xref: /freebsd/sys/dev/al_eth/al_eth.c (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 /*-
2  * Copyright (c) 2015,2016 Annapurna Labs Ltd. and affiliates
3  * All rights reserved.
4  *
5  * Developed by Semihalf.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/kernel.h>
36 #include <sys/kthread.h>
37 #include <sys/lock.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 #include <sys/taskqueue.h>
46 
47 #include <machine/atomic.h>
48 
49 #include "opt_inet.h"
50 #include "opt_inet6.h"
51 
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_var.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 #include <netinet/in.h>
60 #include <net/if_vlan_var.h>
61 #include <netinet/tcp.h>
62 #include <netinet/tcp_lro.h>
63 
64 #ifdef INET
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69 #endif
70 
71 #ifdef INET6
72 #include <netinet/ip6.h>
73 #endif
74 
75 #include <sys/sockio.h>
76 
77 #include <dev/pci/pcireg.h>
78 #include <dev/pci/pcivar.h>
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <al_hal_common.h>
84 #include <al_hal_plat_services.h>
85 #include <al_hal_udma_config.h>
86 #include <al_hal_udma_iofic.h>
87 #include <al_hal_udma_debug.h>
88 #include <al_hal_eth.h>
89 
90 #include "al_eth.h"
91 #include "al_init_eth_lm.h"
92 #include "arm/annapurna/alpine/alpine_serdes.h"
93 
94 #include "miibus_if.h"
95 
96 #define	device_printf_dbg(fmt, ...) do {				\
97 	if (AL_DBG_LEVEL >= AL_DBG_LEVEL_DBG) { AL_DBG_LOCK();		\
98 	    device_printf(fmt, __VA_ARGS__); AL_DBG_UNLOCK();}		\
99 	} while (0)
100 
101 MALLOC_DEFINE(M_IFAL, "if_al_malloc", "All allocated data for AL ETH driver");
102 
103 /* move out to some pci header file */
104 #define	PCI_VENDOR_ID_ANNAPURNA_LABS	0x1c36
105 #define	PCI_DEVICE_ID_AL_ETH		0x0001
106 #define	PCI_DEVICE_ID_AL_ETH_ADVANCED	0x0002
107 #define	PCI_DEVICE_ID_AL_ETH_NIC	0x0003
108 #define	PCI_DEVICE_ID_AL_ETH_FPGA_NIC	0x0030
109 #define	PCI_DEVICE_ID_AL_CRYPTO		0x0011
110 #define	PCI_DEVICE_ID_AL_CRYPTO_VF	0x8011
111 #define	PCI_DEVICE_ID_AL_RAID_DMA	0x0021
112 #define	PCI_DEVICE_ID_AL_RAID_DMA_VF	0x8021
113 #define	PCI_DEVICE_ID_AL_USB		0x0041
114 
115 #define	MAC_ADDR_STR "%02x:%02x:%02x:%02x:%02x:%02x"
116 #define	MAC_ADDR(addr) addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]
117 
118 #define	AL_ETH_MAC_TABLE_UNICAST_IDX_BASE	0
119 #define	AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT	4
120 #define	AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX	(AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + \
121 						 AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT)
122 
123 #define	AL_ETH_MAC_TABLE_DROP_IDX		(AL_ETH_FWD_MAC_NUM - 1)
124 #define	AL_ETH_MAC_TABLE_BROADCAST_IDX		(AL_ETH_MAC_TABLE_DROP_IDX - 1)
125 
126 #define	AL_ETH_THASH_UDMA_SHIFT		0
127 #define	AL_ETH_THASH_UDMA_MASK		(0xF << AL_ETH_THASH_UDMA_SHIFT)
128 
129 #define	AL_ETH_THASH_Q_SHIFT		4
130 #define	AL_ETH_THASH_Q_MASK		(0x3 << AL_ETH_THASH_Q_SHIFT)
131 
132 /* the following defines should be moved to hal */
133 #define	AL_ETH_FSM_ENTRY_IPV4_TCP		0
134 #define	AL_ETH_FSM_ENTRY_IPV4_UDP		1
135 #define	AL_ETH_FSM_ENTRY_IPV6_TCP		2
136 #define	AL_ETH_FSM_ENTRY_IPV6_UDP		3
137 #define	AL_ETH_FSM_ENTRY_IPV6_NO_UDP_TCP	4
138 #define	AL_ETH_FSM_ENTRY_IPV4_NO_UDP_TCP	5
139 
140 /* FSM DATA format */
141 #define	AL_ETH_FSM_DATA_OUTER_2_TUPLE	0
142 #define	AL_ETH_FSM_DATA_OUTER_4_TUPLE	1
143 #define	AL_ETH_FSM_DATA_INNER_2_TUPLE	2
144 #define	AL_ETH_FSM_DATA_INNER_4_TUPLE	3
145 
146 #define	AL_ETH_FSM_DATA_HASH_SEL	(1 << 2)
147 
148 #define	AL_ETH_FSM_DATA_DEFAULT_Q	0
149 #define	AL_ETH_FSM_DATA_DEFAULT_UDMA	0
150 
151 #define	AL_BR_SIZE	512
152 #define	AL_TSO_SIZE	65500
153 #define	AL_DEFAULT_MTU	1500
154 
155 #define	CSUM_OFFLOAD		(CSUM_IP|CSUM_TCP|CSUM_UDP|CSUM_SCTP)
156 
157 #define	AL_IP_ALIGNMENT_OFFSET	2
158 
159 #define	SFP_I2C_ADDR		0x50
160 
161 #define	AL_MASK_GROUP_A_INT	0x7
162 #define	AL_MASK_GROUP_B_INT	0xF
163 #define	AL_MASK_GROUP_C_INT	0xF
164 #define	AL_MASK_GROUP_D_INT	0xFFFFFFFF
165 
166 #define	AL_REG_OFFSET_FORWARD_INTR	(0x1800000 + 0x1210)
167 #define	AL_EN_FORWARD_INTR	0x1FFFF
168 #define	AL_DIS_FORWARD_INTR	0
169 
170 #define	AL_M2S_MASK_INIT	0x480
171 #define	AL_S2M_MASK_INIT	0x1E0
172 #define	AL_M2S_S2M_MASK_NOT_INT	(0x3f << 25)
173 
174 #define	AL_10BASE_T_SPEED	10
175 #define	AL_100BASE_TX_SPEED	100
176 #define	AL_1000BASE_T_SPEED	1000
177 
178 #define	AL_RX_LOCK_INIT(_sc)	mtx_init(&((_sc)->if_rx_lock), "ALRXL", "ALRXL", MTX_DEF)
179 #define	AL_RX_LOCK(_sc)		mtx_lock(&((_sc)->if_rx_lock))
180 #define	AL_RX_UNLOCK(_sc)	mtx_unlock(&((_sc)->if_rx_lock))
181 
182 /* helper functions */
183 static int al_is_device_supported(device_t);
184 
185 static void al_eth_init_rings(struct al_eth_adapter *);
186 static void al_eth_flow_ctrl_disable(struct al_eth_adapter *);
187 int al_eth_fpga_read_pci_config(void *, int, uint32_t *);
188 int al_eth_fpga_write_pci_config(void *, int, uint32_t);
189 int al_eth_read_pci_config(void *, int, uint32_t *);
190 int al_eth_write_pci_config(void *, int, uint32_t);
191 void al_eth_irq_config(uint32_t *, uint32_t);
192 void al_eth_forward_int_config(uint32_t *, uint32_t);
193 static void al_eth_start_xmit(void *, int);
194 static void al_eth_rx_recv_work(void *, int);
195 static int al_eth_up(struct al_eth_adapter *);
196 static void al_eth_down(struct al_eth_adapter *);
197 static void al_eth_interrupts_unmask(struct al_eth_adapter *);
198 static void al_eth_interrupts_mask(struct al_eth_adapter *);
199 static int al_eth_check_mtu(struct al_eth_adapter *, int);
200 static uint64_t al_get_counter(if_t, ift_counter);
201 static void al_eth_req_rx_buff_size(struct al_eth_adapter *, int);
202 static int al_eth_board_params_init(struct al_eth_adapter *);
203 static int al_media_update(if_t);
204 static void al_media_status(if_t, struct ifmediareq *);
205 static int al_eth_function_reset(struct al_eth_adapter *);
206 static int al_eth_hw_init_adapter(struct al_eth_adapter *);
207 static void al_eth_serdes_init(struct al_eth_adapter *);
208 static void al_eth_lm_config(struct al_eth_adapter *);
209 static int al_eth_hw_init(struct al_eth_adapter *);
210 
211 static void al_tick_stats(void *);
212 
213 /* ifnet entry points */
214 static void al_init(void *);
215 static int al_mq_start(if_t, struct mbuf *);
216 static void al_qflush(if_t);
217 static int al_ioctl(if_t ifp, u_long, caddr_t);
218 
219 /* bus entry points */
220 static int al_probe(device_t);
221 static int al_attach(device_t);
222 static int al_detach(device_t);
223 static int al_shutdown(device_t);
224 
225 /* mii bus support routines */
226 static int al_miibus_readreg(device_t, int, int);
227 static int al_miibus_writereg(device_t, int, int, int);
228 static void al_miibus_statchg(device_t);
229 static void al_miibus_linkchg(device_t);
230 
231 struct al_eth_adapter* g_adapters[16];
232 uint32_t g_adapters_count;
233 
234 /* flag for napi-like mbuf processing, controlled from sysctl */
235 static int napi = 0;
236 
237 static device_method_t al_methods[] = {
238 	/* Device interface */
239 	DEVMETHOD(device_probe,		al_probe),
240 	DEVMETHOD(device_attach,	al_attach),
241 	DEVMETHOD(device_detach,	al_detach),
242 	DEVMETHOD(device_shutdown,	al_shutdown),
243 
244 	DEVMETHOD(miibus_readreg,	al_miibus_readreg),
245 	DEVMETHOD(miibus_writereg,	al_miibus_writereg),
246 	DEVMETHOD(miibus_statchg,	al_miibus_statchg),
247 	DEVMETHOD(miibus_linkchg,	al_miibus_linkchg),
248 	{ 0, 0 }
249 };
250 
251 static driver_t al_driver = {
252 	"al",
253 	al_methods,
254 	sizeof(struct al_eth_adapter),
255 };
256 
257 DRIVER_MODULE(al, pci, al_driver, 0, 0);
258 DRIVER_MODULE(miibus, al, miibus_driver, 0, 0);
259 
260 static int
261 al_probe(device_t dev)
262 {
263 	if ((al_is_device_supported(dev)) != 0) {
264 		device_set_desc(dev, "al");
265 		return (BUS_PROBE_DEFAULT);
266 	}
267 	return (ENXIO);
268 }
269 
270 static int
271 al_attach(device_t dev)
272 {
273 	struct al_eth_adapter *adapter;
274 	struct sysctl_oid_list *child;
275 	struct sysctl_ctx_list *ctx;
276 	struct sysctl_oid *tree;
277 	if_t ifp;
278 	uint32_t dev_id;
279 	uint32_t rev_id;
280 	int bar_udma;
281 	int bar_mac;
282 	int bar_ec;
283 	int err;
284 
285 	err = 0;
286 	ifp = NULL;
287 	dev_id = rev_id = 0;
288 	ctx = device_get_sysctl_ctx(dev);
289 	tree = SYSCTL_PARENT(device_get_sysctl_tree(dev));
290 	child = SYSCTL_CHILDREN(tree);
291 
292 	if (g_adapters_count == 0) {
293 		SYSCTL_ADD_INT(ctx, child, OID_AUTO, "napi",
294 		    CTLFLAG_RW, &napi, 0, "Use pseudo-napi mechanism");
295 	}
296 	adapter = device_get_softc(dev);
297 	adapter->dev = dev;
298 	adapter->board_type = ALPINE_INTEGRATED;
299 	snprintf(adapter->name, AL_ETH_NAME_MAX_LEN, "%s",
300 	    device_get_nameunit(dev));
301 	AL_RX_LOCK_INIT(adapter);
302 
303 	g_adapters[g_adapters_count] = adapter;
304 
305 	bar_udma = PCIR_BAR(AL_ETH_UDMA_BAR);
306 	adapter->udma_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
307 	    &bar_udma, RF_ACTIVE);
308 	if (adapter->udma_res == NULL) {
309 		device_printf(adapter->dev,
310 		    "could not allocate memory resources for DMA.\n");
311 		err = ENOMEM;
312 		goto err_res_dma;
313 	}
314 	adapter->udma_base = al_bus_dma_to_va(rman_get_bustag(adapter->udma_res),
315 	    rman_get_bushandle(adapter->udma_res));
316 	bar_mac = PCIR_BAR(AL_ETH_MAC_BAR);
317 	adapter->mac_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
318 	    &bar_mac, RF_ACTIVE);
319 	if (adapter->mac_res == NULL) {
320 		device_printf(adapter->dev,
321 		    "could not allocate memory resources for MAC.\n");
322 		err = ENOMEM;
323 		goto err_res_mac;
324 	}
325 	adapter->mac_base = al_bus_dma_to_va(rman_get_bustag(adapter->mac_res),
326 	    rman_get_bushandle(adapter->mac_res));
327 
328 	bar_ec = PCIR_BAR(AL_ETH_EC_BAR);
329 	adapter->ec_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &bar_ec,
330 	    RF_ACTIVE);
331 	if (adapter->ec_res == NULL) {
332 		device_printf(adapter->dev,
333 		    "could not allocate memory resources for EC.\n");
334 		err = ENOMEM;
335 		goto err_res_ec;
336 	}
337 	adapter->ec_base = al_bus_dma_to_va(rman_get_bustag(adapter->ec_res),
338 	    rman_get_bushandle(adapter->ec_res));
339 
340 	adapter->netdev = ifp = if_alloc(IFT_ETHER);
341 
342 	adapter->netdev->if_link_state = LINK_STATE_DOWN;
343 
344 	if_setsoftc(ifp, adapter);
345 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
346 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
347 	if_setflags(ifp, if_getdrvflags(ifp));
348 	if_setflagbits(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_ALLMULTI, 0);
349 	if_settransmitfn(ifp, al_mq_start);
350 	if_setqflushfn(ifp, al_qflush);
351 	if_setioctlfn(ifp, al_ioctl);
352 	if_setinitfn(ifp, al_init);
353 	if_setgetcounterfn(ifp, al_get_counter);
354 	if_setmtu(ifp, AL_DEFAULT_MTU);
355 
356 	adapter->if_flags = if_getflags(ifp);
357 
358 	if_setcapabilities(ifp, if_getcapenable(ifp) );
359 
360 	if_setcapabilitiesbit(ifp, IFCAP_HWCSUM |
361 	    IFCAP_HWCSUM_IPV6 | IFCAP_TSO |
362 	    IFCAP_LRO | IFCAP_JUMBO_MTU, 0);
363 
364 	if_setcapenable(ifp, if_getcapabilities(ifp));
365 
366 	adapter->id_number = g_adapters_count;
367 
368 	if (adapter->board_type == ALPINE_INTEGRATED) {
369 		dev_id = pci_get_device(adapter->dev);
370 		rev_id = pci_get_revid(adapter->dev);
371 	} else {
372 		al_eth_fpga_read_pci_config(adapter->internal_pcie_base,
373 		    PCIR_DEVICE, &dev_id);
374 		al_eth_fpga_read_pci_config(adapter->internal_pcie_base,
375 		    PCIR_REVID, &rev_id);
376 	}
377 
378 	adapter->dev_id = dev_id;
379 	adapter->rev_id = rev_id;
380 
381 	/* set default ring sizes */
382 	adapter->tx_ring_count = AL_ETH_DEFAULT_TX_SW_DESCS;
383 	adapter->tx_descs_count = AL_ETH_DEFAULT_TX_HW_DESCS;
384 	adapter->rx_ring_count = AL_ETH_DEFAULT_RX_DESCS;
385 	adapter->rx_descs_count = AL_ETH_DEFAULT_RX_DESCS;
386 
387 	adapter->num_tx_queues = AL_ETH_NUM_QUEUES;
388 	adapter->num_rx_queues = AL_ETH_NUM_QUEUES;
389 
390 	adapter->small_copy_len	= AL_ETH_DEFAULT_SMALL_PACKET_LEN;
391 	adapter->link_poll_interval = AL_ETH_DEFAULT_LINK_POLL_INTERVAL;
392 	adapter->max_rx_buff_alloc_size = AL_ETH_DEFAULT_MAX_RX_BUFF_ALLOC_SIZE;
393 
394 	al_eth_req_rx_buff_size(adapter, adapter->netdev->if_mtu);
395 
396 	adapter->link_config.force_1000_base_x = AL_ETH_DEFAULT_FORCE_1000_BASEX;
397 
398 	err = al_eth_board_params_init(adapter);
399 	if (err != 0)
400 		goto err;
401 
402 	if (adapter->mac_mode == AL_ETH_MAC_MODE_10GbE_Serial) {
403 		ifmedia_init(&adapter->media, IFM_IMASK,
404 		    al_media_update, al_media_status);
405 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_LX, 0, NULL);
406 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_LR, 0, NULL);
407 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
408 		ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
409 	}
410 
411 	al_eth_function_reset(adapter);
412 
413 	err = al_eth_hw_init_adapter(adapter);
414 	if (err != 0)
415 		goto err;
416 
417 	al_eth_init_rings(adapter);
418 	g_adapters_count++;
419 
420 	al_eth_lm_config(adapter);
421 	mtx_init(&adapter->stats_mtx, "AlStatsMtx", NULL, MTX_DEF);
422 	mtx_init(&adapter->wd_mtx, "AlWdMtx", NULL, MTX_DEF);
423 	callout_init_mtx(&adapter->stats_callout, &adapter->stats_mtx, 0);
424 	callout_init_mtx(&adapter->wd_callout, &adapter->wd_mtx, 0);
425 
426 	ether_ifattach(ifp, adapter->mac_addr);
427 	if_setmtu(ifp, AL_DEFAULT_MTU);
428 
429 	if (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII) {
430 		al_eth_hw_init(adapter);
431 
432 		/* Attach PHY(s) */
433 		err = mii_attach(adapter->dev, &adapter->miibus, adapter->netdev,
434 		    al_media_update, al_media_status, BMSR_DEFCAPMASK, 0,
435 		    MII_OFFSET_ANY, 0);
436 		if (err != 0) {
437 			device_printf(adapter->dev, "attaching PHYs failed\n");
438 			return (err);
439 		}
440 
441 		adapter->mii = device_get_softc(adapter->miibus);
442 	}
443 
444 	return (err);
445 
446 err:
447 	bus_release_resource(dev, SYS_RES_MEMORY, bar_ec, adapter->ec_res);
448 err_res_ec:
449 	bus_release_resource(dev, SYS_RES_MEMORY, bar_mac, adapter->mac_res);
450 err_res_mac:
451 	bus_release_resource(dev, SYS_RES_MEMORY, bar_udma, adapter->udma_res);
452 err_res_dma:
453 	return (err);
454 }
455 
456 static int
457 al_detach(device_t dev)
458 {
459 	struct al_eth_adapter *adapter;
460 
461 	adapter = device_get_softc(dev);
462 	ether_ifdetach(adapter->netdev);
463 
464 	mtx_destroy(&adapter->stats_mtx);
465 	mtx_destroy(&adapter->wd_mtx);
466 
467 	al_eth_down(adapter);
468 
469 	bus_release_resource(dev, SYS_RES_IRQ,    0, adapter->irq_res);
470 	bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->ec_res);
471 	bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->mac_res);
472 	bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->udma_res);
473 
474 	return (0);
475 }
476 
477 int
478 al_eth_fpga_read_pci_config(void *handle, int where, uint32_t *val)
479 {
480 
481 	/* handle is the base address of the adapter */
482 	*val = al_reg_read32((void*)((u_long)handle + where));
483 
484 	return (0);
485 }
486 
487 int
488 al_eth_fpga_write_pci_config(void *handle, int where, uint32_t val)
489 {
490 
491 	/* handle is the base address of the adapter */
492 	al_reg_write32((void*)((u_long)handle + where), val);
493 	return (0);
494 }
495 
496 int
497 al_eth_read_pci_config(void *handle, int where, uint32_t *val)
498 {
499 
500 	/* handle is a pci_dev */
501 	*val = pci_read_config((device_t)handle, where, sizeof(*val));
502 	return (0);
503 }
504 
505 int
506 al_eth_write_pci_config(void *handle, int where, uint32_t val)
507 {
508 
509 	/* handle is a pci_dev */
510 	pci_write_config((device_t)handle, where, val, sizeof(val));
511 	return (0);
512 }
513 
514 void
515 al_eth_irq_config(uint32_t *offset, uint32_t value)
516 {
517 
518 	al_reg_write32_relaxed(offset, value);
519 }
520 
521 void
522 al_eth_forward_int_config(uint32_t *offset, uint32_t value)
523 {
524 
525 	al_reg_write32(offset, value);
526 }
527 
528 static void
529 al_eth_serdes_init(struct al_eth_adapter *adapter)
530 {
531 	void __iomem	*serdes_base;
532 
533 	adapter->serdes_init = false;
534 
535 	serdes_base = alpine_serdes_resource_get(adapter->serdes_grp);
536 	if (serdes_base == NULL) {
537 		device_printf(adapter->dev, "serdes_base get failed!\n");
538 		return;
539 	}
540 
541 	serdes_base = al_bus_dma_to_va(serdes_tag, serdes_base);
542 
543 	al_serdes_handle_grp_init(serdes_base, adapter->serdes_grp,
544 	    &adapter->serdes_obj);
545 
546 	adapter->serdes_init = true;
547 }
548 
549 static void
550 al_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
551 {
552 	bus_addr_t *paddr;
553 
554 	paddr = arg;
555 	*paddr = segs->ds_addr;
556 }
557 
558 static int
559 al_dma_alloc_coherent(device_t dev, bus_dma_tag_t *tag, bus_dmamap_t *map,
560     bus_addr_t *baddr, void **vaddr, uint32_t size)
561 {
562 	int ret;
563 	uint32_t maxsize = ((size - 1)/PAGE_SIZE + 1) * PAGE_SIZE;
564 
565 	ret = bus_dma_tag_create(bus_get_dma_tag(dev), 8, 0,
566 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
567 	    maxsize, 1, maxsize, BUS_DMA_COHERENT, NULL, NULL, tag);
568 	if (ret != 0) {
569 		device_printf(dev,
570 		    "failed to create bus tag, ret = %d\n", ret);
571 		return (ret);
572 	}
573 
574 	ret = bus_dmamem_alloc(*tag, vaddr,
575 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
576 	if (ret != 0) {
577 		device_printf(dev,
578 		    "failed to allocate dmamem, ret = %d\n", ret);
579 		return (ret);
580 	}
581 
582 	ret = bus_dmamap_load(*tag, *map, *vaddr,
583 	    size, al_dma_map_addr, baddr, 0);
584 	if (ret != 0) {
585 		device_printf(dev,
586 		    "failed to allocate bus_dmamap_load, ret = %d\n", ret);
587 		return (ret);
588 	}
589 
590 	return (0);
591 }
592 
593 static void
594 al_dma_free_coherent(bus_dma_tag_t tag, bus_dmamap_t map, void *vaddr)
595 {
596 
597 	bus_dmamap_unload(tag, map);
598 	bus_dmamem_free(tag, vaddr, map);
599 	bus_dma_tag_destroy(tag);
600 }
601 
602 static void
603 al_eth_mac_table_unicast_add(struct al_eth_adapter *adapter,
604     uint8_t idx, uint8_t udma_mask)
605 {
606 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
607 
608 	memcpy(entry.addr, adapter->mac_addr, sizeof(adapter->mac_addr));
609 
610 	memset(entry.mask, 0xff, sizeof(entry.mask));
611 	entry.rx_valid = true;
612 	entry.tx_valid = false;
613 	entry.udma_mask = udma_mask;
614 	entry.filter = false;
615 
616 	device_printf_dbg(adapter->dev,
617 	    "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
618 	    __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
619 
620 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
621 }
622 
623 static void
624 al_eth_mac_table_all_multicast_add(struct al_eth_adapter *adapter, uint8_t idx,
625     uint8_t udma_mask)
626 {
627 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
628 
629 	memset(entry.addr, 0x00, sizeof(entry.addr));
630 	memset(entry.mask, 0x00, sizeof(entry.mask));
631 	entry.mask[0] |= 1;
632 	entry.addr[0] |= 1;
633 
634 	entry.rx_valid = true;
635 	entry.tx_valid = false;
636 	entry.udma_mask = udma_mask;
637 	entry.filter = false;
638 
639 	device_printf_dbg(adapter->dev,
640 	    "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
641 	    __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
642 
643 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
644 }
645 
646 static void
647 al_eth_mac_table_broadcast_add(struct al_eth_adapter *adapter,
648     uint8_t idx, uint8_t udma_mask)
649 {
650 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
651 
652 	memset(entry.addr, 0xff, sizeof(entry.addr));
653 	memset(entry.mask, 0xff, sizeof(entry.mask));
654 
655 	entry.rx_valid = true;
656 	entry.tx_valid = false;
657 	entry.udma_mask = udma_mask;
658 	entry.filter = false;
659 
660 	device_printf_dbg(adapter->dev,
661 	    "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
662 	    __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
663 
664 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
665 }
666 
667 static void
668 al_eth_mac_table_promiscuous_set(struct al_eth_adapter *adapter,
669     boolean_t promiscuous)
670 {
671 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
672 
673 	memset(entry.addr, 0x00, sizeof(entry.addr));
674 	memset(entry.mask, 0x00, sizeof(entry.mask));
675 
676 	entry.rx_valid = true;
677 	entry.tx_valid = false;
678 	entry.udma_mask = (promiscuous) ? 1 : 0;
679 	entry.filter = (promiscuous) ? false : true;
680 
681 	device_printf_dbg(adapter->dev, "%s: %s promiscuous mode\n",
682 	    __func__, (promiscuous) ? "enter" : "exit");
683 
684 	al_eth_fwd_mac_table_set(&adapter->hal_adapter,
685 	    AL_ETH_MAC_TABLE_DROP_IDX, &entry);
686 }
687 
688 static void
689 al_eth_set_thash_table_entry(struct al_eth_adapter *adapter, uint8_t idx,
690     uint8_t udma, uint32_t queue)
691 {
692 
693 	if (udma != 0)
694 		panic("only UDMA0 is supporter");
695 
696 	if (queue >= AL_ETH_NUM_QUEUES)
697 		panic("invalid queue number");
698 
699 	al_eth_thash_table_set(&adapter->hal_adapter, idx, udma, queue);
700 }
701 
702 /* init FSM, no tunneling supported yet, if packet is tcp/udp over ipv4/ipv6, use 4 tuple hash */
703 static void
704 al_eth_fsm_table_init(struct al_eth_adapter *adapter)
705 {
706 	uint32_t val;
707 	int i;
708 
709 	for (i = 0; i < AL_ETH_RX_FSM_TABLE_SIZE; i++) {
710 		uint8_t outer_type = AL_ETH_FSM_ENTRY_OUTER(i);
711 		switch (outer_type) {
712 		case AL_ETH_FSM_ENTRY_IPV4_TCP:
713 		case AL_ETH_FSM_ENTRY_IPV4_UDP:
714 		case AL_ETH_FSM_ENTRY_IPV6_TCP:
715 		case AL_ETH_FSM_ENTRY_IPV6_UDP:
716 			val = AL_ETH_FSM_DATA_OUTER_4_TUPLE |
717 			    AL_ETH_FSM_DATA_HASH_SEL;
718 			break;
719 		case AL_ETH_FSM_ENTRY_IPV6_NO_UDP_TCP:
720 		case AL_ETH_FSM_ENTRY_IPV4_NO_UDP_TCP:
721 			val = AL_ETH_FSM_DATA_OUTER_2_TUPLE |
722 			    AL_ETH_FSM_DATA_HASH_SEL;
723 			break;
724 		default:
725 			val = AL_ETH_FSM_DATA_DEFAULT_Q |
726 			    AL_ETH_FSM_DATA_DEFAULT_UDMA;
727 		}
728 		al_eth_fsm_table_set(&adapter->hal_adapter, i, val);
729 	}
730 }
731 
732 static void
733 al_eth_mac_table_entry_clear(struct al_eth_adapter *adapter,
734     uint8_t idx)
735 {
736 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
737 
738 	device_printf_dbg(adapter->dev, "%s: clear entry %d\n", __func__, idx);
739 
740 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
741 }
742 
743 static int
744 al_eth_hw_init_adapter(struct al_eth_adapter *adapter)
745 {
746 	struct al_eth_adapter_params *params = &adapter->eth_hal_params;
747 	int rc;
748 
749 	/* params->dev_id = adapter->dev_id; */
750 	params->rev_id = adapter->rev_id;
751 	params->udma_id = 0;
752 	params->enable_rx_parser = 1; /* enable rx epe parser*/
753 	params->udma_regs_base = adapter->udma_base; /* UDMA register base address */
754 	params->ec_regs_base = adapter->ec_base; /* Ethernet controller registers base address */
755 	params->mac_regs_base = adapter->mac_base; /* Ethernet MAC registers base address */
756 	params->name = adapter->name;
757 	params->serdes_lane = adapter->serdes_lane;
758 
759 	rc = al_eth_adapter_init(&adapter->hal_adapter, params);
760 	if (rc != 0)
761 		device_printf(adapter->dev, "%s failed at hal init!\n",
762 		    __func__);
763 
764 	if ((adapter->board_type == ALPINE_NIC) ||
765 	    (adapter->board_type == ALPINE_FPGA_NIC)) {
766 		/* in pcie NIC mode, force eth UDMA to access PCIE0 using the vmid */
767 		struct al_udma_gen_tgtid_conf conf;
768 		int i;
769 		for (i = 0; i < DMA_MAX_Q; i++) {
770 			conf.tx_q_conf[i].queue_en = AL_TRUE;
771 			conf.tx_q_conf[i].desc_en = AL_FALSE;
772 			conf.tx_q_conf[i].tgtid = 0x100; /* for access from PCIE0 */
773 			conf.rx_q_conf[i].queue_en = AL_TRUE;
774 			conf.rx_q_conf[i].desc_en = AL_FALSE;
775 			conf.rx_q_conf[i].tgtid = 0x100; /* for access from PCIE0 */
776 		}
777 		al_udma_gen_tgtid_conf_set(adapter->udma_base, &conf);
778 	}
779 
780 	return (rc);
781 }
782 
783 static void
784 al_eth_lm_config(struct al_eth_adapter *adapter)
785 {
786 	struct al_eth_lm_init_params params = {0};
787 
788 	params.adapter = &adapter->hal_adapter;
789 	params.serdes_obj = &adapter->serdes_obj;
790 	params.lane = adapter->serdes_lane;
791 	params.sfp_detection = adapter->sfp_detection_needed;
792 	if (adapter->sfp_detection_needed == true) {
793 		params.sfp_bus_id = adapter->i2c_adapter_id;
794 		params.sfp_i2c_addr = SFP_I2C_ADDR;
795 	}
796 
797 	if (adapter->sfp_detection_needed == false) {
798 		switch (adapter->mac_mode) {
799 		case AL_ETH_MAC_MODE_10GbE_Serial:
800 			if ((adapter->lt_en != 0) && (adapter->an_en != 0))
801 				params.default_mode = AL_ETH_LM_MODE_10G_DA;
802 			else
803 				params.default_mode = AL_ETH_LM_MODE_10G_OPTIC;
804 			break;
805 		case AL_ETH_MAC_MODE_SGMII:
806 			params.default_mode = AL_ETH_LM_MODE_1G;
807 			break;
808 		default:
809 			params.default_mode = AL_ETH_LM_MODE_10G_DA;
810 		}
811 	} else
812 		params.default_mode = AL_ETH_LM_MODE_10G_DA;
813 
814 	params.link_training = adapter->lt_en;
815 	params.rx_equal = true;
816 	params.static_values = !adapter->dont_override_serdes;
817 	params.i2c_context = adapter;
818 	params.kr_fec_enable = false;
819 
820 	params.retimer_exist = adapter->retimer.exist;
821 	params.retimer_bus_id = adapter->retimer.bus_id;
822 	params.retimer_i2c_addr = adapter->retimer.i2c_addr;
823 	params.retimer_channel = adapter->retimer.channel;
824 
825 	al_eth_lm_init(&adapter->lm_context, &params);
826 }
827 
828 static int
829 al_eth_board_params_init(struct al_eth_adapter *adapter)
830 {
831 
832 	if (adapter->board_type == ALPINE_NIC) {
833 		adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
834 		adapter->sfp_detection_needed = false;
835 		adapter->phy_exist = false;
836 		adapter->an_en = false;
837 		adapter->lt_en = false;
838 		adapter->ref_clk_freq = AL_ETH_REF_FREQ_375_MHZ;
839 		adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
840 	} else if (adapter->board_type == ALPINE_FPGA_NIC) {
841 		adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
842 		adapter->sfp_detection_needed = false;
843 		adapter->phy_exist = false;
844 		adapter->an_en = false;
845 		adapter->lt_en = false;
846 		adapter->ref_clk_freq = AL_ETH_REF_FREQ_375_MHZ;
847 		adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
848 	} else {
849 		struct al_eth_board_params params;
850 		int rc;
851 
852 		adapter->auto_speed = false;
853 
854 		rc = al_eth_board_params_get(adapter->mac_base, &params);
855 		if (rc != 0) {
856 			device_printf(adapter->dev,
857 			    "board info not available\n");
858 			return (-1);
859 		}
860 
861 		adapter->phy_exist = params.phy_exist == TRUE;
862 		adapter->phy_addr = params.phy_mdio_addr;
863 		adapter->an_en = params.autoneg_enable;
864 		adapter->lt_en = params.kr_lt_enable;
865 		adapter->serdes_grp = params.serdes_grp;
866 		adapter->serdes_lane = params.serdes_lane;
867 		adapter->sfp_detection_needed = params.sfp_plus_module_exist;
868 		adapter->i2c_adapter_id = params.i2c_adapter_id;
869 		adapter->ref_clk_freq = params.ref_clk_freq;
870 		adapter->dont_override_serdes = params.dont_override_serdes;
871 		adapter->link_config.active_duplex = !params.half_duplex;
872 		adapter->link_config.autoneg = !params.an_disable;
873 		adapter->link_config.force_1000_base_x = params.force_1000_base_x;
874 		adapter->retimer.exist = params.retimer_exist;
875 		adapter->retimer.bus_id = params.retimer_bus_id;
876 		adapter->retimer.i2c_addr = params.retimer_i2c_addr;
877 		adapter->retimer.channel = params.retimer_channel;
878 
879 		switch (params.speed) {
880 		default:
881 			device_printf(adapter->dev,
882 			    "%s: invalid speed (%d)\n", __func__, params.speed);
883 		case AL_ETH_BOARD_1G_SPEED_1000M:
884 			adapter->link_config.active_speed = 1000;
885 			break;
886 		case AL_ETH_BOARD_1G_SPEED_100M:
887 			adapter->link_config.active_speed = 100;
888 			break;
889 		case AL_ETH_BOARD_1G_SPEED_10M:
890 			adapter->link_config.active_speed = 10;
891 			break;
892 		}
893 
894 		switch (params.mdio_freq) {
895 		default:
896 			device_printf(adapter->dev,
897 			    "%s: invalid mdio freq (%d)\n", __func__,
898 			    params.mdio_freq);
899 		case AL_ETH_BOARD_MDIO_FREQ_2_5_MHZ:
900 			adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
901 			break;
902 		case AL_ETH_BOARD_MDIO_FREQ_1_MHZ:
903 			adapter->mdio_freq = AL_ETH_MDIO_FREQ_1000_KHZ;
904 			break;
905 		}
906 
907 		switch (params.media_type) {
908 		case AL_ETH_BOARD_MEDIA_TYPE_RGMII:
909 			if (params.sfp_plus_module_exist == TRUE)
910 				/* Backward compatibility */
911 				adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
912 			else
913 				adapter->mac_mode = AL_ETH_MAC_MODE_RGMII;
914 
915 			adapter->use_lm = false;
916 			break;
917 		case AL_ETH_BOARD_MEDIA_TYPE_SGMII:
918 			adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
919 			adapter->use_lm = true;
920 			break;
921 		case AL_ETH_BOARD_MEDIA_TYPE_10GBASE_SR:
922 			adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
923 			adapter->use_lm = true;
924 			break;
925 		case AL_ETH_BOARD_MEDIA_TYPE_AUTO_DETECT:
926 			adapter->sfp_detection_needed = TRUE;
927 			adapter->auto_speed = false;
928 			adapter->use_lm = true;
929 			break;
930 		case AL_ETH_BOARD_MEDIA_TYPE_AUTO_DETECT_AUTO_SPEED:
931 			adapter->sfp_detection_needed = TRUE;
932 			adapter->auto_speed = true;
933 			adapter->mac_mode_set = false;
934 			adapter->use_lm = true;
935 
936 			adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
937 			break;
938 		default:
939 			device_printf(adapter->dev,
940 			    "%s: unsupported media type %d\n",
941 			    __func__, params.media_type);
942 			return (-1);
943 		}
944 
945 		device_printf(adapter->dev,
946 		    "Board info: phy exist %s. phy addr %d. mdio freq %u Khz. "
947 		    "SFP connected %s. media %d\n",
948 		    params.phy_exist == TRUE ? "Yes" : "No",
949 		    params.phy_mdio_addr, adapter->mdio_freq,
950 		    params.sfp_plus_module_exist == TRUE ? "Yes" : "No",
951 		    params.media_type);
952 	}
953 
954 	al_eth_mac_addr_read(adapter->ec_base, 0, adapter->mac_addr);
955 
956 	return (0);
957 }
958 
959 static int
960 al_eth_function_reset(struct al_eth_adapter *adapter)
961 {
962 	struct al_eth_board_params params;
963 	int rc;
964 
965 	/* save board params so we restore it after reset */
966 	al_eth_board_params_get(adapter->mac_base, &params);
967 	al_eth_mac_addr_read(adapter->ec_base, 0, adapter->mac_addr);
968 	if (adapter->board_type == ALPINE_INTEGRATED)
969 		rc = al_eth_flr_rmn(&al_eth_read_pci_config,
970 		    &al_eth_write_pci_config,
971 		    adapter->dev, adapter->mac_base);
972 	else
973 		rc = al_eth_flr_rmn(&al_eth_fpga_read_pci_config,
974 		    &al_eth_fpga_write_pci_config,
975 		    adapter->internal_pcie_base, adapter->mac_base);
976 
977 	/* restore params */
978 	al_eth_board_params_set(adapter->mac_base, &params);
979 	al_eth_mac_addr_store(adapter->ec_base, 0, adapter->mac_addr);
980 
981 	return (rc);
982 }
983 
984 static void
985 al_eth_init_rings(struct al_eth_adapter *adapter)
986 {
987 	int i;
988 
989 	for (i = 0; i < adapter->num_tx_queues; i++) {
990 		struct al_eth_ring *ring = &adapter->tx_ring[i];
991 
992 		ring->ring_id = i;
993 		ring->dev = adapter->dev;
994 		ring->adapter = adapter;
995 		ring->netdev = adapter->netdev;
996 		al_udma_q_handle_get(&adapter->hal_adapter.tx_udma, i,
997 		    &ring->dma_q);
998 		ring->sw_count = adapter->tx_ring_count;
999 		ring->hw_count = adapter->tx_descs_count;
1000 		ring->unmask_reg_offset = al_udma_iofic_unmask_offset_get((struct unit_regs *)adapter->udma_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_C);
1001 		ring->unmask_val = ~(1 << i);
1002 	}
1003 
1004 	for (i = 0; i < adapter->num_rx_queues; i++) {
1005 		struct al_eth_ring *ring = &adapter->rx_ring[i];
1006 
1007 		ring->ring_id = i;
1008 		ring->dev = adapter->dev;
1009 		ring->adapter = adapter;
1010 		ring->netdev = adapter->netdev;
1011 		al_udma_q_handle_get(&adapter->hal_adapter.rx_udma, i, &ring->dma_q);
1012 		ring->sw_count = adapter->rx_ring_count;
1013 		ring->hw_count = adapter->rx_descs_count;
1014 		ring->unmask_reg_offset = al_udma_iofic_unmask_offset_get(
1015 		    (struct unit_regs *)adapter->udma_base,
1016 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_B);
1017 		ring->unmask_val = ~(1 << i);
1018 	}
1019 }
1020 
1021 static void
1022 al_init_locked(void *arg)
1023 {
1024 	struct al_eth_adapter *adapter = arg;
1025 	if_t ifp = adapter->netdev;
1026 	int rc = 0;
1027 
1028 	al_eth_down(adapter);
1029 	rc = al_eth_up(adapter);
1030 
1031 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1032 	if (rc == 0)
1033 		if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1034 }
1035 
1036 static void
1037 al_init(void *arg)
1038 {
1039 	struct al_eth_adapter *adapter = arg;
1040 
1041 	al_init_locked(adapter);
1042 }
1043 
1044 static inline int
1045 al_eth_alloc_rx_buf(struct al_eth_adapter *adapter,
1046     struct al_eth_ring *rx_ring,
1047     struct al_eth_rx_buffer *rx_info)
1048 {
1049 	struct al_buf *al_buf;
1050 	bus_dma_segment_t segs[2];
1051 	int error;
1052 	int nsegs;
1053 
1054 	if (rx_info->m != NULL)
1055 		return (0);
1056 
1057 	rx_info->data_size = adapter->rx_mbuf_sz;
1058 
1059 	AL_RX_LOCK(adapter);
1060 
1061 	/* Get mbuf using UMA allocator */
1062 	rx_info->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1063 	    rx_info->data_size);
1064 	AL_RX_UNLOCK(adapter);
1065 
1066 	if (rx_info->m == NULL)
1067 		return (ENOMEM);
1068 
1069 	rx_info->m->m_pkthdr.len = rx_info->m->m_len = adapter->rx_mbuf_sz;
1070 
1071 	/* Map packets for DMA */
1072 	error = bus_dmamap_load_mbuf_sg(rx_ring->dma_buf_tag, rx_info->dma_map,
1073 	    rx_info->m, segs, &nsegs, BUS_DMA_NOWAIT);
1074 	if (__predict_false(error)) {
1075 		device_printf(rx_ring->dev, "failed to map mbuf, error = %d\n",
1076 		    error);
1077 		m_freem(rx_info->m);
1078 		rx_info->m = NULL;
1079 		return (EFAULT);
1080 	}
1081 
1082 	al_buf = &rx_info->al_buf;
1083 	al_buf->addr = segs[0].ds_addr + AL_IP_ALIGNMENT_OFFSET;
1084 	al_buf->len = rx_info->data_size - AL_IP_ALIGNMENT_OFFSET;
1085 
1086 	return (0);
1087 }
1088 
1089 static int
1090 al_eth_refill_rx_bufs(struct al_eth_adapter *adapter, unsigned int qid,
1091     unsigned int num)
1092 {
1093 	struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
1094 	uint16_t next_to_use;
1095 	unsigned int i;
1096 
1097 	next_to_use = rx_ring->next_to_use;
1098 
1099 	for (i = 0; i < num; i++) {
1100 		int rc;
1101 		struct al_eth_rx_buffer *rx_info =
1102 		    &rx_ring->rx_buffer_info[next_to_use];
1103 
1104 		if (__predict_false(al_eth_alloc_rx_buf(adapter,
1105 		    rx_ring, rx_info) < 0)) {
1106 			device_printf(adapter->dev,
1107 			    "failed to alloc buffer for rx queue %d\n", qid);
1108 			break;
1109 		}
1110 
1111 		rc = al_eth_rx_buffer_add(rx_ring->dma_q,
1112 		    &rx_info->al_buf, AL_ETH_RX_FLAGS_INT, NULL);
1113 		if (__predict_false(rc)) {
1114 			device_printf(adapter->dev,
1115 			    "failed to add buffer for rx queue %d\n", qid);
1116 			break;
1117 		}
1118 
1119 		next_to_use = AL_ETH_RX_RING_IDX_NEXT(rx_ring, next_to_use);
1120 	}
1121 
1122 	if (__predict_false(i < num))
1123 		device_printf(adapter->dev,
1124 		    "refilled rx queue %d with %d pages only - available %d\n",
1125 		    qid, i, al_udma_available_get(rx_ring->dma_q));
1126 
1127 	if (__predict_true(i))
1128 		al_eth_rx_buffer_action(rx_ring->dma_q, i);
1129 
1130 	rx_ring->next_to_use = next_to_use;
1131 
1132 	return (i);
1133 }
1134 
1135 /*
1136  * al_eth_refill_all_rx_bufs - allocate all queues Rx buffers
1137  * @adapter: board private structure
1138  */
1139 static void
1140 al_eth_refill_all_rx_bufs(struct al_eth_adapter *adapter)
1141 {
1142 	int i;
1143 
1144 	for (i = 0; i < adapter->num_rx_queues; i++)
1145 		al_eth_refill_rx_bufs(adapter, i, AL_ETH_DEFAULT_RX_DESCS - 1);
1146 }
1147 
1148 static void
1149 al_eth_tx_do_cleanup(struct al_eth_ring *tx_ring)
1150 {
1151 	unsigned int total_done;
1152 	uint16_t next_to_clean;
1153 	int qid = tx_ring->ring_id;
1154 
1155 	total_done = al_eth_comp_tx_get(tx_ring->dma_q);
1156 	device_printf_dbg(tx_ring->dev,
1157 	    "tx_poll: q %d total completed descs %x\n", qid, total_done);
1158 	next_to_clean = tx_ring->next_to_clean;
1159 
1160 	while (total_done != 0) {
1161 		struct al_eth_tx_buffer *tx_info;
1162 		struct mbuf *mbuf;
1163 
1164 		tx_info = &tx_ring->tx_buffer_info[next_to_clean];
1165 		/* stop if not all descriptors of the packet are completed */
1166 		if (tx_info->tx_descs > total_done)
1167 			break;
1168 
1169 		mbuf = tx_info->m;
1170 
1171 		tx_info->m = NULL;
1172 
1173 		device_printf_dbg(tx_ring->dev,
1174 		    "tx_poll: q %d mbuf %p completed\n", qid, mbuf);
1175 
1176 		/* map is no longer required */
1177 		bus_dmamap_unload(tx_ring->dma_buf_tag, tx_info->dma_map);
1178 
1179 		m_freem(mbuf);
1180 		total_done -= tx_info->tx_descs;
1181 		next_to_clean = AL_ETH_TX_RING_IDX_NEXT(tx_ring, next_to_clean);
1182 	}
1183 
1184 	tx_ring->next_to_clean = next_to_clean;
1185 
1186 	device_printf_dbg(tx_ring->dev, "tx_poll: q %d done next to clean %x\n",
1187 	    qid, next_to_clean);
1188 
1189 	/*
1190 	 * need to make the rings circular update visible to
1191 	 * al_eth_start_xmit() before checking for netif_queue_stopped().
1192 	 */
1193 	al_smp_data_memory_barrier();
1194 }
1195 
1196 static void
1197 al_eth_tx_csum(struct al_eth_ring *tx_ring, struct al_eth_tx_buffer *tx_info,
1198     struct al_eth_pkt *hal_pkt, struct mbuf *m)
1199 {
1200 	uint32_t mss = m->m_pkthdr.tso_segsz;
1201 	struct ether_vlan_header *eh;
1202 	uint16_t etype;
1203 #ifdef INET
1204 	struct ip *ip;
1205 #endif
1206 #ifdef INET6
1207 	struct ip6_hdr *ip6;
1208 #endif
1209 	struct tcphdr *th = NULL;
1210 	int	ehdrlen, ip_hlen = 0;
1211 	uint8_t	ipproto = 0;
1212 	uint32_t offload = 0;
1213 
1214 	if (mss != 0)
1215 		offload = 1;
1216 
1217 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0)
1218 		offload = 1;
1219 
1220 	if ((m->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
1221 		offload = 1;
1222 
1223 	if (offload != 0) {
1224 		struct al_eth_meta_data *meta = &tx_ring->hal_meta;
1225 
1226 		if (mss != 0)
1227 			hal_pkt->flags |= (AL_ETH_TX_FLAGS_TSO |
1228 			    AL_ETH_TX_FLAGS_L4_CSUM);
1229 		else
1230 			hal_pkt->flags |= (AL_ETH_TX_FLAGS_L4_CSUM |
1231 			    AL_ETH_TX_FLAGS_L4_PARTIAL_CSUM);
1232 
1233 		/*
1234 		 * Determine where frame payload starts.
1235 		 * Jump over vlan headers if already present,
1236 		 * helpful for QinQ too.
1237 		 */
1238 		eh = mtod(m, struct ether_vlan_header *);
1239 		if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1240 			etype = ntohs(eh->evl_proto);
1241 			ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1242 		} else {
1243 			etype = ntohs(eh->evl_encap_proto);
1244 			ehdrlen = ETHER_HDR_LEN;
1245 		}
1246 
1247 		switch (etype) {
1248 #ifdef INET
1249 		case ETHERTYPE_IP:
1250 			ip = (struct ip *)(m->m_data + ehdrlen);
1251 			ip_hlen = ip->ip_hl << 2;
1252 			ipproto = ip->ip_p;
1253 			hal_pkt->l3_proto_idx = AL_ETH_PROTO_ID_IPv4;
1254 			th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
1255 			if (mss != 0)
1256 				hal_pkt->flags |= AL_ETH_TX_FLAGS_IPV4_L3_CSUM;
1257 			if (ipproto == IPPROTO_TCP)
1258 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_TCP;
1259 			else
1260 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_UDP;
1261 			break;
1262 #endif /* INET */
1263 #ifdef INET6
1264 		case ETHERTYPE_IPV6:
1265 			ip6 = (struct ip6_hdr *)(m->m_data + ehdrlen);
1266 			hal_pkt->l3_proto_idx = AL_ETH_PROTO_ID_IPv6;
1267 			ip_hlen = sizeof(struct ip6_hdr);
1268 			th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen);
1269 			ipproto = ip6->ip6_nxt;
1270 			if (ipproto == IPPROTO_TCP)
1271 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_TCP;
1272 			else
1273 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_UDP;
1274 			break;
1275 #endif /* INET6 */
1276 		default:
1277 			break;
1278 		}
1279 
1280 		meta->words_valid = 4;
1281 		meta->l3_header_len = ip_hlen;
1282 		meta->l3_header_offset = ehdrlen;
1283 		if (th != NULL)
1284 			meta->l4_header_len = th->th_off; /* this param needed only for TSO */
1285 		meta->mss_idx_sel = 0;			/* check how to select MSS */
1286 		meta->mss_val = mss;
1287 		hal_pkt->meta = meta;
1288 	} else
1289 		hal_pkt->meta = NULL;
1290 }
1291 
1292 #define	XMIT_QUEUE_TIMEOUT	100
1293 
1294 static void
1295 al_eth_xmit_mbuf(struct al_eth_ring *tx_ring, struct mbuf *m)
1296 {
1297 	struct al_eth_tx_buffer *tx_info;
1298 	int error;
1299 	int nsegs, a;
1300 	uint16_t next_to_use;
1301 	bus_dma_segment_t segs[AL_ETH_PKT_MAX_BUFS + 1];
1302 	struct al_eth_pkt *hal_pkt;
1303 	struct al_buf *al_buf;
1304 	boolean_t remap;
1305 
1306 	/* Check if queue is ready */
1307 	if (unlikely(tx_ring->stall) != 0) {
1308 		for (a = 0; a < XMIT_QUEUE_TIMEOUT; a++) {
1309 			if (al_udma_available_get(tx_ring->dma_q) >=
1310 			    (AL_ETH_DEFAULT_TX_HW_DESCS -
1311 			    AL_ETH_TX_WAKEUP_THRESH)) {
1312 				tx_ring->stall = 0;
1313 				break;
1314 			}
1315 			pause("stall", 1);
1316 		}
1317 		if (a == XMIT_QUEUE_TIMEOUT) {
1318 			device_printf(tx_ring->dev,
1319 			    "timeout waiting for queue %d ready!\n",
1320 			    tx_ring->ring_id);
1321 			return;
1322 		} else {
1323 			device_printf_dbg(tx_ring->dev,
1324 			    "queue %d is ready!\n", tx_ring->ring_id);
1325 		}
1326 	}
1327 
1328 	next_to_use = tx_ring->next_to_use;
1329 	tx_info = &tx_ring->tx_buffer_info[next_to_use];
1330 	tx_info->m = m;
1331 	hal_pkt = &tx_info->hal_pkt;
1332 
1333 	if (m == NULL) {
1334 		device_printf(tx_ring->dev, "mbuf is NULL\n");
1335 		return;
1336 	}
1337 
1338 	remap = TRUE;
1339 	/* Map packets for DMA */
1340 retry:
1341 	error = bus_dmamap_load_mbuf_sg(tx_ring->dma_buf_tag, tx_info->dma_map,
1342 	    m, segs, &nsegs, BUS_DMA_NOWAIT);
1343 	if (__predict_false(error)) {
1344 		struct mbuf *m_new;
1345 
1346 		if (error == EFBIG) {
1347 			/* Try it again? - one try */
1348 			if (remap == TRUE) {
1349 				remap = FALSE;
1350 				m_new = m_defrag(m, M_NOWAIT);
1351 				if (m_new == NULL) {
1352 					device_printf(tx_ring->dev,
1353 					    "failed to defrag mbuf\n");
1354 					goto exit;
1355 				}
1356 				m = m_new;
1357 				goto retry;
1358 			} else {
1359 				device_printf(tx_ring->dev,
1360 				    "failed to map mbuf, error %d\n", error);
1361 				goto exit;
1362 			}
1363 		} else {
1364 			device_printf(tx_ring->dev,
1365 			    "failed to map mbuf, error %d\n", error);
1366 			goto exit;
1367 		}
1368 	}
1369 
1370 	/* set flags and meta data */
1371 	hal_pkt->flags = AL_ETH_TX_FLAGS_INT;
1372 	al_eth_tx_csum(tx_ring, tx_info, hal_pkt, m);
1373 
1374 	al_buf = hal_pkt->bufs;
1375 	for (a = 0; a < nsegs; a++) {
1376 		al_buf->addr = segs[a].ds_addr;
1377 		al_buf->len = segs[a].ds_len;
1378 
1379 		al_buf++;
1380 	}
1381 
1382 	hal_pkt->num_of_bufs = nsegs;
1383 
1384 	/* prepare the packet's descriptors to dma engine */
1385 	tx_info->tx_descs = al_eth_tx_pkt_prepare(tx_ring->dma_q, hal_pkt);
1386 
1387 	if (tx_info->tx_descs == 0)
1388 		goto exit;
1389 
1390 	/*
1391 	 * stop the queue when no more space available, the packet can have up
1392 	 * to AL_ETH_PKT_MAX_BUFS + 1 buffers and a meta descriptor
1393 	 */
1394 	if (unlikely(al_udma_available_get(tx_ring->dma_q) <
1395 	    (AL_ETH_PKT_MAX_BUFS + 2))) {
1396 		tx_ring->stall = 1;
1397 		device_printf_dbg(tx_ring->dev, "stall, stopping queue %d...\n",
1398 		    tx_ring->ring_id);
1399 		al_data_memory_barrier();
1400 	}
1401 
1402 	tx_ring->next_to_use = AL_ETH_TX_RING_IDX_NEXT(tx_ring, next_to_use);
1403 
1404 	/* trigger the dma engine */
1405 	al_eth_tx_dma_action(tx_ring->dma_q, tx_info->tx_descs);
1406 	return;
1407 
1408 exit:
1409 	m_freem(m);
1410 }
1411 
1412 static void
1413 al_eth_tx_cmpl_work(void *arg, int pending)
1414 {
1415 	struct al_eth_ring *tx_ring = arg;
1416 
1417 	if (napi != 0) {
1418 		tx_ring->cmpl_is_running = 1;
1419 		al_data_memory_barrier();
1420 	}
1421 
1422 	al_eth_tx_do_cleanup(tx_ring);
1423 
1424 	if (napi != 0) {
1425 		tx_ring->cmpl_is_running = 0;
1426 		al_data_memory_barrier();
1427 	}
1428 	/* all work done, enable IRQs */
1429 	al_eth_irq_config(tx_ring->unmask_reg_offset, tx_ring->unmask_val);
1430 }
1431 
1432 static int
1433 al_eth_tx_cmlp_irq_filter(void *arg)
1434 {
1435 	struct al_eth_ring *tx_ring = arg;
1436 
1437 	/* Interrupt should be auto-masked upon arrival */
1438 
1439 	device_printf_dbg(tx_ring->dev, "%s for ring ID = %d\n", __func__,
1440 	    tx_ring->ring_id);
1441 
1442 	/*
1443 	 * For napi, if work is not running, schedule it. Always schedule
1444 	 * for casual (non-napi) packet handling.
1445 	 */
1446 	if ((napi == 0) || (napi && tx_ring->cmpl_is_running == 0))
1447 		taskqueue_enqueue(tx_ring->cmpl_tq, &tx_ring->cmpl_task);
1448 
1449 	/* Do not run bottom half */
1450 	return (FILTER_HANDLED);
1451 }
1452 
1453 static int
1454 al_eth_rx_recv_irq_filter(void *arg)
1455 {
1456 	struct al_eth_ring *rx_ring = arg;
1457 
1458 	/* Interrupt should be auto-masked upon arrival */
1459 
1460 	device_printf_dbg(rx_ring->dev, "%s for ring ID = %d\n", __func__,
1461 	    rx_ring->ring_id);
1462 
1463 	/*
1464 	 * For napi, if work is not running, schedule it. Always schedule
1465 	 * for casual (non-napi) packet handling.
1466 	 */
1467 	if ((napi == 0) || (napi && rx_ring->enqueue_is_running == 0))
1468 		taskqueue_enqueue(rx_ring->enqueue_tq, &rx_ring->enqueue_task);
1469 
1470 	/* Do not run bottom half */
1471 	return (FILTER_HANDLED);
1472 }
1473 
1474 /*
1475  * al_eth_rx_checksum - indicate in mbuf if hw indicated a good cksum
1476  * @adapter: structure containing adapter specific data
1477  * @hal_pkt: HAL structure for the packet
1478  * @mbuf: mbuf currently being received and modified
1479  */
1480 static inline void
1481 al_eth_rx_checksum(struct al_eth_adapter *adapter,
1482     struct al_eth_pkt *hal_pkt, struct mbuf *mbuf)
1483 {
1484 
1485 	/* if IPv4 and error */
1486 	if (unlikely((adapter->netdev->if_capenable & IFCAP_RXCSUM) &&
1487 	    (hal_pkt->l3_proto_idx == AL_ETH_PROTO_ID_IPv4) &&
1488 	    (hal_pkt->flags & AL_ETH_RX_FLAGS_L3_CSUM_ERR))) {
1489 		device_printf(adapter->dev,"rx ipv4 header checksum error\n");
1490 		return;
1491 	}
1492 
1493 	/* if IPv6 and error */
1494 	if (unlikely((adapter->netdev->if_capenable & IFCAP_RXCSUM_IPV6) &&
1495 	    (hal_pkt->l3_proto_idx == AL_ETH_PROTO_ID_IPv6) &&
1496 	    (hal_pkt->flags & AL_ETH_RX_FLAGS_L3_CSUM_ERR))) {
1497 		device_printf(adapter->dev,"rx ipv6 header checksum error\n");
1498 		return;
1499 	}
1500 
1501 	/* if TCP/UDP */
1502 	if (likely((hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_TCP) ||
1503 	   (hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_UDP))) {
1504 		if (unlikely(hal_pkt->flags & AL_ETH_RX_FLAGS_L4_CSUM_ERR)) {
1505 			device_printf_dbg(adapter->dev, "rx L4 checksum error\n");
1506 
1507 			/* TCP/UDP checksum error */
1508 			mbuf->m_pkthdr.csum_flags = 0;
1509 		} else {
1510 			device_printf_dbg(adapter->dev, "rx checksum correct\n");
1511 
1512 			/* IP Checksum Good */
1513 			mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
1514 			mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1515 		}
1516 	}
1517 }
1518 
1519 static struct mbuf*
1520 al_eth_rx_mbuf(struct al_eth_adapter *adapter,
1521     struct al_eth_ring *rx_ring, struct al_eth_pkt *hal_pkt,
1522     unsigned int descs, uint16_t *next_to_clean)
1523 {
1524 	struct mbuf *mbuf;
1525 	struct al_eth_rx_buffer *rx_info =
1526 	    &rx_ring->rx_buffer_info[*next_to_clean];
1527 	unsigned int len;
1528 
1529 	len = hal_pkt->bufs[0].len;
1530 	device_printf_dbg(adapter->dev, "rx_info %p data %p\n", rx_info,
1531 	   rx_info->m);
1532 
1533 	if (rx_info->m == NULL) {
1534 		*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring,
1535 		    *next_to_clean);
1536 		return (NULL);
1537 	}
1538 
1539 	mbuf = rx_info->m;
1540 	mbuf->m_pkthdr.len = len;
1541 	mbuf->m_len = len;
1542 	mbuf->m_pkthdr.rcvif = rx_ring->netdev;
1543 	mbuf->m_flags |= M_PKTHDR;
1544 
1545 	if (len <= adapter->small_copy_len) {
1546 		struct mbuf *smbuf;
1547 		device_printf_dbg(adapter->dev, "rx small packet. len %d\n", len);
1548 
1549 		AL_RX_LOCK(adapter);
1550 		smbuf = m_gethdr(M_NOWAIT, MT_DATA);
1551 		AL_RX_UNLOCK(adapter);
1552 		if (__predict_false(smbuf == NULL)) {
1553 			device_printf(adapter->dev, "smbuf is NULL\n");
1554 			return (NULL);
1555 		}
1556 
1557 		smbuf->m_data = smbuf->m_data + AL_IP_ALIGNMENT_OFFSET;
1558 		memcpy(smbuf->m_data, mbuf->m_data + AL_IP_ALIGNMENT_OFFSET, len);
1559 
1560 		smbuf->m_len = len;
1561 		smbuf->m_pkthdr.rcvif = rx_ring->netdev;
1562 
1563 		/* first desc of a non-ps chain */
1564 		smbuf->m_flags |= M_PKTHDR;
1565 		smbuf->m_pkthdr.len = smbuf->m_len;
1566 
1567 		*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring,
1568 		    *next_to_clean);
1569 
1570 		return (smbuf);
1571 	}
1572 	mbuf->m_data = mbuf->m_data + AL_IP_ALIGNMENT_OFFSET;
1573 
1574 	/* Unmap the buffer */
1575 	bus_dmamap_unload(rx_ring->dma_buf_tag, rx_info->dma_map);
1576 
1577 	rx_info->m = NULL;
1578 	*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring, *next_to_clean);
1579 
1580 	return (mbuf);
1581 }
1582 
1583 static void
1584 al_eth_rx_recv_work(void *arg, int pending)
1585 {
1586 	struct al_eth_ring *rx_ring = arg;
1587 	struct mbuf *mbuf;
1588 	struct lro_entry *queued;
1589 	unsigned int qid = rx_ring->ring_id;
1590 	struct al_eth_pkt *hal_pkt = &rx_ring->hal_pkt;
1591 	uint16_t next_to_clean = rx_ring->next_to_clean;
1592 	uint32_t refill_required;
1593 	uint32_t refill_actual;
1594 	uint32_t do_if_input;
1595 
1596 	if (napi != 0) {
1597 		rx_ring->enqueue_is_running = 1;
1598 		al_data_memory_barrier();
1599 	}
1600 
1601 	do {
1602 		unsigned int descs;
1603 
1604 		descs = al_eth_pkt_rx(rx_ring->dma_q, hal_pkt);
1605 		if (unlikely(descs == 0))
1606 			break;
1607 
1608 		device_printf_dbg(rx_ring->dev, "rx_poll: q %d got packet "
1609 		    "from hal. descs %d\n", qid, descs);
1610 		device_printf_dbg(rx_ring->dev, "rx_poll: q %d flags %x. "
1611 		    "l3 proto %d l4 proto %d\n", qid, hal_pkt->flags,
1612 		    hal_pkt->l3_proto_idx, hal_pkt->l4_proto_idx);
1613 
1614 		/* ignore if detected dma or eth controller errors */
1615 		if ((hal_pkt->flags & (AL_ETH_RX_ERROR |
1616 		    AL_UDMA_CDESC_ERROR)) != 0) {
1617 			device_printf(rx_ring->dev, "receive packet with error. "
1618 			    "flags = 0x%x\n", hal_pkt->flags);
1619 			next_to_clean = AL_ETH_RX_RING_IDX_ADD(rx_ring,
1620 			    next_to_clean, descs);
1621 			continue;
1622 		}
1623 
1624 		/* allocate mbuf and fill it */
1625 		mbuf = al_eth_rx_mbuf(rx_ring->adapter, rx_ring, hal_pkt, descs,
1626 		    &next_to_clean);
1627 
1628 		/* exit if we failed to retrieve a buffer */
1629 		if (unlikely(mbuf == NULL)) {
1630 			next_to_clean = AL_ETH_RX_RING_IDX_ADD(rx_ring,
1631 			    next_to_clean, descs);
1632 			break;
1633 		}
1634 
1635 		if (__predict_true(rx_ring->netdev->if_capenable & IFCAP_RXCSUM ||
1636 		    rx_ring->netdev->if_capenable & IFCAP_RXCSUM_IPV6)) {
1637 			al_eth_rx_checksum(rx_ring->adapter, hal_pkt, mbuf);
1638 		}
1639 
1640 		mbuf->m_pkthdr.flowid = qid;
1641 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
1642 
1643 		/*
1644 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
1645 		 * should be computed by hardware.
1646 		 */
1647 		do_if_input = 1;
1648 		if ((rx_ring->lro_enabled != 0) &&
1649 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1650 		    hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_TCP) {
1651 			/*
1652 			 * Send to the stack if:
1653 			 *  - LRO not enabled, or
1654 			 *  - no LRO resources, or
1655 			 *  - lro enqueue fails
1656 			 */
1657 			if (rx_ring->lro.lro_cnt != 0) {
1658 				if (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0)
1659 					do_if_input = 0;
1660 			}
1661 		}
1662 
1663 		if (do_if_input)
1664 			(*rx_ring->netdev->if_input)(rx_ring->netdev, mbuf);
1665 
1666 	} while (1);
1667 
1668 	rx_ring->next_to_clean = next_to_clean;
1669 
1670 	refill_required = al_udma_available_get(rx_ring->dma_q);
1671 	refill_actual = al_eth_refill_rx_bufs(rx_ring->adapter, qid,
1672 	    refill_required);
1673 
1674 	if (unlikely(refill_actual < refill_required)) {
1675 		device_printf_dbg(rx_ring->dev,
1676 		    "%s: not filling rx queue %d\n", __func__, qid);
1677 	}
1678 
1679 	while (((queued = LIST_FIRST(&rx_ring->lro.lro_active)) != NULL)) {
1680 		LIST_REMOVE(queued, next);
1681 		tcp_lro_flush(&rx_ring->lro, queued);
1682 	}
1683 
1684 	if (napi != 0) {
1685 		rx_ring->enqueue_is_running = 0;
1686 		al_data_memory_barrier();
1687 	}
1688 	/* unmask irq */
1689 	al_eth_irq_config(rx_ring->unmask_reg_offset, rx_ring->unmask_val);
1690 }
1691 
1692 static void
1693 al_eth_start_xmit(void *arg, int pending)
1694 {
1695 	struct al_eth_ring *tx_ring = arg;
1696 	struct mbuf *mbuf;
1697 
1698 	if (napi != 0) {
1699 		tx_ring->enqueue_is_running = 1;
1700 		al_data_memory_barrier();
1701 	}
1702 
1703 	while (1) {
1704 		mtx_lock(&tx_ring->br_mtx);
1705 		mbuf = drbr_dequeue(NULL, tx_ring->br);
1706 		mtx_unlock(&tx_ring->br_mtx);
1707 
1708 		if (mbuf == NULL)
1709 			break;
1710 
1711 		al_eth_xmit_mbuf(tx_ring, mbuf);
1712 	}
1713 
1714 	if (napi != 0) {
1715 		tx_ring->enqueue_is_running = 0;
1716 		al_data_memory_barrier();
1717 		while (1) {
1718 			mtx_lock(&tx_ring->br_mtx);
1719 			mbuf = drbr_dequeue(NULL, tx_ring->br);
1720 			mtx_unlock(&tx_ring->br_mtx);
1721 			if (mbuf == NULL)
1722 				break;
1723 			al_eth_xmit_mbuf(tx_ring, mbuf);
1724 		}
1725 	}
1726 }
1727 
1728 static int
1729 al_mq_start(if_t ifp, struct mbuf *m)
1730 {
1731 	struct al_eth_adapter *adapter = if_getsoftc(ifp);
1732 	struct al_eth_ring *tx_ring;
1733 	int i;
1734 	int ret;
1735 
1736 	/* Which queue to use */
1737 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
1738 		i = m->m_pkthdr.flowid % adapter->num_tx_queues;
1739 	else
1740 		i = curcpu % adapter->num_tx_queues;
1741 
1742 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1743 	    IFF_DRV_RUNNING) {
1744 		return (EFAULT);
1745 	}
1746 
1747 	tx_ring = &adapter->tx_ring[i];
1748 
1749 	device_printf_dbg(adapter->dev, "dgb start() - assuming link is active, "
1750 	    "sending packet to queue %d\n", i);
1751 
1752 	ret = drbr_enqueue(ifp, tx_ring->br, m);
1753 
1754 	/*
1755 	 * For napi, if work is not running, schedule it. Always schedule
1756 	 * for casual (non-napi) packet handling.
1757 	 */
1758 	if ((napi == 0) || ((napi != 0) && (tx_ring->enqueue_is_running == 0)))
1759 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
1760 
1761 	return (ret);
1762 }
1763 
1764 static void
1765 al_qflush(if_t ifp)
1766 {
1767 
1768 	/* unused */
1769 }
1770 
1771 static inline void
1772 al_eth_flow_ctrl_init(struct al_eth_adapter *adapter)
1773 {
1774 	uint8_t default_flow_ctrl;
1775 
1776 	default_flow_ctrl = AL_ETH_FLOW_CTRL_TX_PAUSE;
1777 	default_flow_ctrl |= AL_ETH_FLOW_CTRL_RX_PAUSE;
1778 
1779 	adapter->link_config.flow_ctrl_supported = default_flow_ctrl;
1780 }
1781 
1782 static int
1783 al_eth_flow_ctrl_config(struct al_eth_adapter *adapter)
1784 {
1785 	struct al_eth_flow_control_params *flow_ctrl_params;
1786 	uint8_t active = adapter->link_config.flow_ctrl_active;
1787 	int i;
1788 
1789 	flow_ctrl_params = &adapter->flow_ctrl_params;
1790 
1791 	flow_ctrl_params->type = AL_ETH_FLOW_CONTROL_TYPE_LINK_PAUSE;
1792 	flow_ctrl_params->obay_enable =
1793 	    ((active & AL_ETH_FLOW_CTRL_RX_PAUSE) != 0);
1794 	flow_ctrl_params->gen_enable =
1795 	    ((active & AL_ETH_FLOW_CTRL_TX_PAUSE) != 0);
1796 
1797 	flow_ctrl_params->rx_fifo_th_high = AL_ETH_FLOW_CTRL_RX_FIFO_TH_HIGH;
1798 	flow_ctrl_params->rx_fifo_th_low = AL_ETH_FLOW_CTRL_RX_FIFO_TH_LOW;
1799 	flow_ctrl_params->quanta = AL_ETH_FLOW_CTRL_QUANTA;
1800 	flow_ctrl_params->quanta_th = AL_ETH_FLOW_CTRL_QUANTA_TH;
1801 
1802 	/* map priority to queue index, queue id = priority/2 */
1803 	for (i = 0; i < AL_ETH_FWD_PRIO_TABLE_NUM; i++)
1804 		flow_ctrl_params->prio_q_map[0][i] =  1 << (i >> 1);
1805 
1806 	al_eth_flow_control_config(&adapter->hal_adapter, flow_ctrl_params);
1807 
1808 	return (0);
1809 }
1810 
1811 static void
1812 al_eth_flow_ctrl_enable(struct al_eth_adapter *adapter)
1813 {
1814 
1815 	/*
1816 	 * change the active configuration to the default / force by ethtool
1817 	 * and call to configure
1818 	 */
1819 	adapter->link_config.flow_ctrl_active =
1820 	    adapter->link_config.flow_ctrl_supported;
1821 
1822 	al_eth_flow_ctrl_config(adapter);
1823 }
1824 
1825 static void
1826 al_eth_flow_ctrl_disable(struct al_eth_adapter *adapter)
1827 {
1828 
1829 	adapter->link_config.flow_ctrl_active = 0;
1830 	al_eth_flow_ctrl_config(adapter);
1831 }
1832 
1833 static int
1834 al_eth_hw_init(struct al_eth_adapter *adapter)
1835 {
1836 	int rc;
1837 
1838 	rc = al_eth_hw_init_adapter(adapter);
1839 	if (rc != 0)
1840 		return (rc);
1841 
1842 	rc = al_eth_mac_config(&adapter->hal_adapter, adapter->mac_mode);
1843 	if (rc < 0) {
1844 		device_printf(adapter->dev, "%s failed to configure mac!\n",
1845 		    __func__);
1846 		return (rc);
1847 	}
1848 
1849 	if ((adapter->mac_mode == AL_ETH_MAC_MODE_SGMII) ||
1850 	    (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII &&
1851 	     adapter->phy_exist == FALSE)) {
1852 		rc = al_eth_mac_link_config(&adapter->hal_adapter,
1853 		    adapter->link_config.force_1000_base_x,
1854 		    adapter->link_config.autoneg,
1855 		    adapter->link_config.active_speed,
1856 		    adapter->link_config.active_duplex);
1857 		if (rc != 0) {
1858 			device_printf(adapter->dev,
1859 			    "%s failed to configure link parameters!\n",
1860 			    __func__);
1861 			return (rc);
1862 		}
1863 	}
1864 
1865 	rc = al_eth_mdio_config(&adapter->hal_adapter,
1866 	    AL_ETH_MDIO_TYPE_CLAUSE_22, TRUE /* shared_mdio_if */,
1867 	    adapter->ref_clk_freq, adapter->mdio_freq);
1868 	if (rc != 0) {
1869 		device_printf(adapter->dev, "%s failed at mdio config!\n",
1870 		    __func__);
1871 		return (rc);
1872 	}
1873 
1874 	al_eth_flow_ctrl_init(adapter);
1875 
1876 	return (rc);
1877 }
1878 
1879 static int
1880 al_eth_hw_stop(struct al_eth_adapter *adapter)
1881 {
1882 
1883 	al_eth_mac_stop(&adapter->hal_adapter);
1884 
1885 	/*
1886 	 * wait till pending rx packets written and UDMA becomes idle,
1887 	 * the MAC has ~10KB fifo, 10us should be enough time for the
1888 	 * UDMA to write to the memory
1889 	 */
1890 	DELAY(10);
1891 
1892 	al_eth_adapter_stop(&adapter->hal_adapter);
1893 
1894 	adapter->flags |= AL_ETH_FLAG_RESET_REQUESTED;
1895 
1896 	/* disable flow ctrl to avoid pause packets*/
1897 	al_eth_flow_ctrl_disable(adapter);
1898 
1899 	return (0);
1900 }
1901 
1902 /*
1903  * al_eth_intr_intx_all - Legacy Interrupt Handler for all interrupts
1904  * @irq: interrupt number
1905  * @data: pointer to a network interface device structure
1906  */
1907 static int
1908 al_eth_intr_intx_all(void *data)
1909 {
1910 	struct al_eth_adapter *adapter = data;
1911 
1912 	struct unit_regs __iomem *regs_base =
1913 	    (struct unit_regs __iomem *)adapter->udma_base;
1914 	uint32_t reg;
1915 
1916 	reg = al_udma_iofic_read_cause(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
1917 	    AL_INT_GROUP_A);
1918 	if (likely(reg))
1919 		device_printf_dbg(adapter->dev, "%s group A cause %x\n",
1920 		    __func__, reg);
1921 
1922 	if (unlikely(reg & AL_INT_GROUP_A_GROUP_D_SUM)) {
1923 		struct al_iofic_grp_ctrl __iomem *sec_ints_base;
1924 		uint32_t cause_d =  al_udma_iofic_read_cause(regs_base,
1925 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_D);
1926 
1927 		sec_ints_base =
1928 		    &regs_base->gen.interrupt_regs.secondary_iofic_ctrl[0];
1929 		if (cause_d != 0) {
1930 			device_printf_dbg(adapter->dev,
1931 			    "got interrupt from group D. cause %x\n", cause_d);
1932 
1933 			cause_d = al_iofic_read_cause(sec_ints_base,
1934 			    AL_INT_GROUP_A);
1935 			device_printf(adapter->dev,
1936 			    "secondary A cause %x\n", cause_d);
1937 
1938 			cause_d = al_iofic_read_cause(sec_ints_base,
1939 			    AL_INT_GROUP_B);
1940 
1941 			device_printf_dbg(adapter->dev,
1942 			    "secondary B cause %x\n", cause_d);
1943 		}
1944 	}
1945 	if ((reg & AL_INT_GROUP_A_GROUP_B_SUM) != 0 ) {
1946 		uint32_t cause_b = al_udma_iofic_read_cause(regs_base,
1947 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_B);
1948 		int qid;
1949 		device_printf_dbg(adapter->dev, "secondary B cause %x\n",
1950 		    cause_b);
1951 		for (qid = 0; qid < adapter->num_rx_queues; qid++) {
1952 			if (cause_b & (1 << qid)) {
1953 				/* mask */
1954 				al_udma_iofic_mask(
1955 				    (struct unit_regs __iomem *)adapter->udma_base,
1956 				    AL_UDMA_IOFIC_LEVEL_PRIMARY,
1957 				    AL_INT_GROUP_B, 1 << qid);
1958 			}
1959 		}
1960 	}
1961 	if ((reg & AL_INT_GROUP_A_GROUP_C_SUM) != 0) {
1962 		uint32_t cause_c = al_udma_iofic_read_cause(regs_base,
1963 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_C);
1964 		int qid;
1965 		device_printf_dbg(adapter->dev, "secondary C cause %x\n", cause_c);
1966 		for (qid = 0; qid < adapter->num_tx_queues; qid++) {
1967 			if ((cause_c & (1 << qid)) != 0) {
1968 				al_udma_iofic_mask(
1969 				    (struct unit_regs __iomem *)adapter->udma_base,
1970 				    AL_UDMA_IOFIC_LEVEL_PRIMARY,
1971 				    AL_INT_GROUP_C, 1 << qid);
1972 			}
1973 		}
1974 	}
1975 
1976 	al_eth_tx_cmlp_irq_filter(adapter->tx_ring);
1977 
1978 	return (0);
1979 }
1980 
1981 static int
1982 al_eth_intr_msix_all(void *data)
1983 {
1984 	struct al_eth_adapter *adapter = data;
1985 
1986 	device_printf_dbg(adapter->dev, "%s\n", __func__);
1987 	return (0);
1988 }
1989 
1990 static int
1991 al_eth_intr_msix_mgmt(void *data)
1992 {
1993 	struct al_eth_adapter *adapter = data;
1994 
1995 	device_printf_dbg(adapter->dev, "%s\n", __func__);
1996 	return (0);
1997 }
1998 
1999 static int
2000 al_eth_enable_msix(struct al_eth_adapter *adapter)
2001 {
2002 	int i, msix_vecs, rc, count;
2003 
2004 	device_printf_dbg(adapter->dev, "%s\n", __func__);
2005 	msix_vecs = 1 + adapter->num_rx_queues + adapter->num_tx_queues;
2006 
2007 	device_printf_dbg(adapter->dev,
2008 	    "Try to enable MSIX, vector numbers = %d\n", msix_vecs);
2009 
2010 	adapter->msix_entries = malloc(msix_vecs*sizeof(*adapter->msix_entries),
2011 	    M_IFAL, M_ZERO | M_WAITOK);
2012 
2013 	if (adapter->msix_entries == NULL) {
2014 		device_printf_dbg(adapter->dev, "failed to allocate"
2015 		    " msix_entries %d\n", msix_vecs);
2016 		rc = ENOMEM;
2017 		goto exit;
2018 	}
2019 
2020 	/* management vector (GROUP_A) @2*/
2021 	adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].entry = 2;
2022 	adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector = 0;
2023 
2024 	/* rx queues start @3 */
2025 	for (i = 0; i < adapter->num_rx_queues; i++) {
2026 		int irq_idx = AL_ETH_RXQ_IRQ_IDX(adapter, i);
2027 
2028 		adapter->msix_entries[irq_idx].entry = 3 + i;
2029 		adapter->msix_entries[irq_idx].vector = 0;
2030 	}
2031 	/* tx queues start @7 */
2032 	for (i = 0; i < adapter->num_tx_queues; i++) {
2033 		int irq_idx = AL_ETH_TXQ_IRQ_IDX(adapter, i);
2034 
2035 		adapter->msix_entries[irq_idx].entry = 3 +
2036 		    AL_ETH_MAX_HW_QUEUES + i;
2037 		adapter->msix_entries[irq_idx].vector = 0;
2038 	}
2039 
2040 	count = msix_vecs + 2; /* entries start from 2 */
2041 	rc = pci_alloc_msix(adapter->dev, &count);
2042 
2043 	if (rc != 0) {
2044 		device_printf_dbg(adapter->dev, "failed to allocate MSIX "
2045 		    "vectors %d\n", msix_vecs+2);
2046 		device_printf_dbg(adapter->dev, "ret = %d\n", rc);
2047 		goto msix_entries_exit;
2048 	}
2049 
2050 	if (count != msix_vecs + 2) {
2051 		device_printf_dbg(adapter->dev, "failed to allocate all MSIX "
2052 		    "vectors %d, allocated %d\n", msix_vecs+2, count);
2053 		rc = ENOSPC;
2054 		goto msix_entries_exit;
2055 	}
2056 
2057 	for (i = 0; i < msix_vecs; i++)
2058 	    adapter->msix_entries[i].vector = 2 + 1 + i;
2059 
2060 	device_printf_dbg(adapter->dev, "successfully enabled MSIX,"
2061 	    " vectors %d\n", msix_vecs);
2062 
2063 	adapter->msix_vecs = msix_vecs;
2064 	adapter->flags |= AL_ETH_FLAG_MSIX_ENABLED;
2065 	goto exit;
2066 
2067 msix_entries_exit:
2068 	adapter->msix_vecs = 0;
2069 	free(adapter->msix_entries, M_IFAL);
2070 	adapter->msix_entries = NULL;
2071 
2072 exit:
2073 	return (rc);
2074 }
2075 
2076 static int
2077 al_eth_setup_int_mode(struct al_eth_adapter *adapter)
2078 {
2079 	int i, rc;
2080 
2081 	rc = al_eth_enable_msix(adapter);
2082 	if (rc != 0) {
2083 		device_printf(adapter->dev, "Failed to enable MSIX mode.\n");
2084 		return (rc);
2085 	}
2086 
2087 	adapter->irq_vecs = max(1, adapter->msix_vecs);
2088 	/* single INTX mode */
2089 	if (adapter->msix_vecs == 0) {
2090 		snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name,
2091 		    AL_ETH_IRQNAME_SIZE, "al-eth-intx-all@pci:%s",
2092 		    device_get_name(adapter->dev));
2093 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler =
2094 		    al_eth_intr_intx_all;
2095 		/* IRQ vector will be resolved from device resources */
2096 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector = 0;
2097 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
2098 
2099 		device_printf(adapter->dev, "%s and vector %d \n", __func__,
2100 		    adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector);
2101 
2102 		return (0);
2103 	}
2104 	/* single MSI-X mode */
2105 	if (adapter->msix_vecs == 1) {
2106 		snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name,
2107 		    AL_ETH_IRQNAME_SIZE, "al-eth-msix-all@pci:%s",
2108 		    device_get_name(adapter->dev));
2109 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler =
2110 		    al_eth_intr_msix_all;
2111 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector =
2112 		    adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector;
2113 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
2114 
2115 		return (0);
2116 	}
2117 	/* MSI-X per queue */
2118 	snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name, AL_ETH_IRQNAME_SIZE,
2119 	    "al-eth-msix-mgmt@pci:%s", device_get_name(adapter->dev));
2120 	adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler = al_eth_intr_msix_mgmt;
2121 
2122 	adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
2123 	adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector =
2124 	    adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector;
2125 
2126 	for (i = 0; i < adapter->num_rx_queues; i++) {
2127 		int irq_idx = AL_ETH_RXQ_IRQ_IDX(adapter, i);
2128 
2129 		snprintf(adapter->irq_tbl[irq_idx].name, AL_ETH_IRQNAME_SIZE,
2130 		    "al-eth-rx-comp-%d@pci:%s", i,
2131 		    device_get_name(adapter->dev));
2132 		adapter->irq_tbl[irq_idx].handler = al_eth_rx_recv_irq_filter;
2133 		adapter->irq_tbl[irq_idx].data = &adapter->rx_ring[i];
2134 		adapter->irq_tbl[irq_idx].vector =
2135 		    adapter->msix_entries[irq_idx].vector;
2136 	}
2137 
2138 	for (i = 0; i < adapter->num_tx_queues; i++) {
2139 		int irq_idx = AL_ETH_TXQ_IRQ_IDX(adapter, i);
2140 
2141 		snprintf(adapter->irq_tbl[irq_idx].name,
2142 		    AL_ETH_IRQNAME_SIZE, "al-eth-tx-comp-%d@pci:%s", i,
2143 		    device_get_name(adapter->dev));
2144 		adapter->irq_tbl[irq_idx].handler = al_eth_tx_cmlp_irq_filter;
2145 		adapter->irq_tbl[irq_idx].data = &adapter->tx_ring[i];
2146 		adapter->irq_tbl[irq_idx].vector =
2147 		    adapter->msix_entries[irq_idx].vector;
2148 	}
2149 
2150 	return (0);
2151 }
2152 
2153 static void
2154 __al_eth_free_irq(struct al_eth_adapter *adapter)
2155 {
2156 	struct al_eth_irq *irq;
2157 	int i, rc;
2158 
2159 	for (i = 0; i < adapter->irq_vecs; i++) {
2160 		irq = &adapter->irq_tbl[i];
2161 		if (irq->requested != 0) {
2162 			device_printf_dbg(adapter->dev, "tear down irq: %d\n",
2163 			    irq->vector);
2164 			rc = bus_teardown_intr(adapter->dev, irq->res,
2165 			    irq->cookie);
2166 			if (rc != 0)
2167 				device_printf(adapter->dev, "failed to tear "
2168 				    "down irq: %d\n", irq->vector);
2169 		}
2170 		irq->requested = 0;
2171 	}
2172 }
2173 
2174 static void
2175 al_eth_free_irq(struct al_eth_adapter *adapter)
2176 {
2177 	struct al_eth_irq *irq;
2178 	int i, rc;
2179 #ifdef CONFIG_RFS_ACCEL
2180 	if (adapter->msix_vecs >= 1) {
2181 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
2182 		adapter->netdev->rx_cpu_rmap = NULL;
2183 	}
2184 #endif
2185 
2186 	__al_eth_free_irq(adapter);
2187 
2188 	for (i = 0; i < adapter->irq_vecs; i++) {
2189 		irq = &adapter->irq_tbl[i];
2190 		if (irq->res == NULL)
2191 			continue;
2192 		device_printf_dbg(adapter->dev, "release resource irq: %d\n",
2193 		    irq->vector);
2194 		rc = bus_release_resource(adapter->dev, SYS_RES_IRQ, irq->vector,
2195 		    irq->res);
2196 		irq->res = NULL;
2197 		if (rc != 0)
2198 			device_printf(adapter->dev, "dev has no parent while "
2199 			    "releasing res for irq: %d\n", irq->vector);
2200 	}
2201 
2202 	pci_release_msi(adapter->dev);
2203 
2204 	adapter->flags &= ~AL_ETH_FLAG_MSIX_ENABLED;
2205 
2206 	adapter->msix_vecs = 0;
2207 	free(adapter->msix_entries, M_IFAL);
2208 	adapter->msix_entries = NULL;
2209 }
2210 
2211 static int
2212 al_eth_request_irq(struct al_eth_adapter *adapter)
2213 {
2214 	unsigned long flags;
2215 	struct al_eth_irq *irq;
2216 	int rc = 0, i, v;
2217 
2218 	if ((adapter->flags & AL_ETH_FLAG_MSIX_ENABLED) != 0)
2219 		flags = RF_ACTIVE;
2220 	else
2221 		flags = RF_ACTIVE | RF_SHAREABLE;
2222 
2223 	for (i = 0; i < adapter->irq_vecs; i++) {
2224 		irq = &adapter->irq_tbl[i];
2225 
2226 		if (irq->requested != 0)
2227 			continue;
2228 
2229 		irq->res = bus_alloc_resource_any(adapter->dev, SYS_RES_IRQ,
2230 		    &irq->vector, flags);
2231 		if (irq->res == NULL) {
2232 			device_printf(adapter->dev, "could not allocate "
2233 			    "irq vector=%d\n", irq->vector);
2234 			rc = ENXIO;
2235 			goto exit_res;
2236 		}
2237 
2238 		if ((rc = bus_setup_intr(adapter->dev, irq->res,
2239 		    INTR_TYPE_NET | INTR_MPSAFE, irq->handler,
2240 		    NULL, irq->data, &irq->cookie)) != 0) {
2241 			device_printf(adapter->dev, "failed to register "
2242 			    "interrupt handler for irq %ju: %d\n",
2243 			    (uintmax_t)rman_get_start(irq->res), rc);
2244 			goto exit_intr;
2245 		}
2246 		irq->requested = 1;
2247 	}
2248 	goto exit;
2249 
2250 exit_intr:
2251 	v = i - 1; /* -1 because we omit the operation that failed */
2252 	while (v-- >= 0) {
2253 		int bti;
2254 		irq = &adapter->irq_tbl[v];
2255 		bti = bus_teardown_intr(adapter->dev, irq->res, irq->cookie);
2256 		if (bti != 0) {
2257 			device_printf(adapter->dev, "failed to tear "
2258 			    "down irq: %d\n", irq->vector);
2259 		}
2260 
2261 		irq->requested = 0;
2262 		device_printf_dbg(adapter->dev, "exit_intr: releasing irq %d\n",
2263 		    irq->vector);
2264 	}
2265 
2266 exit_res:
2267 	v = i - 1; /* -1 because we omit the operation that failed */
2268 	while (v-- >= 0) {
2269 		int brr;
2270 		irq = &adapter->irq_tbl[v];
2271 		device_printf_dbg(adapter->dev, "exit_res: releasing resource"
2272 		    " for irq %d\n", irq->vector);
2273 		brr = bus_release_resource(adapter->dev, SYS_RES_IRQ,
2274 		    irq->vector, irq->res);
2275 		if (brr != 0)
2276 			device_printf(adapter->dev, "dev has no parent while "
2277 			    "releasing res for irq: %d\n", irq->vector);
2278 		irq->res = NULL;
2279 	}
2280 
2281 exit:
2282 	return (rc);
2283 }
2284 
2285 /**
2286  * al_eth_setup_tx_resources - allocate Tx resources (Descriptors)
2287  * @adapter: network interface device structure
2288  * @qid: queue index
2289  *
2290  * Return 0 on success, negative on failure
2291  **/
2292 static int
2293 al_eth_setup_tx_resources(struct al_eth_adapter *adapter, int qid)
2294 {
2295 	struct al_eth_ring *tx_ring = &adapter->tx_ring[qid];
2296 	device_t dev = tx_ring->dev;
2297 	struct al_udma_q_params *q_params = &tx_ring->q_params;
2298 	int size;
2299 	int ret;
2300 
2301 	if (adapter->up)
2302 		return (0);
2303 
2304 	size = sizeof(struct al_eth_tx_buffer) * tx_ring->sw_count;
2305 
2306 	tx_ring->tx_buffer_info = malloc(size, M_IFAL, M_ZERO | M_WAITOK);
2307 	if (tx_ring->tx_buffer_info == NULL)
2308 		return (ENOMEM);
2309 
2310 	tx_ring->descs_size = tx_ring->hw_count * sizeof(union al_udma_desc);
2311 	q_params->size = tx_ring->hw_count;
2312 
2313 	ret = al_dma_alloc_coherent(dev, &q_params->desc_phy_base_tag,
2314 	    (bus_dmamap_t *)&q_params->desc_phy_base_map,
2315 	    (bus_addr_t *)&q_params->desc_phy_base,
2316 	    (void**)&q_params->desc_base, tx_ring->descs_size);
2317 	if (ret != 0) {
2318 		device_printf(dev, "failed to al_dma_alloc_coherent,"
2319 		    " ret = %d\n", ret);
2320 		return (ENOMEM);
2321 	}
2322 
2323 	if (q_params->desc_base == NULL)
2324 		return (ENOMEM);
2325 
2326 	device_printf_dbg(dev, "Initializing ring queues %d\n", qid);
2327 
2328 	/* Allocate Ring Queue */
2329 	mtx_init(&tx_ring->br_mtx, "AlRingMtx", NULL, MTX_DEF);
2330 	tx_ring->br = buf_ring_alloc(AL_BR_SIZE, M_DEVBUF, M_WAITOK,
2331 	    &tx_ring->br_mtx);
2332 	if (tx_ring->br == NULL) {
2333 		device_printf(dev, "Critical Failure setting up buf ring\n");
2334 		return (ENOMEM);
2335 	}
2336 
2337 	/* Allocate taskqueues */
2338 	TASK_INIT(&tx_ring->enqueue_task, 0, al_eth_start_xmit, tx_ring);
2339 	tx_ring->enqueue_tq = taskqueue_create_fast("al_tx_enque", M_NOWAIT,
2340 	    taskqueue_thread_enqueue, &tx_ring->enqueue_tq);
2341 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, PI_NET, "%s txeq",
2342 	    device_get_nameunit(adapter->dev));
2343 	TASK_INIT(&tx_ring->cmpl_task, 0, al_eth_tx_cmpl_work, tx_ring);
2344 	tx_ring->cmpl_tq = taskqueue_create_fast("al_tx_cmpl", M_NOWAIT,
2345 	    taskqueue_thread_enqueue, &tx_ring->cmpl_tq);
2346 	taskqueue_start_threads(&tx_ring->cmpl_tq, 1, PI_REALTIME, "%s txcq",
2347 	    device_get_nameunit(adapter->dev));
2348 
2349 	/* Setup DMA descriptor areas. */
2350 	ret = bus_dma_tag_create(bus_get_dma_tag(dev),
2351 	    1, 0,			/* alignment, bounds */
2352 	    BUS_SPACE_MAXADDR,		/* lowaddr */
2353 	    BUS_SPACE_MAXADDR,		/* highaddr */
2354 	    NULL, NULL,			/* filter, filterarg */
2355 	    AL_TSO_SIZE,		/* maxsize */
2356 	    AL_ETH_PKT_MAX_BUFS,	/* nsegments */
2357 	    PAGE_SIZE,			/* maxsegsize */
2358 	    0,				/* flags */
2359 	    NULL,			/* lockfunc */
2360 	    NULL,			/* lockfuncarg */
2361 	    &tx_ring->dma_buf_tag);
2362 
2363 	if (ret != 0) {
2364 		device_printf(dev,"Unable to allocate dma_buf_tag, ret = %d\n",
2365 		    ret);
2366 		return (ret);
2367 	}
2368 
2369 	for (size = 0; size < tx_ring->sw_count; size++) {
2370 		ret = bus_dmamap_create(tx_ring->dma_buf_tag, 0,
2371 		    &tx_ring->tx_buffer_info[size].dma_map);
2372 		if (ret != 0) {
2373 			device_printf(dev, "Unable to map DMA TX "
2374 			    "buffer memory [iter=%d]\n", size);
2375 			return (ret);
2376 		}
2377 	}
2378 
2379 	/* completion queue not used for tx */
2380 	q_params->cdesc_base = NULL;
2381 	/* size in bytes of the udma completion ring descriptor */
2382 	q_params->cdesc_size = 8;
2383 	tx_ring->next_to_use = 0;
2384 	tx_ring->next_to_clean = 0;
2385 
2386 	return (0);
2387 }
2388 
2389 /*
2390  * al_eth_free_tx_resources - Free Tx Resources per Queue
2391  * @adapter: network interface device structure
2392  * @qid: queue index
2393  *
2394  * Free all transmit software resources
2395  */
2396 static void
2397 al_eth_free_tx_resources(struct al_eth_adapter *adapter, int qid)
2398 {
2399 	struct al_eth_ring *tx_ring = &adapter->tx_ring[qid];
2400 	struct al_udma_q_params *q_params = &tx_ring->q_params;
2401 	int size;
2402 
2403 	/* At this point interrupts' handlers must be deactivated */
2404 	while (taskqueue_cancel(tx_ring->cmpl_tq, &tx_ring->cmpl_task, NULL))
2405 		taskqueue_drain(tx_ring->cmpl_tq, &tx_ring->cmpl_task);
2406 
2407 	taskqueue_free(tx_ring->cmpl_tq);
2408 	while (taskqueue_cancel(tx_ring->enqueue_tq,
2409 	    &tx_ring->enqueue_task, NULL)) {
2410 		taskqueue_drain(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
2411 	}
2412 
2413 	taskqueue_free(tx_ring->enqueue_tq);
2414 
2415 	if (tx_ring->br != NULL) {
2416 		drbr_flush(adapter->netdev, tx_ring->br);
2417 		buf_ring_free(tx_ring->br, M_DEVBUF);
2418 	}
2419 
2420 	for (size = 0; size < tx_ring->sw_count; size++) {
2421 		m_freem(tx_ring->tx_buffer_info[size].m);
2422 		tx_ring->tx_buffer_info[size].m = NULL;
2423 
2424 		bus_dmamap_unload(tx_ring->dma_buf_tag,
2425 		    tx_ring->tx_buffer_info[size].dma_map);
2426 		bus_dmamap_destroy(tx_ring->dma_buf_tag,
2427 		    tx_ring->tx_buffer_info[size].dma_map);
2428 	}
2429 	bus_dma_tag_destroy(tx_ring->dma_buf_tag);
2430 
2431 	free(tx_ring->tx_buffer_info, M_IFAL);
2432 	tx_ring->tx_buffer_info = NULL;
2433 
2434 	mtx_destroy(&tx_ring->br_mtx);
2435 
2436 	/* if not set, then don't free */
2437 	if (q_params->desc_base == NULL)
2438 		return;
2439 
2440 	al_dma_free_coherent(q_params->desc_phy_base_tag,
2441 	    q_params->desc_phy_base_map, q_params->desc_base);
2442 
2443 	q_params->desc_base = NULL;
2444 }
2445 
2446 /*
2447  * al_eth_free_all_tx_resources - Free Tx Resources for All Queues
2448  * @adapter: board private structure
2449  *
2450  * Free all transmit software resources
2451  */
2452 static void
2453 al_eth_free_all_tx_resources(struct al_eth_adapter *adapter)
2454 {
2455 	int i;
2456 
2457 	for (i = 0; i < adapter->num_tx_queues; i++)
2458 		if (adapter->tx_ring[i].q_params.desc_base)
2459 			al_eth_free_tx_resources(adapter, i);
2460 }
2461 
2462 /*
2463  * al_eth_setup_rx_resources - allocate Rx resources (Descriptors)
2464  * @adapter: network interface device structure
2465  * @qid: queue index
2466  *
2467  * Returns 0 on success, negative on failure
2468  */
2469 static int
2470 al_eth_setup_rx_resources(struct al_eth_adapter *adapter, unsigned int qid)
2471 {
2472 	struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
2473 	device_t dev = rx_ring->dev;
2474 	struct al_udma_q_params *q_params = &rx_ring->q_params;
2475 	int size;
2476 	int ret;
2477 
2478 	size = sizeof(struct al_eth_rx_buffer) * rx_ring->sw_count;
2479 
2480 	/* alloc extra element so in rx path we can always prefetch rx_info + 1 */
2481 	size += 1;
2482 
2483 	rx_ring->rx_buffer_info = malloc(size, M_IFAL, M_ZERO | M_WAITOK);
2484 	if (rx_ring->rx_buffer_info == NULL)
2485 		return (ENOMEM);
2486 
2487 	rx_ring->descs_size = rx_ring->hw_count * sizeof(union al_udma_desc);
2488 	q_params->size = rx_ring->hw_count;
2489 
2490 	ret = al_dma_alloc_coherent(dev, &q_params->desc_phy_base_tag,
2491 	    &q_params->desc_phy_base_map,
2492 	    (bus_addr_t *)&q_params->desc_phy_base,
2493 	    (void**)&q_params->desc_base, rx_ring->descs_size);
2494 
2495 	if ((q_params->desc_base == NULL) || (ret != 0))
2496 		return (ENOMEM);
2497 
2498 	/* size in bytes of the udma completion ring descriptor */
2499 	q_params->cdesc_size = 16;
2500 	rx_ring->cdescs_size = rx_ring->hw_count * q_params->cdesc_size;
2501 	ret = al_dma_alloc_coherent(dev, &q_params->cdesc_phy_base_tag,
2502 	    &q_params->cdesc_phy_base_map,
2503 	    (bus_addr_t *)&q_params->cdesc_phy_base,
2504 	    (void**)&q_params->cdesc_base, rx_ring->cdescs_size);
2505 
2506 	if ((q_params->cdesc_base == NULL) || (ret != 0))
2507 		return (ENOMEM);
2508 
2509 	/* Allocate taskqueues */
2510 	NET_TASK_INIT(&rx_ring->enqueue_task, 0, al_eth_rx_recv_work, rx_ring);
2511 	rx_ring->enqueue_tq = taskqueue_create_fast("al_rx_enque", M_NOWAIT,
2512 	    taskqueue_thread_enqueue, &rx_ring->enqueue_tq);
2513 	taskqueue_start_threads(&rx_ring->enqueue_tq, 1, PI_NET, "%s rxeq",
2514 	    device_get_nameunit(adapter->dev));
2515 
2516 	/* Setup DMA descriptor areas. */
2517 	ret = bus_dma_tag_create(bus_get_dma_tag(dev),
2518 	    1, 0,			/* alignment, bounds */
2519 	    BUS_SPACE_MAXADDR,		/* lowaddr */
2520 	    BUS_SPACE_MAXADDR,		/* highaddr */
2521 	    NULL, NULL,			/* filter, filterarg */
2522 	    AL_TSO_SIZE,		/* maxsize */
2523 	    1,				/* nsegments */
2524 	    AL_TSO_SIZE,		/* maxsegsize */
2525 	    0,				/* flags */
2526 	    NULL,			/* lockfunc */
2527 	    NULL,			/* lockfuncarg */
2528 	    &rx_ring->dma_buf_tag);
2529 
2530 	if (ret != 0) {
2531 		device_printf(dev,"Unable to allocate RX dma_buf_tag\n");
2532 		return (ret);
2533 	}
2534 
2535 	for (size = 0; size < rx_ring->sw_count; size++) {
2536 		ret = bus_dmamap_create(rx_ring->dma_buf_tag, 0,
2537 		    &rx_ring->rx_buffer_info[size].dma_map);
2538 		if (ret != 0) {
2539 			device_printf(dev,"Unable to map DMA RX buffer memory\n");
2540 			return (ret);
2541 		}
2542 	}
2543 
2544 	/* Zero out the descriptor ring */
2545 	memset(q_params->cdesc_base, 0, rx_ring->cdescs_size);
2546 
2547 	/* Create LRO for the ring */
2548 	if ((adapter->netdev->if_capenable & IFCAP_LRO) != 0) {
2549 		int err = tcp_lro_init(&rx_ring->lro);
2550 		if (err != 0) {
2551 			device_printf(adapter->dev,
2552 			    "LRO[%d] Initialization failed!\n", qid);
2553 		} else {
2554 			device_printf_dbg(adapter->dev,
2555 			    "RX Soft LRO[%d] Initialized\n", qid);
2556 			rx_ring->lro_enabled = TRUE;
2557 			rx_ring->lro.ifp = adapter->netdev;
2558 		}
2559 	}
2560 
2561 	rx_ring->next_to_clean = 0;
2562 	rx_ring->next_to_use = 0;
2563 
2564 	return (0);
2565 }
2566 
2567 /*
2568  * al_eth_free_rx_resources - Free Rx Resources
2569  * @adapter: network interface device structure
2570  * @qid: queue index
2571  *
2572  * Free all receive software resources
2573  */
2574 static void
2575 al_eth_free_rx_resources(struct al_eth_adapter *adapter, unsigned int qid)
2576 {
2577 	struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
2578 	struct al_udma_q_params *q_params = &rx_ring->q_params;
2579 	int size;
2580 
2581 	/* At this point interrupts' handlers must be deactivated */
2582 	while (taskqueue_cancel(rx_ring->enqueue_tq,
2583 	    &rx_ring->enqueue_task, NULL)) {
2584 		taskqueue_drain(rx_ring->enqueue_tq, &rx_ring->enqueue_task);
2585 	}
2586 
2587 	taskqueue_free(rx_ring->enqueue_tq);
2588 
2589 	for (size = 0; size < rx_ring->sw_count; size++) {
2590 		m_freem(rx_ring->rx_buffer_info[size].m);
2591 		rx_ring->rx_buffer_info[size].m = NULL;
2592 		bus_dmamap_unload(rx_ring->dma_buf_tag,
2593 		    rx_ring->rx_buffer_info[size].dma_map);
2594 		bus_dmamap_destroy(rx_ring->dma_buf_tag,
2595 		    rx_ring->rx_buffer_info[size].dma_map);
2596 	}
2597 	bus_dma_tag_destroy(rx_ring->dma_buf_tag);
2598 
2599 	free(rx_ring->rx_buffer_info, M_IFAL);
2600 	rx_ring->rx_buffer_info = NULL;
2601 
2602 	/* if not set, then don't free */
2603 	if (q_params->desc_base == NULL)
2604 		return;
2605 
2606 	al_dma_free_coherent(q_params->desc_phy_base_tag,
2607 	    q_params->desc_phy_base_map, q_params->desc_base);
2608 
2609 	q_params->desc_base = NULL;
2610 
2611 	/* if not set, then don't free */
2612 	if (q_params->cdesc_base == NULL)
2613 		return;
2614 
2615 	al_dma_free_coherent(q_params->cdesc_phy_base_tag,
2616 	    q_params->cdesc_phy_base_map, q_params->cdesc_base);
2617 
2618 	q_params->cdesc_phy_base = 0;
2619 
2620 	/* Free LRO resources */
2621 	tcp_lro_free(&rx_ring->lro);
2622 }
2623 
2624 /*
2625  * al_eth_free_all_rx_resources - Free Rx Resources for All Queues
2626  * @adapter: board private structure
2627  *
2628  * Free all receive software resources
2629  */
2630 static void
2631 al_eth_free_all_rx_resources(struct al_eth_adapter *adapter)
2632 {
2633 	int i;
2634 
2635 	for (i = 0; i < adapter->num_rx_queues; i++)
2636 		if (adapter->rx_ring[i].q_params.desc_base != 0)
2637 			al_eth_free_rx_resources(adapter, i);
2638 }
2639 
2640 /*
2641  * al_eth_setup_all_rx_resources - allocate all queues Rx resources
2642  * @adapter: board private structure
2643  *
2644  * Return 0 on success, negative on failure
2645  */
2646 static int
2647 al_eth_setup_all_rx_resources(struct al_eth_adapter *adapter)
2648 {
2649 	int i, rc = 0;
2650 
2651 	for (i = 0; i < adapter->num_rx_queues; i++) {
2652 		rc = al_eth_setup_rx_resources(adapter, i);
2653 		if (rc == 0)
2654 			continue;
2655 
2656 		device_printf(adapter->dev, "Allocation for Rx Queue %u failed\n", i);
2657 		goto err_setup_rx;
2658 	}
2659 	return (0);
2660 
2661 err_setup_rx:
2662 	/* rewind the index freeing the rings as we go */
2663 	while (i--)
2664 		al_eth_free_rx_resources(adapter, i);
2665 	return (rc);
2666 }
2667 
2668 /*
2669  * al_eth_setup_all_tx_resources - allocate all queues Tx resources
2670  * @adapter: private structure
2671  *
2672  * Return 0 on success, negative on failure
2673  */
2674 static int
2675 al_eth_setup_all_tx_resources(struct al_eth_adapter *adapter)
2676 {
2677 	int i, rc = 0;
2678 
2679 	for (i = 0; i < adapter->num_tx_queues; i++) {
2680 		rc = al_eth_setup_tx_resources(adapter, i);
2681 		if (rc == 0)
2682 			continue;
2683 
2684 		device_printf(adapter->dev,
2685 		    "Allocation for Tx Queue %u failed\n", i);
2686 		goto err_setup_tx;
2687 	}
2688 
2689 	return (0);
2690 
2691 err_setup_tx:
2692 	/* rewind the index freeing the rings as we go */
2693 	while (i--)
2694 		al_eth_free_tx_resources(adapter, i);
2695 
2696 	return (rc);
2697 }
2698 
2699 static void
2700 al_eth_disable_int_sync(struct al_eth_adapter *adapter)
2701 {
2702 
2703 	/* disable forwarding interrupts from eth through pci end point */
2704 	if ((adapter->board_type == ALPINE_FPGA_NIC) ||
2705 	    (adapter->board_type == ALPINE_NIC)) {
2706 		al_eth_forward_int_config((uint32_t*)adapter->internal_pcie_base +
2707 		    AL_REG_OFFSET_FORWARD_INTR, AL_DIS_FORWARD_INTR);
2708 	}
2709 
2710 	/* mask hw interrupts */
2711 	al_eth_interrupts_mask(adapter);
2712 }
2713 
2714 static void
2715 al_eth_interrupts_unmask(struct al_eth_adapter *adapter)
2716 {
2717 	uint32_t group_a_mask = AL_INT_GROUP_A_GROUP_D_SUM; /* enable group D summery */
2718 	uint32_t group_b_mask = (1 << adapter->num_rx_queues) - 1;/* bit per Rx q*/
2719 	uint32_t group_c_mask = (1 << adapter->num_tx_queues) - 1;/* bit per Tx q*/
2720 	uint32_t group_d_mask = 3 << 8;
2721 	struct unit_regs __iomem *regs_base =
2722 	    (struct unit_regs __iomem *)adapter->udma_base;
2723 
2724 	if (adapter->int_mode == AL_IOFIC_MODE_LEGACY)
2725 		group_a_mask |= AL_INT_GROUP_A_GROUP_B_SUM |
2726 		    AL_INT_GROUP_A_GROUP_C_SUM |
2727 		    AL_INT_GROUP_A_GROUP_D_SUM;
2728 
2729 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2730 	    AL_INT_GROUP_A, group_a_mask);
2731 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2732 	    AL_INT_GROUP_B, group_b_mask);
2733 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2734 	    AL_INT_GROUP_C, group_c_mask);
2735 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2736 	    AL_INT_GROUP_D, group_d_mask);
2737 }
2738 
2739 static void
2740 al_eth_interrupts_mask(struct al_eth_adapter *adapter)
2741 {
2742 	struct unit_regs __iomem *regs_base =
2743 	    (struct unit_regs __iomem *)adapter->udma_base;
2744 
2745 	/* mask all interrupts */
2746 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2747 	    AL_INT_GROUP_A, AL_MASK_GROUP_A_INT);
2748 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2749 	    AL_INT_GROUP_B, AL_MASK_GROUP_B_INT);
2750 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2751 	    AL_INT_GROUP_C, AL_MASK_GROUP_C_INT);
2752 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2753 	    AL_INT_GROUP_D, AL_MASK_GROUP_D_INT);
2754 }
2755 
2756 static int
2757 al_eth_configure_int_mode(struct al_eth_adapter *adapter)
2758 {
2759 	enum al_iofic_mode int_mode;
2760 	uint32_t m2s_errors_disable = AL_M2S_MASK_INIT;
2761 	uint32_t m2s_aborts_disable = AL_M2S_MASK_INIT;
2762 	uint32_t s2m_errors_disable = AL_S2M_MASK_INIT;
2763 	uint32_t s2m_aborts_disable = AL_S2M_MASK_INIT;
2764 
2765 	/* single INTX mode */
2766 	if (adapter->msix_vecs == 0)
2767 		int_mode = AL_IOFIC_MODE_LEGACY;
2768 	else if (adapter->msix_vecs > 1)
2769 		int_mode = AL_IOFIC_MODE_MSIX_PER_Q;
2770 	else {
2771 		device_printf(adapter->dev,
2772 		    "udma doesn't support single MSI-X mode yet.\n");
2773 		return (EIO);
2774 	}
2775 
2776 	if (adapter->board_type != ALPINE_INTEGRATED) {
2777 		m2s_errors_disable |= AL_M2S_S2M_MASK_NOT_INT;
2778 		m2s_errors_disable |= AL_M2S_S2M_MASK_NOT_INT;
2779 		s2m_aborts_disable |= AL_M2S_S2M_MASK_NOT_INT;
2780 		s2m_aborts_disable |= AL_M2S_S2M_MASK_NOT_INT;
2781 	}
2782 
2783 	if (al_udma_iofic_config((struct unit_regs __iomem *)adapter->udma_base,
2784 	    int_mode, m2s_errors_disable, m2s_aborts_disable,
2785 	    s2m_errors_disable, s2m_aborts_disable)) {
2786 		device_printf(adapter->dev,
2787 		    "al_udma_unit_int_config failed!.\n");
2788 		return (EIO);
2789 	}
2790 	adapter->int_mode = int_mode;
2791 	device_printf_dbg(adapter->dev, "using %s interrupt mode\n",
2792 	    int_mode == AL_IOFIC_MODE_LEGACY ? "INTx" :
2793 	    int_mode == AL_IOFIC_MODE_MSIX_PER_Q ? "MSI-X per Queue" : "Unknown");
2794 	/* set interrupt moderation resolution to 15us */
2795 	al_iofic_moder_res_config(&((struct unit_regs *)(adapter->udma_base))->gen.interrupt_regs.main_iofic, AL_INT_GROUP_B, 15);
2796 	al_iofic_moder_res_config(&((struct unit_regs *)(adapter->udma_base))->gen.interrupt_regs.main_iofic, AL_INT_GROUP_C, 15);
2797 	/* by default interrupt coalescing is disabled */
2798 	adapter->tx_usecs = 0;
2799 	adapter->rx_usecs = 0;
2800 
2801 	return (0);
2802 }
2803 
2804 /*
2805  * ethtool_rxfh_indir_default - get default value for RX flow hash indirection
2806  * @index: Index in RX flow hash indirection table
2807  * @n_rx_rings: Number of RX rings to use
2808  *
2809  * This function provides the default policy for RX flow hash indirection.
2810  */
2811 static inline uint32_t
2812 ethtool_rxfh_indir_default(uint32_t index, uint32_t n_rx_rings)
2813 {
2814 
2815 	return (index % n_rx_rings);
2816 }
2817 
2818 static void*
2819 al_eth_update_stats(struct al_eth_adapter *adapter)
2820 {
2821 	struct al_eth_mac_stats *mac_stats = &adapter->mac_stats;
2822 
2823 	if (adapter->up == 0)
2824 		return (NULL);
2825 
2826 	al_eth_mac_stats_get(&adapter->hal_adapter, mac_stats);
2827 
2828 	return (NULL);
2829 }
2830 
2831 static uint64_t
2832 al_get_counter(if_t ifp, ift_counter cnt)
2833 {
2834 	struct al_eth_adapter *adapter;
2835 	struct al_eth_mac_stats *mac_stats;
2836 	uint64_t rv;
2837 
2838 	adapter = if_getsoftc(ifp);
2839 	mac_stats = &adapter->mac_stats;
2840 
2841 	switch (cnt) {
2842 	case IFCOUNTER_IPACKETS:
2843 		return (mac_stats->aFramesReceivedOK); /* including pause frames */
2844 	case IFCOUNTER_OPACKETS:
2845 		return (mac_stats->aFramesTransmittedOK);
2846 	case IFCOUNTER_IBYTES:
2847 		return (mac_stats->aOctetsReceivedOK);
2848 	case IFCOUNTER_OBYTES:
2849 		return (mac_stats->aOctetsTransmittedOK);
2850 	case IFCOUNTER_IMCASTS:
2851 		return (mac_stats->ifInMulticastPkts);
2852 	case IFCOUNTER_OMCASTS:
2853 		return (mac_stats->ifOutMulticastPkts);
2854 	case IFCOUNTER_COLLISIONS:
2855 		return (0);
2856 	case IFCOUNTER_IQDROPS:
2857 		return (mac_stats->etherStatsDropEvents);
2858 	case IFCOUNTER_IERRORS:
2859 		rv = mac_stats->ifInErrors +
2860 		    mac_stats->etherStatsUndersizePkts + /* good but short */
2861 		    mac_stats->etherStatsFragments + /* short and bad*/
2862 		    mac_stats->etherStatsJabbers + /* with crc errors */
2863 		    mac_stats->etherStatsOversizePkts +
2864 		    mac_stats->aFrameCheckSequenceErrors +
2865 		    mac_stats->aAlignmentErrors;
2866 		return (rv);
2867 	case IFCOUNTER_OERRORS:
2868 		return (mac_stats->ifOutErrors);
2869 	default:
2870 		return (if_get_counter_default(ifp, cnt));
2871 	}
2872 }
2873 
2874 static u_int
2875 al_count_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2876 {
2877 	unsigned char *mac;
2878 
2879 	mac = LLADDR(sdl);
2880 	/* default mc address inside mac address */
2881 	if (mac[3] != 0 && mac[4] != 0 && mac[5] != 1)
2882 		return (1);
2883 	else
2884 		return (0);
2885 }
2886 
2887 static u_int
2888 al_program_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2889 {
2890 	struct al_eth_adapter *adapter = arg;
2891 
2892 	al_eth_mac_table_unicast_add(adapter,
2893 	    AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + 1 + cnt, 1);
2894 
2895 	return (1);
2896 }
2897 
2898 /*
2899  *  Unicast, Multicast and Promiscuous mode set
2900  *
2901  *  The set_rx_mode entry point is called whenever the unicast or multicast
2902  *  address lists or the network interface flags are updated.  This routine is
2903  *  responsible for configuring the hardware for proper unicast, multicast,
2904  *  promiscuous mode, and all-multi behavior.
2905  */
2906 static void
2907 al_eth_set_rx_mode(struct al_eth_adapter *adapter)
2908 {
2909 	if_t ifp = adapter->netdev;
2910 	int mc, uc;
2911 	uint8_t i;
2912 
2913 	/* XXXGL: why generic count won't work? */
2914 	mc = if_foreach_llmaddr(ifp, al_count_maddr, NULL);
2915 	uc = if_lladdr_count(ifp);
2916 
2917 	if ((if_getflags(ifp) & IFF_PROMISC) != 0) {
2918 		al_eth_mac_table_promiscuous_set(adapter, true);
2919 	} else {
2920 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
2921 			/* This interface is in all-multicasts mode (used by multicast routers). */
2922 			al_eth_mac_table_all_multicast_add(adapter,
2923 			    AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX, 1);
2924 		} else {
2925 			if (mc == 0) {
2926 				al_eth_mac_table_entry_clear(adapter,
2927 				    AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX);
2928 			} else {
2929 				al_eth_mac_table_all_multicast_add(adapter,
2930 				    AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX, 1);
2931 			}
2932 		}
2933 		if (uc != 0) {
2934 			i = AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + 1;
2935 			if (uc > AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT) {
2936 				/*
2937 				 * In this case there are more addresses then
2938 				 * entries in the mac table - set promiscuous
2939 				 */
2940 				al_eth_mac_table_promiscuous_set(adapter, true);
2941 				return;
2942 			}
2943 
2944 			/* clear the last configuration */
2945 			while (i < (AL_ETH_MAC_TABLE_UNICAST_IDX_BASE +
2946 				    AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT)) {
2947 				al_eth_mac_table_entry_clear(adapter, i);
2948 				i++;
2949 			}
2950 
2951 			/* set new addresses */
2952 			if_foreach_lladdr(ifp, al_program_addr, adapter);
2953 		}
2954 		al_eth_mac_table_promiscuous_set(adapter, false);
2955 	}
2956 }
2957 
2958 static void
2959 al_eth_config_rx_fwd(struct al_eth_adapter *adapter)
2960 {
2961 	struct al_eth_fwd_ctrl_table_entry entry;
2962 	int i;
2963 
2964 	/* let priority be equal to pbits */
2965 	for (i = 0; i < AL_ETH_FWD_PBITS_TABLE_NUM; i++)
2966 		al_eth_fwd_pbits_table_set(&adapter->hal_adapter, i, i);
2967 
2968 	/* map priority to queue index, queue id = priority/2 */
2969 	for (i = 0; i < AL_ETH_FWD_PRIO_TABLE_NUM; i++)
2970 		al_eth_fwd_priority_table_set(&adapter->hal_adapter, i, i >> 1);
2971 
2972 	entry.prio_sel = AL_ETH_CTRL_TABLE_PRIO_SEL_VAL_0;
2973 	entry.queue_sel_1 = AL_ETH_CTRL_TABLE_QUEUE_SEL_1_THASH_TABLE;
2974 	entry.queue_sel_2 = AL_ETH_CTRL_TABLE_QUEUE_SEL_2_NO_PRIO;
2975 	entry.udma_sel = AL_ETH_CTRL_TABLE_UDMA_SEL_MAC_TABLE;
2976 	entry.filter = FALSE;
2977 
2978 	al_eth_ctrl_table_def_set(&adapter->hal_adapter, FALSE, &entry);
2979 
2980 	/*
2981 	 * By default set the mac table to forward all unicast packets to our
2982 	 * MAC address and all broadcast. all the rest will be dropped.
2983 	 */
2984 	al_eth_mac_table_unicast_add(adapter, AL_ETH_MAC_TABLE_UNICAST_IDX_BASE,
2985 	    1);
2986 	al_eth_mac_table_broadcast_add(adapter, AL_ETH_MAC_TABLE_BROADCAST_IDX, 1);
2987 	al_eth_mac_table_promiscuous_set(adapter, false);
2988 
2989 	/* set toeplitz hash keys */
2990 	for (i = 0; i < sizeof(adapter->toeplitz_hash_key); i++)
2991 		*((uint8_t*)adapter->toeplitz_hash_key + i) = (uint8_t)random();
2992 
2993 	for (i = 0; i < AL_ETH_RX_HASH_KEY_NUM; i++)
2994 		al_eth_hash_key_set(&adapter->hal_adapter, i,
2995 		    htonl(adapter->toeplitz_hash_key[i]));
2996 
2997 	for (i = 0; i < AL_ETH_RX_RSS_TABLE_SIZE; i++) {
2998 		adapter->rss_ind_tbl[i] = ethtool_rxfh_indir_default(i,
2999 		    AL_ETH_NUM_QUEUES);
3000 		al_eth_set_thash_table_entry(adapter, i, 0,
3001 		    adapter->rss_ind_tbl[i]);
3002 	}
3003 
3004 	al_eth_fsm_table_init(adapter);
3005 }
3006 
3007 static void
3008 al_eth_req_rx_buff_size(struct al_eth_adapter *adapter, int size)
3009 {
3010 
3011 	/*
3012 	* Determine the correct mbuf pool
3013 	* for doing jumbo frames
3014 	* Try from the smallest up to maximum supported
3015 	*/
3016 	adapter->rx_mbuf_sz = MCLBYTES;
3017 	if (size > 2048) {
3018 		if (adapter->max_rx_buff_alloc_size > 2048)
3019 			adapter->rx_mbuf_sz = MJUMPAGESIZE;
3020 		else
3021 			return;
3022 	}
3023 	if (size > 4096) {
3024 		if (adapter->max_rx_buff_alloc_size > 4096)
3025 			adapter->rx_mbuf_sz = MJUM9BYTES;
3026 		else
3027 			return;
3028 	}
3029 	if (size > 9216) {
3030 		if (adapter->max_rx_buff_alloc_size > 9216)
3031 			adapter->rx_mbuf_sz = MJUM16BYTES;
3032 		else
3033 			return;
3034 	}
3035 }
3036 
3037 static int
3038 al_eth_change_mtu(struct al_eth_adapter *adapter, int new_mtu)
3039 {
3040 	int max_frame = new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
3041 	    ETHER_VLAN_ENCAP_LEN;
3042 
3043 	al_eth_req_rx_buff_size(adapter, new_mtu);
3044 
3045 	device_printf_dbg(adapter->dev, "set MTU to %d\n", new_mtu);
3046 	al_eth_rx_pkt_limit_config(&adapter->hal_adapter,
3047 	    AL_ETH_MIN_FRAME_LEN, max_frame);
3048 
3049 	al_eth_tso_mss_config(&adapter->hal_adapter, 0, new_mtu - 100);
3050 
3051 	return (0);
3052 }
3053 
3054 static int
3055 al_eth_check_mtu(struct al_eth_adapter *adapter, int new_mtu)
3056 {
3057 	int max_frame = new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
3058 
3059 	if ((new_mtu < AL_ETH_MIN_FRAME_LEN) ||
3060 	    (max_frame > AL_ETH_MAX_FRAME_LEN)) {
3061 		return (EINVAL);
3062 	}
3063 
3064 	return (0);
3065 }
3066 
3067 static int
3068 al_eth_udma_queue_enable(struct al_eth_adapter *adapter, enum al_udma_type type,
3069     int qid)
3070 {
3071 	int rc = 0;
3072 	char *name = (type == UDMA_TX) ? "Tx" : "Rx";
3073 	struct al_udma_q_params *q_params;
3074 
3075 	if (type == UDMA_TX)
3076 		q_params = &adapter->tx_ring[qid].q_params;
3077 	else
3078 		q_params = &adapter->rx_ring[qid].q_params;
3079 
3080 	rc = al_eth_queue_config(&adapter->hal_adapter, type, qid, q_params);
3081 	if (rc < 0) {
3082 		device_printf(adapter->dev, "config %s queue %u failed\n", name,
3083 		    qid);
3084 		return (rc);
3085 	}
3086 	return (rc);
3087 }
3088 
3089 static int
3090 al_eth_udma_queues_enable_all(struct al_eth_adapter *adapter)
3091 {
3092 	int i;
3093 
3094 	for (i = 0; i < adapter->num_tx_queues; i++)
3095 		al_eth_udma_queue_enable(adapter, UDMA_TX, i);
3096 
3097 	for (i = 0; i < adapter->num_rx_queues; i++)
3098 		al_eth_udma_queue_enable(adapter, UDMA_RX, i);
3099 
3100 	return (0);
3101 }
3102 
3103 static void
3104 al_eth_up_complete(struct al_eth_adapter *adapter)
3105 {
3106 
3107 	al_eth_configure_int_mode(adapter);
3108 	al_eth_config_rx_fwd(adapter);
3109 	al_eth_change_mtu(adapter, adapter->netdev->if_mtu);
3110 	al_eth_udma_queues_enable_all(adapter);
3111 	al_eth_refill_all_rx_bufs(adapter);
3112 	al_eth_interrupts_unmask(adapter);
3113 
3114 	/* enable forwarding interrupts from eth through pci end point */
3115 	if ((adapter->board_type == ALPINE_FPGA_NIC) ||
3116 	    (adapter->board_type == ALPINE_NIC)) {
3117 		al_eth_forward_int_config((uint32_t*)adapter->internal_pcie_base +
3118 		    AL_REG_OFFSET_FORWARD_INTR, AL_EN_FORWARD_INTR);
3119 	}
3120 
3121 	al_eth_flow_ctrl_enable(adapter);
3122 
3123 	mtx_lock(&adapter->stats_mtx);
3124 	callout_reset(&adapter->stats_callout, hz, al_tick_stats, (void*)adapter);
3125 	mtx_unlock(&adapter->stats_mtx);
3126 
3127 	al_eth_mac_start(&adapter->hal_adapter);
3128 }
3129 
3130 static int
3131 al_media_update(if_t ifp)
3132 {
3133 	struct al_eth_adapter *adapter = if_getsoftc(ifp);
3134 
3135 	if ((if_getflags(ifp) & IFF_UP) != 0)
3136 		mii_mediachg(adapter->mii);
3137 
3138 	return (0);
3139 }
3140 
3141 static void
3142 al_media_status(if_t ifp, struct ifmediareq *ifmr)
3143 {
3144 	struct al_eth_adapter *sc = if_getsoftc(ifp);
3145 	struct mii_data *mii;
3146 
3147 	if (sc->mii == NULL) {
3148 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3149 		ifmr->ifm_status = 0;
3150 
3151 		return;
3152 	}
3153 
3154 	mii = sc->mii;
3155 	mii_pollstat(mii);
3156 
3157 	ifmr->ifm_active = mii->mii_media_active;
3158 	ifmr->ifm_status = mii->mii_media_status;
3159 }
3160 
3161 static void
3162 al_tick(void *arg)
3163 {
3164 	struct al_eth_adapter *adapter = arg;
3165 
3166 	mii_tick(adapter->mii);
3167 
3168 	/* Schedule another timeout one second from now */
3169 	callout_schedule(&adapter->wd_callout, hz);
3170 }
3171 
3172 static void
3173 al_tick_stats(void *arg)
3174 {
3175 	struct al_eth_adapter *adapter = arg;
3176 
3177 	al_eth_update_stats(adapter);
3178 
3179 	callout_schedule(&adapter->stats_callout, hz);
3180 }
3181 
3182 static int
3183 al_eth_up(struct al_eth_adapter *adapter)
3184 {
3185 	if_t ifp = adapter->netdev;
3186 	int rc;
3187 
3188 	if (adapter->up)
3189 		return (0);
3190 
3191 	if ((adapter->flags & AL_ETH_FLAG_RESET_REQUESTED) != 0) {
3192 		al_eth_function_reset(adapter);
3193 		adapter->flags &= ~AL_ETH_FLAG_RESET_REQUESTED;
3194 	}
3195 
3196 	if_sethwassist(ifp, 0);
3197 	if ((if_getcapenable(ifp) & IFCAP_TSO) != 0)
3198 		if_sethwassistbits(ifp, CSUM_TSO, 0);
3199 	if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
3200 		if_sethwassistbits(ifp, (CSUM_TCP | CSUM_UDP), 0);
3201 	if ((if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6) != 0)
3202 		if_sethwassistbits(ifp, (CSUM_TCP_IPV6 | CSUM_UDP_IPV6), 0);
3203 
3204 	al_eth_serdes_init(adapter);
3205 
3206 	rc = al_eth_hw_init(adapter);
3207 	if (rc != 0)
3208 		goto err_hw_init_open;
3209 
3210 	rc = al_eth_setup_int_mode(adapter);
3211 	if (rc != 0) {
3212 		device_printf(adapter->dev,
3213 		    "%s failed at setup interrupt mode!\n", __func__);
3214 		goto err_setup_int;
3215 	}
3216 
3217 	/* allocate transmit descriptors */
3218 	rc = al_eth_setup_all_tx_resources(adapter);
3219 	if (rc != 0)
3220 		goto err_setup_tx;
3221 
3222 	/* allocate receive descriptors */
3223 	rc = al_eth_setup_all_rx_resources(adapter);
3224 	if (rc != 0)
3225 		goto err_setup_rx;
3226 
3227 	rc = al_eth_request_irq(adapter);
3228 	if (rc != 0)
3229 		goto err_req_irq;
3230 
3231 	al_eth_up_complete(adapter);
3232 
3233 	adapter->up = true;
3234 
3235 	if (adapter->mac_mode == AL_ETH_MAC_MODE_10GbE_Serial)
3236 		adapter->netdev->if_link_state = LINK_STATE_UP;
3237 
3238 	if (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII) {
3239 		mii_mediachg(adapter->mii);
3240 
3241 		/* Schedule watchdog timeout */
3242 		mtx_lock(&adapter->wd_mtx);
3243 		callout_reset(&adapter->wd_callout, hz, al_tick, adapter);
3244 		mtx_unlock(&adapter->wd_mtx);
3245 
3246 		mii_pollstat(adapter->mii);
3247 	}
3248 
3249 	return (rc);
3250 
3251 err_req_irq:
3252 	al_eth_free_all_rx_resources(adapter);
3253 err_setup_rx:
3254 	al_eth_free_all_tx_resources(adapter);
3255 err_setup_tx:
3256 	al_eth_free_irq(adapter);
3257 err_setup_int:
3258 	al_eth_hw_stop(adapter);
3259 err_hw_init_open:
3260 	al_eth_function_reset(adapter);
3261 
3262 	return (rc);
3263 }
3264 
3265 static int
3266 al_shutdown(device_t dev)
3267 {
3268 	struct al_eth_adapter *adapter = device_get_softc(dev);
3269 
3270 	al_eth_down(adapter);
3271 
3272 	return (0);
3273 }
3274 
3275 static void
3276 al_eth_down(struct al_eth_adapter *adapter)
3277 {
3278 
3279 	device_printf_dbg(adapter->dev, "al_eth_down: begin\n");
3280 
3281 	adapter->up = false;
3282 
3283 	mtx_lock(&adapter->wd_mtx);
3284 	callout_stop(&adapter->wd_callout);
3285 	mtx_unlock(&adapter->wd_mtx);
3286 
3287 	al_eth_disable_int_sync(adapter);
3288 
3289 	mtx_lock(&adapter->stats_mtx);
3290 	callout_stop(&adapter->stats_callout);
3291 	mtx_unlock(&adapter->stats_mtx);
3292 
3293 	al_eth_free_irq(adapter);
3294 	al_eth_hw_stop(adapter);
3295 
3296 	al_eth_free_all_tx_resources(adapter);
3297 	al_eth_free_all_rx_resources(adapter);
3298 }
3299 
3300 static int
3301 al_ioctl(if_t ifp, u_long command, caddr_t data)
3302 {
3303 	struct al_eth_adapter	*adapter = if_getsoftc(ifp);
3304 	struct ifreq		*ifr = (struct ifreq *)data;
3305 	int			error = 0;
3306 
3307 	switch (command) {
3308 	case SIOCSIFMTU:
3309 	{
3310 		error = al_eth_check_mtu(adapter, ifr->ifr_mtu);
3311 		if (error != 0) {
3312 			device_printf(adapter->dev, "ioctl wrong mtu %u\n",
3313 			    adapter->netdev->if_mtu);
3314 			break;
3315 		}
3316 
3317 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3318 		adapter->netdev->if_mtu = ifr->ifr_mtu;
3319 		al_init(adapter);
3320 		break;
3321 	}
3322 	case SIOCSIFFLAGS:
3323 		if ((if_getflags(ifp) & IFF_UP) != 0) {
3324 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
3325 				if (((if_getflags(ifp) ^ adapter->if_flags) &
3326 				    (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3327 					device_printf_dbg(adapter->dev,
3328 					    "ioctl promisc/allmulti\n");
3329 					al_eth_set_rx_mode(adapter);
3330 				}
3331 			} else {
3332 				error = al_eth_up(adapter);
3333 				if (error == 0)
3334 					if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
3335 			}
3336 		} else {
3337 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
3338 				al_eth_down(adapter);
3339 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3340 			}
3341 		}
3342 
3343 		adapter->if_flags = if_getflags(ifp);
3344 		break;
3345 
3346 	case SIOCADDMULTI:
3347 	case SIOCDELMULTI:
3348 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
3349 			device_printf_dbg(adapter->dev,
3350 			    "ioctl add/del multi before\n");
3351 			al_eth_set_rx_mode(adapter);
3352 #ifdef DEVICE_POLLING
3353 			if ((if_getcapenable(ifp) & IFCAP_POLLING) == 0)
3354 #endif
3355 		}
3356 		break;
3357 	case SIOCSIFMEDIA:
3358 	case SIOCGIFMEDIA:
3359 		if (adapter->mii != NULL)
3360 			error = ifmedia_ioctl(ifp, ifr,
3361 			    &adapter->mii->mii_media, command);
3362 		else
3363 			error = ifmedia_ioctl(ifp, ifr,
3364 			    &adapter->media, command);
3365 		break;
3366 	case SIOCSIFCAP:
3367 	    {
3368 		int mask, reinit;
3369 
3370 		reinit = 0;
3371 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3372 #ifdef DEVICE_POLLING
3373 		if ((mask & IFCAP_POLLING) != 0) {
3374 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
3375 				if (error != 0)
3376 					return (error);
3377 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
3378 			} else {
3379 				error = ether_poll_deregister(ifp);
3380 				/* Enable interrupt even in error case */
3381 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
3382 			}
3383 		}
3384 #endif
3385 		if ((mask & IFCAP_HWCSUM) != 0) {
3386 			/* apply to both rx and tx */
3387 			if_togglecapenable(ifp, IFCAP_HWCSUM);
3388 			reinit = 1;
3389 		}
3390 		if ((mask & IFCAP_HWCSUM_IPV6) != 0) {
3391 			if_togglecapenable(ifp, IFCAP_HWCSUM_IPV6);
3392 			reinit = 1;
3393 		}
3394 		if ((mask & IFCAP_TSO) != 0) {
3395 			if_togglecapenable(ifp, IFCAP_TSO);
3396 			reinit = 1;
3397 		}
3398 		if ((mask & IFCAP_LRO) != 0) {
3399 			if_togglecapenable(ifp, IFCAP_LRO);
3400 		}
3401 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
3402 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3403 			reinit = 1;
3404 		}
3405 		if ((mask & IFCAP_VLAN_HWFILTER) != 0) {
3406 			if_togglecapenable(ifp, IFCAP_VLAN_HWFILTER);
3407 			reinit = 1;
3408 		}
3409 		if ((mask & IFCAP_VLAN_HWTSO) != 0) {
3410 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3411 			reinit = 1;
3412 		}
3413 		if ((reinit != 0) &&
3414 		    ((if_getdrvflags(ifp) & IFF_DRV_RUNNING)) != 0)
3415 		{
3416 			al_init(adapter);
3417 		}
3418 		break;
3419 	    }
3420 
3421 	default:
3422 		error = ether_ioctl(ifp, command, data);
3423 		break;
3424 	}
3425 
3426 	return (error);
3427 }
3428 
3429 static int
3430 al_is_device_supported(device_t dev)
3431 {
3432 	uint16_t pci_vendor_id = pci_get_vendor(dev);
3433 	uint16_t pci_device_id = pci_get_device(dev);
3434 
3435 	return (pci_vendor_id == PCI_VENDOR_ID_ANNAPURNA_LABS &&
3436 	    (pci_device_id == PCI_DEVICE_ID_AL_ETH ||
3437 	    pci_device_id == PCI_DEVICE_ID_AL_ETH_ADVANCED ||
3438 	    pci_device_id == PCI_DEVICE_ID_AL_ETH_NIC ||
3439 	    pci_device_id == PCI_DEVICE_ID_AL_ETH_FPGA_NIC));
3440 }
3441 
3442 /* Time in mSec to keep trying to read / write from MDIO in case of error */
3443 #define	MDIO_TIMEOUT_MSEC	100
3444 #define	MDIO_PAUSE_MSEC		10
3445 
3446 static int
3447 al_miibus_readreg(device_t dev, int phy, int reg)
3448 {
3449 	struct al_eth_adapter *adapter = device_get_softc(dev);
3450 	uint16_t value = 0;
3451 	int rc;
3452 	int timeout = MDIO_TIMEOUT_MSEC;
3453 
3454 	while (timeout > 0) {
3455 		rc = al_eth_mdio_read(&adapter->hal_adapter, adapter->phy_addr,
3456 		    -1, reg, &value);
3457 
3458 		if (rc == 0)
3459 			return (value);
3460 
3461 		device_printf_dbg(adapter->dev,
3462 		    "mdio read failed. try again in 10 msec\n");
3463 
3464 		timeout -= MDIO_PAUSE_MSEC;
3465 		pause("readred pause", MDIO_PAUSE_MSEC);
3466 	}
3467 
3468 	if (rc != 0)
3469 		device_printf(adapter->dev, "MDIO read failed on timeout\n");
3470 
3471 	return (value);
3472 }
3473 
3474 static int
3475 al_miibus_writereg(device_t dev, int phy, int reg, int value)
3476 {
3477 	struct al_eth_adapter *adapter = device_get_softc(dev);
3478 	int rc;
3479 	int timeout = MDIO_TIMEOUT_MSEC;
3480 
3481 	while (timeout > 0) {
3482 		rc = al_eth_mdio_write(&adapter->hal_adapter, adapter->phy_addr,
3483 		    -1, reg, value);
3484 
3485 		if (rc == 0)
3486 			return (0);
3487 
3488 		device_printf(adapter->dev,
3489 		    "mdio write failed. try again in 10 msec\n");
3490 
3491 		timeout -= MDIO_PAUSE_MSEC;
3492 		pause("miibus writereg", MDIO_PAUSE_MSEC);
3493 	}
3494 
3495 	if (rc != 0)
3496 		device_printf(adapter->dev, "MDIO write failed on timeout\n");
3497 
3498 	return (rc);
3499 }
3500 
3501 static void
3502 al_miibus_statchg(device_t dev)
3503 {
3504 	struct al_eth_adapter *adapter = device_get_softc(dev);
3505 
3506 	device_printf_dbg(adapter->dev,
3507 	    "al_miibus_statchg: state has changed!\n");
3508 	device_printf_dbg(adapter->dev,
3509 	    "al_miibus_statchg: active = 0x%x status = 0x%x\n",
3510 	    adapter->mii->mii_media_active, adapter->mii->mii_media_status);
3511 
3512 	if (adapter->up == 0)
3513 		return;
3514 
3515 	if ((adapter->mii->mii_media_status & IFM_AVALID) != 0) {
3516 		if (adapter->mii->mii_media_status & IFM_ACTIVE) {
3517 			device_printf(adapter->dev, "link is UP\n");
3518 			adapter->netdev->if_link_state = LINK_STATE_UP;
3519 		} else {
3520 			device_printf(adapter->dev, "link is DOWN\n");
3521 			adapter->netdev->if_link_state = LINK_STATE_DOWN;
3522 		}
3523 	}
3524 }
3525 
3526 static void
3527 al_miibus_linkchg(device_t dev)
3528 {
3529 	struct al_eth_adapter *adapter = device_get_softc(dev);
3530 	uint8_t duplex = 0;
3531 	uint8_t speed = 0;
3532 
3533 	if (adapter->mii == NULL)
3534 		return;
3535 
3536 	if ((adapter->netdev->if_flags & IFF_UP) == 0)
3537 		return;
3538 
3539 	/* Ignore link changes when link is not ready */
3540 	if ((adapter->mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
3541 	    (IFM_AVALID | IFM_ACTIVE)) {
3542 		return;
3543 	}
3544 
3545 	if ((adapter->mii->mii_media_active & IFM_FDX) != 0)
3546 		duplex = 1;
3547 
3548 	speed = IFM_SUBTYPE(adapter->mii->mii_media_active);
3549 
3550 	if (speed == IFM_10_T) {
3551 		al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
3552 		    AL_10BASE_T_SPEED, duplex);
3553 		return;
3554 	}
3555 
3556 	if (speed == IFM_100_TX) {
3557 		al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
3558 		    AL_100BASE_TX_SPEED, duplex);
3559 		return;
3560 	}
3561 
3562 	if (speed == IFM_1000_T) {
3563 		al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
3564 		    AL_1000BASE_T_SPEED, duplex);
3565 		return;
3566 	}
3567 
3568 	device_printf(adapter->dev, "ERROR: unknown MII media active 0x%08x\n",
3569 	    adapter->mii->mii_media_active);
3570 }
3571