xref: /freebsd/sys/dev/al_eth/al_eth.c (revision dacc43df34a7da82747af82be62cb645eb36f6ca)
1 /*-
2  * Copyright (c) 2015,2016 Annapurna Labs Ltd. and affiliates
3  * All rights reserved.
4  *
5  * Developed by Semihalf.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/kernel.h>
36 #include <sys/kthread.h>
37 #include <sys/lock.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 #include <sys/taskqueue.h>
46 
47 #include <machine/atomic.h>
48 
49 #include "opt_inet.h"
50 #include "opt_inet6.h"
51 
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_var.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 #include <netinet/in.h>
60 #include <net/if_vlan_var.h>
61 #include <netinet/tcp.h>
62 #include <netinet/tcp_lro.h>
63 
64 #ifdef INET
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69 #endif
70 
71 #ifdef INET6
72 #include <netinet/ip6.h>
73 #endif
74 
75 #include <sys/sockio.h>
76 
77 #include <dev/pci/pcireg.h>
78 #include <dev/pci/pcivar.h>
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <al_hal_common.h>
84 #include <al_hal_plat_services.h>
85 #include <al_hal_udma_config.h>
86 #include <al_hal_udma_iofic.h>
87 #include <al_hal_udma_debug.h>
88 #include <al_hal_eth.h>
89 
90 #include "al_eth.h"
91 #include "al_init_eth_lm.h"
92 #include "arm/annapurna/alpine/alpine_serdes.h"
93 
94 #include "miibus_if.h"
95 
96 #define	device_printf_dbg(fmt, ...) do {				\
97 	if (AL_DBG_LEVEL >= AL_DBG_LEVEL_DBG) { AL_DBG_LOCK();		\
98 	    device_printf(fmt, __VA_ARGS__); AL_DBG_UNLOCK();}		\
99 	} while (0)
100 
101 MALLOC_DEFINE(M_IFAL, "if_al_malloc", "All allocated data for AL ETH driver");
102 
103 /* move out to some pci header file */
104 #define	PCI_VENDOR_ID_ANNAPURNA_LABS	0x1c36
105 #define	PCI_DEVICE_ID_AL_ETH		0x0001
106 #define	PCI_DEVICE_ID_AL_ETH_ADVANCED	0x0002
107 #define	PCI_DEVICE_ID_AL_ETH_NIC	0x0003
108 #define	PCI_DEVICE_ID_AL_ETH_FPGA_NIC	0x0030
109 #define	PCI_DEVICE_ID_AL_CRYPTO		0x0011
110 #define	PCI_DEVICE_ID_AL_CRYPTO_VF	0x8011
111 #define	PCI_DEVICE_ID_AL_RAID_DMA	0x0021
112 #define	PCI_DEVICE_ID_AL_RAID_DMA_VF	0x8021
113 #define	PCI_DEVICE_ID_AL_USB		0x0041
114 
115 #define	MAC_ADDR_STR "%02x:%02x:%02x:%02x:%02x:%02x"
116 #define	MAC_ADDR(addr) addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]
117 
118 #define	AL_ETH_MAC_TABLE_UNICAST_IDX_BASE	0
119 #define	AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT	4
120 #define	AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX	(AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + \
121 						 AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT)
122 
123 #define	AL_ETH_MAC_TABLE_DROP_IDX		(AL_ETH_FWD_MAC_NUM - 1)
124 #define	AL_ETH_MAC_TABLE_BROADCAST_IDX		(AL_ETH_MAC_TABLE_DROP_IDX - 1)
125 
126 #define	AL_ETH_THASH_UDMA_SHIFT		0
127 #define	AL_ETH_THASH_UDMA_MASK		(0xF << AL_ETH_THASH_UDMA_SHIFT)
128 
129 #define	AL_ETH_THASH_Q_SHIFT		4
130 #define	AL_ETH_THASH_Q_MASK		(0x3 << AL_ETH_THASH_Q_SHIFT)
131 
132 /* the following defines should be moved to hal */
133 #define	AL_ETH_FSM_ENTRY_IPV4_TCP		0
134 #define	AL_ETH_FSM_ENTRY_IPV4_UDP		1
135 #define	AL_ETH_FSM_ENTRY_IPV6_TCP		2
136 #define	AL_ETH_FSM_ENTRY_IPV6_UDP		3
137 #define	AL_ETH_FSM_ENTRY_IPV6_NO_UDP_TCP	4
138 #define	AL_ETH_FSM_ENTRY_IPV4_NO_UDP_TCP	5
139 
140 /* FSM DATA format */
141 #define	AL_ETH_FSM_DATA_OUTER_2_TUPLE	0
142 #define	AL_ETH_FSM_DATA_OUTER_4_TUPLE	1
143 #define	AL_ETH_FSM_DATA_INNER_2_TUPLE	2
144 #define	AL_ETH_FSM_DATA_INNER_4_TUPLE	3
145 
146 #define	AL_ETH_FSM_DATA_HASH_SEL	(1 << 2)
147 
148 #define	AL_ETH_FSM_DATA_DEFAULT_Q	0
149 #define	AL_ETH_FSM_DATA_DEFAULT_UDMA	0
150 
151 #define	AL_BR_SIZE	512
152 #define	AL_TSO_SIZE	65500
153 #define	AL_DEFAULT_MTU	1500
154 
155 #define	CSUM_OFFLOAD		(CSUM_IP|CSUM_TCP|CSUM_UDP|CSUM_SCTP)
156 
157 #define	AL_IP_ALIGNMENT_OFFSET	2
158 
159 #define	SFP_I2C_ADDR		0x50
160 
161 #define	AL_MASK_GROUP_A_INT	0x7
162 #define	AL_MASK_GROUP_B_INT	0xF
163 #define	AL_MASK_GROUP_C_INT	0xF
164 #define	AL_MASK_GROUP_D_INT	0xFFFFFFFF
165 
166 #define	AL_REG_OFFSET_FORWARD_INTR	(0x1800000 + 0x1210)
167 #define	AL_EN_FORWARD_INTR	0x1FFFF
168 #define	AL_DIS_FORWARD_INTR	0
169 
170 #define	AL_M2S_MASK_INIT	0x480
171 #define	AL_S2M_MASK_INIT	0x1E0
172 #define	AL_M2S_S2M_MASK_NOT_INT	(0x3f << 25)
173 
174 #define	AL_10BASE_T_SPEED	10
175 #define	AL_100BASE_TX_SPEED	100
176 #define	AL_1000BASE_T_SPEED	1000
177 
178 static devclass_t al_devclass;
179 
180 #define	AL_RX_LOCK_INIT(_sc)	mtx_init(&((_sc)->if_rx_lock), "ALRXL", "ALRXL", MTX_DEF)
181 #define	AL_RX_LOCK(_sc)		mtx_lock(&((_sc)->if_rx_lock))
182 #define	AL_RX_UNLOCK(_sc)	mtx_unlock(&((_sc)->if_rx_lock))
183 
184 /* helper functions */
185 static int al_is_device_supported(device_t);
186 
187 static void al_eth_init_rings(struct al_eth_adapter *);
188 static void al_eth_flow_ctrl_disable(struct al_eth_adapter *);
189 int al_eth_fpga_read_pci_config(void *, int, uint32_t *);
190 int al_eth_fpga_write_pci_config(void *, int, uint32_t);
191 int al_eth_read_pci_config(void *, int, uint32_t *);
192 int al_eth_write_pci_config(void *, int, uint32_t);
193 void al_eth_irq_config(uint32_t *, uint32_t);
194 void al_eth_forward_int_config(uint32_t *, uint32_t);
195 static void al_eth_start_xmit(void *, int);
196 static void al_eth_rx_recv_work(void *, int);
197 static int al_eth_up(struct al_eth_adapter *);
198 static void al_eth_down(struct al_eth_adapter *);
199 static void al_eth_interrupts_unmask(struct al_eth_adapter *);
200 static void al_eth_interrupts_mask(struct al_eth_adapter *);
201 static int al_eth_check_mtu(struct al_eth_adapter *, int);
202 static uint64_t al_get_counter(struct ifnet *, ift_counter);
203 static void al_eth_req_rx_buff_size(struct al_eth_adapter *, int);
204 static int al_eth_board_params_init(struct al_eth_adapter *);
205 static int al_media_update(struct ifnet *);
206 static void al_media_status(struct ifnet *, struct ifmediareq *);
207 static int al_eth_function_reset(struct al_eth_adapter *);
208 static int al_eth_hw_init_adapter(struct al_eth_adapter *);
209 static void al_eth_serdes_init(struct al_eth_adapter *);
210 static void al_eth_lm_config(struct al_eth_adapter *);
211 static int al_eth_hw_init(struct al_eth_adapter *);
212 
213 static void al_tick_stats(void *);
214 
215 /* ifnet entry points */
216 static void al_init(void *);
217 static int al_mq_start(struct ifnet *, struct mbuf *);
218 static void al_qflush(struct ifnet *);
219 static int al_ioctl(struct ifnet * ifp, u_long, caddr_t);
220 
221 /* bus entry points */
222 static int al_probe(device_t);
223 static int al_attach(device_t);
224 static int al_detach(device_t);
225 static int al_shutdown(device_t);
226 
227 /* mii bus support routines */
228 static int al_miibus_readreg(device_t, int, int);
229 static int al_miibus_writereg(device_t, int, int, int);
230 static void al_miibus_statchg(device_t);
231 static void al_miibus_linkchg(device_t);
232 
233 struct al_eth_adapter* g_adapters[16];
234 uint32_t g_adapters_count;
235 
236 /* flag for napi-like mbuf processing, controlled from sysctl */
237 static int napi = 0;
238 
239 static device_method_t al_methods[] = {
240 	/* Device interface */
241 	DEVMETHOD(device_probe,		al_probe),
242 	DEVMETHOD(device_attach,	al_attach),
243 	DEVMETHOD(device_detach,	al_detach),
244 	DEVMETHOD(device_shutdown,	al_shutdown),
245 
246 	DEVMETHOD(miibus_readreg,	al_miibus_readreg),
247 	DEVMETHOD(miibus_writereg,	al_miibus_writereg),
248 	DEVMETHOD(miibus_statchg,	al_miibus_statchg),
249 	DEVMETHOD(miibus_linkchg,	al_miibus_linkchg),
250 	{ 0, 0 }
251 };
252 
253 static driver_t al_driver = {
254 	"al",
255 	al_methods,
256 	sizeof(struct al_eth_adapter),
257 };
258 
259 DRIVER_MODULE(al, pci, al_driver, al_devclass, 0, 0);
260 DRIVER_MODULE(miibus, al, miibus_driver, miibus_devclass, 0, 0);
261 
262 static int
263 al_probe(device_t dev)
264 {
265 	if ((al_is_device_supported(dev)) != 0) {
266 		device_set_desc(dev, "al");
267 		return (BUS_PROBE_DEFAULT);
268 	}
269 	return (ENXIO);
270 }
271 
272 static int
273 al_attach(device_t dev)
274 {
275 	struct al_eth_adapter *adapter;
276 	struct sysctl_oid_list *child;
277 	struct sysctl_ctx_list *ctx;
278 	struct sysctl_oid *tree;
279 	struct ifnet *ifp;
280 	uint32_t dev_id;
281 	uint32_t rev_id;
282 	int bar_udma;
283 	int bar_mac;
284 	int bar_ec;
285 	int err;
286 
287 	err = 0;
288 	ifp = NULL;
289 	dev_id = rev_id = 0;
290 	ctx = device_get_sysctl_ctx(dev);
291 	tree = SYSCTL_PARENT(device_get_sysctl_tree(dev));
292 	child = SYSCTL_CHILDREN(tree);
293 
294 	if (g_adapters_count == 0) {
295 		SYSCTL_ADD_INT(ctx, child, OID_AUTO, "napi",
296 		    CTLFLAG_RW, &napi, 0, "Use pseudo-napi mechanism");
297 	}
298 	adapter = device_get_softc(dev);
299 	adapter->dev = dev;
300 	adapter->board_type = ALPINE_INTEGRATED;
301 	snprintf(adapter->name, AL_ETH_NAME_MAX_LEN, "%s",
302 	    device_get_nameunit(dev));
303 	AL_RX_LOCK_INIT(adapter);
304 
305 	g_adapters[g_adapters_count] = adapter;
306 
307 	bar_udma = PCIR_BAR(AL_ETH_UDMA_BAR);
308 	adapter->udma_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
309 	    &bar_udma, RF_ACTIVE);
310 	if (adapter->udma_res == NULL) {
311 		device_printf(adapter->dev,
312 		    "could not allocate memory resources for DMA.\n");
313 		err = ENOMEM;
314 		goto err_res_dma;
315 	}
316 	adapter->udma_base = al_bus_dma_to_va(rman_get_bustag(adapter->udma_res),
317 	    rman_get_bushandle(adapter->udma_res));
318 	bar_mac = PCIR_BAR(AL_ETH_MAC_BAR);
319 	adapter->mac_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
320 	    &bar_mac, RF_ACTIVE);
321 	if (adapter->mac_res == NULL) {
322 		device_printf(adapter->dev,
323 		    "could not allocate memory resources for MAC.\n");
324 		err = ENOMEM;
325 		goto err_res_mac;
326 	}
327 	adapter->mac_base = al_bus_dma_to_va(rman_get_bustag(adapter->mac_res),
328 	    rman_get_bushandle(adapter->mac_res));
329 
330 	bar_ec = PCIR_BAR(AL_ETH_EC_BAR);
331 	adapter->ec_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &bar_ec,
332 	    RF_ACTIVE);
333 	if (adapter->ec_res == NULL) {
334 		device_printf(adapter->dev,
335 		    "could not allocate memory resources for EC.\n");
336 		err = ENOMEM;
337 		goto err_res_ec;
338 	}
339 	adapter->ec_base = al_bus_dma_to_va(rman_get_bustag(adapter->ec_res),
340 	    rman_get_bushandle(adapter->ec_res));
341 
342 	adapter->netdev = ifp = if_alloc(IFT_ETHER);
343 
344 	adapter->netdev->if_link_state = LINK_STATE_DOWN;
345 
346 	ifp->if_softc = adapter;
347 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
348 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
349 	ifp->if_flags = ifp->if_drv_flags;
350 	ifp->if_flags |= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_ALLMULTI;
351 	ifp->if_transmit = al_mq_start;
352 	ifp->if_qflush = al_qflush;
353 	ifp->if_ioctl = al_ioctl;
354 	ifp->if_init = al_init;
355 	ifp->if_get_counter = al_get_counter;
356 	ifp->if_mtu = AL_DEFAULT_MTU;
357 
358 	adapter->if_flags = ifp->if_flags;
359 
360 	ifp->if_capabilities = ifp->if_capenable = 0;
361 
362 	ifp->if_capabilities |= IFCAP_HWCSUM |
363 	    IFCAP_HWCSUM_IPV6 | IFCAP_TSO |
364 	    IFCAP_LRO | IFCAP_JUMBO_MTU;
365 
366 	ifp->if_capenable = ifp->if_capabilities;
367 
368 	adapter->id_number = g_adapters_count;
369 
370 	if (adapter->board_type == ALPINE_INTEGRATED) {
371 		dev_id = pci_get_device(adapter->dev);
372 		rev_id = pci_get_revid(adapter->dev);
373 	} else {
374 		al_eth_fpga_read_pci_config(adapter->internal_pcie_base,
375 		    PCIR_DEVICE, &dev_id);
376 		al_eth_fpga_read_pci_config(adapter->internal_pcie_base,
377 		    PCIR_REVID, &rev_id);
378 	}
379 
380 	adapter->dev_id = dev_id;
381 	adapter->rev_id = rev_id;
382 
383 	/* set default ring sizes */
384 	adapter->tx_ring_count = AL_ETH_DEFAULT_TX_SW_DESCS;
385 	adapter->tx_descs_count = AL_ETH_DEFAULT_TX_HW_DESCS;
386 	adapter->rx_ring_count = AL_ETH_DEFAULT_RX_DESCS;
387 	adapter->rx_descs_count = AL_ETH_DEFAULT_RX_DESCS;
388 
389 	adapter->num_tx_queues = AL_ETH_NUM_QUEUES;
390 	adapter->num_rx_queues = AL_ETH_NUM_QUEUES;
391 
392 	adapter->small_copy_len	= AL_ETH_DEFAULT_SMALL_PACKET_LEN;
393 	adapter->link_poll_interval = AL_ETH_DEFAULT_LINK_POLL_INTERVAL;
394 	adapter->max_rx_buff_alloc_size = AL_ETH_DEFAULT_MAX_RX_BUFF_ALLOC_SIZE;
395 
396 	al_eth_req_rx_buff_size(adapter, adapter->netdev->if_mtu);
397 
398 	adapter->link_config.force_1000_base_x = AL_ETH_DEFAULT_FORCE_1000_BASEX;
399 
400 	err = al_eth_board_params_init(adapter);
401 	if (err != 0)
402 		goto err;
403 
404 	if (adapter->mac_mode == AL_ETH_MAC_MODE_10GbE_Serial) {
405 		ifmedia_init(&adapter->media, IFM_IMASK,
406 		    al_media_update, al_media_status);
407 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_LX, 0, NULL);
408 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_LR, 0, NULL);
409 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
410 		ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
411 	}
412 
413 	al_eth_function_reset(adapter);
414 
415 	err = al_eth_hw_init_adapter(adapter);
416 	if (err != 0)
417 		goto err;
418 
419 	al_eth_init_rings(adapter);
420 	g_adapters_count++;
421 
422 	al_eth_lm_config(adapter);
423 	mtx_init(&adapter->stats_mtx, "AlStatsMtx", NULL, MTX_DEF);
424 	mtx_init(&adapter->wd_mtx, "AlWdMtx", NULL, MTX_DEF);
425 	callout_init_mtx(&adapter->stats_callout, &adapter->stats_mtx, 0);
426 	callout_init_mtx(&adapter->wd_callout, &adapter->wd_mtx, 0);
427 
428 	ether_ifattach(ifp, adapter->mac_addr);
429 	ifp->if_mtu = AL_DEFAULT_MTU;
430 
431 	if (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII) {
432 		al_eth_hw_init(adapter);
433 
434 		/* Attach PHY(s) */
435 		err = mii_attach(adapter->dev, &adapter->miibus, adapter->netdev,
436 		    al_media_update, al_media_status, BMSR_DEFCAPMASK, 0,
437 		    MII_OFFSET_ANY, 0);
438 		if (err != 0) {
439 			device_printf(adapter->dev, "attaching PHYs failed\n");
440 			return (err);
441 		}
442 
443 		adapter->mii = device_get_softc(adapter->miibus);
444 	}
445 
446 	return (err);
447 
448 err:
449 	bus_release_resource(dev, SYS_RES_MEMORY, bar_ec, adapter->ec_res);
450 err_res_ec:
451 	bus_release_resource(dev, SYS_RES_MEMORY, bar_mac, adapter->mac_res);
452 err_res_mac:
453 	bus_release_resource(dev, SYS_RES_MEMORY, bar_udma, adapter->udma_res);
454 err_res_dma:
455 	return (err);
456 }
457 
458 static int
459 al_detach(device_t dev)
460 {
461 	struct al_eth_adapter *adapter;
462 
463 	adapter = device_get_softc(dev);
464 	ether_ifdetach(adapter->netdev);
465 
466 	mtx_destroy(&adapter->stats_mtx);
467 	mtx_destroy(&adapter->wd_mtx);
468 
469 	al_eth_down(adapter);
470 
471 	bus_release_resource(dev, SYS_RES_IRQ,    0, adapter->irq_res);
472 	bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->ec_res);
473 	bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->mac_res);
474 	bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->udma_res);
475 
476 	return (0);
477 }
478 
479 int
480 al_eth_fpga_read_pci_config(void *handle, int where, uint32_t *val)
481 {
482 
483 	/* handle is the base address of the adapter */
484 	*val = al_reg_read32((void*)((u_long)handle + where));
485 
486 	return (0);
487 }
488 
489 int
490 al_eth_fpga_write_pci_config(void *handle, int where, uint32_t val)
491 {
492 
493 	/* handle is the base address of the adapter */
494 	al_reg_write32((void*)((u_long)handle + where), val);
495 	return (0);
496 }
497 
498 int
499 al_eth_read_pci_config(void *handle, int where, uint32_t *val)
500 {
501 
502 	/* handle is a pci_dev */
503 	*val = pci_read_config((device_t)handle, where, sizeof(*val));
504 	return (0);
505 }
506 
507 int
508 al_eth_write_pci_config(void *handle, int where, uint32_t val)
509 {
510 
511 	/* handle is a pci_dev */
512 	pci_write_config((device_t)handle, where, val, sizeof(val));
513 	return (0);
514 }
515 
516 void
517 al_eth_irq_config(uint32_t *offset, uint32_t value)
518 {
519 
520 	al_reg_write32_relaxed(offset, value);
521 }
522 
523 void
524 al_eth_forward_int_config(uint32_t *offset, uint32_t value)
525 {
526 
527 	al_reg_write32(offset, value);
528 }
529 
530 static void
531 al_eth_serdes_init(struct al_eth_adapter *adapter)
532 {
533 	void __iomem	*serdes_base;
534 
535 	adapter->serdes_init = false;
536 
537 	serdes_base = alpine_serdes_resource_get(adapter->serdes_grp);
538 	if (serdes_base == NULL) {
539 		device_printf(adapter->dev, "serdes_base get failed!\n");
540 		return;
541 	}
542 
543 	serdes_base = al_bus_dma_to_va(serdes_tag, serdes_base);
544 
545 	al_serdes_handle_grp_init(serdes_base, adapter->serdes_grp,
546 	    &adapter->serdes_obj);
547 
548 	adapter->serdes_init = true;
549 }
550 
551 static void
552 al_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
553 {
554 	bus_addr_t *paddr;
555 
556 	paddr = arg;
557 	*paddr = segs->ds_addr;
558 }
559 
560 static int
561 al_dma_alloc_coherent(struct device *dev, bus_dma_tag_t *tag, bus_dmamap_t *map,
562     bus_addr_t *baddr, void **vaddr, uint32_t size)
563 {
564 	int ret;
565 	uint32_t maxsize = ((size - 1)/PAGE_SIZE + 1) * PAGE_SIZE;
566 
567 	ret = bus_dma_tag_create(bus_get_dma_tag(dev), 8, 0,
568 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
569 	    maxsize, 1, maxsize, BUS_DMA_COHERENT, NULL, NULL, tag);
570 	if (ret != 0) {
571 		device_printf(dev,
572 		    "failed to create bus tag, ret = %d\n", ret);
573 		return (ret);
574 	}
575 
576 	ret = bus_dmamem_alloc(*tag, vaddr,
577 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
578 	if (ret != 0) {
579 		device_printf(dev,
580 		    "failed to allocate dmamem, ret = %d\n", ret);
581 		return (ret);
582 	}
583 
584 	ret = bus_dmamap_load(*tag, *map, *vaddr,
585 	    size, al_dma_map_addr, baddr, 0);
586 	if (ret != 0) {
587 		device_printf(dev,
588 		    "failed to allocate bus_dmamap_load, ret = %d\n", ret);
589 		return (ret);
590 	}
591 
592 	return (0);
593 }
594 
595 static void
596 al_dma_free_coherent(bus_dma_tag_t tag, bus_dmamap_t map, void *vaddr)
597 {
598 
599 	bus_dmamap_unload(tag, map);
600 	bus_dmamem_free(tag, vaddr, map);
601 	bus_dma_tag_destroy(tag);
602 }
603 
604 static void
605 al_eth_mac_table_unicast_add(struct al_eth_adapter *adapter,
606     uint8_t idx, uint8_t *addr, uint8_t udma_mask)
607 {
608 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
609 
610 	memcpy(entry.addr, adapter->mac_addr, sizeof(adapter->mac_addr));
611 
612 	memset(entry.mask, 0xff, sizeof(entry.mask));
613 	entry.rx_valid = true;
614 	entry.tx_valid = false;
615 	entry.udma_mask = udma_mask;
616 	entry.filter = false;
617 
618 	device_printf_dbg(adapter->dev,
619 	    "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
620 	    __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
621 
622 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
623 }
624 
625 static void
626 al_eth_mac_table_all_multicast_add(struct al_eth_adapter *adapter, uint8_t idx,
627     uint8_t udma_mask)
628 {
629 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
630 
631 	memset(entry.addr, 0x00, sizeof(entry.addr));
632 	memset(entry.mask, 0x00, sizeof(entry.mask));
633 	entry.mask[0] |= 1;
634 	entry.addr[0] |= 1;
635 
636 	entry.rx_valid = true;
637 	entry.tx_valid = false;
638 	entry.udma_mask = udma_mask;
639 	entry.filter = false;
640 
641 	device_printf_dbg(adapter->dev,
642 	    "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
643 	    __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
644 
645 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
646 }
647 
648 static void
649 al_eth_mac_table_broadcast_add(struct al_eth_adapter *adapter,
650     uint8_t idx, uint8_t udma_mask)
651 {
652 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
653 
654 	memset(entry.addr, 0xff, sizeof(entry.addr));
655 	memset(entry.mask, 0xff, sizeof(entry.mask));
656 
657 	entry.rx_valid = true;
658 	entry.tx_valid = false;
659 	entry.udma_mask = udma_mask;
660 	entry.filter = false;
661 
662 	device_printf_dbg(adapter->dev,
663 	    "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
664 	    __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
665 
666 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
667 }
668 
669 static void
670 al_eth_mac_table_promiscuous_set(struct al_eth_adapter *adapter,
671     boolean_t promiscuous)
672 {
673 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
674 
675 	memset(entry.addr, 0x00, sizeof(entry.addr));
676 	memset(entry.mask, 0x00, sizeof(entry.mask));
677 
678 	entry.rx_valid = true;
679 	entry.tx_valid = false;
680 	entry.udma_mask = (promiscuous) ? 1 : 0;
681 	entry.filter = (promiscuous) ? false : true;
682 
683 	device_printf_dbg(adapter->dev, "%s: %s promiscuous mode\n",
684 	    __func__, (promiscuous) ? "enter" : "exit");
685 
686 	al_eth_fwd_mac_table_set(&adapter->hal_adapter,
687 	    AL_ETH_MAC_TABLE_DROP_IDX, &entry);
688 }
689 
690 static void
691 al_eth_set_thash_table_entry(struct al_eth_adapter *adapter, uint8_t idx,
692     uint8_t udma, uint32_t queue)
693 {
694 
695 	if (udma != 0)
696 		panic("only UDMA0 is supporter");
697 
698 	if (queue >= AL_ETH_NUM_QUEUES)
699 		panic("invalid queue number");
700 
701 	al_eth_thash_table_set(&adapter->hal_adapter, idx, udma, queue);
702 }
703 
704 /* init FSM, no tunneling supported yet, if packet is tcp/udp over ipv4/ipv6, use 4 tuple hash */
705 static void
706 al_eth_fsm_table_init(struct al_eth_adapter *adapter)
707 {
708 	uint32_t val;
709 	int i;
710 
711 	for (i = 0; i < AL_ETH_RX_FSM_TABLE_SIZE; i++) {
712 		uint8_t outer_type = AL_ETH_FSM_ENTRY_OUTER(i);
713 		switch (outer_type) {
714 		case AL_ETH_FSM_ENTRY_IPV4_TCP:
715 		case AL_ETH_FSM_ENTRY_IPV4_UDP:
716 		case AL_ETH_FSM_ENTRY_IPV6_TCP:
717 		case AL_ETH_FSM_ENTRY_IPV6_UDP:
718 			val = AL_ETH_FSM_DATA_OUTER_4_TUPLE |
719 			    AL_ETH_FSM_DATA_HASH_SEL;
720 			break;
721 		case AL_ETH_FSM_ENTRY_IPV6_NO_UDP_TCP:
722 		case AL_ETH_FSM_ENTRY_IPV4_NO_UDP_TCP:
723 			val = AL_ETH_FSM_DATA_OUTER_2_TUPLE |
724 			    AL_ETH_FSM_DATA_HASH_SEL;
725 			break;
726 		default:
727 			val = AL_ETH_FSM_DATA_DEFAULT_Q |
728 			    AL_ETH_FSM_DATA_DEFAULT_UDMA;
729 		}
730 		al_eth_fsm_table_set(&adapter->hal_adapter, i, val);
731 	}
732 }
733 
734 static void
735 al_eth_mac_table_entry_clear(struct al_eth_adapter *adapter,
736     uint8_t idx)
737 {
738 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
739 
740 	device_printf_dbg(adapter->dev, "%s: clear entry %d\n", __func__, idx);
741 
742 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
743 }
744 
745 static int
746 al_eth_hw_init_adapter(struct al_eth_adapter *adapter)
747 {
748 	struct al_eth_adapter_params *params = &adapter->eth_hal_params;
749 	int rc;
750 
751 	/* params->dev_id = adapter->dev_id; */
752 	params->rev_id = adapter->rev_id;
753 	params->udma_id = 0;
754 	params->enable_rx_parser = 1; /* enable rx epe parser*/
755 	params->udma_regs_base = adapter->udma_base; /* UDMA register base address */
756 	params->ec_regs_base = adapter->ec_base; /* Ethernet controller registers base address */
757 	params->mac_regs_base = adapter->mac_base; /* Ethernet MAC registers base address */
758 	params->name = adapter->name;
759 	params->serdes_lane = adapter->serdes_lane;
760 
761 	rc = al_eth_adapter_init(&adapter->hal_adapter, params);
762 	if (rc != 0)
763 		device_printf(adapter->dev, "%s failed at hal init!\n",
764 		    __func__);
765 
766 	if ((adapter->board_type == ALPINE_NIC) ||
767 	    (adapter->board_type == ALPINE_FPGA_NIC)) {
768 		/* in pcie NIC mode, force eth UDMA to access PCIE0 using the vmid */
769 		struct al_udma_gen_tgtid_conf conf;
770 		int i;
771 		for (i = 0; i < DMA_MAX_Q; i++) {
772 			conf.tx_q_conf[i].queue_en = AL_TRUE;
773 			conf.tx_q_conf[i].desc_en = AL_FALSE;
774 			conf.tx_q_conf[i].tgtid = 0x100; /* for access from PCIE0 */
775 			conf.rx_q_conf[i].queue_en = AL_TRUE;
776 			conf.rx_q_conf[i].desc_en = AL_FALSE;
777 			conf.rx_q_conf[i].tgtid = 0x100; /* for access from PCIE0 */
778 		}
779 		al_udma_gen_tgtid_conf_set(adapter->udma_base, &conf);
780 	}
781 
782 	return (rc);
783 }
784 
785 static void
786 al_eth_lm_config(struct al_eth_adapter *adapter)
787 {
788 	struct al_eth_lm_init_params params = {0};
789 
790 	params.adapter = &adapter->hal_adapter;
791 	params.serdes_obj = &adapter->serdes_obj;
792 	params.lane = adapter->serdes_lane;
793 	params.sfp_detection = adapter->sfp_detection_needed;
794 	if (adapter->sfp_detection_needed == true) {
795 		params.sfp_bus_id = adapter->i2c_adapter_id;
796 		params.sfp_i2c_addr = SFP_I2C_ADDR;
797 	}
798 
799 	if (adapter->sfp_detection_needed == false) {
800 		switch (adapter->mac_mode) {
801 		case AL_ETH_MAC_MODE_10GbE_Serial:
802 			if ((adapter->lt_en != 0) && (adapter->an_en != 0))
803 				params.default_mode = AL_ETH_LM_MODE_10G_DA;
804 			else
805 				params.default_mode = AL_ETH_LM_MODE_10G_OPTIC;
806 			break;
807 		case AL_ETH_MAC_MODE_SGMII:
808 			params.default_mode = AL_ETH_LM_MODE_1G;
809 			break;
810 		default:
811 			params.default_mode = AL_ETH_LM_MODE_10G_DA;
812 		}
813 	} else
814 		params.default_mode = AL_ETH_LM_MODE_10G_DA;
815 
816 	params.link_training = adapter->lt_en;
817 	params.rx_equal = true;
818 	params.static_values = !adapter->dont_override_serdes;
819 	params.i2c_context = adapter;
820 	params.kr_fec_enable = false;
821 
822 	params.retimer_exist = adapter->retimer.exist;
823 	params.retimer_bus_id = adapter->retimer.bus_id;
824 	params.retimer_i2c_addr = adapter->retimer.i2c_addr;
825 	params.retimer_channel = adapter->retimer.channel;
826 
827 	al_eth_lm_init(&adapter->lm_context, &params);
828 }
829 
830 static int
831 al_eth_board_params_init(struct al_eth_adapter *adapter)
832 {
833 
834 	if (adapter->board_type == ALPINE_NIC) {
835 		adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
836 		adapter->sfp_detection_needed = false;
837 		adapter->phy_exist = false;
838 		adapter->an_en = false;
839 		adapter->lt_en = false;
840 		adapter->ref_clk_freq = AL_ETH_REF_FREQ_375_MHZ;
841 		adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
842 	} else if (adapter->board_type == ALPINE_FPGA_NIC) {
843 		adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
844 		adapter->sfp_detection_needed = false;
845 		adapter->phy_exist = false;
846 		adapter->an_en = false;
847 		adapter->lt_en = false;
848 		adapter->ref_clk_freq = AL_ETH_REF_FREQ_375_MHZ;
849 		adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
850 	} else {
851 		struct al_eth_board_params params;
852 		int rc;
853 
854 		adapter->auto_speed = false;
855 
856 		rc = al_eth_board_params_get(adapter->mac_base, &params);
857 		if (rc != 0) {
858 			device_printf(adapter->dev,
859 			    "board info not available\n");
860 			return (-1);
861 		}
862 
863 		adapter->phy_exist = params.phy_exist == TRUE;
864 		adapter->phy_addr = params.phy_mdio_addr;
865 		adapter->an_en = params.autoneg_enable;
866 		adapter->lt_en = params.kr_lt_enable;
867 		adapter->serdes_grp = params.serdes_grp;
868 		adapter->serdes_lane = params.serdes_lane;
869 		adapter->sfp_detection_needed = params.sfp_plus_module_exist;
870 		adapter->i2c_adapter_id = params.i2c_adapter_id;
871 		adapter->ref_clk_freq = params.ref_clk_freq;
872 		adapter->dont_override_serdes = params.dont_override_serdes;
873 		adapter->link_config.active_duplex = !params.half_duplex;
874 		adapter->link_config.autoneg = !params.an_disable;
875 		adapter->link_config.force_1000_base_x = params.force_1000_base_x;
876 		adapter->retimer.exist = params.retimer_exist;
877 		adapter->retimer.bus_id = params.retimer_bus_id;
878 		adapter->retimer.i2c_addr = params.retimer_i2c_addr;
879 		adapter->retimer.channel = params.retimer_channel;
880 
881 		switch (params.speed) {
882 		default:
883 			device_printf(adapter->dev,
884 			    "%s: invalid speed (%d)\n", __func__, params.speed);
885 		case AL_ETH_BOARD_1G_SPEED_1000M:
886 			adapter->link_config.active_speed = 1000;
887 			break;
888 		case AL_ETH_BOARD_1G_SPEED_100M:
889 			adapter->link_config.active_speed = 100;
890 			break;
891 		case AL_ETH_BOARD_1G_SPEED_10M:
892 			adapter->link_config.active_speed = 10;
893 			break;
894 		}
895 
896 		switch (params.mdio_freq) {
897 		default:
898 			device_printf(adapter->dev,
899 			    "%s: invalid mdio freq (%d)\n", __func__,
900 			    params.mdio_freq);
901 		case AL_ETH_BOARD_MDIO_FREQ_2_5_MHZ:
902 			adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
903 			break;
904 		case AL_ETH_BOARD_MDIO_FREQ_1_MHZ:
905 			adapter->mdio_freq = AL_ETH_MDIO_FREQ_1000_KHZ;
906 			break;
907 		}
908 
909 		switch (params.media_type) {
910 		case AL_ETH_BOARD_MEDIA_TYPE_RGMII:
911 			if (params.sfp_plus_module_exist == TRUE)
912 				/* Backward compatibility */
913 				adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
914 			else
915 				adapter->mac_mode = AL_ETH_MAC_MODE_RGMII;
916 
917 			adapter->use_lm = false;
918 			break;
919 		case AL_ETH_BOARD_MEDIA_TYPE_SGMII:
920 			adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
921 			adapter->use_lm = true;
922 			break;
923 		case AL_ETH_BOARD_MEDIA_TYPE_10GBASE_SR:
924 			adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
925 			adapter->use_lm = true;
926 			break;
927 		case AL_ETH_BOARD_MEDIA_TYPE_AUTO_DETECT:
928 			adapter->sfp_detection_needed = TRUE;
929 			adapter->auto_speed = false;
930 			adapter->use_lm = true;
931 			break;
932 		case AL_ETH_BOARD_MEDIA_TYPE_AUTO_DETECT_AUTO_SPEED:
933 			adapter->sfp_detection_needed = TRUE;
934 			adapter->auto_speed = true;
935 			adapter->mac_mode_set = false;
936 			adapter->use_lm = true;
937 
938 			adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
939 			break;
940 		default:
941 			device_printf(adapter->dev,
942 			    "%s: unsupported media type %d\n",
943 			    __func__, params.media_type);
944 			return (-1);
945 		}
946 
947 		device_printf(adapter->dev,
948 		    "Board info: phy exist %s. phy addr %d. mdio freq %u Khz. "
949 		    "SFP connected %s. media %d\n",
950 		    params.phy_exist == TRUE ? "Yes" : "No",
951 		    params.phy_mdio_addr, adapter->mdio_freq,
952 		    params.sfp_plus_module_exist == TRUE ? "Yes" : "No",
953 		    params.media_type);
954 	}
955 
956 	al_eth_mac_addr_read(adapter->ec_base, 0, adapter->mac_addr);
957 
958 	return (0);
959 }
960 
961 static int
962 al_eth_function_reset(struct al_eth_adapter *adapter)
963 {
964 	struct al_eth_board_params params;
965 	int rc;
966 
967 	/* save board params so we restore it after reset */
968 	al_eth_board_params_get(adapter->mac_base, &params);
969 	al_eth_mac_addr_read(adapter->ec_base, 0, adapter->mac_addr);
970 	if (adapter->board_type == ALPINE_INTEGRATED)
971 		rc = al_eth_flr_rmn(&al_eth_read_pci_config,
972 		    &al_eth_write_pci_config,
973 		    adapter->dev, adapter->mac_base);
974 	else
975 		rc = al_eth_flr_rmn(&al_eth_fpga_read_pci_config,
976 		    &al_eth_fpga_write_pci_config,
977 		    adapter->internal_pcie_base, adapter->mac_base);
978 
979 	/* restore params */
980 	al_eth_board_params_set(adapter->mac_base, &params);
981 	al_eth_mac_addr_store(adapter->ec_base, 0, adapter->mac_addr);
982 
983 	return (rc);
984 }
985 
986 static void
987 al_eth_init_rings(struct al_eth_adapter *adapter)
988 {
989 	int i;
990 
991 	for (i = 0; i < adapter->num_tx_queues; i++) {
992 		struct al_eth_ring *ring = &adapter->tx_ring[i];
993 
994 		ring->ring_id = i;
995 		ring->dev = adapter->dev;
996 		ring->adapter = adapter;
997 		ring->netdev = adapter->netdev;
998 		al_udma_q_handle_get(&adapter->hal_adapter.tx_udma, i,
999 		    &ring->dma_q);
1000 		ring->sw_count = adapter->tx_ring_count;
1001 		ring->hw_count = adapter->tx_descs_count;
1002 		ring->unmask_reg_offset = al_udma_iofic_unmask_offset_get((struct unit_regs *)adapter->udma_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_C);
1003 		ring->unmask_val = ~(1 << i);
1004 	}
1005 
1006 	for (i = 0; i < adapter->num_rx_queues; i++) {
1007 		struct al_eth_ring *ring = &adapter->rx_ring[i];
1008 
1009 		ring->ring_id = i;
1010 		ring->dev = adapter->dev;
1011 		ring->adapter = adapter;
1012 		ring->netdev = adapter->netdev;
1013 		al_udma_q_handle_get(&adapter->hal_adapter.rx_udma, i, &ring->dma_q);
1014 		ring->sw_count = adapter->rx_ring_count;
1015 		ring->hw_count = adapter->rx_descs_count;
1016 		ring->unmask_reg_offset = al_udma_iofic_unmask_offset_get(
1017 		    (struct unit_regs *)adapter->udma_base,
1018 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_B);
1019 		ring->unmask_val = ~(1 << i);
1020 	}
1021 }
1022 
1023 static void
1024 al_init_locked(void *arg)
1025 {
1026 	struct al_eth_adapter *adapter = arg;
1027 	if_t ifp = adapter->netdev;
1028 	int rc = 0;
1029 
1030 	al_eth_down(adapter);
1031 	rc = al_eth_up(adapter);
1032 
1033 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1034 	if (rc == 0)
1035 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1036 }
1037 
1038 static void
1039 al_init(void *arg)
1040 {
1041 	struct al_eth_adapter *adapter = arg;
1042 
1043 	al_init_locked(adapter);
1044 }
1045 
1046 static inline int
1047 al_eth_alloc_rx_buf(struct al_eth_adapter *adapter,
1048     struct al_eth_ring *rx_ring,
1049     struct al_eth_rx_buffer *rx_info)
1050 {
1051 	struct al_buf *al_buf;
1052 	bus_dma_segment_t segs[2];
1053 	int error;
1054 	int nsegs;
1055 
1056 	if (rx_info->m != NULL)
1057 		return (0);
1058 
1059 	rx_info->data_size = adapter->rx_mbuf_sz;
1060 
1061 	AL_RX_LOCK(adapter);
1062 
1063 	/* Get mbuf using UMA allocator */
1064 	rx_info->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1065 	    rx_info->data_size);
1066 	AL_RX_UNLOCK(adapter);
1067 
1068 	if (rx_info->m == NULL)
1069 		return (ENOMEM);
1070 
1071 	rx_info->m->m_pkthdr.len = rx_info->m->m_len = adapter->rx_mbuf_sz;
1072 
1073 	/* Map packets for DMA */
1074 	error = bus_dmamap_load_mbuf_sg(rx_ring->dma_buf_tag, rx_info->dma_map,
1075 	    rx_info->m, segs, &nsegs, BUS_DMA_NOWAIT);
1076 	if (__predict_false(error)) {
1077 		device_printf(rx_ring->dev, "failed to map mbuf, error = %d\n",
1078 		    error);
1079 		m_freem(rx_info->m);
1080 		rx_info->m = NULL;
1081 		return (EFAULT);
1082 	}
1083 
1084 	al_buf = &rx_info->al_buf;
1085 	al_buf->addr = segs[0].ds_addr + AL_IP_ALIGNMENT_OFFSET;
1086 	al_buf->len = rx_info->data_size - AL_IP_ALIGNMENT_OFFSET;
1087 
1088 	return (0);
1089 }
1090 
1091 static int
1092 al_eth_refill_rx_bufs(struct al_eth_adapter *adapter, unsigned int qid,
1093     unsigned int num)
1094 {
1095 	struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
1096 	uint16_t next_to_use;
1097 	unsigned int i;
1098 
1099 	next_to_use = rx_ring->next_to_use;
1100 
1101 	for (i = 0; i < num; i++) {
1102 		int rc;
1103 		struct al_eth_rx_buffer *rx_info =
1104 		    &rx_ring->rx_buffer_info[next_to_use];
1105 
1106 		if (__predict_false(al_eth_alloc_rx_buf(adapter,
1107 		    rx_ring, rx_info) < 0)) {
1108 			device_printf(adapter->dev,
1109 			    "failed to alloc buffer for rx queue %d\n", qid);
1110 			break;
1111 		}
1112 
1113 		rc = al_eth_rx_buffer_add(rx_ring->dma_q,
1114 		    &rx_info->al_buf, AL_ETH_RX_FLAGS_INT, NULL);
1115 		if (__predict_false(rc)) {
1116 			device_printf(adapter->dev,
1117 			    "failed to add buffer for rx queue %d\n", qid);
1118 			break;
1119 		}
1120 
1121 		next_to_use = AL_ETH_RX_RING_IDX_NEXT(rx_ring, next_to_use);
1122 	}
1123 
1124 	if (__predict_false(i < num))
1125 		device_printf(adapter->dev,
1126 		    "refilled rx queue %d with %d pages only - available %d\n",
1127 		    qid, i, al_udma_available_get(rx_ring->dma_q));
1128 
1129 	if (__predict_true(i))
1130 		al_eth_rx_buffer_action(rx_ring->dma_q, i);
1131 
1132 	rx_ring->next_to_use = next_to_use;
1133 
1134 	return (i);
1135 }
1136 
1137 /*
1138  * al_eth_refill_all_rx_bufs - allocate all queues Rx buffers
1139  * @adapter: board private structure
1140  */
1141 static void
1142 al_eth_refill_all_rx_bufs(struct al_eth_adapter *adapter)
1143 {
1144 	int i;
1145 
1146 	for (i = 0; i < adapter->num_rx_queues; i++)
1147 		al_eth_refill_rx_bufs(adapter, i, AL_ETH_DEFAULT_RX_DESCS - 1);
1148 }
1149 
1150 static void
1151 al_eth_tx_do_cleanup(struct al_eth_ring *tx_ring)
1152 {
1153 	unsigned int total_done;
1154 	uint16_t next_to_clean;
1155 	int qid = tx_ring->ring_id;
1156 
1157 	total_done = al_eth_comp_tx_get(tx_ring->dma_q);
1158 	device_printf_dbg(tx_ring->dev,
1159 	    "tx_poll: q %d total completed descs %x\n", qid, total_done);
1160 	next_to_clean = tx_ring->next_to_clean;
1161 
1162 	while (total_done != 0) {
1163 		struct al_eth_tx_buffer *tx_info;
1164 		struct mbuf *mbuf;
1165 
1166 		tx_info = &tx_ring->tx_buffer_info[next_to_clean];
1167 		/* stop if not all descriptors of the packet are completed */
1168 		if (tx_info->tx_descs > total_done)
1169 			break;
1170 
1171 		mbuf = tx_info->m;
1172 
1173 		tx_info->m = NULL;
1174 
1175 		device_printf_dbg(tx_ring->dev,
1176 		    "tx_poll: q %d mbuf %p completed\n", qid, mbuf);
1177 
1178 		/* map is no longer required */
1179 		bus_dmamap_unload(tx_ring->dma_buf_tag, tx_info->dma_map);
1180 
1181 		m_freem(mbuf);
1182 		total_done -= tx_info->tx_descs;
1183 		next_to_clean = AL_ETH_TX_RING_IDX_NEXT(tx_ring, next_to_clean);
1184 	}
1185 
1186 	tx_ring->next_to_clean = next_to_clean;
1187 
1188 	device_printf_dbg(tx_ring->dev, "tx_poll: q %d done next to clean %x\n",
1189 	    qid, next_to_clean);
1190 
1191 	/*
1192 	 * need to make the rings circular update visible to
1193 	 * al_eth_start_xmit() before checking for netif_queue_stopped().
1194 	 */
1195 	al_smp_data_memory_barrier();
1196 }
1197 
1198 static void
1199 al_eth_tx_csum(struct al_eth_ring *tx_ring, struct al_eth_tx_buffer *tx_info,
1200     struct al_eth_pkt *hal_pkt, struct mbuf *m)
1201 {
1202 	uint32_t mss = m->m_pkthdr.tso_segsz;
1203 	struct ether_vlan_header *eh;
1204 	uint16_t etype;
1205 #ifdef INET
1206 	struct ip *ip;
1207 #endif
1208 #ifdef INET6
1209 	struct ip6_hdr *ip6;
1210 #endif
1211 	struct tcphdr *th = NULL;
1212 	int	ehdrlen, ip_hlen = 0;
1213 	uint8_t	ipproto = 0;
1214 	uint32_t offload = 0;
1215 
1216 	if (mss != 0)
1217 		offload = 1;
1218 
1219 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0)
1220 		offload = 1;
1221 
1222 	if ((m->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
1223 		offload = 1;
1224 
1225 	if (offload != 0) {
1226 		struct al_eth_meta_data *meta = &tx_ring->hal_meta;
1227 
1228 		if (mss != 0)
1229 			hal_pkt->flags |= (AL_ETH_TX_FLAGS_TSO |
1230 			    AL_ETH_TX_FLAGS_L4_CSUM);
1231 		else
1232 			hal_pkt->flags |= (AL_ETH_TX_FLAGS_L4_CSUM |
1233 			    AL_ETH_TX_FLAGS_L4_PARTIAL_CSUM);
1234 
1235 		/*
1236 		 * Determine where frame payload starts.
1237 		 * Jump over vlan headers if already present,
1238 		 * helpful for QinQ too.
1239 		 */
1240 		eh = mtod(m, struct ether_vlan_header *);
1241 		if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1242 			etype = ntohs(eh->evl_proto);
1243 			ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1244 		} else {
1245 			etype = ntohs(eh->evl_encap_proto);
1246 			ehdrlen = ETHER_HDR_LEN;
1247 		}
1248 
1249 		switch (etype) {
1250 #ifdef INET
1251 		case ETHERTYPE_IP:
1252 			ip = (struct ip *)(m->m_data + ehdrlen);
1253 			ip_hlen = ip->ip_hl << 2;
1254 			ipproto = ip->ip_p;
1255 			hal_pkt->l3_proto_idx = AL_ETH_PROTO_ID_IPv4;
1256 			th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
1257 			if (mss != 0)
1258 				hal_pkt->flags |= AL_ETH_TX_FLAGS_IPV4_L3_CSUM;
1259 			if (ipproto == IPPROTO_TCP)
1260 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_TCP;
1261 			else
1262 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_UDP;
1263 			break;
1264 #endif /* INET */
1265 #ifdef INET6
1266 		case ETHERTYPE_IPV6:
1267 			ip6 = (struct ip6_hdr *)(m->m_data + ehdrlen);
1268 			hal_pkt->l3_proto_idx = AL_ETH_PROTO_ID_IPv6;
1269 			ip_hlen = sizeof(struct ip6_hdr);
1270 			th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen);
1271 			ipproto = ip6->ip6_nxt;
1272 			if (ipproto == IPPROTO_TCP)
1273 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_TCP;
1274 			else
1275 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_UDP;
1276 			break;
1277 #endif /* INET6 */
1278 		default:
1279 			break;
1280 		}
1281 
1282 		meta->words_valid = 4;
1283 		meta->l3_header_len = ip_hlen;
1284 		meta->l3_header_offset = ehdrlen;
1285 		if (th != NULL)
1286 			meta->l4_header_len = th->th_off; /* this param needed only for TSO */
1287 		meta->mss_idx_sel = 0;			/* check how to select MSS */
1288 		meta->mss_val = mss;
1289 		hal_pkt->meta = meta;
1290 	} else
1291 		hal_pkt->meta = NULL;
1292 }
1293 
1294 #define	XMIT_QUEUE_TIMEOUT	100
1295 
1296 static void
1297 al_eth_xmit_mbuf(struct al_eth_ring *tx_ring, struct mbuf *m)
1298 {
1299 	struct al_eth_tx_buffer *tx_info;
1300 	int error;
1301 	int nsegs, a;
1302 	uint16_t next_to_use;
1303 	bus_dma_segment_t segs[AL_ETH_PKT_MAX_BUFS + 1];
1304 	struct al_eth_pkt *hal_pkt;
1305 	struct al_buf *al_buf;
1306 	boolean_t remap;
1307 
1308 	/* Check if queue is ready */
1309 	if (unlikely(tx_ring->stall) != 0) {
1310 		for (a = 0; a < XMIT_QUEUE_TIMEOUT; a++) {
1311 			if (al_udma_available_get(tx_ring->dma_q) >=
1312 			    (AL_ETH_DEFAULT_TX_HW_DESCS -
1313 			    AL_ETH_TX_WAKEUP_THRESH)) {
1314 				tx_ring->stall = 0;
1315 				break;
1316 			}
1317 			pause("stall", 1);
1318 		}
1319 		if (a == XMIT_QUEUE_TIMEOUT) {
1320 			device_printf(tx_ring->dev,
1321 			    "timeout waiting for queue %d ready!\n",
1322 			    tx_ring->ring_id);
1323 			return;
1324 		} else {
1325 			device_printf_dbg(tx_ring->dev,
1326 			    "queue %d is ready!\n", tx_ring->ring_id);
1327 		}
1328 	}
1329 
1330 	next_to_use = tx_ring->next_to_use;
1331 	tx_info = &tx_ring->tx_buffer_info[next_to_use];
1332 	tx_info->m = m;
1333 	hal_pkt = &tx_info->hal_pkt;
1334 
1335 	if (m == NULL) {
1336 		device_printf(tx_ring->dev, "mbuf is NULL\n");
1337 		return;
1338 	}
1339 
1340 	remap = TRUE;
1341 	/* Map packets for DMA */
1342 retry:
1343 	error = bus_dmamap_load_mbuf_sg(tx_ring->dma_buf_tag, tx_info->dma_map,
1344 	    m, segs, &nsegs, BUS_DMA_NOWAIT);
1345 	if (__predict_false(error)) {
1346 		struct mbuf *m_new;
1347 
1348 		if (error == EFBIG) {
1349 			/* Try it again? - one try */
1350 			if (remap == TRUE) {
1351 				remap = FALSE;
1352 				m_new = m_defrag(m, M_NOWAIT);
1353 				if (m_new == NULL) {
1354 					device_printf(tx_ring->dev,
1355 					    "failed to defrag mbuf\n");
1356 					goto exit;
1357 				}
1358 				m = m_new;
1359 				goto retry;
1360 			} else {
1361 				device_printf(tx_ring->dev,
1362 				    "failed to map mbuf, error %d\n", error);
1363 				goto exit;
1364 			}
1365 		} else {
1366 			device_printf(tx_ring->dev,
1367 			    "failed to map mbuf, error %d\n", error);
1368 			goto exit;
1369 		}
1370 	}
1371 
1372 	/* set flags and meta data */
1373 	hal_pkt->flags = AL_ETH_TX_FLAGS_INT;
1374 	al_eth_tx_csum(tx_ring, tx_info, hal_pkt, m);
1375 
1376 	al_buf = hal_pkt->bufs;
1377 	for (a = 0; a < nsegs; a++) {
1378 		al_buf->addr = segs[a].ds_addr;
1379 		al_buf->len = segs[a].ds_len;
1380 
1381 		al_buf++;
1382 	}
1383 
1384 	hal_pkt->num_of_bufs = nsegs;
1385 
1386 	/* prepare the packet's descriptors to dma engine */
1387 	tx_info->tx_descs = al_eth_tx_pkt_prepare(tx_ring->dma_q, hal_pkt);
1388 
1389 	if (tx_info->tx_descs == 0)
1390 		goto exit;
1391 
1392 	/*
1393 	 * stop the queue when no more space available, the packet can have up
1394 	 * to AL_ETH_PKT_MAX_BUFS + 1 buffers and a meta descriptor
1395 	 */
1396 	if (unlikely(al_udma_available_get(tx_ring->dma_q) <
1397 	    (AL_ETH_PKT_MAX_BUFS + 2))) {
1398 		tx_ring->stall = 1;
1399 		device_printf_dbg(tx_ring->dev, "stall, stopping queue %d...\n",
1400 		    tx_ring->ring_id);
1401 		al_data_memory_barrier();
1402 	}
1403 
1404 	tx_ring->next_to_use = AL_ETH_TX_RING_IDX_NEXT(tx_ring, next_to_use);
1405 
1406 	/* trigger the dma engine */
1407 	al_eth_tx_dma_action(tx_ring->dma_q, tx_info->tx_descs);
1408 	return;
1409 
1410 exit:
1411 	m_freem(m);
1412 }
1413 
1414 static void
1415 al_eth_tx_cmpl_work(void *arg, int pending)
1416 {
1417 	struct al_eth_ring *tx_ring = arg;
1418 
1419 	if (napi != 0) {
1420 		tx_ring->cmpl_is_running = 1;
1421 		al_data_memory_barrier();
1422 	}
1423 
1424 	al_eth_tx_do_cleanup(tx_ring);
1425 
1426 	if (napi != 0) {
1427 		tx_ring->cmpl_is_running = 0;
1428 		al_data_memory_barrier();
1429 	}
1430 	/* all work done, enable IRQs */
1431 	al_eth_irq_config(tx_ring->unmask_reg_offset, tx_ring->unmask_val);
1432 }
1433 
1434 static int
1435 al_eth_tx_cmlp_irq_filter(void *arg)
1436 {
1437 	struct al_eth_ring *tx_ring = arg;
1438 
1439 	/* Interrupt should be auto-masked upon arrival */
1440 
1441 	device_printf_dbg(tx_ring->dev, "%s for ring ID = %d\n", __func__,
1442 	    tx_ring->ring_id);
1443 
1444 	/*
1445 	 * For napi, if work is not running, schedule it. Always schedule
1446 	 * for casual (non-napi) packet handling.
1447 	 */
1448 	if ((napi == 0) || (napi && tx_ring->cmpl_is_running == 0))
1449 		taskqueue_enqueue(tx_ring->cmpl_tq, &tx_ring->cmpl_task);
1450 
1451 	/* Do not run bottom half */
1452 	return (FILTER_HANDLED);
1453 }
1454 
1455 static int
1456 al_eth_rx_recv_irq_filter(void *arg)
1457 {
1458 	struct al_eth_ring *rx_ring = arg;
1459 
1460 	/* Interrupt should be auto-masked upon arrival */
1461 
1462 	device_printf_dbg(rx_ring->dev, "%s for ring ID = %d\n", __func__,
1463 	    rx_ring->ring_id);
1464 
1465 	/*
1466 	 * For napi, if work is not running, schedule it. Always schedule
1467 	 * for casual (non-napi) packet handling.
1468 	 */
1469 	if ((napi == 0) || (napi && rx_ring->enqueue_is_running == 0))
1470 		taskqueue_enqueue(rx_ring->enqueue_tq, &rx_ring->enqueue_task);
1471 
1472 	/* Do not run bottom half */
1473 	return (FILTER_HANDLED);
1474 }
1475 
1476 /*
1477  * al_eth_rx_checksum - indicate in mbuf if hw indicated a good cksum
1478  * @adapter: structure containing adapter specific data
1479  * @hal_pkt: HAL structure for the packet
1480  * @mbuf: mbuf currently being received and modified
1481  */
1482 static inline void
1483 al_eth_rx_checksum(struct al_eth_adapter *adapter,
1484     struct al_eth_pkt *hal_pkt, struct mbuf *mbuf)
1485 {
1486 
1487 	/* if IPv4 and error */
1488 	if (unlikely((adapter->netdev->if_capenable & IFCAP_RXCSUM) &&
1489 	    (hal_pkt->l3_proto_idx == AL_ETH_PROTO_ID_IPv4) &&
1490 	    (hal_pkt->flags & AL_ETH_RX_FLAGS_L3_CSUM_ERR))) {
1491 		device_printf(adapter->dev,"rx ipv4 header checksum error\n");
1492 		return;
1493 	}
1494 
1495 	/* if IPv6 and error */
1496 	if (unlikely((adapter->netdev->if_capenable & IFCAP_RXCSUM_IPV6) &&
1497 	    (hal_pkt->l3_proto_idx == AL_ETH_PROTO_ID_IPv6) &&
1498 	    (hal_pkt->flags & AL_ETH_RX_FLAGS_L3_CSUM_ERR))) {
1499 		device_printf(adapter->dev,"rx ipv6 header checksum error\n");
1500 		return;
1501 	}
1502 
1503 	/* if TCP/UDP */
1504 	if (likely((hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_TCP) ||
1505 	   (hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_UDP))) {
1506 		if (unlikely(hal_pkt->flags & AL_ETH_RX_FLAGS_L4_CSUM_ERR)) {
1507 			device_printf_dbg(adapter->dev, "rx L4 checksum error\n");
1508 
1509 			/* TCP/UDP checksum error */
1510 			mbuf->m_pkthdr.csum_flags = 0;
1511 		} else {
1512 			device_printf_dbg(adapter->dev, "rx checksum correct\n");
1513 
1514 			/* IP Checksum Good */
1515 			mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
1516 			mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1517 		}
1518 	}
1519 }
1520 
1521 static struct mbuf*
1522 al_eth_rx_mbuf(struct al_eth_adapter *adapter,
1523     struct al_eth_ring *rx_ring, struct al_eth_pkt *hal_pkt,
1524     unsigned int descs, uint16_t *next_to_clean)
1525 {
1526 	struct mbuf *mbuf;
1527 	struct al_eth_rx_buffer *rx_info =
1528 	    &rx_ring->rx_buffer_info[*next_to_clean];
1529 	unsigned int len;
1530 
1531 	len = hal_pkt->bufs[0].len;
1532 	device_printf_dbg(adapter->dev, "rx_info %p data %p\n", rx_info,
1533 	   rx_info->m);
1534 
1535 	if (rx_info->m == NULL) {
1536 		*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring,
1537 		    *next_to_clean);
1538 		return (NULL);
1539 	}
1540 
1541 	mbuf = rx_info->m;
1542 	mbuf->m_pkthdr.len = len;
1543 	mbuf->m_len = len;
1544 	mbuf->m_pkthdr.rcvif = rx_ring->netdev;
1545 	mbuf->m_flags |= M_PKTHDR;
1546 
1547 	if (len <= adapter->small_copy_len) {
1548 		struct mbuf *smbuf;
1549 		device_printf_dbg(adapter->dev, "rx small packet. len %d\n", len);
1550 
1551 		AL_RX_LOCK(adapter);
1552 		smbuf = m_gethdr(M_NOWAIT, MT_DATA);
1553 		AL_RX_UNLOCK(adapter);
1554 		if (__predict_false(smbuf == NULL)) {
1555 			device_printf(adapter->dev, "smbuf is NULL\n");
1556 			return (NULL);
1557 		}
1558 
1559 		smbuf->m_data = smbuf->m_data + AL_IP_ALIGNMENT_OFFSET;
1560 		memcpy(smbuf->m_data, mbuf->m_data + AL_IP_ALIGNMENT_OFFSET, len);
1561 
1562 		smbuf->m_len = len;
1563 		smbuf->m_pkthdr.rcvif = rx_ring->netdev;
1564 
1565 		/* first desc of a non-ps chain */
1566 		smbuf->m_flags |= M_PKTHDR;
1567 		smbuf->m_pkthdr.len = smbuf->m_len;
1568 
1569 		*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring,
1570 		    *next_to_clean);
1571 
1572 		return (smbuf);
1573 	}
1574 	mbuf->m_data = mbuf->m_data + AL_IP_ALIGNMENT_OFFSET;
1575 
1576 	/* Unmap the buffer */
1577 	bus_dmamap_unload(rx_ring->dma_buf_tag, rx_info->dma_map);
1578 
1579 	rx_info->m = NULL;
1580 	*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring, *next_to_clean);
1581 
1582 	return (mbuf);
1583 }
1584 
1585 static void
1586 al_eth_rx_recv_work(void *arg, int pending)
1587 {
1588 	struct al_eth_ring *rx_ring = arg;
1589 	struct mbuf *mbuf;
1590 	struct lro_entry *queued;
1591 	unsigned int qid = rx_ring->ring_id;
1592 	struct al_eth_pkt *hal_pkt = &rx_ring->hal_pkt;
1593 	uint16_t next_to_clean = rx_ring->next_to_clean;
1594 	uint32_t refill_required;
1595 	uint32_t refill_actual;
1596 	uint32_t do_if_input;
1597 
1598 	if (napi != 0) {
1599 		rx_ring->enqueue_is_running = 1;
1600 		al_data_memory_barrier();
1601 	}
1602 
1603 	do {
1604 		unsigned int descs;
1605 
1606 		descs = al_eth_pkt_rx(rx_ring->dma_q, hal_pkt);
1607 		if (unlikely(descs == 0))
1608 			break;
1609 
1610 		device_printf_dbg(rx_ring->dev, "rx_poll: q %d got packet "
1611 		    "from hal. descs %d\n", qid, descs);
1612 		device_printf_dbg(rx_ring->dev, "rx_poll: q %d flags %x. "
1613 		    "l3 proto %d l4 proto %d\n", qid, hal_pkt->flags,
1614 		    hal_pkt->l3_proto_idx, hal_pkt->l4_proto_idx);
1615 
1616 		/* ignore if detected dma or eth controller errors */
1617 		if ((hal_pkt->flags & (AL_ETH_RX_ERROR |
1618 		    AL_UDMA_CDESC_ERROR)) != 0) {
1619 			device_printf(rx_ring->dev, "receive packet with error. "
1620 			    "flags = 0x%x\n", hal_pkt->flags);
1621 			next_to_clean = AL_ETH_RX_RING_IDX_ADD(rx_ring,
1622 			    next_to_clean, descs);
1623 			continue;
1624 		}
1625 
1626 		/* allocate mbuf and fill it */
1627 		mbuf = al_eth_rx_mbuf(rx_ring->adapter, rx_ring, hal_pkt, descs,
1628 		    &next_to_clean);
1629 
1630 		/* exit if we failed to retrieve a buffer */
1631 		if (unlikely(mbuf == NULL)) {
1632 			next_to_clean = AL_ETH_RX_RING_IDX_ADD(rx_ring,
1633 			    next_to_clean, descs);
1634 			break;
1635 		}
1636 
1637 		if (__predict_true(rx_ring->netdev->if_capenable & IFCAP_RXCSUM ||
1638 		    rx_ring->netdev->if_capenable & IFCAP_RXCSUM_IPV6)) {
1639 			al_eth_rx_checksum(rx_ring->adapter, hal_pkt, mbuf);
1640 		}
1641 
1642 #if __FreeBSD_version >= 800000
1643 		mbuf->m_pkthdr.flowid = qid;
1644 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
1645 #endif
1646 
1647 		/*
1648 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
1649 		 * should be computed by hardware.
1650 		 */
1651 		do_if_input = 1;
1652 		if ((rx_ring->lro_enabled != 0) &&
1653 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1654 		    hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_TCP) {
1655 			/*
1656 			 * Send to the stack if:
1657 			 *  - LRO not enabled, or
1658 			 *  - no LRO resources, or
1659 			 *  - lro enqueue fails
1660 			 */
1661 			if (rx_ring->lro.lro_cnt != 0) {
1662 				if (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0)
1663 					do_if_input = 0;
1664 			}
1665 		}
1666 
1667 		if (do_if_input)
1668 			(*rx_ring->netdev->if_input)(rx_ring->netdev, mbuf);
1669 
1670 	} while (1);
1671 
1672 	rx_ring->next_to_clean = next_to_clean;
1673 
1674 	refill_required = al_udma_available_get(rx_ring->dma_q);
1675 	refill_actual = al_eth_refill_rx_bufs(rx_ring->adapter, qid,
1676 	    refill_required);
1677 
1678 	if (unlikely(refill_actual < refill_required)) {
1679 		device_printf_dbg(rx_ring->dev,
1680 		    "%s: not filling rx queue %d\n", __func__, qid);
1681 	}
1682 
1683 	while (((queued = LIST_FIRST(&rx_ring->lro.lro_active)) != NULL)) {
1684 		LIST_REMOVE(queued, next);
1685 		tcp_lro_flush(&rx_ring->lro, queued);
1686 	}
1687 
1688 	if (napi != 0) {
1689 		rx_ring->enqueue_is_running = 0;
1690 		al_data_memory_barrier();
1691 	}
1692 	/* unmask irq */
1693 	al_eth_irq_config(rx_ring->unmask_reg_offset, rx_ring->unmask_val);
1694 }
1695 
1696 static void
1697 al_eth_start_xmit(void *arg, int pending)
1698 {
1699 	struct al_eth_ring *tx_ring = arg;
1700 	struct mbuf *mbuf;
1701 
1702 	if (napi != 0) {
1703 		tx_ring->enqueue_is_running = 1;
1704 		al_data_memory_barrier();
1705 	}
1706 
1707 	while (1) {
1708 		mtx_lock(&tx_ring->br_mtx);
1709 		mbuf = drbr_dequeue(NULL, tx_ring->br);
1710 		mtx_unlock(&tx_ring->br_mtx);
1711 
1712 		if (mbuf == NULL)
1713 			break;
1714 
1715 		al_eth_xmit_mbuf(tx_ring, mbuf);
1716 	}
1717 
1718 	if (napi != 0) {
1719 		tx_ring->enqueue_is_running = 0;
1720 		al_data_memory_barrier();
1721 		while (1) {
1722 			mtx_lock(&tx_ring->br_mtx);
1723 			mbuf = drbr_dequeue(NULL, tx_ring->br);
1724 			mtx_unlock(&tx_ring->br_mtx);
1725 			if (mbuf == NULL)
1726 				break;
1727 			al_eth_xmit_mbuf(tx_ring, mbuf);
1728 		}
1729 	}
1730 }
1731 
1732 static int
1733 al_mq_start(struct ifnet *ifp, struct mbuf *m)
1734 {
1735 	struct al_eth_adapter *adapter = ifp->if_softc;
1736 	struct al_eth_ring *tx_ring;
1737 	int i;
1738 	int ret;
1739 
1740 	/* Which queue to use */
1741 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
1742 		i = m->m_pkthdr.flowid % adapter->num_tx_queues;
1743 	else
1744 		i = curcpu % adapter->num_tx_queues;
1745 
1746 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1747 	    IFF_DRV_RUNNING) {
1748 		return (EFAULT);
1749 	}
1750 
1751 	tx_ring = &adapter->tx_ring[i];
1752 
1753 	device_printf_dbg(adapter->dev, "dgb start() - assuming link is active, "
1754 	    "sending packet to queue %d\n", i);
1755 
1756 	ret = drbr_enqueue(ifp, tx_ring->br, m);
1757 
1758 	/*
1759 	 * For napi, if work is not running, schedule it. Always schedule
1760 	 * for casual (non-napi) packet handling.
1761 	 */
1762 	if ((napi == 0) || ((napi != 0) && (tx_ring->enqueue_is_running == 0)))
1763 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
1764 
1765 	return (ret);
1766 }
1767 
1768 static void
1769 al_qflush(struct ifnet * ifp)
1770 {
1771 
1772 	/* unused */
1773 }
1774 
1775 static inline void
1776 al_eth_flow_ctrl_init(struct al_eth_adapter *adapter)
1777 {
1778 	uint8_t default_flow_ctrl;
1779 
1780 	default_flow_ctrl = AL_ETH_FLOW_CTRL_TX_PAUSE;
1781 	default_flow_ctrl |= AL_ETH_FLOW_CTRL_RX_PAUSE;
1782 
1783 	adapter->link_config.flow_ctrl_supported = default_flow_ctrl;
1784 }
1785 
1786 static int
1787 al_eth_flow_ctrl_config(struct al_eth_adapter *adapter)
1788 {
1789 	struct al_eth_flow_control_params *flow_ctrl_params;
1790 	uint8_t active = adapter->link_config.flow_ctrl_active;
1791 	int i;
1792 
1793 	flow_ctrl_params = &adapter->flow_ctrl_params;
1794 
1795 	flow_ctrl_params->type = AL_ETH_FLOW_CONTROL_TYPE_LINK_PAUSE;
1796 	flow_ctrl_params->obay_enable =
1797 	    ((active & AL_ETH_FLOW_CTRL_RX_PAUSE) != 0);
1798 	flow_ctrl_params->gen_enable =
1799 	    ((active & AL_ETH_FLOW_CTRL_TX_PAUSE) != 0);
1800 
1801 	flow_ctrl_params->rx_fifo_th_high = AL_ETH_FLOW_CTRL_RX_FIFO_TH_HIGH;
1802 	flow_ctrl_params->rx_fifo_th_low = AL_ETH_FLOW_CTRL_RX_FIFO_TH_LOW;
1803 	flow_ctrl_params->quanta = AL_ETH_FLOW_CTRL_QUANTA;
1804 	flow_ctrl_params->quanta_th = AL_ETH_FLOW_CTRL_QUANTA_TH;
1805 
1806 	/* map priority to queue index, queue id = priority/2 */
1807 	for (i = 0; i < AL_ETH_FWD_PRIO_TABLE_NUM; i++)
1808 		flow_ctrl_params->prio_q_map[0][i] =  1 << (i >> 1);
1809 
1810 	al_eth_flow_control_config(&adapter->hal_adapter, flow_ctrl_params);
1811 
1812 	return (0);
1813 }
1814 
1815 static void
1816 al_eth_flow_ctrl_enable(struct al_eth_adapter *adapter)
1817 {
1818 
1819 	/*
1820 	 * change the active configuration to the default / force by ethtool
1821 	 * and call to configure
1822 	 */
1823 	adapter->link_config.flow_ctrl_active =
1824 	    adapter->link_config.flow_ctrl_supported;
1825 
1826 	al_eth_flow_ctrl_config(adapter);
1827 }
1828 
1829 static void
1830 al_eth_flow_ctrl_disable(struct al_eth_adapter *adapter)
1831 {
1832 
1833 	adapter->link_config.flow_ctrl_active = 0;
1834 	al_eth_flow_ctrl_config(adapter);
1835 }
1836 
1837 static int
1838 al_eth_hw_init(struct al_eth_adapter *adapter)
1839 {
1840 	int rc;
1841 
1842 	rc = al_eth_hw_init_adapter(adapter);
1843 	if (rc != 0)
1844 		return (rc);
1845 
1846 	rc = al_eth_mac_config(&adapter->hal_adapter, adapter->mac_mode);
1847 	if (rc < 0) {
1848 		device_printf(adapter->dev, "%s failed to configure mac!\n",
1849 		    __func__);
1850 		return (rc);
1851 	}
1852 
1853 	if ((adapter->mac_mode == AL_ETH_MAC_MODE_SGMII) ||
1854 	    (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII &&
1855 	     adapter->phy_exist == FALSE)) {
1856 		rc = al_eth_mac_link_config(&adapter->hal_adapter,
1857 		    adapter->link_config.force_1000_base_x,
1858 		    adapter->link_config.autoneg,
1859 		    adapter->link_config.active_speed,
1860 		    adapter->link_config.active_duplex);
1861 		if (rc != 0) {
1862 			device_printf(adapter->dev,
1863 			    "%s failed to configure link parameters!\n",
1864 			    __func__);
1865 			return (rc);
1866 		}
1867 	}
1868 
1869 	rc = al_eth_mdio_config(&adapter->hal_adapter,
1870 	    AL_ETH_MDIO_TYPE_CLAUSE_22, TRUE /* shared_mdio_if */,
1871 	    adapter->ref_clk_freq, adapter->mdio_freq);
1872 	if (rc != 0) {
1873 		device_printf(adapter->dev, "%s failed at mdio config!\n",
1874 		    __func__);
1875 		return (rc);
1876 	}
1877 
1878 	al_eth_flow_ctrl_init(adapter);
1879 
1880 	return (rc);
1881 }
1882 
1883 static int
1884 al_eth_hw_stop(struct al_eth_adapter *adapter)
1885 {
1886 
1887 	al_eth_mac_stop(&adapter->hal_adapter);
1888 
1889 	/*
1890 	 * wait till pending rx packets written and UDMA becomes idle,
1891 	 * the MAC has ~10KB fifo, 10us should be enought time for the
1892 	 * UDMA to write to the memory
1893 	 */
1894 	DELAY(10);
1895 
1896 	al_eth_adapter_stop(&adapter->hal_adapter);
1897 
1898 	adapter->flags |= AL_ETH_FLAG_RESET_REQUESTED;
1899 
1900 	/* disable flow ctrl to avoid pause packets*/
1901 	al_eth_flow_ctrl_disable(adapter);
1902 
1903 	return (0);
1904 }
1905 
1906 /*
1907  * al_eth_intr_intx_all - Legacy Interrupt Handler for all interrupts
1908  * @irq: interrupt number
1909  * @data: pointer to a network interface device structure
1910  */
1911 static int
1912 al_eth_intr_intx_all(void *data)
1913 {
1914 	struct al_eth_adapter *adapter = data;
1915 
1916 	struct unit_regs __iomem *regs_base =
1917 	    (struct unit_regs __iomem *)adapter->udma_base;
1918 	uint32_t reg;
1919 
1920 	reg = al_udma_iofic_read_cause(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
1921 	    AL_INT_GROUP_A);
1922 	if (likely(reg))
1923 		device_printf_dbg(adapter->dev, "%s group A cause %x\n",
1924 		    __func__, reg);
1925 
1926 	if (unlikely(reg & AL_INT_GROUP_A_GROUP_D_SUM)) {
1927 		struct al_iofic_grp_ctrl __iomem *sec_ints_base;
1928 		uint32_t cause_d =  al_udma_iofic_read_cause(regs_base,
1929 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_D);
1930 
1931 		sec_ints_base =
1932 		    &regs_base->gen.interrupt_regs.secondary_iofic_ctrl[0];
1933 		if (cause_d != 0) {
1934 			device_printf_dbg(adapter->dev,
1935 			    "got interrupt from group D. cause %x\n", cause_d);
1936 
1937 			cause_d = al_iofic_read_cause(sec_ints_base,
1938 			    AL_INT_GROUP_A);
1939 			device_printf(adapter->dev,
1940 			    "secondary A cause %x\n", cause_d);
1941 
1942 			cause_d = al_iofic_read_cause(sec_ints_base,
1943 			    AL_INT_GROUP_B);
1944 
1945 			device_printf_dbg(adapter->dev,
1946 			    "secondary B cause %x\n", cause_d);
1947 		}
1948 	}
1949 	if ((reg & AL_INT_GROUP_A_GROUP_B_SUM) != 0 ) {
1950 		uint32_t cause_b = al_udma_iofic_read_cause(regs_base,
1951 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_B);
1952 		int qid;
1953 		device_printf_dbg(adapter->dev, "secondary B cause %x\n",
1954 		    cause_b);
1955 		for (qid = 0; qid < adapter->num_rx_queues; qid++) {
1956 			if (cause_b & (1 << qid)) {
1957 				/* mask */
1958 				al_udma_iofic_mask(
1959 				    (struct unit_regs __iomem *)adapter->udma_base,
1960 				    AL_UDMA_IOFIC_LEVEL_PRIMARY,
1961 				    AL_INT_GROUP_B, 1 << qid);
1962 			}
1963 		}
1964 	}
1965 	if ((reg & AL_INT_GROUP_A_GROUP_C_SUM) != 0) {
1966 		uint32_t cause_c = al_udma_iofic_read_cause(regs_base,
1967 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_C);
1968 		int qid;
1969 		device_printf_dbg(adapter->dev, "secondary C cause %x\n", cause_c);
1970 		for (qid = 0; qid < adapter->num_tx_queues; qid++) {
1971 			if ((cause_c & (1 << qid)) != 0) {
1972 				al_udma_iofic_mask(
1973 				    (struct unit_regs __iomem *)adapter->udma_base,
1974 				    AL_UDMA_IOFIC_LEVEL_PRIMARY,
1975 				    AL_INT_GROUP_C, 1 << qid);
1976 			}
1977 		}
1978 	}
1979 
1980 	al_eth_tx_cmlp_irq_filter(adapter->tx_ring);
1981 
1982 	return (0);
1983 }
1984 
1985 static int
1986 al_eth_intr_msix_all(void *data)
1987 {
1988 	struct al_eth_adapter *adapter = data;
1989 
1990 	device_printf_dbg(adapter->dev, "%s\n", __func__);
1991 	return (0);
1992 }
1993 
1994 static int
1995 al_eth_intr_msix_mgmt(void *data)
1996 {
1997 	struct al_eth_adapter *adapter = data;
1998 
1999 	device_printf_dbg(adapter->dev, "%s\n", __func__);
2000 	return (0);
2001 }
2002 
2003 static int
2004 al_eth_enable_msix(struct al_eth_adapter *adapter)
2005 {
2006 	int i, msix_vecs, rc, count;
2007 
2008 	device_printf_dbg(adapter->dev, "%s\n", __func__);
2009 	msix_vecs = 1 + adapter->num_rx_queues + adapter->num_tx_queues;
2010 
2011 	device_printf_dbg(adapter->dev,
2012 	    "Try to enable MSIX, vector numbers = %d\n", msix_vecs);
2013 
2014 	adapter->msix_entries = malloc(msix_vecs*sizeof(*adapter->msix_entries),
2015 	    M_IFAL, M_ZERO | M_WAITOK);
2016 
2017 	if (adapter->msix_entries == NULL) {
2018 		device_printf_dbg(adapter->dev, "failed to allocate"
2019 		    " msix_entries %d\n", msix_vecs);
2020 		rc = ENOMEM;
2021 		goto exit;
2022 	}
2023 
2024 	/* management vector (GROUP_A) @2*/
2025 	adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].entry = 2;
2026 	adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector = 0;
2027 
2028 	/* rx queues start @3 */
2029 	for (i = 0; i < adapter->num_rx_queues; i++) {
2030 		int irq_idx = AL_ETH_RXQ_IRQ_IDX(adapter, i);
2031 
2032 		adapter->msix_entries[irq_idx].entry = 3 + i;
2033 		adapter->msix_entries[irq_idx].vector = 0;
2034 	}
2035 	/* tx queues start @7 */
2036 	for (i = 0; i < adapter->num_tx_queues; i++) {
2037 		int irq_idx = AL_ETH_TXQ_IRQ_IDX(adapter, i);
2038 
2039 		adapter->msix_entries[irq_idx].entry = 3 +
2040 		    AL_ETH_MAX_HW_QUEUES + i;
2041 		adapter->msix_entries[irq_idx].vector = 0;
2042 	}
2043 
2044 	count = msix_vecs + 2; /* entries start from 2 */
2045 	rc = pci_alloc_msix(adapter->dev, &count);
2046 
2047 	if (rc != 0) {
2048 		device_printf_dbg(adapter->dev, "failed to allocate MSIX "
2049 		    "vectors %d\n", msix_vecs+2);
2050 		device_printf_dbg(adapter->dev, "ret = %d\n", rc);
2051 		goto msix_entries_exit;
2052 	}
2053 
2054 	if (count != msix_vecs + 2) {
2055 		device_printf_dbg(adapter->dev, "failed to allocate all MSIX "
2056 		    "vectors %d, allocated %d\n", msix_vecs+2, count);
2057 		rc = ENOSPC;
2058 		goto msix_entries_exit;
2059 	}
2060 
2061 	for (i = 0; i < msix_vecs; i++)
2062 	    adapter->msix_entries[i].vector = 2 + 1 + i;
2063 
2064 	device_printf_dbg(adapter->dev, "successfully enabled MSIX,"
2065 	    " vectors %d\n", msix_vecs);
2066 
2067 	adapter->msix_vecs = msix_vecs;
2068 	adapter->flags |= AL_ETH_FLAG_MSIX_ENABLED;
2069 	goto exit;
2070 
2071 msix_entries_exit:
2072 	adapter->msix_vecs = 0;
2073 	free(adapter->msix_entries, M_IFAL);
2074 	adapter->msix_entries = NULL;
2075 
2076 exit:
2077 	return (rc);
2078 }
2079 
2080 static int
2081 al_eth_setup_int_mode(struct al_eth_adapter *adapter)
2082 {
2083 	int i, rc;
2084 
2085 	rc = al_eth_enable_msix(adapter);
2086 	if (rc != 0) {
2087 		device_printf(adapter->dev, "Failed to enable MSIX mode.\n");
2088 		return (rc);
2089 	}
2090 
2091 	adapter->irq_vecs = max(1, adapter->msix_vecs);
2092 	/* single INTX mode */
2093 	if (adapter->msix_vecs == 0) {
2094 		snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name,
2095 		    AL_ETH_IRQNAME_SIZE, "al-eth-intx-all@pci:%s",
2096 		    device_get_name(adapter->dev));
2097 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler =
2098 		    al_eth_intr_intx_all;
2099 		/* IRQ vector will be resolved from device resources */
2100 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector = 0;
2101 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
2102 
2103 		device_printf(adapter->dev, "%s and vector %d \n", __func__,
2104 		    adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector);
2105 
2106 		return (0);
2107 	}
2108 	/* single MSI-X mode */
2109 	if (adapter->msix_vecs == 1) {
2110 		snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name,
2111 		    AL_ETH_IRQNAME_SIZE, "al-eth-msix-all@pci:%s",
2112 		    device_get_name(adapter->dev));
2113 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler =
2114 		    al_eth_intr_msix_all;
2115 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector =
2116 		    adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector;
2117 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
2118 
2119 		return (0);
2120 	}
2121 	/* MSI-X per queue */
2122 	snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name, AL_ETH_IRQNAME_SIZE,
2123 	    "al-eth-msix-mgmt@pci:%s", device_get_name(adapter->dev));
2124 	adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler = al_eth_intr_msix_mgmt;
2125 
2126 	adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
2127 	adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector =
2128 	    adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector;
2129 
2130 	for (i = 0; i < adapter->num_rx_queues; i++) {
2131 		int irq_idx = AL_ETH_RXQ_IRQ_IDX(adapter, i);
2132 
2133 		snprintf(adapter->irq_tbl[irq_idx].name, AL_ETH_IRQNAME_SIZE,
2134 		    "al-eth-rx-comp-%d@pci:%s", i,
2135 		    device_get_name(adapter->dev));
2136 		adapter->irq_tbl[irq_idx].handler = al_eth_rx_recv_irq_filter;
2137 		adapter->irq_tbl[irq_idx].data = &adapter->rx_ring[i];
2138 		adapter->irq_tbl[irq_idx].vector =
2139 		    adapter->msix_entries[irq_idx].vector;
2140 	}
2141 
2142 	for (i = 0; i < adapter->num_tx_queues; i++) {
2143 		int irq_idx = AL_ETH_TXQ_IRQ_IDX(adapter, i);
2144 
2145 		snprintf(adapter->irq_tbl[irq_idx].name,
2146 		    AL_ETH_IRQNAME_SIZE, "al-eth-tx-comp-%d@pci:%s", i,
2147 		    device_get_name(adapter->dev));
2148 		adapter->irq_tbl[irq_idx].handler = al_eth_tx_cmlp_irq_filter;
2149 		adapter->irq_tbl[irq_idx].data = &adapter->tx_ring[i];
2150 		adapter->irq_tbl[irq_idx].vector =
2151 		    adapter->msix_entries[irq_idx].vector;
2152 	}
2153 
2154 	return (0);
2155 }
2156 
2157 static void
2158 __al_eth_free_irq(struct al_eth_adapter *adapter)
2159 {
2160 	struct al_eth_irq *irq;
2161 	int i, rc;
2162 
2163 	for (i = 0; i < adapter->irq_vecs; i++) {
2164 		irq = &adapter->irq_tbl[i];
2165 		if (irq->requested != 0) {
2166 			device_printf_dbg(adapter->dev, "tear down irq: %d\n",
2167 			    irq->vector);
2168 			rc = bus_teardown_intr(adapter->dev, irq->res,
2169 			    irq->cookie);
2170 			if (rc != 0)
2171 				device_printf(adapter->dev, "failed to tear "
2172 				    "down irq: %d\n", irq->vector);
2173 
2174 		}
2175 		irq->requested = 0;
2176 	}
2177 }
2178 
2179 static void
2180 al_eth_free_irq(struct al_eth_adapter *adapter)
2181 {
2182 	struct al_eth_irq *irq;
2183 	int i, rc;
2184 #ifdef CONFIG_RFS_ACCEL
2185 	if (adapter->msix_vecs >= 1) {
2186 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
2187 		adapter->netdev->rx_cpu_rmap = NULL;
2188 	}
2189 #endif
2190 
2191 	__al_eth_free_irq(adapter);
2192 
2193 	for (i = 0; i < adapter->irq_vecs; i++) {
2194 		irq = &adapter->irq_tbl[i];
2195 		if (irq->res == NULL)
2196 			continue;
2197 		device_printf_dbg(adapter->dev, "release resource irq: %d\n",
2198 		    irq->vector);
2199 		rc = bus_release_resource(adapter->dev, SYS_RES_IRQ, irq->vector,
2200 		    irq->res);
2201 		irq->res = NULL;
2202 		if (rc != 0)
2203 			device_printf(adapter->dev, "dev has no parent while "
2204 			    "releasing res for irq: %d\n", irq->vector);
2205 	}
2206 
2207 	pci_release_msi(adapter->dev);
2208 
2209 	adapter->flags &= ~AL_ETH_FLAG_MSIX_ENABLED;
2210 
2211 	adapter->msix_vecs = 0;
2212 	free(adapter->msix_entries, M_IFAL);
2213 	adapter->msix_entries = NULL;
2214 }
2215 
2216 static int
2217 al_eth_request_irq(struct al_eth_adapter *adapter)
2218 {
2219 	unsigned long flags;
2220 	struct al_eth_irq *irq;
2221 	int rc = 0, i, v;
2222 
2223 	if ((adapter->flags & AL_ETH_FLAG_MSIX_ENABLED) != 0)
2224 		flags = RF_ACTIVE;
2225 	else
2226 		flags = RF_ACTIVE | RF_SHAREABLE;
2227 
2228 	for (i = 0; i < adapter->irq_vecs; i++) {
2229 		irq = &adapter->irq_tbl[i];
2230 
2231 		if (irq->requested != 0)
2232 			continue;
2233 
2234 		irq->res = bus_alloc_resource_any(adapter->dev, SYS_RES_IRQ,
2235 		    &irq->vector, flags);
2236 		if (irq->res == NULL) {
2237 			device_printf(adapter->dev, "could not allocate "
2238 			    "irq vector=%d\n", irq->vector);
2239 			rc = ENXIO;
2240 			goto exit_res;
2241 		}
2242 
2243 		if ((rc = bus_setup_intr(adapter->dev, irq->res,
2244 		    INTR_TYPE_NET | INTR_MPSAFE, irq->handler,
2245 		    NULL, irq->data, &irq->cookie)) != 0) {
2246 			device_printf(adapter->dev, "failed to register "
2247 			    "interrupt handler for irq %ju: %d\n",
2248 			    (uintmax_t)rman_get_start(irq->res), rc);
2249 			goto exit_intr;
2250 		}
2251 		irq->requested = 1;
2252 	}
2253 	goto exit;
2254 
2255 exit_intr:
2256 	v = i - 1; /* -1 because we omit the operation that failed */
2257 	while (v-- >= 0) {
2258 		int bti;
2259 		irq = &adapter->irq_tbl[v];
2260 		bti = bus_teardown_intr(adapter->dev, irq->res, irq->cookie);
2261 		if (bti != 0) {
2262 			device_printf(adapter->dev, "failed to tear "
2263 			    "down irq: %d\n", irq->vector);
2264 		}
2265 
2266 		irq->requested = 0;
2267 		device_printf_dbg(adapter->dev, "exit_intr: releasing irq %d\n",
2268 		    irq->vector);
2269 	}
2270 
2271 exit_res:
2272 	v = i - 1; /* -1 because we omit the operation that failed */
2273 	while (v-- >= 0) {
2274 		int brr;
2275 		irq = &adapter->irq_tbl[v];
2276 		device_printf_dbg(adapter->dev, "exit_res: releasing resource"
2277 		    " for irq %d\n", irq->vector);
2278 		brr = bus_release_resource(adapter->dev, SYS_RES_IRQ,
2279 		    irq->vector, irq->res);
2280 		if (brr != 0)
2281 			device_printf(adapter->dev, "dev has no parent while "
2282 			    "releasing res for irq: %d\n", irq->vector);
2283 		irq->res = NULL;
2284 	}
2285 
2286 exit:
2287 	return (rc);
2288 }
2289 
2290 /**
2291  * al_eth_setup_tx_resources - allocate Tx resources (Descriptors)
2292  * @adapter: network interface device structure
2293  * @qid: queue index
2294  *
2295  * Return 0 on success, negative on failure
2296  **/
2297 static int
2298 al_eth_setup_tx_resources(struct al_eth_adapter *adapter, int qid)
2299 {
2300 	struct al_eth_ring *tx_ring = &adapter->tx_ring[qid];
2301 	struct device *dev = tx_ring->dev;
2302 	struct al_udma_q_params *q_params = &tx_ring->q_params;
2303 	int size;
2304 	int ret;
2305 
2306 	if (adapter->up)
2307 		return (0);
2308 
2309 	size = sizeof(struct al_eth_tx_buffer) * tx_ring->sw_count;
2310 
2311 	tx_ring->tx_buffer_info = malloc(size, M_IFAL, M_ZERO | M_WAITOK);
2312 	if (tx_ring->tx_buffer_info == NULL)
2313 		return (ENOMEM);
2314 
2315 	tx_ring->descs_size = tx_ring->hw_count * sizeof(union al_udma_desc);
2316 	q_params->size = tx_ring->hw_count;
2317 
2318 	ret = al_dma_alloc_coherent(dev, &q_params->desc_phy_base_tag,
2319 	    (bus_dmamap_t *)&q_params->desc_phy_base_map,
2320 	    (bus_addr_t *)&q_params->desc_phy_base,
2321 	    (void**)&q_params->desc_base, tx_ring->descs_size);
2322 	if (ret != 0) {
2323 		device_printf(dev, "failed to al_dma_alloc_coherent,"
2324 		    " ret = %d\n", ret);
2325 		return (ENOMEM);
2326 	}
2327 
2328 	if (q_params->desc_base == NULL)
2329 		return (ENOMEM);
2330 
2331 	device_printf_dbg(dev, "Initializing ring queues %d\n", qid);
2332 
2333 	/* Allocate Ring Queue */
2334 	mtx_init(&tx_ring->br_mtx, "AlRingMtx", NULL, MTX_DEF);
2335 	tx_ring->br = buf_ring_alloc(AL_BR_SIZE, M_DEVBUF, M_WAITOK,
2336 	    &tx_ring->br_mtx);
2337 	if (tx_ring->br == NULL) {
2338 		device_printf(dev, "Critical Failure setting up buf ring\n");
2339 		return (ENOMEM);
2340 	}
2341 
2342 	/* Allocate taskqueues */
2343 	TASK_INIT(&tx_ring->enqueue_task, 0, al_eth_start_xmit, tx_ring);
2344 	tx_ring->enqueue_tq = taskqueue_create_fast("al_tx_enque", M_NOWAIT,
2345 	    taskqueue_thread_enqueue, &tx_ring->enqueue_tq);
2346 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, PI_NET, "%s txeq",
2347 	    device_get_nameunit(adapter->dev));
2348 	TASK_INIT(&tx_ring->cmpl_task, 0, al_eth_tx_cmpl_work, tx_ring);
2349 	tx_ring->cmpl_tq = taskqueue_create_fast("al_tx_cmpl", M_NOWAIT,
2350 	    taskqueue_thread_enqueue, &tx_ring->cmpl_tq);
2351 	taskqueue_start_threads(&tx_ring->cmpl_tq, 1, PI_REALTIME, "%s txcq",
2352 	    device_get_nameunit(adapter->dev));
2353 
2354 	/* Setup DMA descriptor areas. */
2355 	ret = bus_dma_tag_create(bus_get_dma_tag(dev),
2356 	    1, 0,			/* alignment, bounds */
2357 	    BUS_SPACE_MAXADDR,		/* lowaddr */
2358 	    BUS_SPACE_MAXADDR,		/* highaddr */
2359 	    NULL, NULL,			/* filter, filterarg */
2360 	    AL_TSO_SIZE,		/* maxsize */
2361 	    AL_ETH_PKT_MAX_BUFS,	/* nsegments */
2362 	    PAGE_SIZE,			/* maxsegsize */
2363 	    0,				/* flags */
2364 	    NULL,			/* lockfunc */
2365 	    NULL,			/* lockfuncarg */
2366 	    &tx_ring->dma_buf_tag);
2367 
2368 	if (ret != 0) {
2369 		device_printf(dev,"Unable to allocate dma_buf_tag, ret = %d\n",
2370 		    ret);
2371 		return (ret);
2372 	}
2373 
2374 	for (size = 0; size < tx_ring->sw_count; size++) {
2375 		ret = bus_dmamap_create(tx_ring->dma_buf_tag, 0,
2376 		    &tx_ring->tx_buffer_info[size].dma_map);
2377 		if (ret != 0) {
2378 			device_printf(dev, "Unable to map DMA TX "
2379 			    "buffer memory [iter=%d]\n", size);
2380 			return (ret);
2381 		}
2382 	}
2383 
2384 	/* completion queue not used for tx */
2385 	q_params->cdesc_base = NULL;
2386 	/* size in bytes of the udma completion ring descriptor */
2387 	q_params->cdesc_size = 8;
2388 	tx_ring->next_to_use = 0;
2389 	tx_ring->next_to_clean = 0;
2390 
2391 	return (0);
2392 }
2393 
2394 /*
2395  * al_eth_free_tx_resources - Free Tx Resources per Queue
2396  * @adapter: network interface device structure
2397  * @qid: queue index
2398  *
2399  * Free all transmit software resources
2400  */
2401 static void
2402 al_eth_free_tx_resources(struct al_eth_adapter *adapter, int qid)
2403 {
2404 	struct al_eth_ring *tx_ring = &adapter->tx_ring[qid];
2405 	struct al_udma_q_params *q_params = &tx_ring->q_params;
2406 	int size;
2407 
2408 	/* At this point interrupts' handlers must be deactivated */
2409 	while (taskqueue_cancel(tx_ring->cmpl_tq, &tx_ring->cmpl_task, NULL))
2410 		taskqueue_drain(tx_ring->cmpl_tq, &tx_ring->cmpl_task);
2411 
2412 	taskqueue_free(tx_ring->cmpl_tq);
2413 	while (taskqueue_cancel(tx_ring->enqueue_tq,
2414 	    &tx_ring->enqueue_task, NULL)) {
2415 		taskqueue_drain(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
2416 	}
2417 
2418 	taskqueue_free(tx_ring->enqueue_tq);
2419 
2420 	if (tx_ring->br != NULL) {
2421 		drbr_flush(adapter->netdev, tx_ring->br);
2422 		buf_ring_free(tx_ring->br, M_DEVBUF);
2423 	}
2424 
2425 	for (size = 0; size < tx_ring->sw_count; size++) {
2426 		m_freem(tx_ring->tx_buffer_info[size].m);
2427 		tx_ring->tx_buffer_info[size].m = NULL;
2428 
2429 		bus_dmamap_unload(tx_ring->dma_buf_tag,
2430 		    tx_ring->tx_buffer_info[size].dma_map);
2431 		bus_dmamap_destroy(tx_ring->dma_buf_tag,
2432 		    tx_ring->tx_buffer_info[size].dma_map);
2433 	}
2434 	bus_dma_tag_destroy(tx_ring->dma_buf_tag);
2435 
2436 	free(tx_ring->tx_buffer_info, M_IFAL);
2437 	tx_ring->tx_buffer_info = NULL;
2438 
2439 	mtx_destroy(&tx_ring->br_mtx);
2440 
2441 	/* if not set, then don't free */
2442 	if (q_params->desc_base == NULL)
2443 		return;
2444 
2445 	al_dma_free_coherent(q_params->desc_phy_base_tag,
2446 	    q_params->desc_phy_base_map, q_params->desc_base);
2447 
2448 	q_params->desc_base = NULL;
2449 }
2450 
2451 /*
2452  * al_eth_free_all_tx_resources - Free Tx Resources for All Queues
2453  * @adapter: board private structure
2454  *
2455  * Free all transmit software resources
2456  */
2457 static void
2458 al_eth_free_all_tx_resources(struct al_eth_adapter *adapter)
2459 {
2460 	int i;
2461 
2462 	for (i = 0; i < adapter->num_tx_queues; i++)
2463 		if (adapter->tx_ring[i].q_params.desc_base)
2464 			al_eth_free_tx_resources(adapter, i);
2465 }
2466 
2467 /*
2468  * al_eth_setup_rx_resources - allocate Rx resources (Descriptors)
2469  * @adapter: network interface device structure
2470  * @qid: queue index
2471  *
2472  * Returns 0 on success, negative on failure
2473  */
2474 static int
2475 al_eth_setup_rx_resources(struct al_eth_adapter *adapter, unsigned int qid)
2476 {
2477 	struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
2478 	struct device *dev = rx_ring->dev;
2479 	struct al_udma_q_params *q_params = &rx_ring->q_params;
2480 	int size;
2481 	int ret;
2482 
2483 	size = sizeof(struct al_eth_rx_buffer) * rx_ring->sw_count;
2484 
2485 	/* alloc extra element so in rx path we can always prefetch rx_info + 1 */
2486 	size += 1;
2487 
2488 	rx_ring->rx_buffer_info = malloc(size, M_IFAL, M_ZERO | M_WAITOK);
2489 	if (rx_ring->rx_buffer_info == NULL)
2490 		return (ENOMEM);
2491 
2492 	rx_ring->descs_size = rx_ring->hw_count * sizeof(union al_udma_desc);
2493 	q_params->size = rx_ring->hw_count;
2494 
2495 	ret = al_dma_alloc_coherent(dev, &q_params->desc_phy_base_tag,
2496 	    &q_params->desc_phy_base_map,
2497 	    (bus_addr_t *)&q_params->desc_phy_base,
2498 	    (void**)&q_params->desc_base, rx_ring->descs_size);
2499 
2500 	if ((q_params->desc_base == NULL) || (ret != 0))
2501 		return (ENOMEM);
2502 
2503 	/* size in bytes of the udma completion ring descriptor */
2504 	q_params->cdesc_size = 16;
2505 	rx_ring->cdescs_size = rx_ring->hw_count * q_params->cdesc_size;
2506 	ret = al_dma_alloc_coherent(dev, &q_params->cdesc_phy_base_tag,
2507 	    &q_params->cdesc_phy_base_map,
2508 	    (bus_addr_t *)&q_params->cdesc_phy_base,
2509 	    (void**)&q_params->cdesc_base, rx_ring->cdescs_size);
2510 
2511 	if ((q_params->cdesc_base == NULL) || (ret != 0))
2512 		return (ENOMEM);
2513 
2514 	/* Allocate taskqueues */
2515 	TASK_INIT(&rx_ring->enqueue_task, 0, al_eth_rx_recv_work, rx_ring);
2516 	rx_ring->enqueue_tq = taskqueue_create_fast("al_rx_enque", M_NOWAIT,
2517 	    taskqueue_thread_enqueue, &rx_ring->enqueue_tq);
2518 	taskqueue_start_threads(&rx_ring->enqueue_tq, 1, PI_NET, "%s rxeq",
2519 	    device_get_nameunit(adapter->dev));
2520 
2521 	/* Setup DMA descriptor areas. */
2522 	ret = bus_dma_tag_create(bus_get_dma_tag(dev),
2523 	    1, 0,			/* alignment, bounds */
2524 	    BUS_SPACE_MAXADDR,		/* lowaddr */
2525 	    BUS_SPACE_MAXADDR,		/* highaddr */
2526 	    NULL, NULL,			/* filter, filterarg */
2527 	    AL_TSO_SIZE,		/* maxsize */
2528 	    1,				/* nsegments */
2529 	    AL_TSO_SIZE,		/* maxsegsize */
2530 	    0,				/* flags */
2531 	    NULL,			/* lockfunc */
2532 	    NULL,			/* lockfuncarg */
2533 	    &rx_ring->dma_buf_tag);
2534 
2535 	if (ret != 0) {
2536 		device_printf(dev,"Unable to allocate RX dma_buf_tag\n");
2537 		return (ret);
2538 	}
2539 
2540 	for (size = 0; size < rx_ring->sw_count; size++) {
2541 		ret = bus_dmamap_create(rx_ring->dma_buf_tag, 0,
2542 		    &rx_ring->rx_buffer_info[size].dma_map);
2543 		if (ret != 0) {
2544 			device_printf(dev,"Unable to map DMA RX buffer memory\n");
2545 			return (ret);
2546 		}
2547 	}
2548 
2549 	/* Zero out the descriptor ring */
2550 	memset(q_params->cdesc_base, 0, rx_ring->cdescs_size);
2551 
2552 	/* Create LRO for the ring */
2553 	if ((adapter->netdev->if_capenable & IFCAP_LRO) != 0) {
2554 		int err = tcp_lro_init(&rx_ring->lro);
2555 		if (err != 0) {
2556 			device_printf(adapter->dev,
2557 			    "LRO[%d] Initialization failed!\n", qid);
2558 		} else {
2559 			device_printf_dbg(adapter->dev,
2560 			    "RX Soft LRO[%d] Initialized\n", qid);
2561 			rx_ring->lro_enabled = TRUE;
2562 			rx_ring->lro.ifp = adapter->netdev;
2563 		}
2564 	}
2565 
2566 	rx_ring->next_to_clean = 0;
2567 	rx_ring->next_to_use = 0;
2568 
2569 	return (0);
2570 }
2571 
2572 /*
2573  * al_eth_free_rx_resources - Free Rx Resources
2574  * @adapter: network interface device structure
2575  * @qid: queue index
2576  *
2577  * Free all receive software resources
2578  */
2579 static void
2580 al_eth_free_rx_resources(struct al_eth_adapter *adapter, unsigned int qid)
2581 {
2582 	struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
2583 	struct al_udma_q_params *q_params = &rx_ring->q_params;
2584 	int size;
2585 
2586 	/* At this point interrupts' handlers must be deactivated */
2587 	while (taskqueue_cancel(rx_ring->enqueue_tq,
2588 	    &rx_ring->enqueue_task, NULL)) {
2589 		taskqueue_drain(rx_ring->enqueue_tq, &rx_ring->enqueue_task);
2590 	}
2591 
2592 	taskqueue_free(rx_ring->enqueue_tq);
2593 
2594 	for (size = 0; size < rx_ring->sw_count; size++) {
2595 		m_freem(rx_ring->rx_buffer_info[size].m);
2596 		rx_ring->rx_buffer_info[size].m = NULL;
2597 		bus_dmamap_unload(rx_ring->dma_buf_tag,
2598 		    rx_ring->rx_buffer_info[size].dma_map);
2599 		bus_dmamap_destroy(rx_ring->dma_buf_tag,
2600 		    rx_ring->rx_buffer_info[size].dma_map);
2601 	}
2602 	bus_dma_tag_destroy(rx_ring->dma_buf_tag);
2603 
2604 	free(rx_ring->rx_buffer_info, M_IFAL);
2605 	rx_ring->rx_buffer_info = NULL;
2606 
2607 	/* if not set, then don't free */
2608 	if (q_params->desc_base == NULL)
2609 		return;
2610 
2611 	al_dma_free_coherent(q_params->desc_phy_base_tag,
2612 	    q_params->desc_phy_base_map, q_params->desc_base);
2613 
2614 	q_params->desc_base = NULL;
2615 
2616 	/* if not set, then don't free */
2617 	if (q_params->cdesc_base == NULL)
2618 		return;
2619 
2620 	al_dma_free_coherent(q_params->cdesc_phy_base_tag,
2621 	    q_params->cdesc_phy_base_map, q_params->cdesc_base);
2622 
2623 	q_params->cdesc_phy_base = 0;
2624 
2625 	/* Free LRO resources */
2626 	tcp_lro_free(&rx_ring->lro);
2627 }
2628 
2629 /*
2630  * al_eth_free_all_rx_resources - Free Rx Resources for All Queues
2631  * @adapter: board private structure
2632  *
2633  * Free all receive software resources
2634  */
2635 static void
2636 al_eth_free_all_rx_resources(struct al_eth_adapter *adapter)
2637 {
2638 	int i;
2639 
2640 	for (i = 0; i < adapter->num_rx_queues; i++)
2641 		if (adapter->rx_ring[i].q_params.desc_base != 0)
2642 			al_eth_free_rx_resources(adapter, i);
2643 }
2644 
2645 /*
2646  * al_eth_setup_all_rx_resources - allocate all queues Rx resources
2647  * @adapter: board private structure
2648  *
2649  * Return 0 on success, negative on failure
2650  */
2651 static int
2652 al_eth_setup_all_rx_resources(struct al_eth_adapter *adapter)
2653 {
2654 	int i, rc = 0;
2655 
2656 	for (i = 0; i < adapter->num_rx_queues; i++) {
2657 		rc = al_eth_setup_rx_resources(adapter, i);
2658 		if (rc == 0)
2659 			continue;
2660 
2661 		device_printf(adapter->dev, "Allocation for Rx Queue %u failed\n", i);
2662 		goto err_setup_rx;
2663 	}
2664 	return (0);
2665 
2666 err_setup_rx:
2667 	/* rewind the index freeing the rings as we go */
2668 	while (i--)
2669 		al_eth_free_rx_resources(adapter, i);
2670 	return (rc);
2671 }
2672 
2673 /*
2674  * al_eth_setup_all_tx_resources - allocate all queues Tx resources
2675  * @adapter: private structure
2676  *
2677  * Return 0 on success, negative on failure
2678  */
2679 static int
2680 al_eth_setup_all_tx_resources(struct al_eth_adapter *adapter)
2681 {
2682 	int i, rc = 0;
2683 
2684 	for (i = 0; i < adapter->num_tx_queues; i++) {
2685 		rc = al_eth_setup_tx_resources(adapter, i);
2686 		if (rc == 0)
2687 			continue;
2688 
2689 		device_printf(adapter->dev,
2690 		    "Allocation for Tx Queue %u failed\n", i);
2691 		goto err_setup_tx;
2692 	}
2693 
2694 	return (0);
2695 
2696 err_setup_tx:
2697 	/* rewind the index freeing the rings as we go */
2698 	while (i--)
2699 		al_eth_free_tx_resources(adapter, i);
2700 
2701 	return (rc);
2702 }
2703 
2704 static void
2705 al_eth_disable_int_sync(struct al_eth_adapter *adapter)
2706 {
2707 
2708 	/* disable forwarding interrupts from eth through pci end point */
2709 	if ((adapter->board_type == ALPINE_FPGA_NIC) ||
2710 	    (adapter->board_type == ALPINE_NIC)) {
2711 		al_eth_forward_int_config((uint32_t*)adapter->internal_pcie_base +
2712 		    AL_REG_OFFSET_FORWARD_INTR, AL_DIS_FORWARD_INTR);
2713 	}
2714 
2715 	/* mask hw interrupts */
2716 	al_eth_interrupts_mask(adapter);
2717 }
2718 
2719 static void
2720 al_eth_interrupts_unmask(struct al_eth_adapter *adapter)
2721 {
2722 	uint32_t group_a_mask = AL_INT_GROUP_A_GROUP_D_SUM; /* enable group D summery */
2723 	uint32_t group_b_mask = (1 << adapter->num_rx_queues) - 1;/* bit per Rx q*/
2724 	uint32_t group_c_mask = (1 << adapter->num_tx_queues) - 1;/* bit per Tx q*/
2725 	uint32_t group_d_mask = 3 << 8;
2726 	struct unit_regs __iomem *regs_base =
2727 	    (struct unit_regs __iomem *)adapter->udma_base;
2728 
2729 	if (adapter->int_mode == AL_IOFIC_MODE_LEGACY)
2730 		group_a_mask |= AL_INT_GROUP_A_GROUP_B_SUM |
2731 		    AL_INT_GROUP_A_GROUP_C_SUM |
2732 		    AL_INT_GROUP_A_GROUP_D_SUM;
2733 
2734 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2735 	    AL_INT_GROUP_A, group_a_mask);
2736 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2737 	    AL_INT_GROUP_B, group_b_mask);
2738 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2739 	    AL_INT_GROUP_C, group_c_mask);
2740 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2741 	    AL_INT_GROUP_D, group_d_mask);
2742 }
2743 
2744 static void
2745 al_eth_interrupts_mask(struct al_eth_adapter *adapter)
2746 {
2747 	struct unit_regs __iomem *regs_base =
2748 	    (struct unit_regs __iomem *)adapter->udma_base;
2749 
2750 	/* mask all interrupts */
2751 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2752 	    AL_INT_GROUP_A, AL_MASK_GROUP_A_INT);
2753 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2754 	    AL_INT_GROUP_B, AL_MASK_GROUP_B_INT);
2755 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2756 	    AL_INT_GROUP_C, AL_MASK_GROUP_C_INT);
2757 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2758 	    AL_INT_GROUP_D, AL_MASK_GROUP_D_INT);
2759 }
2760 
2761 static int
2762 al_eth_configure_int_mode(struct al_eth_adapter *adapter)
2763 {
2764 	enum al_iofic_mode int_mode;
2765 	uint32_t m2s_errors_disable = AL_M2S_MASK_INIT;
2766 	uint32_t m2s_aborts_disable = AL_M2S_MASK_INIT;
2767 	uint32_t s2m_errors_disable = AL_S2M_MASK_INIT;
2768 	uint32_t s2m_aborts_disable = AL_S2M_MASK_INIT;
2769 
2770 	/* single INTX mode */
2771 	if (adapter->msix_vecs == 0)
2772 		int_mode = AL_IOFIC_MODE_LEGACY;
2773 	else if (adapter->msix_vecs > 1)
2774 		int_mode = AL_IOFIC_MODE_MSIX_PER_Q;
2775 	else {
2776 		device_printf(adapter->dev,
2777 		    "udma doesn't support single MSI-X mode yet.\n");
2778 		return (EIO);
2779 	}
2780 
2781 	if (adapter->board_type != ALPINE_INTEGRATED) {
2782 		m2s_errors_disable |= AL_M2S_S2M_MASK_NOT_INT;
2783 		m2s_errors_disable |= AL_M2S_S2M_MASK_NOT_INT;
2784 		s2m_aborts_disable |= AL_M2S_S2M_MASK_NOT_INT;
2785 		s2m_aborts_disable |= AL_M2S_S2M_MASK_NOT_INT;
2786 	}
2787 
2788 	if (al_udma_iofic_config((struct unit_regs __iomem *)adapter->udma_base,
2789 	    int_mode, m2s_errors_disable, m2s_aborts_disable,
2790 	    s2m_errors_disable, s2m_aborts_disable)) {
2791 		device_printf(adapter->dev,
2792 		    "al_udma_unit_int_config failed!.\n");
2793 		return (EIO);
2794 	}
2795 	adapter->int_mode = int_mode;
2796 	device_printf_dbg(adapter->dev, "using %s interrupt mode\n",
2797 	    int_mode == AL_IOFIC_MODE_LEGACY ? "INTx" :
2798 	    int_mode == AL_IOFIC_MODE_MSIX_PER_Q ? "MSI-X per Queue" : "Unknown");
2799 	/* set interrupt moderation resolution to 15us */
2800 	al_iofic_moder_res_config(&((struct unit_regs *)(adapter->udma_base))->gen.interrupt_regs.main_iofic, AL_INT_GROUP_B, 15);
2801 	al_iofic_moder_res_config(&((struct unit_regs *)(adapter->udma_base))->gen.interrupt_regs.main_iofic, AL_INT_GROUP_C, 15);
2802 	/* by default interrupt coalescing is disabled */
2803 	adapter->tx_usecs = 0;
2804 	adapter->rx_usecs = 0;
2805 
2806 	return (0);
2807 }
2808 
2809 /*
2810  * ethtool_rxfh_indir_default - get default value for RX flow hash indirection
2811  * @index: Index in RX flow hash indirection table
2812  * @n_rx_rings: Number of RX rings to use
2813  *
2814  * This function provides the default policy for RX flow hash indirection.
2815  */
2816 static inline uint32_t
2817 ethtool_rxfh_indir_default(uint32_t index, uint32_t n_rx_rings)
2818 {
2819 
2820 	return (index % n_rx_rings);
2821 }
2822 
2823 static void*
2824 al_eth_update_stats(struct al_eth_adapter *adapter)
2825 {
2826 	struct al_eth_mac_stats *mac_stats = &adapter->mac_stats;
2827 
2828 	if (adapter->up == 0)
2829 		return (NULL);
2830 
2831 	al_eth_mac_stats_get(&adapter->hal_adapter, mac_stats);
2832 
2833 	return (NULL);
2834 }
2835 
2836 static uint64_t
2837 al_get_counter(struct ifnet *ifp, ift_counter cnt)
2838 {
2839 	struct al_eth_adapter *adapter;
2840 	struct al_eth_mac_stats *mac_stats;
2841 	uint64_t rv;
2842 
2843 	adapter = if_getsoftc(ifp);
2844 	mac_stats = &adapter->mac_stats;
2845 
2846 	switch (cnt) {
2847 	case IFCOUNTER_IPACKETS:
2848 		return (mac_stats->aFramesReceivedOK); /* including pause frames */
2849 	case IFCOUNTER_OPACKETS:
2850 		return (mac_stats->aFramesTransmittedOK);
2851 	case IFCOUNTER_IBYTES:
2852 		return (mac_stats->aOctetsReceivedOK);
2853 	case IFCOUNTER_OBYTES:
2854 		return (mac_stats->aOctetsTransmittedOK);
2855 	case IFCOUNTER_IMCASTS:
2856 		return (mac_stats->ifInMulticastPkts);
2857 	case IFCOUNTER_OMCASTS:
2858 		return (mac_stats->ifOutMulticastPkts);
2859 	case IFCOUNTER_COLLISIONS:
2860 		return (0);
2861 	case IFCOUNTER_IQDROPS:
2862 		return (mac_stats->etherStatsDropEvents);
2863 	case IFCOUNTER_IERRORS:
2864 		rv = mac_stats->ifInErrors +
2865 		    mac_stats->etherStatsUndersizePkts + /* good but short */
2866 		    mac_stats->etherStatsFragments + /* short and bad*/
2867 		    mac_stats->etherStatsJabbers + /* with crc errors */
2868 		    mac_stats->etherStatsOversizePkts +
2869 		    mac_stats->aFrameCheckSequenceErrors +
2870 		    mac_stats->aAlignmentErrors;
2871 		return (rv);
2872 	case IFCOUNTER_OERRORS:
2873 		return (mac_stats->ifOutErrors);
2874 	default:
2875 		return (if_get_counter_default(ifp, cnt));
2876 	}
2877 }
2878 
2879 /*
2880  *  Unicast, Multicast and Promiscuous mode set
2881  *
2882  *  The set_rx_mode entry point is called whenever the unicast or multicast
2883  *  address lists or the network interface flags are updated.  This routine is
2884  *  responsible for configuring the hardware for proper unicast, multicast,
2885  *  promiscuous mode, and all-multi behavior.
2886  */
2887 #define	MAX_NUM_MULTICAST_ADDRESSES 32
2888 #define	MAX_NUM_ADDRESSES           32
2889 
2890 static void
2891 al_eth_set_rx_mode(struct al_eth_adapter *adapter)
2892 {
2893 	struct ifnet *ifp = adapter->netdev;
2894 	struct ifmultiaddr *ifma; /* multicast addresses configured */
2895 	struct ifaddr *ifua; /* unicast address */
2896 	int mc = 0;
2897 	int uc = 0;
2898 	uint8_t i;
2899 	unsigned char *mac;
2900 
2901 	if_maddr_rlock(ifp);
2902 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2903 		if (ifma->ifma_addr->sa_family != AF_LINK)
2904 			continue;
2905 		if (mc == MAX_NUM_MULTICAST_ADDRESSES)
2906 			break;
2907 
2908 		mac = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2909 		/* default mc address inside mac address */
2910 		if (mac[3] != 0 && mac[4] != 0 && mac[5] != 1)
2911 			mc++;
2912 	}
2913 	if_maddr_runlock(ifp);
2914 
2915 	if_addr_rlock(ifp);
2916 	CK_STAILQ_FOREACH(ifua, &ifp->if_addrhead, ifa_link) {
2917 		if (ifua->ifa_addr->sa_family != AF_LINK)
2918 			continue;
2919 		if (uc == MAX_NUM_ADDRESSES)
2920 			break;
2921 		uc++;
2922 	}
2923 	if_addr_runlock(ifp);
2924 
2925 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2926 		al_eth_mac_table_promiscuous_set(adapter, true);
2927 	} else {
2928 		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
2929 			/* This interface is in all-multicasts mode (used by multicast routers). */
2930 			al_eth_mac_table_all_multicast_add(adapter,
2931 			    AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX, 1);
2932 		} else {
2933 			if (mc == 0) {
2934 				al_eth_mac_table_entry_clear(adapter,
2935 				    AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX);
2936 			} else {
2937 				al_eth_mac_table_all_multicast_add(adapter,
2938 				    AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX, 1);
2939 			}
2940 		}
2941 		if (uc != 0) {
2942 			i = AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + 1;
2943 			if (uc > AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT) {
2944 				/*
2945 				 * In this case there are more addresses then
2946 				 * entries in the mac table - set promiscuous
2947 				 */
2948 				al_eth_mac_table_promiscuous_set(adapter, true);
2949 				return;
2950 			}
2951 
2952 			/* clear the last configuration */
2953 			while (i < (AL_ETH_MAC_TABLE_UNICAST_IDX_BASE +
2954 				    AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT)) {
2955 				al_eth_mac_table_entry_clear(adapter, i);
2956 				i++;
2957 			}
2958 
2959 			/* set new addresses */
2960 			i = AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + 1;
2961 			if_addr_rlock(ifp);
2962 			CK_STAILQ_FOREACH(ifua, &ifp->if_addrhead, ifa_link) {
2963 				if (ifua->ifa_addr->sa_family != AF_LINK) {
2964 					continue;
2965 				}
2966 				al_eth_mac_table_unicast_add(adapter, i,
2967 				    (unsigned char *)ifua->ifa_addr, 1);
2968 				i++;
2969 			}
2970 			if_addr_runlock(ifp);
2971 
2972 		}
2973 		al_eth_mac_table_promiscuous_set(adapter, false);
2974 	}
2975 }
2976 
2977 static void
2978 al_eth_config_rx_fwd(struct al_eth_adapter *adapter)
2979 {
2980 	struct al_eth_fwd_ctrl_table_entry entry;
2981 	int i;
2982 
2983 	/* let priority be equal to pbits */
2984 	for (i = 0; i < AL_ETH_FWD_PBITS_TABLE_NUM; i++)
2985 		al_eth_fwd_pbits_table_set(&adapter->hal_adapter, i, i);
2986 
2987 	/* map priority to queue index, queue id = priority/2 */
2988 	for (i = 0; i < AL_ETH_FWD_PRIO_TABLE_NUM; i++)
2989 		al_eth_fwd_priority_table_set(&adapter->hal_adapter, i, i >> 1);
2990 
2991 	entry.prio_sel = AL_ETH_CTRL_TABLE_PRIO_SEL_VAL_0;
2992 	entry.queue_sel_1 = AL_ETH_CTRL_TABLE_QUEUE_SEL_1_THASH_TABLE;
2993 	entry.queue_sel_2 = AL_ETH_CTRL_TABLE_QUEUE_SEL_2_NO_PRIO;
2994 	entry.udma_sel = AL_ETH_CTRL_TABLE_UDMA_SEL_MAC_TABLE;
2995 	entry.filter = FALSE;
2996 
2997 	al_eth_ctrl_table_def_set(&adapter->hal_adapter, FALSE, &entry);
2998 
2999 	/*
3000 	 * By default set the mac table to forward all unicast packets to our
3001 	 * MAC address and all broadcast. all the rest will be dropped.
3002 	 */
3003 	al_eth_mac_table_unicast_add(adapter, AL_ETH_MAC_TABLE_UNICAST_IDX_BASE,
3004 	    adapter->mac_addr, 1);
3005 	al_eth_mac_table_broadcast_add(adapter, AL_ETH_MAC_TABLE_BROADCAST_IDX, 1);
3006 	al_eth_mac_table_promiscuous_set(adapter, false);
3007 
3008 	/* set toeplitz hash keys */
3009 	for (i = 0; i < sizeof(adapter->toeplitz_hash_key); i++)
3010 		*((uint8_t*)adapter->toeplitz_hash_key + i) = (uint8_t)random();
3011 
3012 	for (i = 0; i < AL_ETH_RX_HASH_KEY_NUM; i++)
3013 		al_eth_hash_key_set(&adapter->hal_adapter, i,
3014 		    htonl(adapter->toeplitz_hash_key[i]));
3015 
3016 	for (i = 0; i < AL_ETH_RX_RSS_TABLE_SIZE; i++) {
3017 		adapter->rss_ind_tbl[i] = ethtool_rxfh_indir_default(i,
3018 		    AL_ETH_NUM_QUEUES);
3019 		al_eth_set_thash_table_entry(adapter, i, 0,
3020 		    adapter->rss_ind_tbl[i]);
3021 	}
3022 
3023 	al_eth_fsm_table_init(adapter);
3024 }
3025 
3026 static void
3027 al_eth_req_rx_buff_size(struct al_eth_adapter *adapter, int size)
3028 {
3029 
3030 	/*
3031 	* Determine the correct mbuf pool
3032 	* for doing jumbo frames
3033 	* Try from the smallest up to maximum supported
3034 	*/
3035 	adapter->rx_mbuf_sz = MCLBYTES;
3036 	if (size > 2048) {
3037 		if (adapter->max_rx_buff_alloc_size > 2048)
3038 			adapter->rx_mbuf_sz = MJUMPAGESIZE;
3039 		else
3040 			return;
3041 	}
3042 	if (size > 4096) {
3043 		if (adapter->max_rx_buff_alloc_size > 4096)
3044 			adapter->rx_mbuf_sz = MJUM9BYTES;
3045 		else
3046 			return;
3047 	}
3048 	if (size > 9216) {
3049 		if (adapter->max_rx_buff_alloc_size > 9216)
3050 			adapter->rx_mbuf_sz = MJUM16BYTES;
3051 		else
3052 			return;
3053 	}
3054 }
3055 
3056 static int
3057 al_eth_change_mtu(struct al_eth_adapter *adapter, int new_mtu)
3058 {
3059 	int max_frame = new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
3060 	    ETHER_VLAN_ENCAP_LEN;
3061 
3062 	al_eth_req_rx_buff_size(adapter, new_mtu);
3063 
3064 	device_printf_dbg(adapter->dev, "set MTU to %d\n", new_mtu);
3065 	al_eth_rx_pkt_limit_config(&adapter->hal_adapter,
3066 	    AL_ETH_MIN_FRAME_LEN, max_frame);
3067 
3068 	al_eth_tso_mss_config(&adapter->hal_adapter, 0, new_mtu - 100);
3069 
3070 	return (0);
3071 }
3072 
3073 static int
3074 al_eth_check_mtu(struct al_eth_adapter *adapter, int new_mtu)
3075 {
3076 	int max_frame = new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
3077 
3078 	if ((new_mtu < AL_ETH_MIN_FRAME_LEN) ||
3079 	    (max_frame > AL_ETH_MAX_FRAME_LEN)) {
3080 		return (EINVAL);
3081 	}
3082 
3083 	return (0);
3084 }
3085 
3086 static int
3087 al_eth_udma_queue_enable(struct al_eth_adapter *adapter, enum al_udma_type type,
3088     int qid)
3089 {
3090 	int rc = 0;
3091 	char *name = (type == UDMA_TX) ? "Tx" : "Rx";
3092 	struct al_udma_q_params *q_params;
3093 
3094 	if (type == UDMA_TX)
3095 		q_params = &adapter->tx_ring[qid].q_params;
3096 	else
3097 		q_params = &adapter->rx_ring[qid].q_params;
3098 
3099 	rc = al_eth_queue_config(&adapter->hal_adapter, type, qid, q_params);
3100 	if (rc < 0) {
3101 		device_printf(adapter->dev, "config %s queue %u failed\n", name,
3102 		    qid);
3103 		return (rc);
3104 	}
3105 	return (rc);
3106 }
3107 
3108 static int
3109 al_eth_udma_queues_enable_all(struct al_eth_adapter *adapter)
3110 {
3111 	int i;
3112 
3113 	for (i = 0; i < adapter->num_tx_queues; i++)
3114 		al_eth_udma_queue_enable(adapter, UDMA_TX, i);
3115 
3116 	for (i = 0; i < adapter->num_rx_queues; i++)
3117 		al_eth_udma_queue_enable(adapter, UDMA_RX, i);
3118 
3119 	return (0);
3120 }
3121 
3122 static void
3123 al_eth_up_complete(struct al_eth_adapter *adapter)
3124 {
3125 
3126 	al_eth_configure_int_mode(adapter);
3127 	al_eth_config_rx_fwd(adapter);
3128 	al_eth_change_mtu(adapter, adapter->netdev->if_mtu);
3129 	al_eth_udma_queues_enable_all(adapter);
3130 	al_eth_refill_all_rx_bufs(adapter);
3131 	al_eth_interrupts_unmask(adapter);
3132 
3133 	/* enable forwarding interrupts from eth through pci end point */
3134 	if ((adapter->board_type == ALPINE_FPGA_NIC) ||
3135 	    (adapter->board_type == ALPINE_NIC)) {
3136 		al_eth_forward_int_config((uint32_t*)adapter->internal_pcie_base +
3137 		    AL_REG_OFFSET_FORWARD_INTR, AL_EN_FORWARD_INTR);
3138 	}
3139 
3140 	al_eth_flow_ctrl_enable(adapter);
3141 
3142 	mtx_lock(&adapter->stats_mtx);
3143 	callout_reset(&adapter->stats_callout, hz, al_tick_stats, (void*)adapter);
3144 	mtx_unlock(&adapter->stats_mtx);
3145 
3146 	al_eth_mac_start(&adapter->hal_adapter);
3147 }
3148 
3149 static int
3150 al_media_update(struct ifnet *ifp)
3151 {
3152 	struct al_eth_adapter *adapter = ifp->if_softc;
3153 
3154 	if ((ifp->if_flags & IFF_UP) != 0)
3155 		mii_mediachg(adapter->mii);
3156 
3157 	return (0);
3158 }
3159 
3160 static void
3161 al_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
3162 {
3163 	struct al_eth_adapter *sc = ifp->if_softc;
3164 	struct mii_data *mii;
3165 
3166 	if (sc->mii == NULL) {
3167 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3168 		ifmr->ifm_status = 0;
3169 
3170 		return;
3171 	}
3172 
3173 	mii = sc->mii;
3174 	mii_pollstat(mii);
3175 
3176 	ifmr->ifm_active = mii->mii_media_active;
3177 	ifmr->ifm_status = mii->mii_media_status;
3178 }
3179 
3180 static void
3181 al_tick(void *arg)
3182 {
3183 	struct al_eth_adapter *adapter = arg;
3184 
3185 	mii_tick(adapter->mii);
3186 
3187 	/* Schedule another timeout one second from now */
3188 	callout_schedule(&adapter->wd_callout, hz);
3189 }
3190 
3191 static void
3192 al_tick_stats(void *arg)
3193 {
3194 	struct al_eth_adapter *adapter = arg;
3195 
3196 	al_eth_update_stats(adapter);
3197 
3198 	callout_schedule(&adapter->stats_callout, hz);
3199 }
3200 
3201 static int
3202 al_eth_up(struct al_eth_adapter *adapter)
3203 {
3204 	struct ifnet *ifp = adapter->netdev;
3205 	int rc;
3206 
3207 	if (adapter->up)
3208 		return (0);
3209 
3210 	if ((adapter->flags & AL_ETH_FLAG_RESET_REQUESTED) != 0) {
3211 		al_eth_function_reset(adapter);
3212 		adapter->flags &= ~AL_ETH_FLAG_RESET_REQUESTED;
3213 	}
3214 
3215 	ifp->if_hwassist = 0;
3216 	if ((ifp->if_capenable & IFCAP_TSO) != 0)
3217 		ifp->if_hwassist |= CSUM_TSO;
3218 	if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3219 		ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
3220 	if ((ifp->if_capenable & IFCAP_TXCSUM_IPV6) != 0)
3221 		ifp->if_hwassist |= (CSUM_TCP_IPV6 | CSUM_UDP_IPV6);
3222 
3223 	al_eth_serdes_init(adapter);
3224 
3225 	rc = al_eth_hw_init(adapter);
3226 	if (rc != 0)
3227 		goto err_hw_init_open;
3228 
3229 	rc = al_eth_setup_int_mode(adapter);
3230 	if (rc != 0) {
3231 		device_printf(adapter->dev,
3232 		    "%s failed at setup interrupt mode!\n", __func__);
3233 		goto err_setup_int;
3234 	}
3235 
3236 	/* allocate transmit descriptors */
3237 	rc = al_eth_setup_all_tx_resources(adapter);
3238 	if (rc != 0)
3239 		goto err_setup_tx;
3240 
3241 	/* allocate receive descriptors */
3242 	rc = al_eth_setup_all_rx_resources(adapter);
3243 	if (rc != 0)
3244 		goto err_setup_rx;
3245 
3246 	rc = al_eth_request_irq(adapter);
3247 	if (rc != 0)
3248 		goto err_req_irq;
3249 
3250 	al_eth_up_complete(adapter);
3251 
3252 	adapter->up = true;
3253 
3254 	if (adapter->mac_mode == AL_ETH_MAC_MODE_10GbE_Serial)
3255 		adapter->netdev->if_link_state = LINK_STATE_UP;
3256 
3257 	if (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII) {
3258 		mii_mediachg(adapter->mii);
3259 
3260 		/* Schedule watchdog timeout */
3261 		mtx_lock(&adapter->wd_mtx);
3262 		callout_reset(&adapter->wd_callout, hz, al_tick, adapter);
3263 		mtx_unlock(&adapter->wd_mtx);
3264 
3265 		mii_pollstat(adapter->mii);
3266 	}
3267 
3268 	return (rc);
3269 
3270 err_req_irq:
3271 	al_eth_free_all_rx_resources(adapter);
3272 err_setup_rx:
3273 	al_eth_free_all_tx_resources(adapter);
3274 err_setup_tx:
3275 	al_eth_free_irq(adapter);
3276 err_setup_int:
3277 	al_eth_hw_stop(adapter);
3278 err_hw_init_open:
3279 	al_eth_function_reset(adapter);
3280 
3281 	return (rc);
3282 }
3283 
3284 static int
3285 al_shutdown(device_t dev)
3286 {
3287 	struct al_eth_adapter *adapter = device_get_softc(dev);
3288 
3289 	al_eth_down(adapter);
3290 
3291 	return (0);
3292 }
3293 
3294 static void
3295 al_eth_down(struct al_eth_adapter *adapter)
3296 {
3297 
3298 	device_printf_dbg(adapter->dev, "al_eth_down: begin\n");
3299 
3300 	adapter->up = false;
3301 
3302 	mtx_lock(&adapter->wd_mtx);
3303 	callout_stop(&adapter->wd_callout);
3304 	mtx_unlock(&adapter->wd_mtx);
3305 
3306 	al_eth_disable_int_sync(adapter);
3307 
3308 	mtx_lock(&adapter->stats_mtx);
3309 	callout_stop(&adapter->stats_callout);
3310 	mtx_unlock(&adapter->stats_mtx);
3311 
3312 	al_eth_free_irq(adapter);
3313 	al_eth_hw_stop(adapter);
3314 
3315 	al_eth_free_all_tx_resources(adapter);
3316 	al_eth_free_all_rx_resources(adapter);
3317 }
3318 
3319 static int
3320 al_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3321 {
3322 	struct al_eth_adapter	*adapter = ifp->if_softc;
3323 	struct ifreq		*ifr = (struct ifreq *)data;
3324 	int			error = 0;
3325 
3326 	switch (command) {
3327 	case SIOCSIFMTU:
3328 	{
3329 		error = al_eth_check_mtu(adapter, ifr->ifr_mtu);
3330 		if (error != 0) {
3331 			device_printf(adapter->dev, "ioctl wrong mtu %u\n",
3332 			    adapter->netdev->if_mtu);
3333 			break;
3334 		}
3335 
3336 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3337 		adapter->netdev->if_mtu = ifr->ifr_mtu;
3338 		al_init(adapter);
3339 		break;
3340 	}
3341 	case SIOCSIFFLAGS:
3342 		if ((ifp->if_flags & IFF_UP) != 0) {
3343 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3344 				if (((ifp->if_flags ^ adapter->if_flags) &
3345 				    (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3346 					device_printf_dbg(adapter->dev,
3347 					    "ioctl promisc/allmulti\n");
3348 					al_eth_set_rx_mode(adapter);
3349 				}
3350 			} else {
3351 				error = al_eth_up(adapter);
3352 				if (error == 0)
3353 					ifp->if_drv_flags |= IFF_DRV_RUNNING;
3354 			}
3355 		} else {
3356 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3357 				al_eth_down(adapter);
3358 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3359 			}
3360 		}
3361 
3362 		adapter->if_flags = ifp->if_flags;
3363 		break;
3364 
3365 	case SIOCADDMULTI:
3366 	case SIOCDELMULTI:
3367 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3368 			device_printf_dbg(adapter->dev,
3369 			    "ioctl add/del multi before\n");
3370 			al_eth_set_rx_mode(adapter);
3371 #ifdef DEVICE_POLLING
3372 			if ((ifp->if_capenable & IFCAP_POLLING) == 0)
3373 #endif
3374 		}
3375 		break;
3376 	case SIOCSIFMEDIA:
3377 	case SIOCGIFMEDIA:
3378 		if (adapter->mii != NULL)
3379 			error = ifmedia_ioctl(ifp, ifr,
3380 			    &adapter->mii->mii_media, command);
3381 		else
3382 			error = ifmedia_ioctl(ifp, ifr,
3383 			    &adapter->media, command);
3384 		break;
3385 	case SIOCSIFCAP:
3386 	    {
3387 		int mask, reinit;
3388 
3389 		reinit = 0;
3390 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3391 #ifdef DEVICE_POLLING
3392 		if ((mask & IFCAP_POLLING) != 0) {
3393 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
3394 				if (error != 0)
3395 					return (error);
3396 				ifp->if_capenable |= IFCAP_POLLING;
3397 			} else {
3398 				error = ether_poll_deregister(ifp);
3399 				/* Enable interrupt even in error case */
3400 				ifp->if_capenable &= ~IFCAP_POLLING;
3401 			}
3402 		}
3403 #endif
3404 		if ((mask & IFCAP_HWCSUM) != 0) {
3405 			/* apply to both rx and tx */
3406 			ifp->if_capenable ^= IFCAP_HWCSUM;
3407 			reinit = 1;
3408 		}
3409 		if ((mask & IFCAP_HWCSUM_IPV6) != 0) {
3410 			ifp->if_capenable ^= IFCAP_HWCSUM_IPV6;
3411 			reinit = 1;
3412 		}
3413 		if ((mask & IFCAP_TSO) != 0) {
3414 			ifp->if_capenable ^= IFCAP_TSO;
3415 			reinit = 1;
3416 		}
3417 		if ((mask & IFCAP_LRO) != 0) {
3418 			ifp->if_capenable ^= IFCAP_LRO;
3419 		}
3420 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
3421 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3422 			reinit = 1;
3423 		}
3424 		if ((mask & IFCAP_VLAN_HWFILTER) != 0) {
3425 			ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
3426 			reinit = 1;
3427 		}
3428 		if ((mask & IFCAP_VLAN_HWTSO) != 0) {
3429 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
3430 			reinit = 1;
3431 		}
3432 		if ((reinit != 0) &&
3433 		    ((ifp->if_drv_flags & IFF_DRV_RUNNING)) != 0)
3434 		{
3435 			al_init(adapter);
3436 		}
3437 		break;
3438 	    }
3439 
3440 	default:
3441 		error = ether_ioctl(ifp, command, data);
3442 		break;
3443 	}
3444 
3445 	return (error);
3446 }
3447 
3448 static int
3449 al_is_device_supported(device_t dev)
3450 {
3451 	uint16_t pci_vendor_id = pci_get_vendor(dev);
3452 	uint16_t pci_device_id = pci_get_device(dev);
3453 
3454 	return (pci_vendor_id == PCI_VENDOR_ID_ANNAPURNA_LABS &&
3455 	    (pci_device_id == PCI_DEVICE_ID_AL_ETH ||
3456 	    pci_device_id == PCI_DEVICE_ID_AL_ETH_ADVANCED ||
3457 	    pci_device_id == PCI_DEVICE_ID_AL_ETH_NIC ||
3458 	    pci_device_id == PCI_DEVICE_ID_AL_ETH_FPGA_NIC));
3459 }
3460 
3461 /* Time in mSec to keep trying to read / write from MDIO in case of error */
3462 #define	MDIO_TIMEOUT_MSEC	100
3463 #define	MDIO_PAUSE_MSEC		10
3464 
3465 static int
3466 al_miibus_readreg(device_t dev, int phy, int reg)
3467 {
3468 	struct al_eth_adapter *adapter = device_get_softc(dev);
3469 	uint16_t value = 0;
3470 	int rc;
3471 	int timeout = MDIO_TIMEOUT_MSEC;
3472 
3473 	while (timeout > 0) {
3474 		rc = al_eth_mdio_read(&adapter->hal_adapter, adapter->phy_addr,
3475 		    -1, reg, &value);
3476 
3477 		if (rc == 0)
3478 			return (value);
3479 
3480 		device_printf_dbg(adapter->dev,
3481 		    "mdio read failed. try again in 10 msec\n");
3482 
3483 		timeout -= MDIO_PAUSE_MSEC;
3484 		pause("readred pause", MDIO_PAUSE_MSEC);
3485 	}
3486 
3487 	if (rc != 0)
3488 		device_printf(adapter->dev, "MDIO read failed on timeout\n");
3489 
3490 	return (value);
3491 }
3492 
3493 static int
3494 al_miibus_writereg(device_t dev, int phy, int reg, int value)
3495 {
3496 	struct al_eth_adapter *adapter = device_get_softc(dev);
3497 	int rc;
3498 	int timeout = MDIO_TIMEOUT_MSEC;
3499 
3500 	while (timeout > 0) {
3501 		rc = al_eth_mdio_write(&adapter->hal_adapter, adapter->phy_addr,
3502 		    -1, reg, value);
3503 
3504 		if (rc == 0)
3505 			return (0);
3506 
3507 		device_printf(adapter->dev,
3508 		    "mdio write failed. try again in 10 msec\n");
3509 
3510 		timeout -= MDIO_PAUSE_MSEC;
3511 		pause("miibus writereg", MDIO_PAUSE_MSEC);
3512 	}
3513 
3514 	if (rc != 0)
3515 		device_printf(adapter->dev, "MDIO write failed on timeout\n");
3516 
3517 	return (rc);
3518 }
3519 
3520 static void
3521 al_miibus_statchg(device_t dev)
3522 {
3523 	struct al_eth_adapter *adapter = device_get_softc(dev);
3524 
3525 	device_printf_dbg(adapter->dev,
3526 	    "al_miibus_statchg: state has changed!\n");
3527 	device_printf_dbg(adapter->dev,
3528 	    "al_miibus_statchg: active = 0x%x status = 0x%x\n",
3529 	    adapter->mii->mii_media_active, adapter->mii->mii_media_status);
3530 
3531 	if (adapter->up == 0)
3532 		return;
3533 
3534 	if ((adapter->mii->mii_media_status & IFM_AVALID) != 0) {
3535 		if (adapter->mii->mii_media_status & IFM_ACTIVE) {
3536 			device_printf(adapter->dev, "link is UP\n");
3537 			adapter->netdev->if_link_state = LINK_STATE_UP;
3538 		} else {
3539 			device_printf(adapter->dev, "link is DOWN\n");
3540 			adapter->netdev->if_link_state = LINK_STATE_DOWN;
3541 		}
3542 	}
3543 }
3544 
3545 static void
3546 al_miibus_linkchg(device_t dev)
3547 {
3548 	struct al_eth_adapter *adapter = device_get_softc(dev);
3549 	uint8_t duplex = 0;
3550 	uint8_t speed = 0;
3551 
3552 	if (adapter->mii == NULL)
3553 		return;
3554 
3555 	if ((adapter->netdev->if_flags & IFF_UP) == 0)
3556 		return;
3557 
3558 	/* Ignore link changes when link is not ready */
3559 	if ((adapter->mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
3560 	    (IFM_AVALID | IFM_ACTIVE)) {
3561 		return;
3562 	}
3563 
3564 	if ((adapter->mii->mii_media_active & IFM_FDX) != 0)
3565 		duplex = 1;
3566 
3567 	speed = IFM_SUBTYPE(adapter->mii->mii_media_active);
3568 
3569 	if (speed == IFM_10_T) {
3570 		al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
3571 		    AL_10BASE_T_SPEED, duplex);
3572 		return;
3573 	}
3574 
3575 	if (speed == IFM_100_TX) {
3576 		al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
3577 		    AL_100BASE_TX_SPEED, duplex);
3578 		return;
3579 	}
3580 
3581 	if (speed == IFM_1000_T) {
3582 		al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
3583 		    AL_1000BASE_T_SPEED, duplex);
3584 		return;
3585 	}
3586 
3587 	device_printf(adapter->dev, "ERROR: unknown MII media active 0x%08x\n",
3588 	    adapter->mii->mii_media_active);
3589 }
3590