map,
2838 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2839 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2840 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2841 	rr_cons = sc->alc_cdata.alc_rr_cons;
2842 	ifp = sc->alc_ifp;
2843 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;) {
2844 		if (count-- <= 0)
2845 			break;
2846 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2847 		status = le32toh(rrd->status);
2848 		if ((status & RRD_VALID) == 0)
2849 			break;
2850 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2851 		if (nsegs == 0) {
2852 			/* This should not happen! */
2853 			device_printf(sc->alc_dev,
2854 			    "unexpected segment count -- resetting\n");
2855 			return (EIO);
2856 		}
2857 		alc_rxeof(sc, rrd);
2858 		/* Clear Rx return status. */
2859 		rrd->status = 0;
2860 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2861 		sc->alc_cdata.alc_rx_cons += nsegs;
2862 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2863 		prog += nsegs;
2864 	}
2865 
2866 	if (prog > 0) {
2867 		/* Update the consumer index. */
2868 		sc->alc_cdata.alc_rr_cons = rr_cons;
2869 		/* Sync Rx return descriptors. */
2870 		bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2871 		    sc->alc_cdata.alc_rr_ring_map,
2872 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2873 		/*
2874 		 * Sync updated Rx descriptors such that controller see
2875 		 * modified buffer addresses.
2876 		 */
2877 		bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2878 		    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
2879 		/*
2880 		 * Let controller know availability of new Rx buffers.
2881 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2882 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2883 		 * only when Rx buffer pre-fetching is required. In
2884 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2885 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2886 		 * it still seems that pre-fetching needs more
2887 		 * experimentation.
2888 		 */
2889 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2890 		    sc->alc_cdata.alc_rx_cons);
2891 	}
2892 
2893 	return (count > 0 ? 0 : EAGAIN);
2894 }
2895 
2896 #ifndef __NO_STRICT_ALIGNMENT
2897 static struct mbuf *
2898 alc_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2899 {
2900 	struct mbuf *n;
2901         int i;
2902         uint16_t *src, *dst;
2903 
2904 	src = mtod(m, uint16_t *);
2905 	dst = src - 3;
2906 
2907 	if (m->m_next == NULL) {
2908 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2909 			*dst++ = *src++;
2910 		m->m_data -= 6;
2911 		return (m);
2912 	}
2913 	/*
2914 	 * Append a new mbuf to received mbuf chain and copy ethernet
2915 	 * header from the mbuf chain. This can save lots of CPU
2916 	 * cycles for jumbo frame.
2917 	 */
2918 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2919 	if (n == NULL) {
2920 		ifp->if_iqdrops++;
2921 		m_freem(m);
2922 		return (NULL);
2923 	}
2924 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2925 	m->m_data += ETHER_HDR_LEN;
2926 	m->m_len -= ETHER_HDR_LEN;
2927 	n->m_len = ETHER_HDR_LEN;
2928 	M_MOVE_PKTHDR(n, m);
2929 	n->m_next = m;
2930 	return (n);
2931 }
2932 #endif
2933 
2934 /* Receive a frame. */
2935 static void
2936 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2937 {
2938 	struct alc_rxdesc *rxd;
2939 	struct ifnet *ifp;
2940 	struct mbuf *mp, *m;
2941 	uint32_t rdinfo, status, vtag;
2942 	int count, nsegs, rx_cons;
2943 
2944 	ifp = sc->alc_ifp;
2945 	status = le32toh(rrd->status);
2946 	rdinfo = le32toh(rrd->rdinfo);
2947 	rx_cons = RRD_RD_IDX(rdinfo);
2948 	nsegs = RRD_RD_CNT(rdinfo);
2949 
2950 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2951 	if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
2952 		/*
2953 		 * We want to pass the following frames to upper
2954 		 * layer regardless of error status of Rx return
2955 		 * ring.
2956 		 *
2957 		 *  o IP/TCP/UDP checksum is bad.
2958 		 *  o frame length and protocol specific length
2959 		 *     does not match.
2960 		 *
2961 		 *  Force network stack compute checksum for
2962 		 *  errored frames.
2963 		 */
2964 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2965 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
2966 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
2967 			return;
2968 	}
2969 
2970 	for (count = 0; count < nsegs; count++,
2971 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2972 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2973 		mp = rxd->rx_m;
2974 		/* Add a new receive buffer to the ring. */
2975 		if (alc_newbuf(sc, rxd) != 0) {
2976 			ifp->if_iqdrops++;
2977 			/* Reuse Rx buffers. */
2978 			if (sc->alc_cdata.alc_rxhead != NULL)
2979 				m_freem(sc->alc_cdata.alc_rxhead);
2980 			break;
2981 		}
2982 
2983 		/*
2984 		 * Assume we've received a full sized frame.
2985 		 * Actual size is fixed when we encounter the end of
2986 		 * multi-segmented frame.
2987 		 */
2988 		mp->m_len = sc->alc_buf_size;
2989 
2990 		/* Chain received mbufs. */
2991 		if (sc->alc_cdata.alc_rxhead == NULL) {
2992 			sc->alc_cdata.alc_rxhead = mp;
2993 			sc->alc_cdata.alc_rxtail = mp;
2994 		} else {
2995 			mp->m_flags &= ~M_PKTHDR;
2996 			sc->alc_cdata.alc_rxprev_tail =
2997 			    sc->alc_cdata.alc_rxtail;
2998 			sc->alc_cdata.alc_rxtail->m_next = mp;
2999 			sc->alc_cdata.alc_rxtail = mp;
3000 		}
3001 
3002 		if (count == nsegs - 1) {
3003 			/* Last desc. for this frame. */
3004 			m = sc->alc_cdata.alc_rxhead;
3005 			m->m_flags |= M_PKTHDR;
3006 			/*
3007 			 * It seems that L1C/L2C controller has no way
3008 			 * to tell hardware to strip CRC bytes.
3009 			 */
3010 			m->m_pkthdr.len =
3011 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
3012 			if (nsegs > 1) {
3013 				/* Set last mbuf size. */
3014 				mp->m_len = sc->alc_cdata.alc_rxlen -
3015 				    (nsegs - 1) * sc->alc_buf_size;
3016 				/* Remove the CRC bytes in chained mbufs. */
3017 				if (mp->m_len <= ETHER_CRC_LEN) {
3018 					sc->alc_cdata.alc_rxtail =
3019 					    sc->alc_cdata.alc_rxprev_tail;
3020 					sc->alc_cdata.alc_rxtail->m_len -=
3021 					    (ETHER_CRC_LEN - mp->m_len);
3022 					sc->alc_cdata.alc_rxtail->m_next = NULL;
3023 					m_freem(mp);
3024 				} else {
3025 					mp->m_len -= ETHER_CRC_LEN;
3026 				}
3027 			} else
3028 				m->m_len = m->m_pkthdr.len;
3029 			m->m_pkthdr.rcvif = ifp;
3030 			/*
3031 			 * Due to hardware bugs, Rx checksum offloading
3032 			 * was intentionally disabled.
3033 			 */
3034 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
3035 			    (status & RRD_VLAN_TAG) != 0) {
3036 				vtag = RRD_VLAN(le32toh(rrd->vtag));
3037 				m->m_pkthdr.ether_vtag = ntohs(vtag);
3038 				m->m_flags |= M_VLANTAG;
3039 			}
3040 #ifndef __NO_STRICT_ALIGNMENT
3041 			m = alc_fixup_rx(ifp, m);
3042 			if (m != NULL)
3043 #endif
3044 			{
3045 			/* Pass it on. */
3046 			(*ifp->if_input)(ifp, m);
3047 			}
3048 		}
3049 	}
3050 	/* Reset mbuf chains. */
3051 	ALC_RXCHAIN_RESET(sc);
3052 }
3053 
3054 static void
3055 alc_tick(void *arg)
3056 {
3057 	struct alc_softc *sc;
3058 	struct mii_data *mii;
3059 
3060 	sc = (struct alc_softc *)arg;
3061 
3062 	ALC_LOCK_ASSERT(sc);
3063 
3064 	mii = device_get_softc(sc->alc_miibus);
3065 	mii_tick(mii);
3066 	alc_stats_update(sc);
3067 	/*
3068 	 * alc(4) does not rely on Tx completion interrupts to reclaim
3069 	 * transferred buffers. Instead Tx completion interrupts are
3070 	 * used to hint for scheduling Tx task. So it's necessary to
3071 	 * release transmitted buffers by kicking Tx completion
3072 	 * handler. This limits the maximum reclamation delay to a hz.
3073 	 */
3074 	alc_txeof(sc);
3075 	alc_watchdog(sc);
3076 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3077 }
3078 
3079 static void
3080 alc_reset(struct alc_softc *sc)
3081 {
3082 	uint32_t reg;
3083 	int i;
3084 
3085 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
3086 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
3087 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3088 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3089 		DELAY(10);
3090 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
3091 			break;
3092 	}
3093 	if (i == 0)
3094 		device_printf(sc->alc_dev, "master reset timeout!\n");
3095 
3096 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3097 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
3098 			break;
3099 		DELAY(10);
3100 	}
3101 
3102 	if (i == 0)
3103 		device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
3104 }
3105 
3106 static void
3107 alc_init(void *xsc)
3108 {
3109 	struct alc_softc *sc;
3110 
3111 	sc = (struct alc_softc *)xsc;
3112 	ALC_LOCK(sc);
3113 	alc_init_locked(sc);
3114 	ALC_UNLOCK(sc);
3115 }
3116 
3117 static void
3118 alc_init_locked(struct alc_softc *sc)
3119 {
3120 	struct ifnet *ifp;
3121 	struct mii_data *mii;
3122 	uint8_t eaddr[ETHER_ADDR_LEN];
3123 	bus_addr_t paddr;
3124 	uint32_t reg, rxf_hi, rxf_lo;
3125 
3126 	ALC_LOCK_ASSERT(sc);
3127 
3128 	ifp = sc->alc_ifp;
3129 	mii = device_get_softc(sc->alc_miibus);
3130 
3131 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3132 		return;
3133 	/*
3134 	 * Cancel any pending I/O.
3135 	 */
3136 	alc_stop(sc);
3137 	/*
3138 	 * Reset the chip to a known state.
3139 	 */
3140 	alc_reset(sc);
3141 
3142 	/* Initialize Rx descriptors. */
3143 	if (alc_init_rx_ring(sc) != 0) {
3144 		device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
3145 		alc_stop(sc);
3146 		return;
3147 	}
3148 	alc_init_rr_ring(sc);
3149 	alc_init_tx_ring(sc);
3150 	alc_init_cmb(sc);
3151 	alc_init_smb(sc);
3152 
3153 	/* Reprogram the station address. */
3154 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3155 	CSR_WRITE_4(sc, ALC_PAR0,
3156 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
3157 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
3158 	/*
3159 	 * Clear WOL status and disable all WOL feature as WOL
3160 	 * would interfere Rx operation under normal environments.
3161 	 */
3162 	CSR_READ_4(sc, ALC_WOL_CFG);
3163 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
3164 	/* Set Tx descriptor base addresses. */
3165 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
3166 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3167 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3168 	/* We don't use high priority ring. */
3169 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
3170 	/* Set Tx descriptor counter. */
3171 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
3172 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
3173 	/* Set Rx descriptor base addresses. */
3174 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
3175 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3176 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3177 	/* We use one Rx ring. */
3178 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
3179 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
3180 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
3181 	/* Set Rx descriptor counter. */
3182 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
3183 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
3184 
3185 	/*
3186 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
3187 	 * if it do not fit the buffer size. Rx return descriptor holds
3188 	 * a counter that indicates how many fragments were made by the
3189 	 * hardware. The buffer size should be multiple of 8 bytes.
3190 	 * Since hardware has limit on the size of buffer size, always
3191 	 * use the maximum value.
3192 	 * For strict-alignment architectures make sure to reduce buffer
3193 	 * size by 8 bytes to make room for alignment fixup.
3194 	 */
3195 #ifndef __NO_STRICT_ALIGNMENT
3196 	sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t);
3197 #else
3198 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
3199 #endif
3200 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
3201 
3202 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
3203 	/* Set Rx return descriptor base addresses. */
3204 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3205 	/* We use one Rx return ring. */
3206 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
3207 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
3208 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
3209 	/* Set Rx return descriptor counter. */
3210 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
3211 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
3212 	paddr = sc->alc_rdata.alc_cmb_paddr;
3213 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3214 	paddr = sc->alc_rdata.alc_smb_paddr;
3215 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3216 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3217 
3218 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
3219 		/* Reconfigure SRAM - Vendor magic. */
3220 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
3221 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
3222 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
3223 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
3224 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
3225 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
3226 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
3227 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
3228 	}
3229 
3230 	/* Tell hardware that we're ready to load DMA blocks. */
3231 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
3232 
3233 	/* Configure interrupt moderation timer. */
3234 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
3235 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
3236 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
3237 	/*
3238 	 * We don't want to automatic interrupt clear as task queue
3239 	 * for the interrupt should know interrupt status.
3240 	 */
3241 	reg = MASTER_SA_TIMER_ENB;
3242 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
3243 		reg |= MASTER_IM_RX_TIMER_ENB;
3244 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
3245 		reg |= MASTER_IM_TX_TIMER_ENB;
3246 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3247 	/*
3248 	 * Disable interrupt re-trigger timer. We don't want automatic
3249 	 * re-triggering of un-ACKed interrupts.
3250 	 */
3251 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
3252 	/* Configure CMB. */
3253 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
3254 		CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
3255 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
3256 	} else
3257 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
3258 	/*
3259 	 * Hardware can be configured to issue SMB interrupt based
3260 	 * on programmed interval. Since there is a callout that is
3261 	 * invoked for every hz in driver we use that instead of
3262 	 * relying on periodic SMB interrupt.
3263 	 */
3264 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
3265 	/* Clear MAC statistics. */
3266 	alc_stats_clear(sc);
3267 
3268 	/*
3269 	 * Always use maximum frame size that controller can support.
3270 	 * Otherwise received frames that has larger frame length
3271 	 * than alc(4) MTU would be silently dropped in hardware. This
3272 	 * would make path-MTU discovery hard as sender wouldn't get
3273 	 * any responses from receiver. alc(4) supports
3274 	 * multi-fragmented frames on Rx path so it has no issue on
3275 	 * assembling fragmented frames. Using maximum frame size also
3276 	 * removes the need to reinitialize hardware when interface
3277 	 * MTU configuration was changed.
3278 	 *
3279 	 * Be conservative in what you do, be liberal in what you
3280 	 * accept from others - RFC 793.
3281 	 */
3282 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
3283 
3284 	/* Disable header split(?) */
3285 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
3286 
3287 	/* Configure IPG/IFG parameters. */
3288 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
3289 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
3290 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
3291 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
3292 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
3293 	/* Set parameters for half-duplex media. */
3294 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
3295 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
3296 	    HDPX_CFG_LCOL_MASK) |
3297 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
3298 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
3299 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
3300 	    HDPX_CFG_ABEBT_MASK) |
3301 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3302 	    HDPX_CFG_JAMIPG_MASK));
3303 	/*
3304 	 * Set TSO/checksum offload threshold. For frames that is
3305 	 * larger than this threshold, hardware wouldn't do
3306 	 * TSO/checksum offloading.
3307 	 */
3308 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
3309 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3310 	    TSO_OFFLOAD_THRESH_MASK);
3311 	/* Configure TxQ. */
3312 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3313 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3314 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3315 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
3316 		reg >>= 1;
3317 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3318 	    TXQ_CFG_TD_BURST_MASK;
3319 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3320 
3321 	/* Configure Rx free descriptor pre-fetching. */
3322 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3323 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
3324 	    RX_RD_FREE_THRESH_HI_MASK) |
3325 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
3326 	    RX_RD_FREE_THRESH_LO_MASK));
3327 
3328 	/*
3329 	 * Configure flow control parameters.
3330 	 * XON  : 80% of Rx FIFO
3331 	 * XOFF : 30% of Rx FIFO
3332 	 */
3333 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
3334 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132) {
3335 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3336 		rxf_hi = (reg * 8) / 10;
3337 		rxf_lo = (reg * 3) / 10;
3338 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3339 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3340 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
3341 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3342 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
3343 	}
3344 
3345 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3346 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2)
3347 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
3348 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
3349 		    SERDES_PHY_CLK_SLOWDOWN);
3350 
3351 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
3352 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3353 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3354 
3355 	/* Configure RxQ. */
3356 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3357 	    RXQ_CFG_RD_BURST_MASK;
3358 	reg |= RXQ_CFG_RSS_MODE_DIS;
3359 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
3360 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3361 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3362 
3363 	/* Configure DMA parameters. */
3364 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3365 	reg |= sc->alc_rcb;
3366 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3367 		reg |= DMA_CFG_CMB_ENB;
3368 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3369 		reg |= DMA_CFG_SMB_ENB;
3370 	else
3371 		reg |= DMA_CFG_SMB_DIS;
3372 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3373 	    DMA_CFG_RD_BURST_SHIFT;
3374 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3375 	    DMA_CFG_WR_BURST_SHIFT;
3376 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3377 	    DMA_CFG_RD_DELAY_CNT_MASK;
3378 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3379 	    DMA_CFG_WR_DELAY_CNT_MASK;
3380 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3381 
3382 	/*
3383 	 * Configure Tx/Rx MACs.
3384 	 *  - Auto-padding for short frames.
3385 	 *  - Enable CRC generation.
3386 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3387 	 *  is followed after detection of link establishment.
3388 	 *  AR813x/AR815x always does checksum computation regardless
3389 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3390 	 *  have bug in protocol field in Rx return structure so
3391 	 *  these controllers can't handle fragmented frames. Disable
3392 	 *  Rx checksum offloading until there is a newer controller
3393 	 *  that has sane implementation.
3394 	 */
3395 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3396 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3397 	    MAC_CFG_PREAMBLE_MASK);
3398 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
3399 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
3400 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2)
3401 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3402 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3403 		reg |= MAC_CFG_SPEED_10_100;
3404 	else
3405 		reg |= MAC_CFG_SPEED_1000;
3406 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3407 
3408 	/* Set up the receive filter. */
3409 	alc_rxfilter(sc);
3410 	alc_rxvlan(sc);
3411 
3412 	/* Acknowledge all pending interrupts and clear it. */
3413 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3414 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3415 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3416 
3417 	sc->alc_flags &= ~ALC_FLAG_LINK;
3418 	/* Switch to the current media. */
3419 	mii_mediachg(mii);
3420 
3421 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3422 
3423 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3424 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3425 }
3426 
3427 static void
3428 alc_stop(struct alc_softc *sc)
3429 {
3430 	struct ifnet *ifp;
3431 	struct alc_txdesc *txd;
3432 	struct alc_rxdesc *rxd;
3433 	uint32_t reg;
3434 	int i;
3435 
3436 	ALC_LOCK_ASSERT(sc);
3437 	/*
3438 	 * Mark the interface down and cancel the watchdog timer.
3439 	 */
3440 	ifp = sc->alc_ifp;
3441 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3442 	sc->alc_flags &= ~ALC_FLAG_LINK;
3443 	callout_stop(&sc->alc_tick_ch);
3444 	sc->alc_watchdog_timer = 0;
3445 	alc_stats_update(sc);
3446 	/* Disable interrupts. */
3447 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3448 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3449 	alc_stop_queue(sc);
3450 	/* Disable DMA. */
3451 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3452 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3453 	reg |= DMA_CFG_SMB_DIS;
3454 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3455 	DELAY(1000);
3456 	/* Stop Rx/Tx MACs. */
3457 	alc_stop_mac(sc);
3458 	/* Disable interrupts which might be touched in taskq handler. */
3459 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3460 
3461 	/* Reclaim Rx buffers that have been processed. */
3462 	if (sc->alc_cdata.alc_rxhead != NULL)
3463 		m_freem(sc->alc_cdata.alc_rxhead);
3464 	ALC_RXCHAIN_RESET(sc);
3465 	/*
3466 	 * Free Tx/Rx mbufs still in the queues.
3467 	 */
3468 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3469 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3470 		if (rxd->rx_m != NULL) {
3471 			bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
3472 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3473 			bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
3474 			    rxd->rx_dmamap);
3475 			m_freem(rxd->rx_m);
3476 			rxd->rx_m = NULL;
3477 		}
3478 	}
3479 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3480 		txd = &sc->alc_cdata.alc_txdesc[i];
3481 		if (txd->tx_m != NULL) {
3482 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
3483 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3484 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
3485 			    txd->tx_dmamap);
3486 			m_freem(txd->tx_m);
3487 			txd->tx_m = NULL;
3488 		}
3489 	}
3490 }
3491 
3492 static void
3493 alc_stop_mac(struct alc_softc *sc)
3494 {
3495 	uint32_t reg;
3496 	int i;
3497 
3498 	ALC_LOCK_ASSERT(sc);
3499 
3500 	/* Disable Rx/Tx MAC. */
3501 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3502 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3503 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
3504 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3505 	}
3506 	for (i = ALC_TIMEOUT; i > 0; i--) {
3507 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3508 		if (reg == 0)
3509 			break;
3510 		DELAY(10);
3511 	}
3512 	if (i == 0)
3513 		device_printf(sc->alc_dev,
3514 		    "could not disable Rx/Tx MAC(0x%08x)!\n", reg);
3515 }
3516 
3517 static void
3518 alc_start_queue(struct alc_softc *sc)
3519 {
3520 	uint32_t qcfg[] = {
3521 		0,
3522 		RXQ_CFG_QUEUE0_ENB,
3523 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3524 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3525 		RXQ_CFG_ENB
3526 	};
3527 	uint32_t cfg;
3528 
3529 	ALC_LOCK_ASSERT(sc);
3530 
3531 	/* Enable RxQ. */
3532 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3533 	cfg &= ~RXQ_CFG_ENB;
3534 	cfg |= qcfg[1];
3535 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3536 	/* Enable TxQ. */
3537 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3538 	cfg |= TXQ_CFG_ENB;
3539 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3540 }
3541 
3542 static void
3543 alc_stop_queue(struct alc_softc *sc)
3544 {
3545 	uint32_t reg;
3546 	int i;
3547 
3548 	ALC_LOCK_ASSERT(sc);
3549 
3550 	/* Disable RxQ. */
3551 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3552 	if ((reg & RXQ_CFG_ENB) != 0) {
3553 		reg &= ~RXQ_CFG_ENB;
3554 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3555 	}
3556 	/* Disable TxQ. */
3557 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3558 	if ((reg & TXQ_CFG_ENB) == 0) {
3559 		reg &= ~TXQ_CFG_ENB;
3560 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3561 	}
3562 	for (i = ALC_TIMEOUT; i > 0; i--) {
3563 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3564 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3565 			break;
3566 		DELAY(10);
3567 	}
3568 	if (i == 0)
3569 		device_printf(sc->alc_dev,
3570 		    "could not disable RxQ/TxQ (0x%08x)!\n", reg);
3571 }
3572 
3573 static void
3574 alc_init_tx_ring(struct alc_softc *sc)
3575 {
3576 	struct alc_ring_data *rd;
3577 	struct alc_txdesc *txd;
3578 	int i;
3579 
3580 	ALC_LOCK_ASSERT(sc);
3581 
3582 	sc->alc_cdata.alc_tx_prod = 0;
3583 	sc->alc_cdata.alc_tx_cons = 0;
3584 	sc->alc_cdata.alc_tx_cnt = 0;
3585 
3586 	rd = &sc->alc_rdata;
3587 	bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
3588 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3589 		txd = &sc->alc_cdata.alc_txdesc[i];
3590 		txd->tx_m = NULL;
3591 	}
3592 
3593 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
3594 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
3595 }
3596 
3597 static int
3598 alc_init_rx_ring(struct alc_softc *sc)
3599 {
3600 	struct alc_ring_data *rd;
3601 	struct alc_rxdesc *rxd;
3602 	int i;
3603 
3604 	ALC_LOCK_ASSERT(sc);
3605 
3606 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3607 	sc->alc_morework = 0;
3608 	rd = &sc->alc_rdata;
3609 	bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
3610 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3611 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3612 		rxd->rx_m = NULL;
3613 		rxd->rx_desc = &rd->alc_rx_ring[i];
3614 		if (alc_newbuf(sc, rxd) != 0)
3615 			return (ENOBUFS);
3616 	}
3617 
3618 	/*
3619 	 * Since controller does not update Rx descriptors, driver
3620 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3621 	 * is enough to ensure coherence.
3622 	 */
3623 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
3624 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
3625 	/* Let controller know availability of new Rx buffers. */
3626 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3627 
3628 	return (0);
3629 }
3630 
3631 static void
3632 alc_init_rr_ring(struct alc_softc *sc)
3633 {
3634 	struct alc_ring_data *rd;
3635 
3636 	ALC_LOCK_ASSERT(sc);
3637 
3638 	sc->alc_cdata.alc_rr_cons = 0;
3639 	ALC_RXCHAIN_RESET(sc);
3640 
3641 	rd = &sc->alc_rdata;
3642 	bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
3643 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
3644 	    sc->alc_cdata.alc_rr_ring_map,
3645 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3646 }
3647 
3648 static void
3649 alc_init_cmb(struct alc_softc *sc)
3650 {
3651 	struct alc_ring_data *rd;
3652 
3653 	ALC_LOCK_ASSERT(sc);
3654 
3655 	rd = &sc->alc_rdata;
3656 	bzero(rd->alc_cmb, ALC_CMB_SZ);
3657 	bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
3658 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3659 }
3660 
3661 static void
3662 alc_init_smb(struct alc_softc *sc)
3663 {
3664 	struct alc_ring_data *rd;
3665 
3666 	ALC_LOCK_ASSERT(sc);
3667 
3668 	rd = &sc->alc_rdata;
3669 	bzero(rd->alc_smb, ALC_SMB_SZ);
3670 	bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
3671 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3672 }
3673 
3674 static void
3675 alc_rxvlan(struct alc_softc *sc)
3676 {
3677 	struct ifnet *ifp;
3678 	uint32_t reg;
3679 
3680 	ALC_LOCK_ASSERT(sc);
3681 
3682 	ifp = sc->alc_ifp;
3683 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3684 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3685 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3686 	else
3687 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3688 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3689 }
3690 
3691 static void
3692 alc_rxfilter(struct alc_softc *sc)
3693 {
3694 	struct ifnet *ifp;
3695 	struct ifmultiaddr *ifma;
3696 	uint32_t crc;
3697 	uint32_t mchash[2];
3698 	uint32_t rxcfg;
3699 
3700 	ALC_LOCK_ASSERT(sc);
3701 
3702 	ifp = sc->alc_ifp;
3703 
3704 	bzero(mchash, sizeof(mchash));
3705 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3706 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3707 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3708 		rxcfg |= MAC_CFG_BCAST;
3709 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3710 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3711 			rxcfg |= MAC_CFG_PROMISC;
3712 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3713 			rxcfg |= MAC_CFG_ALLMULTI;
3714 		mchash[0] = 0xFFFFFFFF;
3715 		mchash[1] = 0xFFFFFFFF;
3716 		goto chipit;
3717 	}
3718 
3719 	if_maddr_rlock(ifp);
3720 	TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
3721 		if (ifma->ifma_addr->sa_family != AF_LINK)
3722 			continue;
3723 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3724 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3725 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3726 	}
3727 	if_maddr_runlock(ifp);
3728 
3729 chipit:
3730 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3731 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3732 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3733 }
3734 
3735 static int
3736 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3737 {
3738 	int error, value;
3739 
3740 	if (arg1 == NULL)
3741 		return (EINVAL);
3742 	value = *(int *)arg1;
3743 	error = sysctl_handle_int(oidp, &value, 0, req);
3744 	if (error || req->newptr == NULL)
3745 		return (error);
3746 	if (value < low || value > high)
3747 		return (EINVAL);
3748 	*(int *)arg1 = value;
3749 
3750 	return (0);
3751 }
3752 
3753 static int
3754 sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
3755 {
3756 	return (sysctl_int_range(oidp, arg1, arg2, req,
3757 	    ALC_PROC_MIN, ALC_PROC_MAX));
3758 }
3759 
3760 static int
3761 sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
3762 {
3763 
3764 	return (sysctl_int_range(oidp, arg1, arg2, req,
3765 	    ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));
3766 }
3767