1 /*- 2 * Copyright (c) 2015,2016 Annapurna Labs Ltd. and affiliates 3 * All rights reserved. 4 * 5 * Developed by Semihalf. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/kernel.h> 36 #include <sys/kthread.h> 37 #include <sys/lock.h> 38 #include <sys/mbuf.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/rman.h> 42 #include <sys/socket.h> 43 #include <sys/sockio.h> 44 #include <sys/sysctl.h> 45 #include <sys/taskqueue.h> 46 47 #include <machine/atomic.h> 48 49 #include "opt_inet.h" 50 #include "opt_inet6.h" 51 52 #include <net/ethernet.h> 53 #include <net/if.h> 54 #include <net/if_var.h> 55 #include <net/if_arp.h> 56 #include <net/if_dl.h> 57 #include <net/if_media.h> 58 #include <net/if_types.h> 59 #include <netinet/in.h> 60 #include <net/if_vlan_var.h> 61 #include <netinet/tcp.h> 62 #include <netinet/tcp_lro.h> 63 64 #ifdef INET 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/in_var.h> 68 #include <netinet/ip.h> 69 #endif 70 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #endif 74 75 #include <sys/sockio.h> 76 77 #include <dev/pci/pcireg.h> 78 #include <dev/pci/pcivar.h> 79 80 #include <dev/mii/mii.h> 81 #include <dev/mii/miivar.h> 82 83 #include <al_hal_common.h> 84 #include <al_hal_plat_services.h> 85 #include <al_hal_udma_config.h> 86 #include <al_hal_udma_iofic.h> 87 #include <al_hal_udma_debug.h> 88 #include <al_hal_eth.h> 89 90 #include "al_eth.h" 91 #include "al_init_eth_lm.h" 92 #include "arm/annapurna/alpine/alpine_serdes.h" 93 94 #include "miibus_if.h" 95 96 #define device_printf_dbg(fmt, ...) do { \ 97 if (AL_DBG_LEVEL >= AL_DBG_LEVEL_DBG) { AL_DBG_LOCK(); \ 98 device_printf(fmt, __VA_ARGS__); AL_DBG_UNLOCK();} \ 99 } while (0) 100 101 MALLOC_DEFINE(M_IFAL, "if_al_malloc", "All allocated data for AL ETH driver"); 102 103 /* move out to some pci header file */ 104 #define PCI_VENDOR_ID_ANNAPURNA_LABS 0x1c36 105 #define PCI_DEVICE_ID_AL_ETH 0x0001 106 #define PCI_DEVICE_ID_AL_ETH_ADVANCED 0x0002 107 #define PCI_DEVICE_ID_AL_ETH_NIC 0x0003 108 #define PCI_DEVICE_ID_AL_ETH_FPGA_NIC 0x0030 109 #define PCI_DEVICE_ID_AL_CRYPTO 0x0011 110 #define PCI_DEVICE_ID_AL_CRYPTO_VF 0x8011 111 #define PCI_DEVICE_ID_AL_RAID_DMA 0x0021 112 #define PCI_DEVICE_ID_AL_RAID_DMA_VF 0x8021 113 #define PCI_DEVICE_ID_AL_USB 0x0041 114 115 #define MAC_ADDR_STR "%02x:%02x:%02x:%02x:%02x:%02x" 116 #define MAC_ADDR(addr) addr[0], addr[1], addr[2], addr[3], addr[4], addr[5] 117 118 #define AL_ETH_MAC_TABLE_UNICAST_IDX_BASE 0 119 #define AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT 4 120 #define AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX (AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + \ 121 AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT) 122 123 #define AL_ETH_MAC_TABLE_DROP_IDX (AL_ETH_FWD_MAC_NUM - 1) 124 #define AL_ETH_MAC_TABLE_BROADCAST_IDX (AL_ETH_MAC_TABLE_DROP_IDX - 1) 125 126 #define AL_ETH_THASH_UDMA_SHIFT 0 127 #define AL_ETH_THASH_UDMA_MASK (0xF << AL_ETH_THASH_UDMA_SHIFT) 128 129 #define AL_ETH_THASH_Q_SHIFT 4 130 #define AL_ETH_THASH_Q_MASK (0x3 << AL_ETH_THASH_Q_SHIFT) 131 132 /* the following defines should be moved to hal */ 133 #define AL_ETH_FSM_ENTRY_IPV4_TCP 0 134 #define AL_ETH_FSM_ENTRY_IPV4_UDP 1 135 #define AL_ETH_FSM_ENTRY_IPV6_TCP 2 136 #define AL_ETH_FSM_ENTRY_IPV6_UDP 3 137 #define AL_ETH_FSM_ENTRY_IPV6_NO_UDP_TCP 4 138 #define AL_ETH_FSM_ENTRY_IPV4_NO_UDP_TCP 5 139 140 /* FSM DATA format */ 141 #define AL_ETH_FSM_DATA_OUTER_2_TUPLE 0 142 #define AL_ETH_FSM_DATA_OUTER_4_TUPLE 1 143 #define AL_ETH_FSM_DATA_INNER_2_TUPLE 2 144 #define AL_ETH_FSM_DATA_INNER_4_TUPLE 3 145 146 #define AL_ETH_FSM_DATA_HASH_SEL (1 << 2) 147 148 #define AL_ETH_FSM_DATA_DEFAULT_Q 0 149 #define AL_ETH_FSM_DATA_DEFAULT_UDMA 0 150 151 #define AL_BR_SIZE 512 152 #define AL_TSO_SIZE 65500 153 #define AL_DEFAULT_MTU 1500 154 155 #define CSUM_OFFLOAD (CSUM_IP|CSUM_TCP|CSUM_UDP|CSUM_SCTP) 156 157 #define AL_IP_ALIGNMENT_OFFSET 2 158 159 #define SFP_I2C_ADDR 0x50 160 161 #define AL_MASK_GROUP_A_INT 0x7 162 #define AL_MASK_GROUP_B_INT 0xF 163 #define AL_MASK_GROUP_C_INT 0xF 164 #define AL_MASK_GROUP_D_INT 0xFFFFFFFF 165 166 #define AL_REG_OFFSET_FORWARD_INTR (0x1800000 + 0x1210) 167 #define AL_EN_FORWARD_INTR 0x1FFFF 168 #define AL_DIS_FORWARD_INTR 0 169 170 #define AL_M2S_MASK_INIT 0x480 171 #define AL_S2M_MASK_INIT 0x1E0 172 #define AL_M2S_S2M_MASK_NOT_INT (0x3f << 25) 173 174 #define AL_10BASE_T_SPEED 10 175 #define AL_100BASE_TX_SPEED 100 176 #define AL_1000BASE_T_SPEED 1000 177 178 static devclass_t al_devclass; 179 180 #define AL_RX_LOCK_INIT(_sc) mtx_init(&((_sc)->if_rx_lock), "ALRXL", "ALRXL", MTX_DEF) 181 #define AL_RX_LOCK(_sc) mtx_lock(&((_sc)->if_rx_lock)) 182 #define AL_RX_UNLOCK(_sc) mtx_unlock(&((_sc)->if_rx_lock)) 183 184 /* helper functions */ 185 static int al_is_device_supported(device_t); 186 187 static void al_eth_init_rings(struct al_eth_adapter *); 188 static void al_eth_flow_ctrl_disable(struct al_eth_adapter *); 189 int al_eth_fpga_read_pci_config(void *, int, uint32_t *); 190 int al_eth_fpga_write_pci_config(void *, int, uint32_t); 191 int al_eth_read_pci_config(void *, int, uint32_t *); 192 int al_eth_write_pci_config(void *, int, uint32_t); 193 void al_eth_irq_config(uint32_t *, uint32_t); 194 void al_eth_forward_int_config(uint32_t *, uint32_t); 195 static void al_eth_start_xmit(void *, int); 196 static void al_eth_rx_recv_work(void *, int); 197 static int al_eth_up(struct al_eth_adapter *); 198 static void al_eth_down(struct al_eth_adapter *); 199 static void al_eth_interrupts_unmask(struct al_eth_adapter *); 200 static void al_eth_interrupts_mask(struct al_eth_adapter *); 201 static int al_eth_check_mtu(struct al_eth_adapter *, int); 202 static uint64_t al_get_counter(struct ifnet *, ift_counter); 203 static void al_eth_req_rx_buff_size(struct al_eth_adapter *, int); 204 static int al_eth_board_params_init(struct al_eth_adapter *); 205 static int al_media_update(struct ifnet *); 206 static void al_media_status(struct ifnet *, struct ifmediareq *); 207 static int al_eth_function_reset(struct al_eth_adapter *); 208 static int al_eth_hw_init_adapter(struct al_eth_adapter *); 209 static void al_eth_serdes_init(struct al_eth_adapter *); 210 static void al_eth_lm_config(struct al_eth_adapter *); 211 static int al_eth_hw_init(struct al_eth_adapter *); 212 213 static void al_tick_stats(void *); 214 215 /* ifnet entry points */ 216 static void al_init(void *); 217 static int al_mq_start(struct ifnet *, struct mbuf *); 218 static void al_qflush(struct ifnet *); 219 static int al_ioctl(struct ifnet * ifp, u_long, caddr_t); 220 221 /* bus entry points */ 222 static int al_probe(device_t); 223 static int al_attach(device_t); 224 static int al_detach(device_t); 225 static int al_shutdown(device_t); 226 227 /* mii bus support routines */ 228 static int al_miibus_readreg(device_t, int, int); 229 static int al_miibus_writereg(device_t, int, int, int); 230 static void al_miibus_statchg(device_t); 231 static void al_miibus_linkchg(device_t); 232 233 struct al_eth_adapter* g_adapters[16]; 234 uint32_t g_adapters_count; 235 236 /* flag for napi-like mbuf processing, controlled from sysctl */ 237 static int napi = 0; 238 239 static device_method_t al_methods[] = { 240 /* Device interface */ 241 DEVMETHOD(device_probe, al_probe), 242 DEVMETHOD(device_attach, al_attach), 243 DEVMETHOD(device_detach, al_detach), 244 DEVMETHOD(device_shutdown, al_shutdown), 245 246 DEVMETHOD(miibus_readreg, al_miibus_readreg), 247 DEVMETHOD(miibus_writereg, al_miibus_writereg), 248 DEVMETHOD(miibus_statchg, al_miibus_statchg), 249 DEVMETHOD(miibus_linkchg, al_miibus_linkchg), 250 { 0, 0 } 251 }; 252 253 static driver_t al_driver = { 254 "al", 255 al_methods, 256 sizeof(struct al_eth_adapter), 257 }; 258 259 DRIVER_MODULE(al, pci, al_driver, al_devclass, 0, 0); 260 DRIVER_MODULE(miibus, al, miibus_driver, miibus_devclass, 0, 0); 261 262 static int 263 al_probe(device_t dev) 264 { 265 if ((al_is_device_supported(dev)) != 0) { 266 device_set_desc(dev, "al"); 267 return (BUS_PROBE_DEFAULT); 268 } 269 return (ENXIO); 270 } 271 272 static int 273 al_attach(device_t dev) 274 { 275 struct al_eth_adapter *adapter; 276 struct sysctl_oid_list *child; 277 struct sysctl_ctx_list *ctx; 278 struct sysctl_oid *tree; 279 struct ifnet *ifp; 280 uint32_t dev_id; 281 uint32_t rev_id; 282 int bar_udma; 283 int bar_mac; 284 int bar_ec; 285 int err; 286 287 err = 0; 288 ifp = NULL; 289 dev_id = rev_id = 0; 290 ctx = device_get_sysctl_ctx(dev); 291 tree = SYSCTL_PARENT(device_get_sysctl_tree(dev)); 292 child = SYSCTL_CHILDREN(tree); 293 294 if (g_adapters_count == 0) { 295 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "napi", 296 CTLFLAG_RW, &napi, 0, "Use pseudo-napi mechanism"); 297 } 298 adapter = device_get_softc(dev); 299 adapter->dev = dev; 300 adapter->board_type = ALPINE_INTEGRATED; 301 snprintf(adapter->name, AL_ETH_NAME_MAX_LEN, "%s", 302 device_get_nameunit(dev)); 303 AL_RX_LOCK_INIT(adapter); 304 305 g_adapters[g_adapters_count] = adapter; 306 307 bar_udma = PCIR_BAR(AL_ETH_UDMA_BAR); 308 adapter->udma_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 309 &bar_udma, RF_ACTIVE); 310 if (adapter->udma_res == NULL) { 311 device_printf(adapter->dev, 312 "could not allocate memory resources for DMA.\n"); 313 err = ENOMEM; 314 goto err_res_dma; 315 } 316 adapter->udma_base = al_bus_dma_to_va(rman_get_bustag(adapter->udma_res), 317 rman_get_bushandle(adapter->udma_res)); 318 bar_mac = PCIR_BAR(AL_ETH_MAC_BAR); 319 adapter->mac_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 320 &bar_mac, RF_ACTIVE); 321 if (adapter->mac_res == NULL) { 322 device_printf(adapter->dev, 323 "could not allocate memory resources for MAC.\n"); 324 err = ENOMEM; 325 goto err_res_mac; 326 } 327 adapter->mac_base = al_bus_dma_to_va(rman_get_bustag(adapter->mac_res), 328 rman_get_bushandle(adapter->mac_res)); 329 330 bar_ec = PCIR_BAR(AL_ETH_EC_BAR); 331 adapter->ec_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &bar_ec, 332 RF_ACTIVE); 333 if (adapter->ec_res == NULL) { 334 device_printf(adapter->dev, 335 "could not allocate memory resources for EC.\n"); 336 err = ENOMEM; 337 goto err_res_ec; 338 } 339 adapter->ec_base = al_bus_dma_to_va(rman_get_bustag(adapter->ec_res), 340 rman_get_bushandle(adapter->ec_res)); 341 342 adapter->netdev = ifp = if_alloc(IFT_ETHER); 343 344 adapter->netdev->if_link_state = LINK_STATE_DOWN; 345 346 ifp->if_softc = adapter; 347 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 348 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 349 ifp->if_flags = ifp->if_drv_flags; 350 ifp->if_flags |= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_ALLMULTI; 351 ifp->if_transmit = al_mq_start; 352 ifp->if_qflush = al_qflush; 353 ifp->if_ioctl = al_ioctl; 354 ifp->if_init = al_init; 355 ifp->if_get_counter = al_get_counter; 356 ifp->if_mtu = AL_DEFAULT_MTU; 357 358 adapter->if_flags = ifp->if_flags; 359 360 ifp->if_capabilities = ifp->if_capenable = 0; 361 362 ifp->if_capabilities |= IFCAP_HWCSUM | 363 IFCAP_HWCSUM_IPV6 | IFCAP_TSO | 364 IFCAP_LRO | IFCAP_JUMBO_MTU; 365 366 ifp->if_capenable = ifp->if_capabilities; 367 368 adapter->id_number = g_adapters_count; 369 370 if (adapter->board_type == ALPINE_INTEGRATED) { 371 dev_id = pci_get_device(adapter->dev); 372 rev_id = pci_get_revid(adapter->dev); 373 } else { 374 al_eth_fpga_read_pci_config(adapter->internal_pcie_base, 375 PCIR_DEVICE, &dev_id); 376 al_eth_fpga_read_pci_config(adapter->internal_pcie_base, 377 PCIR_REVID, &rev_id); 378 } 379 380 adapter->dev_id = dev_id; 381 adapter->rev_id = rev_id; 382 383 /* set default ring sizes */ 384 adapter->tx_ring_count = AL_ETH_DEFAULT_TX_SW_DESCS; 385 adapter->tx_descs_count = AL_ETH_DEFAULT_TX_HW_DESCS; 386 adapter->rx_ring_count = AL_ETH_DEFAULT_RX_DESCS; 387 adapter->rx_descs_count = AL_ETH_DEFAULT_RX_DESCS; 388 389 adapter->num_tx_queues = AL_ETH_NUM_QUEUES; 390 adapter->num_rx_queues = AL_ETH_NUM_QUEUES; 391 392 adapter->small_copy_len = AL_ETH_DEFAULT_SMALL_PACKET_LEN; 393 adapter->link_poll_interval = AL_ETH_DEFAULT_LINK_POLL_INTERVAL; 394 adapter->max_rx_buff_alloc_size = AL_ETH_DEFAULT_MAX_RX_BUFF_ALLOC_SIZE; 395 396 al_eth_req_rx_buff_size(adapter, adapter->netdev->if_mtu); 397 398 adapter->link_config.force_1000_base_x = AL_ETH_DEFAULT_FORCE_1000_BASEX; 399 400 err = al_eth_board_params_init(adapter); 401 if (err != 0) 402 goto err; 403 404 if (adapter->mac_mode == AL_ETH_MAC_MODE_10GbE_Serial) { 405 ifmedia_init(&adapter->media, IFM_IMASK, 406 al_media_update, al_media_status); 407 ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_LX, 0, NULL); 408 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_LR, 0, NULL); 409 ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); 410 ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO); 411 } 412 413 al_eth_function_reset(adapter); 414 415 err = al_eth_hw_init_adapter(adapter); 416 if (err != 0) 417 goto err; 418 419 al_eth_init_rings(adapter); 420 g_adapters_count++; 421 422 al_eth_lm_config(adapter); 423 mtx_init(&adapter->stats_mtx, "AlStatsMtx", NULL, MTX_DEF); 424 mtx_init(&adapter->wd_mtx, "AlWdMtx", NULL, MTX_DEF); 425 callout_init_mtx(&adapter->stats_callout, &adapter->stats_mtx, 0); 426 callout_init_mtx(&adapter->wd_callout, &adapter->wd_mtx, 0); 427 428 ether_ifattach(ifp, adapter->mac_addr); 429 ifp->if_mtu = AL_DEFAULT_MTU; 430 431 if (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII) { 432 al_eth_hw_init(adapter); 433 434 /* Attach PHY(s) */ 435 err = mii_attach(adapter->dev, &adapter->miibus, adapter->netdev, 436 al_media_update, al_media_status, BMSR_DEFCAPMASK, 0, 437 MII_OFFSET_ANY, 0); 438 if (err != 0) { 439 device_printf(adapter->dev, "attaching PHYs failed\n"); 440 return (err); 441 } 442 443 adapter->mii = device_get_softc(adapter->miibus); 444 } 445 446 return (err); 447 448 err: 449 bus_release_resource(dev, SYS_RES_MEMORY, bar_ec, adapter->ec_res); 450 err_res_ec: 451 bus_release_resource(dev, SYS_RES_MEMORY, bar_mac, adapter->mac_res); 452 err_res_mac: 453 bus_release_resource(dev, SYS_RES_MEMORY, bar_udma, adapter->udma_res); 454 err_res_dma: 455 return (err); 456 } 457 458 static int 459 al_detach(device_t dev) 460 { 461 struct al_eth_adapter *adapter; 462 463 adapter = device_get_softc(dev); 464 ether_ifdetach(adapter->netdev); 465 466 mtx_destroy(&adapter->stats_mtx); 467 mtx_destroy(&adapter->wd_mtx); 468 469 al_eth_down(adapter); 470 471 bus_release_resource(dev, SYS_RES_IRQ, 0, adapter->irq_res); 472 bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->ec_res); 473 bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->mac_res); 474 bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->udma_res); 475 476 return (0); 477 } 478 479 int 480 al_eth_fpga_read_pci_config(void *handle, int where, uint32_t *val) 481 { 482 483 /* handle is the base address of the adapter */ 484 *val = al_reg_read32((void*)((u_long)handle + where)); 485 486 return (0); 487 } 488 489 int 490 al_eth_fpga_write_pci_config(void *handle, int where, uint32_t val) 491 { 492 493 /* handle is the base address of the adapter */ 494 al_reg_write32((void*)((u_long)handle + where), val); 495 return (0); 496 } 497 498 int 499 al_eth_read_pci_config(void *handle, int where, uint32_t *val) 500 { 501 502 /* handle is a pci_dev */ 503 *val = pci_read_config((device_t)handle, where, sizeof(*val)); 504 return (0); 505 } 506 507 int 508 al_eth_write_pci_config(void *handle, int where, uint32_t val) 509 { 510 511 /* handle is a pci_dev */ 512 pci_write_config((device_t)handle, where, val, sizeof(val)); 513 return (0); 514 } 515 516 void 517 al_eth_irq_config(uint32_t *offset, uint32_t value) 518 { 519 520 al_reg_write32_relaxed(offset, value); 521 } 522 523 void 524 al_eth_forward_int_config(uint32_t *offset, uint32_t value) 525 { 526 527 al_reg_write32(offset, value); 528 } 529 530 static void 531 al_eth_serdes_init(struct al_eth_adapter *adapter) 532 { 533 void __iomem *serdes_base; 534 535 adapter->serdes_init = false; 536 537 serdes_base = alpine_serdes_resource_get(adapter->serdes_grp); 538 if (serdes_base == NULL) { 539 device_printf(adapter->dev, "serdes_base get failed!\n"); 540 return; 541 } 542 543 serdes_base = al_bus_dma_to_va(serdes_tag, serdes_base); 544 545 al_serdes_handle_grp_init(serdes_base, adapter->serdes_grp, 546 &adapter->serdes_obj); 547 548 adapter->serdes_init = true; 549 } 550 551 static void 552 al_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 553 { 554 bus_addr_t *paddr; 555 556 paddr = arg; 557 *paddr = segs->ds_addr; 558 } 559 560 static int 561 al_dma_alloc_coherent(struct device *dev, bus_dma_tag_t *tag, bus_dmamap_t *map, 562 bus_addr_t *baddr, void **vaddr, uint32_t size) 563 { 564 int ret; 565 uint32_t maxsize = ((size - 1)/PAGE_SIZE + 1) * PAGE_SIZE; 566 567 ret = bus_dma_tag_create(bus_get_dma_tag(dev), 8, 0, 568 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 569 maxsize, 1, maxsize, BUS_DMA_COHERENT, NULL, NULL, tag); 570 if (ret != 0) { 571 device_printf(dev, 572 "failed to create bus tag, ret = %d\n", ret); 573 return (ret); 574 } 575 576 ret = bus_dmamem_alloc(*tag, vaddr, 577 BUS_DMA_COHERENT | BUS_DMA_ZERO, map); 578 if (ret != 0) { 579 device_printf(dev, 580 "failed to allocate dmamem, ret = %d\n", ret); 581 return (ret); 582 } 583 584 ret = bus_dmamap_load(*tag, *map, *vaddr, 585 size, al_dma_map_addr, baddr, 0); 586 if (ret != 0) { 587 device_printf(dev, 588 "failed to allocate bus_dmamap_load, ret = %d\n", ret); 589 return (ret); 590 } 591 592 return (0); 593 } 594 595 static void 596 al_dma_free_coherent(bus_dma_tag_t tag, bus_dmamap_t map, void *vaddr) 597 { 598 599 bus_dmamap_unload(tag, map); 600 bus_dmamem_free(tag, vaddr, map); 601 bus_dma_tag_destroy(tag); 602 } 603 604 static void 605 al_eth_mac_table_unicast_add(struct al_eth_adapter *adapter, 606 uint8_t idx, uint8_t *addr, uint8_t udma_mask) 607 { 608 struct al_eth_fwd_mac_table_entry entry = { { 0 } }; 609 610 memcpy(entry.addr, adapter->mac_addr, sizeof(adapter->mac_addr)); 611 612 memset(entry.mask, 0xff, sizeof(entry.mask)); 613 entry.rx_valid = true; 614 entry.tx_valid = false; 615 entry.udma_mask = udma_mask; 616 entry.filter = false; 617 618 device_printf_dbg(adapter->dev, 619 "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n", 620 __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask)); 621 622 al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry); 623 } 624 625 static void 626 al_eth_mac_table_all_multicast_add(struct al_eth_adapter *adapter, uint8_t idx, 627 uint8_t udma_mask) 628 { 629 struct al_eth_fwd_mac_table_entry entry = { { 0 } }; 630 631 memset(entry.addr, 0x00, sizeof(entry.addr)); 632 memset(entry.mask, 0x00, sizeof(entry.mask)); 633 entry.mask[0] |= 1; 634 entry.addr[0] |= 1; 635 636 entry.rx_valid = true; 637 entry.tx_valid = false; 638 entry.udma_mask = udma_mask; 639 entry.filter = false; 640 641 device_printf_dbg(adapter->dev, 642 "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n", 643 __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask)); 644 645 al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry); 646 } 647 648 static void 649 al_eth_mac_table_broadcast_add(struct al_eth_adapter *adapter, 650 uint8_t idx, uint8_t udma_mask) 651 { 652 struct al_eth_fwd_mac_table_entry entry = { { 0 } }; 653 654 memset(entry.addr, 0xff, sizeof(entry.addr)); 655 memset(entry.mask, 0xff, sizeof(entry.mask)); 656 657 entry.rx_valid = true; 658 entry.tx_valid = false; 659 entry.udma_mask = udma_mask; 660 entry.filter = false; 661 662 device_printf_dbg(adapter->dev, 663 "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n", 664 __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask)); 665 666 al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry); 667 } 668 669 static void 670 al_eth_mac_table_promiscuous_set(struct al_eth_adapter *adapter, 671 boolean_t promiscuous) 672 { 673 struct al_eth_fwd_mac_table_entry entry = { { 0 } }; 674 675 memset(entry.addr, 0x00, sizeof(entry.addr)); 676 memset(entry.mask, 0x00, sizeof(entry.mask)); 677 678 entry.rx_valid = true; 679 entry.tx_valid = false; 680 entry.udma_mask = (promiscuous) ? 1 : 0; 681 entry.filter = (promiscuous) ? false : true; 682 683 device_printf_dbg(adapter->dev, "%s: %s promiscuous mode\n", 684 __func__, (promiscuous) ? "enter" : "exit"); 685 686 al_eth_fwd_mac_table_set(&adapter->hal_adapter, 687 AL_ETH_MAC_TABLE_DROP_IDX, &entry); 688 } 689 690 static void 691 al_eth_set_thash_table_entry(struct al_eth_adapter *adapter, uint8_t idx, 692 uint8_t udma, uint32_t queue) 693 { 694 695 if (udma != 0) 696 panic("only UDMA0 is supporter"); 697 698 if (queue >= AL_ETH_NUM_QUEUES) 699 panic("invalid queue number"); 700 701 al_eth_thash_table_set(&adapter->hal_adapter, idx, udma, queue); 702 } 703 704 /* init FSM, no tunneling supported yet, if packet is tcp/udp over ipv4/ipv6, use 4 tuple hash */ 705 static void 706 al_eth_fsm_table_init(struct al_eth_adapter *adapter) 707 { 708 uint32_t val; 709 int i; 710 711 for (i = 0; i < AL_ETH_RX_FSM_TABLE_SIZE; i++) { 712 uint8_t outer_type = AL_ETH_FSM_ENTRY_OUTER(i); 713 switch (outer_type) { 714 case AL_ETH_FSM_ENTRY_IPV4_TCP: 715 case AL_ETH_FSM_ENTRY_IPV4_UDP: 716 case AL_ETH_FSM_ENTRY_IPV6_TCP: 717 case AL_ETH_FSM_ENTRY_IPV6_UDP: 718 val = AL_ETH_FSM_DATA_OUTER_4_TUPLE | 719 AL_ETH_FSM_DATA_HASH_SEL; 720 break; 721 case AL_ETH_FSM_ENTRY_IPV6_NO_UDP_TCP: 722 case AL_ETH_FSM_ENTRY_IPV4_NO_UDP_TCP: 723 val = AL_ETH_FSM_DATA_OUTER_2_TUPLE | 724 AL_ETH_FSM_DATA_HASH_SEL; 725 break; 726 default: 727 val = AL_ETH_FSM_DATA_DEFAULT_Q | 728 AL_ETH_FSM_DATA_DEFAULT_UDMA; 729 } 730 al_eth_fsm_table_set(&adapter->hal_adapter, i, val); 731 } 732 } 733 734 static void 735 al_eth_mac_table_entry_clear(struct al_eth_adapter *adapter, 736 uint8_t idx) 737 { 738 struct al_eth_fwd_mac_table_entry entry = { { 0 } }; 739 740 device_printf_dbg(adapter->dev, "%s: clear entry %d\n", __func__, idx); 741 742 al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry); 743 } 744 745 static int 746 al_eth_hw_init_adapter(struct al_eth_adapter *adapter) 747 { 748 struct al_eth_adapter_params *params = &adapter->eth_hal_params; 749 int rc; 750 751 /* params->dev_id = adapter->dev_id; */ 752 params->rev_id = adapter->rev_id; 753 params->udma_id = 0; 754 params->enable_rx_parser = 1; /* enable rx epe parser*/ 755 params->udma_regs_base = adapter->udma_base; /* UDMA register base address */ 756 params->ec_regs_base = adapter->ec_base; /* Ethernet controller registers base address */ 757 params->mac_regs_base = adapter->mac_base; /* Ethernet MAC registers base address */ 758 params->name = adapter->name; 759 params->serdes_lane = adapter->serdes_lane; 760 761 rc = al_eth_adapter_init(&adapter->hal_adapter, params); 762 if (rc != 0) 763 device_printf(adapter->dev, "%s failed at hal init!\n", 764 __func__); 765 766 if ((adapter->board_type == ALPINE_NIC) || 767 (adapter->board_type == ALPINE_FPGA_NIC)) { 768 /* in pcie NIC mode, force eth UDMA to access PCIE0 using the vmid */ 769 struct al_udma_gen_tgtid_conf conf; 770 int i; 771 for (i = 0; i < DMA_MAX_Q; i++) { 772 conf.tx_q_conf[i].queue_en = AL_TRUE; 773 conf.tx_q_conf[i].desc_en = AL_FALSE; 774 conf.tx_q_conf[i].tgtid = 0x100; /* for access from PCIE0 */ 775 conf.rx_q_conf[i].queue_en = AL_TRUE; 776 conf.rx_q_conf[i].desc_en = AL_FALSE; 777 conf.rx_q_conf[i].tgtid = 0x100; /* for access from PCIE0 */ 778 } 779 al_udma_gen_tgtid_conf_set(adapter->udma_base, &conf); 780 } 781 782 return (rc); 783 } 784 785 static void 786 al_eth_lm_config(struct al_eth_adapter *adapter) 787 { 788 struct al_eth_lm_init_params params = {0}; 789 790 params.adapter = &adapter->hal_adapter; 791 params.serdes_obj = &adapter->serdes_obj; 792 params.lane = adapter->serdes_lane; 793 params.sfp_detection = adapter->sfp_detection_needed; 794 if (adapter->sfp_detection_needed == true) { 795 params.sfp_bus_id = adapter->i2c_adapter_id; 796 params.sfp_i2c_addr = SFP_I2C_ADDR; 797 } 798 799 if (adapter->sfp_detection_needed == false) { 800 switch (adapter->mac_mode) { 801 case AL_ETH_MAC_MODE_10GbE_Serial: 802 if ((adapter->lt_en != 0) && (adapter->an_en != 0)) 803 params.default_mode = AL_ETH_LM_MODE_10G_DA; 804 else 805 params.default_mode = AL_ETH_LM_MODE_10G_OPTIC; 806 break; 807 case AL_ETH_MAC_MODE_SGMII: 808 params.default_mode = AL_ETH_LM_MODE_1G; 809 break; 810 default: 811 params.default_mode = AL_ETH_LM_MODE_10G_DA; 812 } 813 } else 814 params.default_mode = AL_ETH_LM_MODE_10G_DA; 815 816 params.link_training = adapter->lt_en; 817 params.rx_equal = true; 818 params.static_values = !adapter->dont_override_serdes; 819 params.i2c_context = adapter; 820 params.kr_fec_enable = false; 821 822 params.retimer_exist = adapter->retimer.exist; 823 params.retimer_bus_id = adapter->retimer.bus_id; 824 params.retimer_i2c_addr = adapter->retimer.i2c_addr; 825 params.retimer_channel = adapter->retimer.channel; 826 827 al_eth_lm_init(&adapter->lm_context, ¶ms); 828 } 829 830 static int 831 al_eth_board_params_init(struct al_eth_adapter *adapter) 832 { 833 834 if (adapter->board_type == ALPINE_NIC) { 835 adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial; 836 adapter->sfp_detection_needed = false; 837 adapter->phy_exist = false; 838 adapter->an_en = false; 839 adapter->lt_en = false; 840 adapter->ref_clk_freq = AL_ETH_REF_FREQ_375_MHZ; 841 adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ; 842 } else if (adapter->board_type == ALPINE_FPGA_NIC) { 843 adapter->mac_mode = AL_ETH_MAC_MODE_SGMII; 844 adapter->sfp_detection_needed = false; 845 adapter->phy_exist = false; 846 adapter->an_en = false; 847 adapter->lt_en = false; 848 adapter->ref_clk_freq = AL_ETH_REF_FREQ_375_MHZ; 849 adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ; 850 } else { 851 struct al_eth_board_params params; 852 int rc; 853 854 adapter->auto_speed = false; 855 856 rc = al_eth_board_params_get(adapter->mac_base, ¶ms); 857 if (rc != 0) { 858 device_printf(adapter->dev, 859 "board info not available\n"); 860 return (-1); 861 } 862 863 adapter->phy_exist = params.phy_exist == TRUE; 864 adapter->phy_addr = params.phy_mdio_addr; 865 adapter->an_en = params.autoneg_enable; 866 adapter->lt_en = params.kr_lt_enable; 867 adapter->serdes_grp = params.serdes_grp; 868 adapter->serdes_lane = params.serdes_lane; 869 adapter->sfp_detection_needed = params.sfp_plus_module_exist; 870 adapter->i2c_adapter_id = params.i2c_adapter_id; 871 adapter->ref_clk_freq = params.ref_clk_freq; 872 adapter->dont_override_serdes = params.dont_override_serdes; 873 adapter->link_config.active_duplex = !params.half_duplex; 874 adapter->link_config.autoneg = !params.an_disable; 875 adapter->link_config.force_1000_base_x = params.force_1000_base_x; 876 adapter->retimer.exist = params.retimer_exist; 877 adapter->retimer.bus_id = params.retimer_bus_id; 878 adapter->retimer.i2c_addr = params.retimer_i2c_addr; 879 adapter->retimer.channel = params.retimer_channel; 880 881 switch (params.speed) { 882 default: 883 device_printf(adapter->dev, 884 "%s: invalid speed (%d)\n", __func__, params.speed); 885 case AL_ETH_BOARD_1G_SPEED_1000M: 886 adapter->link_config.active_speed = 1000; 887 break; 888 case AL_ETH_BOARD_1G_SPEED_100M: 889 adapter->link_config.active_speed = 100; 890 break; 891 case AL_ETH_BOARD_1G_SPEED_10M: 892 adapter->link_config.active_speed = 10; 893 break; 894 } 895 896 switch (params.mdio_freq) { 897 default: 898 device_printf(adapter->dev, 899 "%s: invalid mdio freq (%d)\n", __func__, 900 params.mdio_freq); 901 case AL_ETH_BOARD_MDIO_FREQ_2_5_MHZ: 902 adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ; 903 break; 904 case AL_ETH_BOARD_MDIO_FREQ_1_MHZ: 905 adapter->mdio_freq = AL_ETH_MDIO_FREQ_1000_KHZ; 906 break; 907 } 908 909 switch (params.media_type) { 910 case AL_ETH_BOARD_MEDIA_TYPE_RGMII: 911 if (params.sfp_plus_module_exist == TRUE) 912 /* Backward compatibility */ 913 adapter->mac_mode = AL_ETH_MAC_MODE_SGMII; 914 else 915 adapter->mac_mode = AL_ETH_MAC_MODE_RGMII; 916 917 adapter->use_lm = false; 918 break; 919 case AL_ETH_BOARD_MEDIA_TYPE_SGMII: 920 adapter->mac_mode = AL_ETH_MAC_MODE_SGMII; 921 adapter->use_lm = true; 922 break; 923 case AL_ETH_BOARD_MEDIA_TYPE_10GBASE_SR: 924 adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial; 925 adapter->use_lm = true; 926 break; 927 case AL_ETH_BOARD_MEDIA_TYPE_AUTO_DETECT: 928 adapter->sfp_detection_needed = TRUE; 929 adapter->auto_speed = false; 930 adapter->use_lm = true; 931 break; 932 case AL_ETH_BOARD_MEDIA_TYPE_AUTO_DETECT_AUTO_SPEED: 933 adapter->sfp_detection_needed = TRUE; 934 adapter->auto_speed = true; 935 adapter->mac_mode_set = false; 936 adapter->use_lm = true; 937 938 adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial; 939 break; 940 default: 941 device_printf(adapter->dev, 942 "%s: unsupported media type %d\n", 943 __func__, params.media_type); 944 return (-1); 945 } 946 947 device_printf(adapter->dev, 948 "Board info: phy exist %s. phy addr %d. mdio freq %u Khz. " 949 "SFP connected %s. media %d\n", 950 params.phy_exist == TRUE ? "Yes" : "No", 951 params.phy_mdio_addr, adapter->mdio_freq, 952 params.sfp_plus_module_exist == TRUE ? "Yes" : "No", 953 params.media_type); 954 } 955 956 al_eth_mac_addr_read(adapter->ec_base, 0, adapter->mac_addr); 957 958 return (0); 959 } 960 961 static int 962 al_eth_function_reset(struct al_eth_adapter *adapter) 963 { 964 struct al_eth_board_params params; 965 int rc; 966 967 /* save board params so we restore it after reset */ 968 al_eth_board_params_get(adapter->mac_base, ¶ms); 969 al_eth_mac_addr_read(adapter->ec_base, 0, adapter->mac_addr); 970 if (adapter->board_type == ALPINE_INTEGRATED) 971 rc = al_eth_flr_rmn(&al_eth_read_pci_config, 972 &al_eth_write_pci_config, 973 adapter->dev, adapter->mac_base); 974 else 975 rc = al_eth_flr_rmn(&al_eth_fpga_read_pci_config, 976 &al_eth_fpga_write_pci_config, 977 adapter->internal_pcie_base, adapter->mac_base); 978 979 /* restore params */ 980 al_eth_board_params_set(adapter->mac_base, ¶ms); 981 al_eth_mac_addr_store(adapter->ec_base, 0, adapter->mac_addr); 982 983 return (rc); 984 } 985 986 static void 987 al_eth_init_rings(struct al_eth_adapter *adapter) 988 { 989 int i; 990 991 for (i = 0; i < adapter->num_tx_queues; i++) { 992 struct al_eth_ring *ring = &adapter->tx_ring[i]; 993 994 ring->ring_id = i; 995 ring->dev = adapter->dev; 996 ring->adapter = adapter; 997 ring->netdev = adapter->netdev; 998 al_udma_q_handle_get(&adapter->hal_adapter.tx_udma, i, 999 &ring->dma_q); 1000 ring->sw_count = adapter->tx_ring_count; 1001 ring->hw_count = adapter->tx_descs_count; 1002 ring->unmask_reg_offset = al_udma_iofic_unmask_offset_get((struct unit_regs *)adapter->udma_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_C); 1003 ring->unmask_val = ~(1 << i); 1004 } 1005 1006 for (i = 0; i < adapter->num_rx_queues; i++) { 1007 struct al_eth_ring *ring = &adapter->rx_ring[i]; 1008 1009 ring->ring_id = i; 1010 ring->dev = adapter->dev; 1011 ring->adapter = adapter; 1012 ring->netdev = adapter->netdev; 1013 al_udma_q_handle_get(&adapter->hal_adapter.rx_udma, i, &ring->dma_q); 1014 ring->sw_count = adapter->rx_ring_count; 1015 ring->hw_count = adapter->rx_descs_count; 1016 ring->unmask_reg_offset = al_udma_iofic_unmask_offset_get( 1017 (struct unit_regs *)adapter->udma_base, 1018 AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_B); 1019 ring->unmask_val = ~(1 << i); 1020 } 1021 } 1022 1023 static void 1024 al_init_locked(void *arg) 1025 { 1026 struct al_eth_adapter *adapter = arg; 1027 if_t ifp = adapter->netdev; 1028 int rc = 0; 1029 1030 al_eth_down(adapter); 1031 rc = al_eth_up(adapter); 1032 1033 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1034 if (rc == 0) 1035 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1036 } 1037 1038 static void 1039 al_init(void *arg) 1040 { 1041 struct al_eth_adapter *adapter = arg; 1042 1043 al_init_locked(adapter); 1044 } 1045 1046 static inline int 1047 al_eth_alloc_rx_buf(struct al_eth_adapter *adapter, 1048 struct al_eth_ring *rx_ring, 1049 struct al_eth_rx_buffer *rx_info) 1050 { 1051 struct al_buf *al_buf; 1052 bus_dma_segment_t segs[2]; 1053 int error; 1054 int nsegs; 1055 1056 if (rx_info->m != NULL) 1057 return (0); 1058 1059 rx_info->data_size = adapter->rx_mbuf_sz; 1060 1061 AL_RX_LOCK(adapter); 1062 1063 /* Get mbuf using UMA allocator */ 1064 rx_info->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 1065 rx_info->data_size); 1066 AL_RX_UNLOCK(adapter); 1067 1068 if (rx_info->m == NULL) 1069 return (ENOMEM); 1070 1071 rx_info->m->m_pkthdr.len = rx_info->m->m_len = adapter->rx_mbuf_sz; 1072 1073 /* Map packets for DMA */ 1074 error = bus_dmamap_load_mbuf_sg(rx_ring->dma_buf_tag, rx_info->dma_map, 1075 rx_info->m, segs, &nsegs, BUS_DMA_NOWAIT); 1076 if (__predict_false(error)) { 1077 device_printf(rx_ring->dev, "failed to map mbuf, error = %d\n", 1078 error); 1079 m_freem(rx_info->m); 1080 rx_info->m = NULL; 1081 return (EFAULT); 1082 } 1083 1084 al_buf = &rx_info->al_buf; 1085 al_buf->addr = segs[0].ds_addr + AL_IP_ALIGNMENT_OFFSET; 1086 al_buf->len = rx_info->data_size - AL_IP_ALIGNMENT_OFFSET; 1087 1088 return (0); 1089 } 1090 1091 static int 1092 al_eth_refill_rx_bufs(struct al_eth_adapter *adapter, unsigned int qid, 1093 unsigned int num) 1094 { 1095 struct al_eth_ring *rx_ring = &adapter->rx_ring[qid]; 1096 uint16_t next_to_use; 1097 unsigned int i; 1098 1099 next_to_use = rx_ring->next_to_use; 1100 1101 for (i = 0; i < num; i++) { 1102 int rc; 1103 struct al_eth_rx_buffer *rx_info = 1104 &rx_ring->rx_buffer_info[next_to_use]; 1105 1106 if (__predict_false(al_eth_alloc_rx_buf(adapter, 1107 rx_ring, rx_info) < 0)) { 1108 device_printf(adapter->dev, 1109 "failed to alloc buffer for rx queue %d\n", qid); 1110 break; 1111 } 1112 1113 rc = al_eth_rx_buffer_add(rx_ring->dma_q, 1114 &rx_info->al_buf, AL_ETH_RX_FLAGS_INT, NULL); 1115 if (__predict_false(rc)) { 1116 device_printf(adapter->dev, 1117 "failed to add buffer for rx queue %d\n", qid); 1118 break; 1119 } 1120 1121 next_to_use = AL_ETH_RX_RING_IDX_NEXT(rx_ring, next_to_use); 1122 } 1123 1124 if (__predict_false(i < num)) 1125 device_printf(adapter->dev, 1126 "refilled rx queue %d with %d pages only - available %d\n", 1127 qid, i, al_udma_available_get(rx_ring->dma_q)); 1128 1129 if (__predict_true(i)) 1130 al_eth_rx_buffer_action(rx_ring->dma_q, i); 1131 1132 rx_ring->next_to_use = next_to_use; 1133 1134 return (i); 1135 } 1136 1137 /* 1138 * al_eth_refill_all_rx_bufs - allocate all queues Rx buffers 1139 * @adapter: board private structure 1140 */ 1141 static void 1142 al_eth_refill_all_rx_bufs(struct al_eth_adapter *adapter) 1143 { 1144 int i; 1145 1146 for (i = 0; i < adapter->num_rx_queues; i++) 1147 al_eth_refill_rx_bufs(adapter, i, AL_ETH_DEFAULT_RX_DESCS - 1); 1148 } 1149 1150 static void 1151 al_eth_tx_do_cleanup(struct al_eth_ring *tx_ring) 1152 { 1153 unsigned int total_done; 1154 uint16_t next_to_clean; 1155 int qid = tx_ring->ring_id; 1156 1157 total_done = al_eth_comp_tx_get(tx_ring->dma_q); 1158 device_printf_dbg(tx_ring->dev, 1159 "tx_poll: q %d total completed descs %x\n", qid, total_done); 1160 next_to_clean = tx_ring->next_to_clean; 1161 1162 while (total_done != 0) { 1163 struct al_eth_tx_buffer *tx_info; 1164 struct mbuf *mbuf; 1165 1166 tx_info = &tx_ring->tx_buffer_info[next_to_clean]; 1167 /* stop if not all descriptors of the packet are completed */ 1168 if (tx_info->tx_descs > total_done) 1169 break; 1170 1171 mbuf = tx_info->m; 1172 1173 tx_info->m = NULL; 1174 1175 device_printf_dbg(tx_ring->dev, 1176 "tx_poll: q %d mbuf %p completed\n", qid, mbuf); 1177 1178 /* map is no longer required */ 1179 bus_dmamap_unload(tx_ring->dma_buf_tag, tx_info->dma_map); 1180 1181 m_freem(mbuf); 1182 total_done -= tx_info->tx_descs; 1183 next_to_clean = AL_ETH_TX_RING_IDX_NEXT(tx_ring, next_to_clean); 1184 } 1185 1186 tx_ring->next_to_clean = next_to_clean; 1187 1188 device_printf_dbg(tx_ring->dev, "tx_poll: q %d done next to clean %x\n", 1189 qid, next_to_clean); 1190 1191 /* 1192 * need to make the rings circular update visible to 1193 * al_eth_start_xmit() before checking for netif_queue_stopped(). 1194 */ 1195 al_smp_data_memory_barrier(); 1196 } 1197 1198 static void 1199 al_eth_tx_csum(struct al_eth_ring *tx_ring, struct al_eth_tx_buffer *tx_info, 1200 struct al_eth_pkt *hal_pkt, struct mbuf *m) 1201 { 1202 uint32_t mss = m->m_pkthdr.tso_segsz; 1203 struct ether_vlan_header *eh; 1204 uint16_t etype; 1205 struct ip *ip; 1206 struct ip6_hdr *ip6; 1207 struct tcphdr *th = NULL; 1208 int ehdrlen, ip_hlen = 0; 1209 uint8_t ipproto = 0; 1210 uint32_t offload = 0; 1211 1212 if (mss != 0) 1213 offload = 1; 1214 1215 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) 1216 offload = 1; 1217 1218 if ((m->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0) 1219 offload = 1; 1220 1221 if (offload != 0) { 1222 struct al_eth_meta_data *meta = &tx_ring->hal_meta; 1223 1224 if (mss != 0) 1225 hal_pkt->flags |= (AL_ETH_TX_FLAGS_TSO | 1226 AL_ETH_TX_FLAGS_L4_CSUM); 1227 else 1228 hal_pkt->flags |= (AL_ETH_TX_FLAGS_L4_CSUM | 1229 AL_ETH_TX_FLAGS_L4_PARTIAL_CSUM); 1230 1231 /* 1232 * Determine where frame payload starts. 1233 * Jump over vlan headers if already present, 1234 * helpful for QinQ too. 1235 */ 1236 eh = mtod(m, struct ether_vlan_header *); 1237 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 1238 etype = ntohs(eh->evl_proto); 1239 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 1240 } else { 1241 etype = ntohs(eh->evl_encap_proto); 1242 ehdrlen = ETHER_HDR_LEN; 1243 } 1244 1245 switch (etype) { 1246 case ETHERTYPE_IP: 1247 ip = (struct ip *)(m->m_data + ehdrlen); 1248 ip_hlen = ip->ip_hl << 2; 1249 ipproto = ip->ip_p; 1250 hal_pkt->l3_proto_idx = AL_ETH_PROTO_ID_IPv4; 1251 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 1252 if (mss != 0) 1253 hal_pkt->flags |= AL_ETH_TX_FLAGS_IPV4_L3_CSUM; 1254 if (ipproto == IPPROTO_TCP) 1255 hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_TCP; 1256 else 1257 hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_UDP; 1258 break; 1259 case ETHERTYPE_IPV6: 1260 ip6 = (struct ip6_hdr *)(m->m_data + ehdrlen); 1261 hal_pkt->l3_proto_idx = AL_ETH_PROTO_ID_IPv6; 1262 ip_hlen = sizeof(struct ip6_hdr); 1263 th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen); 1264 ipproto = ip6->ip6_nxt; 1265 if (ipproto == IPPROTO_TCP) 1266 hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_TCP; 1267 else 1268 hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_UDP; 1269 break; 1270 default: 1271 break; 1272 } 1273 1274 meta->words_valid = 4; 1275 meta->l3_header_len = ip_hlen; 1276 meta->l3_header_offset = ehdrlen; 1277 if (th != NULL) 1278 meta->l4_header_len = th->th_off; /* this param needed only for TSO */ 1279 meta->mss_idx_sel = 0; /* check how to select MSS */ 1280 meta->mss_val = mss; 1281 hal_pkt->meta = meta; 1282 } else 1283 hal_pkt->meta = NULL; 1284 } 1285 1286 #define XMIT_QUEUE_TIMEOUT 100 1287 1288 static void 1289 al_eth_xmit_mbuf(struct al_eth_ring *tx_ring, struct mbuf *m) 1290 { 1291 struct al_eth_tx_buffer *tx_info; 1292 int error; 1293 int nsegs, a; 1294 uint16_t next_to_use; 1295 bus_dma_segment_t segs[AL_ETH_PKT_MAX_BUFS + 1]; 1296 struct al_eth_pkt *hal_pkt; 1297 struct al_buf *al_buf; 1298 boolean_t remap; 1299 1300 /* Check if queue is ready */ 1301 if (unlikely(tx_ring->stall) != 0) { 1302 for (a = 0; a < XMIT_QUEUE_TIMEOUT; a++) { 1303 if (al_udma_available_get(tx_ring->dma_q) >= 1304 (AL_ETH_DEFAULT_TX_HW_DESCS - 1305 AL_ETH_TX_WAKEUP_THRESH)) { 1306 tx_ring->stall = 0; 1307 break; 1308 } 1309 pause("stall", 1); 1310 } 1311 if (a == XMIT_QUEUE_TIMEOUT) { 1312 device_printf(tx_ring->dev, 1313 "timeout waiting for queue %d ready!\n", 1314 tx_ring->ring_id); 1315 return; 1316 } else { 1317 device_printf_dbg(tx_ring->dev, 1318 "queue %d is ready!\n", tx_ring->ring_id); 1319 } 1320 } 1321 1322 next_to_use = tx_ring->next_to_use; 1323 tx_info = &tx_ring->tx_buffer_info[next_to_use]; 1324 tx_info->m = m; 1325 hal_pkt = &tx_info->hal_pkt; 1326 1327 if (m == NULL) { 1328 device_printf(tx_ring->dev, "mbuf is NULL\n"); 1329 return; 1330 } 1331 1332 remap = TRUE; 1333 /* Map packets for DMA */ 1334 retry: 1335 error = bus_dmamap_load_mbuf_sg(tx_ring->dma_buf_tag, tx_info->dma_map, 1336 m, segs, &nsegs, BUS_DMA_NOWAIT); 1337 if (__predict_false(error)) { 1338 struct mbuf *m_new; 1339 1340 if (error == EFBIG) { 1341 /* Try it again? - one try */ 1342 if (remap == TRUE) { 1343 remap = FALSE; 1344 m_new = m_defrag(m, M_NOWAIT); 1345 if (m_new == NULL) { 1346 device_printf(tx_ring->dev, 1347 "failed to defrag mbuf\n"); 1348 goto exit; 1349 } 1350 m = m_new; 1351 goto retry; 1352 } else { 1353 device_printf(tx_ring->dev, 1354 "failed to map mbuf, error %d\n", error); 1355 goto exit; 1356 } 1357 } else { 1358 device_printf(tx_ring->dev, 1359 "failed to map mbuf, error %d\n", error); 1360 goto exit; 1361 } 1362 } 1363 1364 /* set flags and meta data */ 1365 hal_pkt->flags = AL_ETH_TX_FLAGS_INT; 1366 al_eth_tx_csum(tx_ring, tx_info, hal_pkt, m); 1367 1368 al_buf = hal_pkt->bufs; 1369 for (a = 0; a < nsegs; a++) { 1370 al_buf->addr = segs[a].ds_addr; 1371 al_buf->len = segs[a].ds_len; 1372 1373 al_buf++; 1374 } 1375 1376 hal_pkt->num_of_bufs = nsegs; 1377 1378 /* prepare the packet's descriptors to dma engine */ 1379 tx_info->tx_descs = al_eth_tx_pkt_prepare(tx_ring->dma_q, hal_pkt); 1380 1381 if (tx_info->tx_descs == 0) 1382 goto exit; 1383 1384 /* 1385 * stop the queue when no more space available, the packet can have up 1386 * to AL_ETH_PKT_MAX_BUFS + 1 buffers and a meta descriptor 1387 */ 1388 if (unlikely(al_udma_available_get(tx_ring->dma_q) < 1389 (AL_ETH_PKT_MAX_BUFS + 2))) { 1390 tx_ring->stall = 1; 1391 device_printf_dbg(tx_ring->dev, "stall, stopping queue %d...\n", 1392 tx_ring->ring_id); 1393 al_data_memory_barrier(); 1394 } 1395 1396 tx_ring->next_to_use = AL_ETH_TX_RING_IDX_NEXT(tx_ring, next_to_use); 1397 1398 /* trigger the dma engine */ 1399 al_eth_tx_dma_action(tx_ring->dma_q, tx_info->tx_descs); 1400 return; 1401 1402 exit: 1403 m_freem(m); 1404 } 1405 1406 static void 1407 al_eth_tx_cmpl_work(void *arg, int pending) 1408 { 1409 struct al_eth_ring *tx_ring = arg; 1410 1411 if (napi != 0) { 1412 tx_ring->cmpl_is_running = 1; 1413 al_data_memory_barrier(); 1414 } 1415 1416 al_eth_tx_do_cleanup(tx_ring); 1417 1418 if (napi != 0) { 1419 tx_ring->cmpl_is_running = 0; 1420 al_data_memory_barrier(); 1421 } 1422 /* all work done, enable IRQs */ 1423 al_eth_irq_config(tx_ring->unmask_reg_offset, tx_ring->unmask_val); 1424 } 1425 1426 static int 1427 al_eth_tx_cmlp_irq_filter(void *arg) 1428 { 1429 struct al_eth_ring *tx_ring = arg; 1430 1431 /* Interrupt should be auto-masked upon arrival */ 1432 1433 device_printf_dbg(tx_ring->dev, "%s for ring ID = %d\n", __func__, 1434 tx_ring->ring_id); 1435 1436 /* 1437 * For napi, if work is not running, schedule it. Always schedule 1438 * for casual (non-napi) packet handling. 1439 */ 1440 if ((napi == 0) || (napi && tx_ring->cmpl_is_running == 0)) 1441 taskqueue_enqueue(tx_ring->cmpl_tq, &tx_ring->cmpl_task); 1442 1443 /* Do not run bottom half */ 1444 return (FILTER_HANDLED); 1445 } 1446 1447 static int 1448 al_eth_rx_recv_irq_filter(void *arg) 1449 { 1450 struct al_eth_ring *rx_ring = arg; 1451 1452 /* Interrupt should be auto-masked upon arrival */ 1453 1454 device_printf_dbg(rx_ring->dev, "%s for ring ID = %d\n", __func__, 1455 rx_ring->ring_id); 1456 1457 /* 1458 * For napi, if work is not running, schedule it. Always schedule 1459 * for casual (non-napi) packet handling. 1460 */ 1461 if ((napi == 0) || (napi && rx_ring->enqueue_is_running == 0)) 1462 taskqueue_enqueue(rx_ring->enqueue_tq, &rx_ring->enqueue_task); 1463 1464 /* Do not run bottom half */ 1465 return (FILTER_HANDLED); 1466 } 1467 1468 /* 1469 * al_eth_rx_checksum - indicate in mbuf if hw indicated a good cksum 1470 * @adapter: structure containing adapter specific data 1471 * @hal_pkt: HAL structure for the packet 1472 * @mbuf: mbuf currently being received and modified 1473 */ 1474 static inline void 1475 al_eth_rx_checksum(struct al_eth_adapter *adapter, 1476 struct al_eth_pkt *hal_pkt, struct mbuf *mbuf) 1477 { 1478 1479 /* if IPv4 and error */ 1480 if (unlikely((adapter->netdev->if_capenable & IFCAP_RXCSUM) && 1481 (hal_pkt->l3_proto_idx == AL_ETH_PROTO_ID_IPv4) && 1482 (hal_pkt->flags & AL_ETH_RX_FLAGS_L3_CSUM_ERR))) { 1483 device_printf(adapter->dev,"rx ipv4 header checksum error\n"); 1484 return; 1485 } 1486 1487 /* if IPv6 and error */ 1488 if (unlikely((adapter->netdev->if_capenable & IFCAP_RXCSUM_IPV6) && 1489 (hal_pkt->l3_proto_idx == AL_ETH_PROTO_ID_IPv6) && 1490 (hal_pkt->flags & AL_ETH_RX_FLAGS_L3_CSUM_ERR))) { 1491 device_printf(adapter->dev,"rx ipv6 header checksum error\n"); 1492 return; 1493 } 1494 1495 /* if TCP/UDP */ 1496 if (likely((hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_TCP) || 1497 (hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_UDP))) { 1498 if (unlikely(hal_pkt->flags & AL_ETH_RX_FLAGS_L4_CSUM_ERR)) { 1499 device_printf_dbg(adapter->dev, "rx L4 checksum error\n"); 1500 1501 /* TCP/UDP checksum error */ 1502 mbuf->m_pkthdr.csum_flags = 0; 1503 } else { 1504 device_printf_dbg(adapter->dev, "rx checksum correct\n"); 1505 1506 /* IP Checksum Good */ 1507 mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED; 1508 mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1509 } 1510 } 1511 } 1512 1513 static struct mbuf* 1514 al_eth_rx_mbuf(struct al_eth_adapter *adapter, 1515 struct al_eth_ring *rx_ring, struct al_eth_pkt *hal_pkt, 1516 unsigned int descs, uint16_t *next_to_clean) 1517 { 1518 struct mbuf *mbuf; 1519 struct al_eth_rx_buffer *rx_info = 1520 &rx_ring->rx_buffer_info[*next_to_clean]; 1521 unsigned int len; 1522 1523 len = hal_pkt->bufs[0].len; 1524 device_printf_dbg(adapter->dev, "rx_info %p data %p\n", rx_info, 1525 rx_info->m); 1526 1527 if (rx_info->m == NULL) { 1528 *next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring, 1529 *next_to_clean); 1530 return (NULL); 1531 } 1532 1533 mbuf = rx_info->m; 1534 mbuf->m_pkthdr.len = len; 1535 mbuf->m_len = len; 1536 mbuf->m_pkthdr.rcvif = rx_ring->netdev; 1537 mbuf->m_flags |= M_PKTHDR; 1538 1539 if (len <= adapter->small_copy_len) { 1540 struct mbuf *smbuf; 1541 device_printf_dbg(adapter->dev, "rx small packet. len %d\n", len); 1542 1543 AL_RX_LOCK(adapter); 1544 smbuf = m_gethdr(M_NOWAIT, MT_DATA); 1545 AL_RX_UNLOCK(adapter); 1546 if (__predict_false(smbuf == NULL)) { 1547 device_printf(adapter->dev, "smbuf is NULL\n"); 1548 return (NULL); 1549 } 1550 1551 smbuf->m_data = smbuf->m_data + AL_IP_ALIGNMENT_OFFSET; 1552 memcpy(smbuf->m_data, mbuf->m_data + AL_IP_ALIGNMENT_OFFSET, len); 1553 1554 smbuf->m_len = len; 1555 smbuf->m_pkthdr.rcvif = rx_ring->netdev; 1556 1557 /* first desc of a non-ps chain */ 1558 smbuf->m_flags |= M_PKTHDR; 1559 smbuf->m_pkthdr.len = smbuf->m_len; 1560 1561 *next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring, 1562 *next_to_clean); 1563 1564 return (smbuf); 1565 } 1566 mbuf->m_data = mbuf->m_data + AL_IP_ALIGNMENT_OFFSET; 1567 1568 /* Unmap the buffer */ 1569 bus_dmamap_unload(rx_ring->dma_buf_tag, rx_info->dma_map); 1570 1571 rx_info->m = NULL; 1572 *next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring, *next_to_clean); 1573 1574 return (mbuf); 1575 } 1576 1577 static void 1578 al_eth_rx_recv_work(void *arg, int pending) 1579 { 1580 struct al_eth_ring *rx_ring = arg; 1581 struct mbuf *mbuf; 1582 struct lro_entry *queued; 1583 unsigned int qid = rx_ring->ring_id; 1584 struct al_eth_pkt *hal_pkt = &rx_ring->hal_pkt; 1585 uint16_t next_to_clean = rx_ring->next_to_clean; 1586 uint32_t refill_required; 1587 uint32_t refill_actual; 1588 uint32_t do_if_input; 1589 1590 if (napi != 0) { 1591 rx_ring->enqueue_is_running = 1; 1592 al_data_memory_barrier(); 1593 } 1594 1595 do { 1596 unsigned int descs; 1597 1598 descs = al_eth_pkt_rx(rx_ring->dma_q, hal_pkt); 1599 if (unlikely(descs == 0)) 1600 break; 1601 1602 device_printf_dbg(rx_ring->dev, "rx_poll: q %d got packet " 1603 "from hal. descs %d\n", qid, descs); 1604 device_printf_dbg(rx_ring->dev, "rx_poll: q %d flags %x. " 1605 "l3 proto %d l4 proto %d\n", qid, hal_pkt->flags, 1606 hal_pkt->l3_proto_idx, hal_pkt->l4_proto_idx); 1607 1608 /* ignore if detected dma or eth controller errors */ 1609 if ((hal_pkt->flags & (AL_ETH_RX_ERROR | 1610 AL_UDMA_CDESC_ERROR)) != 0) { 1611 device_printf(rx_ring->dev, "receive packet with error. " 1612 "flags = 0x%x\n", hal_pkt->flags); 1613 next_to_clean = AL_ETH_RX_RING_IDX_ADD(rx_ring, 1614 next_to_clean, descs); 1615 continue; 1616 } 1617 1618 /* allocate mbuf and fill it */ 1619 mbuf = al_eth_rx_mbuf(rx_ring->adapter, rx_ring, hal_pkt, descs, 1620 &next_to_clean); 1621 1622 /* exit if we failed to retrieve a buffer */ 1623 if (unlikely(mbuf == NULL)) { 1624 next_to_clean = AL_ETH_RX_RING_IDX_ADD(rx_ring, 1625 next_to_clean, descs); 1626 break; 1627 } 1628 1629 if (__predict_true(rx_ring->netdev->if_capenable & IFCAP_RXCSUM || 1630 rx_ring->netdev->if_capenable & IFCAP_RXCSUM_IPV6)) { 1631 al_eth_rx_checksum(rx_ring->adapter, hal_pkt, mbuf); 1632 } 1633 1634 #if __FreeBSD_version >= 800000 1635 mbuf->m_pkthdr.flowid = qid; 1636 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE); 1637 #endif 1638 1639 /* 1640 * LRO is only for IP/TCP packets and TCP checksum of the packet 1641 * should be computed by hardware. 1642 */ 1643 do_if_input = 1; 1644 if ((rx_ring->lro_enabled != 0) && 1645 ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) && 1646 hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_TCP) { 1647 /* 1648 * Send to the stack if: 1649 * - LRO not enabled, or 1650 * - no LRO resources, or 1651 * - lro enqueue fails 1652 */ 1653 if (rx_ring->lro.lro_cnt != 0) { 1654 if (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0) 1655 do_if_input = 0; 1656 } 1657 } 1658 1659 if (do_if_input) 1660 (*rx_ring->netdev->if_input)(rx_ring->netdev, mbuf); 1661 1662 } while (1); 1663 1664 rx_ring->next_to_clean = next_to_clean; 1665 1666 refill_required = al_udma_available_get(rx_ring->dma_q); 1667 refill_actual = al_eth_refill_rx_bufs(rx_ring->adapter, qid, 1668 refill_required); 1669 1670 if (unlikely(refill_actual < refill_required)) { 1671 device_printf_dbg(rx_ring->dev, 1672 "%s: not filling rx queue %d\n", __func__, qid); 1673 } 1674 1675 while (((queued = LIST_FIRST(&rx_ring->lro.lro_active)) != NULL)) { 1676 LIST_REMOVE(queued, next); 1677 tcp_lro_flush(&rx_ring->lro, queued); 1678 } 1679 1680 if (napi != 0) { 1681 rx_ring->enqueue_is_running = 0; 1682 al_data_memory_barrier(); 1683 } 1684 /* unmask irq */ 1685 al_eth_irq_config(rx_ring->unmask_reg_offset, rx_ring->unmask_val); 1686 } 1687 1688 static void 1689 al_eth_start_xmit(void *arg, int pending) 1690 { 1691 struct al_eth_ring *tx_ring = arg; 1692 struct mbuf *mbuf; 1693 1694 if (napi != 0) { 1695 tx_ring->enqueue_is_running = 1; 1696 al_data_memory_barrier(); 1697 } 1698 1699 while (1) { 1700 mtx_lock(&tx_ring->br_mtx); 1701 mbuf = drbr_dequeue(NULL, tx_ring->br); 1702 mtx_unlock(&tx_ring->br_mtx); 1703 1704 if (mbuf == NULL) 1705 break; 1706 1707 al_eth_xmit_mbuf(tx_ring, mbuf); 1708 } 1709 1710 if (napi != 0) { 1711 tx_ring->enqueue_is_running = 0; 1712 al_data_memory_barrier(); 1713 while (1) { 1714 mtx_lock(&tx_ring->br_mtx); 1715 mbuf = drbr_dequeue(NULL, tx_ring->br); 1716 mtx_unlock(&tx_ring->br_mtx); 1717 if (mbuf == NULL) 1718 break; 1719 al_eth_xmit_mbuf(tx_ring, mbuf); 1720 } 1721 } 1722 } 1723 1724 static int 1725 al_mq_start(struct ifnet *ifp, struct mbuf *m) 1726 { 1727 struct al_eth_adapter *adapter = ifp->if_softc; 1728 struct al_eth_ring *tx_ring; 1729 int i; 1730 int ret; 1731 1732 /* Which queue to use */ 1733 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 1734 i = m->m_pkthdr.flowid % adapter->num_tx_queues; 1735 else 1736 i = curcpu % adapter->num_tx_queues; 1737 1738 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) != 1739 IFF_DRV_RUNNING) { 1740 return (EFAULT); 1741 } 1742 1743 tx_ring = &adapter->tx_ring[i]; 1744 1745 device_printf_dbg(adapter->dev, "dgb start() - assuming link is active, " 1746 "sending packet to queue %d\n", i); 1747 1748 ret = drbr_enqueue(ifp, tx_ring->br, m); 1749 1750 /* 1751 * For napi, if work is not running, schedule it. Always schedule 1752 * for casual (non-napi) packet handling. 1753 */ 1754 if ((napi == 0) || ((napi != 0) && (tx_ring->enqueue_is_running == 0))) 1755 taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task); 1756 1757 return (ret); 1758 } 1759 1760 static void 1761 al_qflush(struct ifnet * ifp) 1762 { 1763 1764 /* unused */ 1765 } 1766 1767 static inline void 1768 al_eth_flow_ctrl_init(struct al_eth_adapter *adapter) 1769 { 1770 uint8_t default_flow_ctrl; 1771 1772 default_flow_ctrl = AL_ETH_FLOW_CTRL_TX_PAUSE; 1773 default_flow_ctrl |= AL_ETH_FLOW_CTRL_RX_PAUSE; 1774 1775 adapter->link_config.flow_ctrl_supported = default_flow_ctrl; 1776 } 1777 1778 static int 1779 al_eth_flow_ctrl_config(struct al_eth_adapter *adapter) 1780 { 1781 struct al_eth_flow_control_params *flow_ctrl_params; 1782 uint8_t active = adapter->link_config.flow_ctrl_active; 1783 int i; 1784 1785 flow_ctrl_params = &adapter->flow_ctrl_params; 1786 1787 flow_ctrl_params->type = AL_ETH_FLOW_CONTROL_TYPE_LINK_PAUSE; 1788 flow_ctrl_params->obay_enable = 1789 ((active & AL_ETH_FLOW_CTRL_RX_PAUSE) != 0); 1790 flow_ctrl_params->gen_enable = 1791 ((active & AL_ETH_FLOW_CTRL_TX_PAUSE) != 0); 1792 1793 flow_ctrl_params->rx_fifo_th_high = AL_ETH_FLOW_CTRL_RX_FIFO_TH_HIGH; 1794 flow_ctrl_params->rx_fifo_th_low = AL_ETH_FLOW_CTRL_RX_FIFO_TH_LOW; 1795 flow_ctrl_params->quanta = AL_ETH_FLOW_CTRL_QUANTA; 1796 flow_ctrl_params->quanta_th = AL_ETH_FLOW_CTRL_QUANTA_TH; 1797 1798 /* map priority to queue index, queue id = priority/2 */ 1799 for (i = 0; i < AL_ETH_FWD_PRIO_TABLE_NUM; i++) 1800 flow_ctrl_params->prio_q_map[0][i] = 1 << (i >> 1); 1801 1802 al_eth_flow_control_config(&adapter->hal_adapter, flow_ctrl_params); 1803 1804 return (0); 1805 } 1806 1807 static void 1808 al_eth_flow_ctrl_enable(struct al_eth_adapter *adapter) 1809 { 1810 1811 /* 1812 * change the active configuration to the default / force by ethtool 1813 * and call to configure 1814 */ 1815 adapter->link_config.flow_ctrl_active = 1816 adapter->link_config.flow_ctrl_supported; 1817 1818 al_eth_flow_ctrl_config(adapter); 1819 } 1820 1821 static void 1822 al_eth_flow_ctrl_disable(struct al_eth_adapter *adapter) 1823 { 1824 1825 adapter->link_config.flow_ctrl_active = 0; 1826 al_eth_flow_ctrl_config(adapter); 1827 } 1828 1829 static int 1830 al_eth_hw_init(struct al_eth_adapter *adapter) 1831 { 1832 int rc; 1833 1834 rc = al_eth_hw_init_adapter(adapter); 1835 if (rc != 0) 1836 return (rc); 1837 1838 rc = al_eth_mac_config(&adapter->hal_adapter, adapter->mac_mode); 1839 if (rc < 0) { 1840 device_printf(adapter->dev, "%s failed to configure mac!\n", 1841 __func__); 1842 return (rc); 1843 } 1844 1845 if ((adapter->mac_mode == AL_ETH_MAC_MODE_SGMII) || 1846 (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII && 1847 adapter->phy_exist == FALSE)) { 1848 rc = al_eth_mac_link_config(&adapter->hal_adapter, 1849 adapter->link_config.force_1000_base_x, 1850 adapter->link_config.autoneg, 1851 adapter->link_config.active_speed, 1852 adapter->link_config.active_duplex); 1853 if (rc != 0) { 1854 device_printf(adapter->dev, 1855 "%s failed to configure link parameters!\n", 1856 __func__); 1857 return (rc); 1858 } 1859 } 1860 1861 rc = al_eth_mdio_config(&adapter->hal_adapter, 1862 AL_ETH_MDIO_TYPE_CLAUSE_22, TRUE /* shared_mdio_if */, 1863 adapter->ref_clk_freq, adapter->mdio_freq); 1864 if (rc != 0) { 1865 device_printf(adapter->dev, "%s failed at mdio config!\n", 1866 __func__); 1867 return (rc); 1868 } 1869 1870 al_eth_flow_ctrl_init(adapter); 1871 1872 return (rc); 1873 } 1874 1875 static int 1876 al_eth_hw_stop(struct al_eth_adapter *adapter) 1877 { 1878 1879 al_eth_mac_stop(&adapter->hal_adapter); 1880 1881 /* 1882 * wait till pending rx packets written and UDMA becomes idle, 1883 * the MAC has ~10KB fifo, 10us should be enought time for the 1884 * UDMA to write to the memory 1885 */ 1886 DELAY(10); 1887 1888 al_eth_adapter_stop(&adapter->hal_adapter); 1889 1890 adapter->flags |= AL_ETH_FLAG_RESET_REQUESTED; 1891 1892 /* disable flow ctrl to avoid pause packets*/ 1893 al_eth_flow_ctrl_disable(adapter); 1894 1895 return (0); 1896 } 1897 1898 /* 1899 * al_eth_intr_intx_all - Legacy Interrupt Handler for all interrupts 1900 * @irq: interrupt number 1901 * @data: pointer to a network interface device structure 1902 */ 1903 static int 1904 al_eth_intr_intx_all(void *data) 1905 { 1906 struct al_eth_adapter *adapter = data; 1907 1908 struct unit_regs __iomem *regs_base = 1909 (struct unit_regs __iomem *)adapter->udma_base; 1910 uint32_t reg; 1911 1912 reg = al_udma_iofic_read_cause(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, 1913 AL_INT_GROUP_A); 1914 if (likely(reg)) 1915 device_printf_dbg(adapter->dev, "%s group A cause %x\n", 1916 __func__, reg); 1917 1918 if (unlikely(reg & AL_INT_GROUP_A_GROUP_D_SUM)) { 1919 struct al_iofic_grp_ctrl __iomem *sec_ints_base; 1920 uint32_t cause_d = al_udma_iofic_read_cause(regs_base, 1921 AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_D); 1922 1923 sec_ints_base = 1924 ®s_base->gen.interrupt_regs.secondary_iofic_ctrl[0]; 1925 if (cause_d != 0) { 1926 device_printf_dbg(adapter->dev, 1927 "got interrupt from group D. cause %x\n", cause_d); 1928 1929 cause_d = al_iofic_read_cause(sec_ints_base, 1930 AL_INT_GROUP_A); 1931 device_printf(adapter->dev, 1932 "secondary A cause %x\n", cause_d); 1933 1934 cause_d = al_iofic_read_cause(sec_ints_base, 1935 AL_INT_GROUP_B); 1936 1937 device_printf_dbg(adapter->dev, 1938 "secondary B cause %x\n", cause_d); 1939 } 1940 } 1941 if ((reg & AL_INT_GROUP_A_GROUP_B_SUM) != 0 ) { 1942 uint32_t cause_b = al_udma_iofic_read_cause(regs_base, 1943 AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_B); 1944 int qid; 1945 device_printf_dbg(adapter->dev, "secondary B cause %x\n", 1946 cause_b); 1947 for (qid = 0; qid < adapter->num_rx_queues; qid++) { 1948 if (cause_b & (1 << qid)) { 1949 /* mask */ 1950 al_udma_iofic_mask( 1951 (struct unit_regs __iomem *)adapter->udma_base, 1952 AL_UDMA_IOFIC_LEVEL_PRIMARY, 1953 AL_INT_GROUP_B, 1 << qid); 1954 } 1955 } 1956 } 1957 if ((reg & AL_INT_GROUP_A_GROUP_C_SUM) != 0) { 1958 uint32_t cause_c = al_udma_iofic_read_cause(regs_base, 1959 AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_C); 1960 int qid; 1961 device_printf_dbg(adapter->dev, "secondary C cause %x\n", cause_c); 1962 for (qid = 0; qid < adapter->num_tx_queues; qid++) { 1963 if ((cause_c & (1 << qid)) != 0) { 1964 al_udma_iofic_mask( 1965 (struct unit_regs __iomem *)adapter->udma_base, 1966 AL_UDMA_IOFIC_LEVEL_PRIMARY, 1967 AL_INT_GROUP_C, 1 << qid); 1968 } 1969 } 1970 } 1971 1972 al_eth_tx_cmlp_irq_filter(adapter->tx_ring); 1973 1974 return (0); 1975 } 1976 1977 static int 1978 al_eth_intr_msix_all(void *data) 1979 { 1980 struct al_eth_adapter *adapter = data; 1981 1982 device_printf_dbg(adapter->dev, "%s\n", __func__); 1983 return (0); 1984 } 1985 1986 static int 1987 al_eth_intr_msix_mgmt(void *data) 1988 { 1989 struct al_eth_adapter *adapter = data; 1990 1991 device_printf_dbg(adapter->dev, "%s\n", __func__); 1992 return (0); 1993 } 1994 1995 static int 1996 al_eth_enable_msix(struct al_eth_adapter *adapter) 1997 { 1998 int i, msix_vecs, rc, count; 1999 2000 device_printf_dbg(adapter->dev, "%s\n", __func__); 2001 msix_vecs = 1 + adapter->num_rx_queues + adapter->num_tx_queues; 2002 2003 device_printf_dbg(adapter->dev, 2004 "Try to enable MSIX, vector numbers = %d\n", msix_vecs); 2005 2006 adapter->msix_entries = malloc(msix_vecs*sizeof(*adapter->msix_entries), 2007 M_IFAL, M_ZERO | M_WAITOK); 2008 2009 if (adapter->msix_entries == NULL) { 2010 device_printf_dbg(adapter->dev, "failed to allocate" 2011 " msix_entries %d\n", msix_vecs); 2012 rc = ENOMEM; 2013 goto exit; 2014 } 2015 2016 /* management vector (GROUP_A) @2*/ 2017 adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].entry = 2; 2018 adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector = 0; 2019 2020 /* rx queues start @3 */ 2021 for (i = 0; i < adapter->num_rx_queues; i++) { 2022 int irq_idx = AL_ETH_RXQ_IRQ_IDX(adapter, i); 2023 2024 adapter->msix_entries[irq_idx].entry = 3 + i; 2025 adapter->msix_entries[irq_idx].vector = 0; 2026 } 2027 /* tx queues start @7 */ 2028 for (i = 0; i < adapter->num_tx_queues; i++) { 2029 int irq_idx = AL_ETH_TXQ_IRQ_IDX(adapter, i); 2030 2031 adapter->msix_entries[irq_idx].entry = 3 + 2032 AL_ETH_MAX_HW_QUEUES + i; 2033 adapter->msix_entries[irq_idx].vector = 0; 2034 } 2035 2036 count = msix_vecs + 2; /* entries start from 2 */ 2037 rc = pci_alloc_msix(adapter->dev, &count); 2038 2039 if (rc != 0) { 2040 device_printf_dbg(adapter->dev, "failed to allocate MSIX " 2041 "vectors %d\n", msix_vecs+2); 2042 device_printf_dbg(adapter->dev, "ret = %d\n", rc); 2043 goto msix_entries_exit; 2044 } 2045 2046 if (count != msix_vecs + 2) { 2047 device_printf_dbg(adapter->dev, "failed to allocate all MSIX " 2048 "vectors %d, allocated %d\n", msix_vecs+2, count); 2049 rc = ENOSPC; 2050 goto msix_entries_exit; 2051 } 2052 2053 for (i = 0; i < msix_vecs; i++) 2054 adapter->msix_entries[i].vector = 2 + 1 + i; 2055 2056 device_printf_dbg(adapter->dev, "successfully enabled MSIX," 2057 " vectors %d\n", msix_vecs); 2058 2059 adapter->msix_vecs = msix_vecs; 2060 adapter->flags |= AL_ETH_FLAG_MSIX_ENABLED; 2061 goto exit; 2062 2063 msix_entries_exit: 2064 adapter->msix_vecs = 0; 2065 free(adapter->msix_entries, M_IFAL); 2066 adapter->msix_entries = NULL; 2067 2068 exit: 2069 return (rc); 2070 } 2071 2072 static int 2073 al_eth_setup_int_mode(struct al_eth_adapter *adapter) 2074 { 2075 int i, rc; 2076 2077 rc = al_eth_enable_msix(adapter); 2078 if (rc != 0) { 2079 device_printf(adapter->dev, "Failed to enable MSIX mode.\n"); 2080 return (rc); 2081 } 2082 2083 adapter->irq_vecs = max(1, adapter->msix_vecs); 2084 /* single INTX mode */ 2085 if (adapter->msix_vecs == 0) { 2086 snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name, 2087 AL_ETH_IRQNAME_SIZE, "al-eth-intx-all@pci:%s", 2088 device_get_name(adapter->dev)); 2089 adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler = 2090 al_eth_intr_intx_all; 2091 /* IRQ vector will be resolved from device resources */ 2092 adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector = 0; 2093 adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter; 2094 2095 device_printf(adapter->dev, "%s and vector %d \n", __func__, 2096 adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector); 2097 2098 return (0); 2099 } 2100 /* single MSI-X mode */ 2101 if (adapter->msix_vecs == 1) { 2102 snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name, 2103 AL_ETH_IRQNAME_SIZE, "al-eth-msix-all@pci:%s", 2104 device_get_name(adapter->dev)); 2105 adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler = 2106 al_eth_intr_msix_all; 2107 adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector = 2108 adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector; 2109 adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter; 2110 2111 return (0); 2112 } 2113 /* MSI-X per queue */ 2114 snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name, AL_ETH_IRQNAME_SIZE, 2115 "al-eth-msix-mgmt@pci:%s", device_get_name(adapter->dev)); 2116 adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler = al_eth_intr_msix_mgmt; 2117 2118 adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter; 2119 adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector = 2120 adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector; 2121 2122 for (i = 0; i < adapter->num_rx_queues; i++) { 2123 int irq_idx = AL_ETH_RXQ_IRQ_IDX(adapter, i); 2124 2125 snprintf(adapter->irq_tbl[irq_idx].name, AL_ETH_IRQNAME_SIZE, 2126 "al-eth-rx-comp-%d@pci:%s", i, 2127 device_get_name(adapter->dev)); 2128 adapter->irq_tbl[irq_idx].handler = al_eth_rx_recv_irq_filter; 2129 adapter->irq_tbl[irq_idx].data = &adapter->rx_ring[i]; 2130 adapter->irq_tbl[irq_idx].vector = 2131 adapter->msix_entries[irq_idx].vector; 2132 } 2133 2134 for (i = 0; i < adapter->num_tx_queues; i++) { 2135 int irq_idx = AL_ETH_TXQ_IRQ_IDX(adapter, i); 2136 2137 snprintf(adapter->irq_tbl[irq_idx].name, 2138 AL_ETH_IRQNAME_SIZE, "al-eth-tx-comp-%d@pci:%s", i, 2139 device_get_name(adapter->dev)); 2140 adapter->irq_tbl[irq_idx].handler = al_eth_tx_cmlp_irq_filter; 2141 adapter->irq_tbl[irq_idx].data = &adapter->tx_ring[i]; 2142 adapter->irq_tbl[irq_idx].vector = 2143 adapter->msix_entries[irq_idx].vector; 2144 } 2145 2146 return (0); 2147 } 2148 2149 static void 2150 __al_eth_free_irq(struct al_eth_adapter *adapter) 2151 { 2152 struct al_eth_irq *irq; 2153 int i, rc; 2154 2155 for (i = 0; i < adapter->irq_vecs; i++) { 2156 irq = &adapter->irq_tbl[i]; 2157 if (irq->requested != 0) { 2158 device_printf_dbg(adapter->dev, "tear down irq: %d\n", 2159 irq->vector); 2160 rc = bus_teardown_intr(adapter->dev, irq->res, 2161 irq->cookie); 2162 if (rc != 0) 2163 device_printf(adapter->dev, "failed to tear " 2164 "down irq: %d\n", irq->vector); 2165 2166 } 2167 irq->requested = 0; 2168 } 2169 } 2170 2171 static void 2172 al_eth_free_irq(struct al_eth_adapter *adapter) 2173 { 2174 struct al_eth_irq *irq; 2175 int i, rc; 2176 #ifdef CONFIG_RFS_ACCEL 2177 if (adapter->msix_vecs >= 1) { 2178 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 2179 adapter->netdev->rx_cpu_rmap = NULL; 2180 } 2181 #endif 2182 2183 __al_eth_free_irq(adapter); 2184 2185 for (i = 0; i < adapter->irq_vecs; i++) { 2186 irq = &adapter->irq_tbl[i]; 2187 if (irq->res == NULL) 2188 continue; 2189 device_printf_dbg(adapter->dev, "release resource irq: %d\n", 2190 irq->vector); 2191 rc = bus_release_resource(adapter->dev, SYS_RES_IRQ, irq->vector, 2192 irq->res); 2193 irq->res = NULL; 2194 if (rc != 0) 2195 device_printf(adapter->dev, "dev has no parent while " 2196 "releasing res for irq: %d\n", irq->vector); 2197 } 2198 2199 pci_release_msi(adapter->dev); 2200 2201 adapter->flags &= ~AL_ETH_FLAG_MSIX_ENABLED; 2202 2203 adapter->msix_vecs = 0; 2204 free(adapter->msix_entries, M_IFAL); 2205 adapter->msix_entries = NULL; 2206 } 2207 2208 static int 2209 al_eth_request_irq(struct al_eth_adapter *adapter) 2210 { 2211 unsigned long flags; 2212 struct al_eth_irq *irq; 2213 int rc = 0, i, v; 2214 2215 if ((adapter->flags & AL_ETH_FLAG_MSIX_ENABLED) != 0) 2216 flags = RF_ACTIVE; 2217 else 2218 flags = RF_ACTIVE | RF_SHAREABLE; 2219 2220 for (i = 0; i < adapter->irq_vecs; i++) { 2221 irq = &adapter->irq_tbl[i]; 2222 2223 if (irq->requested != 0) 2224 continue; 2225 2226 irq->res = bus_alloc_resource_any(adapter->dev, SYS_RES_IRQ, 2227 &irq->vector, flags); 2228 if (irq->res == NULL) { 2229 device_printf(adapter->dev, "could not allocate " 2230 "irq vector=%d\n", irq->vector); 2231 rc = ENXIO; 2232 goto exit_res; 2233 } 2234 2235 if ((rc = bus_setup_intr(adapter->dev, irq->res, 2236 INTR_TYPE_NET | INTR_MPSAFE, irq->handler, 2237 NULL, irq->data, &irq->cookie)) != 0) { 2238 device_printf(adapter->dev, "failed to register " 2239 "interrupt handler for irq %ju: %d\n", 2240 (uintmax_t)rman_get_start(irq->res), rc); 2241 goto exit_intr; 2242 } 2243 irq->requested = 1; 2244 } 2245 goto exit; 2246 2247 exit_intr: 2248 v = i - 1; /* -1 because we omit the operation that failed */ 2249 while (v-- >= 0) { 2250 int bti; 2251 irq = &adapter->irq_tbl[v]; 2252 bti = bus_teardown_intr(adapter->dev, irq->res, irq->cookie); 2253 if (bti != 0) { 2254 device_printf(adapter->dev, "failed to tear " 2255 "down irq: %d\n", irq->vector); 2256 } 2257 2258 irq->requested = 0; 2259 device_printf_dbg(adapter->dev, "exit_intr: releasing irq %d\n", 2260 irq->vector); 2261 } 2262 2263 exit_res: 2264 v = i - 1; /* -1 because we omit the operation that failed */ 2265 while (v-- >= 0) { 2266 int brr; 2267 irq = &adapter->irq_tbl[v]; 2268 device_printf_dbg(adapter->dev, "exit_res: releasing resource" 2269 " for irq %d\n", irq->vector); 2270 brr = bus_release_resource(adapter->dev, SYS_RES_IRQ, 2271 irq->vector, irq->res); 2272 if (brr != 0) 2273 device_printf(adapter->dev, "dev has no parent while " 2274 "releasing res for irq: %d\n", irq->vector); 2275 irq->res = NULL; 2276 } 2277 2278 exit: 2279 return (rc); 2280 } 2281 2282 /** 2283 * al_eth_setup_tx_resources - allocate Tx resources (Descriptors) 2284 * @adapter: network interface device structure 2285 * @qid: queue index 2286 * 2287 * Return 0 on success, negative on failure 2288 **/ 2289 static int 2290 al_eth_setup_tx_resources(struct al_eth_adapter *adapter, int qid) 2291 { 2292 struct al_eth_ring *tx_ring = &adapter->tx_ring[qid]; 2293 struct device *dev = tx_ring->dev; 2294 struct al_udma_q_params *q_params = &tx_ring->q_params; 2295 int size; 2296 int ret; 2297 2298 if (adapter->up) 2299 return (0); 2300 2301 size = sizeof(struct al_eth_tx_buffer) * tx_ring->sw_count; 2302 2303 tx_ring->tx_buffer_info = malloc(size, M_IFAL, M_ZERO | M_WAITOK); 2304 if (tx_ring->tx_buffer_info == NULL) 2305 return (ENOMEM); 2306 2307 tx_ring->descs_size = tx_ring->hw_count * sizeof(union al_udma_desc); 2308 q_params->size = tx_ring->hw_count; 2309 2310 ret = al_dma_alloc_coherent(dev, &q_params->desc_phy_base_tag, 2311 (bus_dmamap_t *)&q_params->desc_phy_base_map, 2312 (bus_addr_t *)&q_params->desc_phy_base, 2313 (void**)&q_params->desc_base, tx_ring->descs_size); 2314 if (ret != 0) { 2315 device_printf(dev, "failed to al_dma_alloc_coherent," 2316 " ret = %d\n", ret); 2317 return (ENOMEM); 2318 } 2319 2320 if (q_params->desc_base == NULL) 2321 return (ENOMEM); 2322 2323 device_printf_dbg(dev, "Initializing ring queues %d\n", qid); 2324 2325 /* Allocate Ring Queue */ 2326 mtx_init(&tx_ring->br_mtx, "AlRingMtx", NULL, MTX_DEF); 2327 tx_ring->br = buf_ring_alloc(AL_BR_SIZE, M_DEVBUF, M_WAITOK, 2328 &tx_ring->br_mtx); 2329 if (tx_ring->br == NULL) { 2330 device_printf(dev, "Critical Failure setting up buf ring\n"); 2331 return (ENOMEM); 2332 } 2333 2334 /* Allocate taskqueues */ 2335 TASK_INIT(&tx_ring->enqueue_task, 0, al_eth_start_xmit, tx_ring); 2336 tx_ring->enqueue_tq = taskqueue_create_fast("al_tx_enque", M_NOWAIT, 2337 taskqueue_thread_enqueue, &tx_ring->enqueue_tq); 2338 taskqueue_start_threads(&tx_ring->enqueue_tq, 1, PI_NET, "%s txeq", 2339 device_get_nameunit(adapter->dev)); 2340 TASK_INIT(&tx_ring->cmpl_task, 0, al_eth_tx_cmpl_work, tx_ring); 2341 tx_ring->cmpl_tq = taskqueue_create_fast("al_tx_cmpl", M_NOWAIT, 2342 taskqueue_thread_enqueue, &tx_ring->cmpl_tq); 2343 taskqueue_start_threads(&tx_ring->cmpl_tq, 1, PI_REALTIME, "%s txcq", 2344 device_get_nameunit(adapter->dev)); 2345 2346 /* Setup DMA descriptor areas. */ 2347 ret = bus_dma_tag_create(bus_get_dma_tag(dev), 2348 1, 0, /* alignment, bounds */ 2349 BUS_SPACE_MAXADDR, /* lowaddr */ 2350 BUS_SPACE_MAXADDR, /* highaddr */ 2351 NULL, NULL, /* filter, filterarg */ 2352 AL_TSO_SIZE, /* maxsize */ 2353 AL_ETH_PKT_MAX_BUFS, /* nsegments */ 2354 PAGE_SIZE, /* maxsegsize */ 2355 0, /* flags */ 2356 NULL, /* lockfunc */ 2357 NULL, /* lockfuncarg */ 2358 &tx_ring->dma_buf_tag); 2359 2360 if (ret != 0) { 2361 device_printf(dev,"Unable to allocate dma_buf_tag, ret = %d\n", 2362 ret); 2363 return (ret); 2364 } 2365 2366 for (size = 0; size < tx_ring->sw_count; size++) { 2367 ret = bus_dmamap_create(tx_ring->dma_buf_tag, 0, 2368 &tx_ring->tx_buffer_info[size].dma_map); 2369 if (ret != 0) { 2370 device_printf(dev, "Unable to map DMA TX " 2371 "buffer memory [iter=%d]\n", size); 2372 return (ret); 2373 } 2374 } 2375 2376 /* completion queue not used for tx */ 2377 q_params->cdesc_base = NULL; 2378 /* size in bytes of the udma completion ring descriptor */ 2379 q_params->cdesc_size = 8; 2380 tx_ring->next_to_use = 0; 2381 tx_ring->next_to_clean = 0; 2382 2383 return (0); 2384 } 2385 2386 /* 2387 * al_eth_free_tx_resources - Free Tx Resources per Queue 2388 * @adapter: network interface device structure 2389 * @qid: queue index 2390 * 2391 * Free all transmit software resources 2392 */ 2393 static void 2394 al_eth_free_tx_resources(struct al_eth_adapter *adapter, int qid) 2395 { 2396 struct al_eth_ring *tx_ring = &adapter->tx_ring[qid]; 2397 struct al_udma_q_params *q_params = &tx_ring->q_params; 2398 int size; 2399 2400 /* At this point interrupts' handlers must be deactivated */ 2401 while (taskqueue_cancel(tx_ring->cmpl_tq, &tx_ring->cmpl_task, NULL)) 2402 taskqueue_drain(tx_ring->cmpl_tq, &tx_ring->cmpl_task); 2403 2404 taskqueue_free(tx_ring->cmpl_tq); 2405 while (taskqueue_cancel(tx_ring->enqueue_tq, 2406 &tx_ring->enqueue_task, NULL)) { 2407 taskqueue_drain(tx_ring->enqueue_tq, &tx_ring->enqueue_task); 2408 } 2409 2410 taskqueue_free(tx_ring->enqueue_tq); 2411 2412 if (tx_ring->br != NULL) { 2413 drbr_flush(adapter->netdev, tx_ring->br); 2414 buf_ring_free(tx_ring->br, M_DEVBUF); 2415 } 2416 2417 for (size = 0; size < tx_ring->sw_count; size++) { 2418 m_freem(tx_ring->tx_buffer_info[size].m); 2419 tx_ring->tx_buffer_info[size].m = NULL; 2420 2421 bus_dmamap_unload(tx_ring->dma_buf_tag, 2422 tx_ring->tx_buffer_info[size].dma_map); 2423 bus_dmamap_destroy(tx_ring->dma_buf_tag, 2424 tx_ring->tx_buffer_info[size].dma_map); 2425 } 2426 bus_dma_tag_destroy(tx_ring->dma_buf_tag); 2427 2428 free(tx_ring->tx_buffer_info, M_IFAL); 2429 tx_ring->tx_buffer_info = NULL; 2430 2431 mtx_destroy(&tx_ring->br_mtx); 2432 2433 /* if not set, then don't free */ 2434 if (q_params->desc_base == NULL) 2435 return; 2436 2437 al_dma_free_coherent(q_params->desc_phy_base_tag, 2438 q_params->desc_phy_base_map, q_params->desc_base); 2439 2440 q_params->desc_base = NULL; 2441 } 2442 2443 /* 2444 * al_eth_free_all_tx_resources - Free Tx Resources for All Queues 2445 * @adapter: board private structure 2446 * 2447 * Free all transmit software resources 2448 */ 2449 static void 2450 al_eth_free_all_tx_resources(struct al_eth_adapter *adapter) 2451 { 2452 int i; 2453 2454 for (i = 0; i < adapter->num_tx_queues; i++) 2455 if (adapter->tx_ring[i].q_params.desc_base) 2456 al_eth_free_tx_resources(adapter, i); 2457 } 2458 2459 /* 2460 * al_eth_setup_rx_resources - allocate Rx resources (Descriptors) 2461 * @adapter: network interface device structure 2462 * @qid: queue index 2463 * 2464 * Returns 0 on success, negative on failure 2465 */ 2466 static int 2467 al_eth_setup_rx_resources(struct al_eth_adapter *adapter, unsigned int qid) 2468 { 2469 struct al_eth_ring *rx_ring = &adapter->rx_ring[qid]; 2470 struct device *dev = rx_ring->dev; 2471 struct al_udma_q_params *q_params = &rx_ring->q_params; 2472 int size; 2473 int ret; 2474 2475 size = sizeof(struct al_eth_rx_buffer) * rx_ring->sw_count; 2476 2477 /* alloc extra element so in rx path we can always prefetch rx_info + 1 */ 2478 size += 1; 2479 2480 rx_ring->rx_buffer_info = malloc(size, M_IFAL, M_ZERO | M_WAITOK); 2481 if (rx_ring->rx_buffer_info == NULL) 2482 return (ENOMEM); 2483 2484 rx_ring->descs_size = rx_ring->hw_count * sizeof(union al_udma_desc); 2485 q_params->size = rx_ring->hw_count; 2486 2487 ret = al_dma_alloc_coherent(dev, &q_params->desc_phy_base_tag, 2488 &q_params->desc_phy_base_map, 2489 (bus_addr_t *)&q_params->desc_phy_base, 2490 (void**)&q_params->desc_base, rx_ring->descs_size); 2491 2492 if ((q_params->desc_base == NULL) || (ret != 0)) 2493 return (ENOMEM); 2494 2495 /* size in bytes of the udma completion ring descriptor */ 2496 q_params->cdesc_size = 16; 2497 rx_ring->cdescs_size = rx_ring->hw_count * q_params->cdesc_size; 2498 ret = al_dma_alloc_coherent(dev, &q_params->cdesc_phy_base_tag, 2499 &q_params->cdesc_phy_base_map, 2500 (bus_addr_t *)&q_params->cdesc_phy_base, 2501 (void**)&q_params->cdesc_base, rx_ring->cdescs_size); 2502 2503 if ((q_params->cdesc_base == NULL) || (ret != 0)) 2504 return (ENOMEM); 2505 2506 /* Allocate taskqueues */ 2507 TASK_INIT(&rx_ring->enqueue_task, 0, al_eth_rx_recv_work, rx_ring); 2508 rx_ring->enqueue_tq = taskqueue_create_fast("al_rx_enque", M_NOWAIT, 2509 taskqueue_thread_enqueue, &rx_ring->enqueue_tq); 2510 taskqueue_start_threads(&rx_ring->enqueue_tq, 1, PI_NET, "%s rxeq", 2511 device_get_nameunit(adapter->dev)); 2512 2513 /* Setup DMA descriptor areas. */ 2514 ret = bus_dma_tag_create(bus_get_dma_tag(dev), 2515 1, 0, /* alignment, bounds */ 2516 BUS_SPACE_MAXADDR, /* lowaddr */ 2517 BUS_SPACE_MAXADDR, /* highaddr */ 2518 NULL, NULL, /* filter, filterarg */ 2519 AL_TSO_SIZE, /* maxsize */ 2520 1, /* nsegments */ 2521 AL_TSO_SIZE, /* maxsegsize */ 2522 0, /* flags */ 2523 NULL, /* lockfunc */ 2524 NULL, /* lockfuncarg */ 2525 &rx_ring->dma_buf_tag); 2526 2527 if (ret != 0) { 2528 device_printf(dev,"Unable to allocate RX dma_buf_tag\n"); 2529 return (ret); 2530 } 2531 2532 for (size = 0; size < rx_ring->sw_count; size++) { 2533 ret = bus_dmamap_create(rx_ring->dma_buf_tag, 0, 2534 &rx_ring->rx_buffer_info[size].dma_map); 2535 if (ret != 0) { 2536 device_printf(dev,"Unable to map DMA RX buffer memory\n"); 2537 return (ret); 2538 } 2539 } 2540 2541 /* Zero out the descriptor ring */ 2542 memset(q_params->cdesc_base, 0, rx_ring->cdescs_size); 2543 2544 /* Create LRO for the ring */ 2545 if ((adapter->netdev->if_capenable & IFCAP_LRO) != 0) { 2546 int err = tcp_lro_init(&rx_ring->lro); 2547 if (err != 0) { 2548 device_printf(adapter->dev, 2549 "LRO[%d] Initialization failed!\n", qid); 2550 } else { 2551 device_printf_dbg(adapter->dev, 2552 "RX Soft LRO[%d] Initialized\n", qid); 2553 rx_ring->lro_enabled = TRUE; 2554 rx_ring->lro.ifp = adapter->netdev; 2555 } 2556 } 2557 2558 rx_ring->next_to_clean = 0; 2559 rx_ring->next_to_use = 0; 2560 2561 return (0); 2562 } 2563 2564 /* 2565 * al_eth_free_rx_resources - Free Rx Resources 2566 * @adapter: network interface device structure 2567 * @qid: queue index 2568 * 2569 * Free all receive software resources 2570 */ 2571 static void 2572 al_eth_free_rx_resources(struct al_eth_adapter *adapter, unsigned int qid) 2573 { 2574 struct al_eth_ring *rx_ring = &adapter->rx_ring[qid]; 2575 struct al_udma_q_params *q_params = &rx_ring->q_params; 2576 int size; 2577 2578 /* At this point interrupts' handlers must be deactivated */ 2579 while (taskqueue_cancel(rx_ring->enqueue_tq, 2580 &rx_ring->enqueue_task, NULL)) { 2581 taskqueue_drain(rx_ring->enqueue_tq, &rx_ring->enqueue_task); 2582 } 2583 2584 taskqueue_free(rx_ring->enqueue_tq); 2585 2586 for (size = 0; size < rx_ring->sw_count; size++) { 2587 m_freem(rx_ring->rx_buffer_info[size].m); 2588 rx_ring->rx_buffer_info[size].m = NULL; 2589 bus_dmamap_unload(rx_ring->dma_buf_tag, 2590 rx_ring->rx_buffer_info[size].dma_map); 2591 bus_dmamap_destroy(rx_ring->dma_buf_tag, 2592 rx_ring->rx_buffer_info[size].dma_map); 2593 } 2594 bus_dma_tag_destroy(rx_ring->dma_buf_tag); 2595 2596 free(rx_ring->rx_buffer_info, M_IFAL); 2597 rx_ring->rx_buffer_info = NULL; 2598 2599 /* if not set, then don't free */ 2600 if (q_params->desc_base == NULL) 2601 return; 2602 2603 al_dma_free_coherent(q_params->desc_phy_base_tag, 2604 q_params->desc_phy_base_map, q_params->desc_base); 2605 2606 q_params->desc_base = NULL; 2607 2608 /* if not set, then don't free */ 2609 if (q_params->cdesc_base == NULL) 2610 return; 2611 2612 al_dma_free_coherent(q_params->cdesc_phy_base_tag, 2613 q_params->cdesc_phy_base_map, q_params->cdesc_base); 2614 2615 q_params->cdesc_phy_base = 0; 2616 2617 /* Free LRO resources */ 2618 tcp_lro_free(&rx_ring->lro); 2619 } 2620 2621 /* 2622 * al_eth_free_all_rx_resources - Free Rx Resources for All Queues 2623 * @adapter: board private structure 2624 * 2625 * Free all receive software resources 2626 */ 2627 static void 2628 al_eth_free_all_rx_resources(struct al_eth_adapter *adapter) 2629 { 2630 int i; 2631 2632 for (i = 0; i < adapter->num_rx_queues; i++) 2633 if (adapter->rx_ring[i].q_params.desc_base != 0) 2634 al_eth_free_rx_resources(adapter, i); 2635 } 2636 2637 /* 2638 * al_eth_setup_all_rx_resources - allocate all queues Rx resources 2639 * @adapter: board private structure 2640 * 2641 * Return 0 on success, negative on failure 2642 */ 2643 static int 2644 al_eth_setup_all_rx_resources(struct al_eth_adapter *adapter) 2645 { 2646 int i, rc = 0; 2647 2648 for (i = 0; i < adapter->num_rx_queues; i++) { 2649 rc = al_eth_setup_rx_resources(adapter, i); 2650 if (rc == 0) 2651 continue; 2652 2653 device_printf(adapter->dev, "Allocation for Rx Queue %u failed\n", i); 2654 goto err_setup_rx; 2655 } 2656 return (0); 2657 2658 err_setup_rx: 2659 /* rewind the index freeing the rings as we go */ 2660 while (i--) 2661 al_eth_free_rx_resources(adapter, i); 2662 return (rc); 2663 } 2664 2665 /* 2666 * al_eth_setup_all_tx_resources - allocate all queues Tx resources 2667 * @adapter: private structure 2668 * 2669 * Return 0 on success, negative on failure 2670 */ 2671 static int 2672 al_eth_setup_all_tx_resources(struct al_eth_adapter *adapter) 2673 { 2674 int i, rc = 0; 2675 2676 for (i = 0; i < adapter->num_tx_queues; i++) { 2677 rc = al_eth_setup_tx_resources(adapter, i); 2678 if (rc == 0) 2679 continue; 2680 2681 device_printf(adapter->dev, 2682 "Allocation for Tx Queue %u failed\n", i); 2683 goto err_setup_tx; 2684 } 2685 2686 return (0); 2687 2688 err_setup_tx: 2689 /* rewind the index freeing the rings as we go */ 2690 while (i--) 2691 al_eth_free_tx_resources(adapter, i); 2692 2693 return (rc); 2694 } 2695 2696 static void 2697 al_eth_disable_int_sync(struct al_eth_adapter *adapter) 2698 { 2699 2700 /* disable forwarding interrupts from eth through pci end point */ 2701 if ((adapter->board_type == ALPINE_FPGA_NIC) || 2702 (adapter->board_type == ALPINE_NIC)) { 2703 al_eth_forward_int_config((uint32_t*)adapter->internal_pcie_base + 2704 AL_REG_OFFSET_FORWARD_INTR, AL_DIS_FORWARD_INTR); 2705 } 2706 2707 /* mask hw interrupts */ 2708 al_eth_interrupts_mask(adapter); 2709 } 2710 2711 static void 2712 al_eth_interrupts_unmask(struct al_eth_adapter *adapter) 2713 { 2714 uint32_t group_a_mask = AL_INT_GROUP_A_GROUP_D_SUM; /* enable group D summery */ 2715 uint32_t group_b_mask = (1 << adapter->num_rx_queues) - 1;/* bit per Rx q*/ 2716 uint32_t group_c_mask = (1 << adapter->num_tx_queues) - 1;/* bit per Tx q*/ 2717 uint32_t group_d_mask = 3 << 8; 2718 struct unit_regs __iomem *regs_base = 2719 (struct unit_regs __iomem *)adapter->udma_base; 2720 2721 if (adapter->int_mode == AL_IOFIC_MODE_LEGACY) 2722 group_a_mask |= AL_INT_GROUP_A_GROUP_B_SUM | 2723 AL_INT_GROUP_A_GROUP_C_SUM | 2724 AL_INT_GROUP_A_GROUP_D_SUM; 2725 2726 al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, 2727 AL_INT_GROUP_A, group_a_mask); 2728 al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, 2729 AL_INT_GROUP_B, group_b_mask); 2730 al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, 2731 AL_INT_GROUP_C, group_c_mask); 2732 al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, 2733 AL_INT_GROUP_D, group_d_mask); 2734 } 2735 2736 static void 2737 al_eth_interrupts_mask(struct al_eth_adapter *adapter) 2738 { 2739 struct unit_regs __iomem *regs_base = 2740 (struct unit_regs __iomem *)adapter->udma_base; 2741 2742 /* mask all interrupts */ 2743 al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, 2744 AL_INT_GROUP_A, AL_MASK_GROUP_A_INT); 2745 al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, 2746 AL_INT_GROUP_B, AL_MASK_GROUP_B_INT); 2747 al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, 2748 AL_INT_GROUP_C, AL_MASK_GROUP_C_INT); 2749 al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, 2750 AL_INT_GROUP_D, AL_MASK_GROUP_D_INT); 2751 } 2752 2753 static int 2754 al_eth_configure_int_mode(struct al_eth_adapter *adapter) 2755 { 2756 enum al_iofic_mode int_mode; 2757 uint32_t m2s_errors_disable = AL_M2S_MASK_INIT; 2758 uint32_t m2s_aborts_disable = AL_M2S_MASK_INIT; 2759 uint32_t s2m_errors_disable = AL_S2M_MASK_INIT; 2760 uint32_t s2m_aborts_disable = AL_S2M_MASK_INIT; 2761 2762 /* single INTX mode */ 2763 if (adapter->msix_vecs == 0) 2764 int_mode = AL_IOFIC_MODE_LEGACY; 2765 else if (adapter->msix_vecs > 1) 2766 int_mode = AL_IOFIC_MODE_MSIX_PER_Q; 2767 else { 2768 device_printf(adapter->dev, 2769 "udma doesn't support single MSI-X mode yet.\n"); 2770 return (EIO); 2771 } 2772 2773 if (adapter->board_type != ALPINE_INTEGRATED) { 2774 m2s_errors_disable |= AL_M2S_S2M_MASK_NOT_INT; 2775 m2s_errors_disable |= AL_M2S_S2M_MASK_NOT_INT; 2776 s2m_aborts_disable |= AL_M2S_S2M_MASK_NOT_INT; 2777 s2m_aborts_disable |= AL_M2S_S2M_MASK_NOT_INT; 2778 } 2779 2780 if (al_udma_iofic_config((struct unit_regs __iomem *)adapter->udma_base, 2781 int_mode, m2s_errors_disable, m2s_aborts_disable, 2782 s2m_errors_disable, s2m_aborts_disable)) { 2783 device_printf(adapter->dev, 2784 "al_udma_unit_int_config failed!.\n"); 2785 return (EIO); 2786 } 2787 adapter->int_mode = int_mode; 2788 device_printf_dbg(adapter->dev, "using %s interrupt mode\n", 2789 int_mode == AL_IOFIC_MODE_LEGACY ? "INTx" : 2790 int_mode == AL_IOFIC_MODE_MSIX_PER_Q ? "MSI-X per Queue" : "Unknown"); 2791 /* set interrupt moderation resolution to 15us */ 2792 al_iofic_moder_res_config(&((struct unit_regs *)(adapter->udma_base))->gen.interrupt_regs.main_iofic, AL_INT_GROUP_B, 15); 2793 al_iofic_moder_res_config(&((struct unit_regs *)(adapter->udma_base))->gen.interrupt_regs.main_iofic, AL_INT_GROUP_C, 15); 2794 /* by default interrupt coalescing is disabled */ 2795 adapter->tx_usecs = 0; 2796 adapter->rx_usecs = 0; 2797 2798 return (0); 2799 } 2800 2801 /* 2802 * ethtool_rxfh_indir_default - get default value for RX flow hash indirection 2803 * @index: Index in RX flow hash indirection table 2804 * @n_rx_rings: Number of RX rings to use 2805 * 2806 * This function provides the default policy for RX flow hash indirection. 2807 */ 2808 static inline uint32_t 2809 ethtool_rxfh_indir_default(uint32_t index, uint32_t n_rx_rings) 2810 { 2811 2812 return (index % n_rx_rings); 2813 } 2814 2815 static void* 2816 al_eth_update_stats(struct al_eth_adapter *adapter) 2817 { 2818 struct al_eth_mac_stats *mac_stats = &adapter->mac_stats; 2819 2820 if (adapter->up == 0) 2821 return (NULL); 2822 2823 al_eth_mac_stats_get(&adapter->hal_adapter, mac_stats); 2824 2825 return (NULL); 2826 } 2827 2828 static uint64_t 2829 al_get_counter(struct ifnet *ifp, ift_counter cnt) 2830 { 2831 struct al_eth_adapter *adapter; 2832 struct al_eth_mac_stats *mac_stats; 2833 uint64_t rv; 2834 2835 adapter = if_getsoftc(ifp); 2836 mac_stats = &adapter->mac_stats; 2837 2838 switch (cnt) { 2839 case IFCOUNTER_IPACKETS: 2840 return (mac_stats->aFramesReceivedOK); /* including pause frames */ 2841 case IFCOUNTER_OPACKETS: 2842 return (mac_stats->aFramesTransmittedOK); 2843 case IFCOUNTER_IBYTES: 2844 return (mac_stats->aOctetsReceivedOK); 2845 case IFCOUNTER_OBYTES: 2846 return (mac_stats->aOctetsTransmittedOK); 2847 case IFCOUNTER_IMCASTS: 2848 return (mac_stats->ifInMulticastPkts); 2849 case IFCOUNTER_OMCASTS: 2850 return (mac_stats->ifOutMulticastPkts); 2851 case IFCOUNTER_COLLISIONS: 2852 return (0); 2853 case IFCOUNTER_IQDROPS: 2854 return (mac_stats->etherStatsDropEvents); 2855 case IFCOUNTER_IERRORS: 2856 rv = mac_stats->ifInErrors + 2857 mac_stats->etherStatsUndersizePkts + /* good but short */ 2858 mac_stats->etherStatsFragments + /* short and bad*/ 2859 mac_stats->etherStatsJabbers + /* with crc errors */ 2860 mac_stats->etherStatsOversizePkts + 2861 mac_stats->aFrameCheckSequenceErrors + 2862 mac_stats->aAlignmentErrors; 2863 return (rv); 2864 case IFCOUNTER_OERRORS: 2865 return (mac_stats->ifOutErrors); 2866 default: 2867 return (if_get_counter_default(ifp, cnt)); 2868 } 2869 } 2870 2871 /* 2872 * Unicast, Multicast and Promiscuous mode set 2873 * 2874 * The set_rx_mode entry point is called whenever the unicast or multicast 2875 * address lists or the network interface flags are updated. This routine is 2876 * responsible for configuring the hardware for proper unicast, multicast, 2877 * promiscuous mode, and all-multi behavior. 2878 */ 2879 #define MAX_NUM_MULTICAST_ADDRESSES 32 2880 #define MAX_NUM_ADDRESSES 32 2881 2882 static void 2883 al_eth_set_rx_mode(struct al_eth_adapter *adapter) 2884 { 2885 struct ifnet *ifp = adapter->netdev; 2886 struct ifmultiaddr *ifma; /* multicast addresses configured */ 2887 struct ifaddr *ifua; /* unicast address */ 2888 int mc = 0; 2889 int uc = 0; 2890 uint8_t i; 2891 unsigned char *mac; 2892 2893 if_maddr_rlock(ifp); 2894 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2895 if (ifma->ifma_addr->sa_family != AF_LINK) 2896 continue; 2897 if (mc == MAX_NUM_MULTICAST_ADDRESSES) 2898 break; 2899 2900 mac = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2901 /* default mc address inside mac address */ 2902 if (mac[3] != 0 && mac[4] != 0 && mac[5] != 1) 2903 mc++; 2904 } 2905 if_maddr_runlock(ifp); 2906 2907 if_addr_rlock(ifp); 2908 CK_STAILQ_FOREACH(ifua, &ifp->if_addrhead, ifa_link) { 2909 if (ifua->ifa_addr->sa_family != AF_LINK) 2910 continue; 2911 if (uc == MAX_NUM_ADDRESSES) 2912 break; 2913 uc++; 2914 } 2915 if_addr_runlock(ifp); 2916 2917 if ((ifp->if_flags & IFF_PROMISC) != 0) { 2918 al_eth_mac_table_promiscuous_set(adapter, true); 2919 } else { 2920 if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 2921 /* This interface is in all-multicasts mode (used by multicast routers). */ 2922 al_eth_mac_table_all_multicast_add(adapter, 2923 AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX, 1); 2924 } else { 2925 if (mc == 0) { 2926 al_eth_mac_table_entry_clear(adapter, 2927 AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX); 2928 } else { 2929 al_eth_mac_table_all_multicast_add(adapter, 2930 AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX, 1); 2931 } 2932 } 2933 if (uc != 0) { 2934 i = AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + 1; 2935 if (uc > AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT) { 2936 /* 2937 * In this case there are more addresses then 2938 * entries in the mac table - set promiscuous 2939 */ 2940 al_eth_mac_table_promiscuous_set(adapter, true); 2941 return; 2942 } 2943 2944 /* clear the last configuration */ 2945 while (i < (AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + 2946 AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT)) { 2947 al_eth_mac_table_entry_clear(adapter, i); 2948 i++; 2949 } 2950 2951 /* set new addresses */ 2952 i = AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + 1; 2953 if_addr_rlock(ifp); 2954 CK_STAILQ_FOREACH(ifua, &ifp->if_addrhead, ifa_link) { 2955 if (ifua->ifa_addr->sa_family != AF_LINK) { 2956 continue; 2957 } 2958 al_eth_mac_table_unicast_add(adapter, i, 2959 (unsigned char *)ifua->ifa_addr, 1); 2960 i++; 2961 } 2962 if_addr_runlock(ifp); 2963 2964 } 2965 al_eth_mac_table_promiscuous_set(adapter, false); 2966 } 2967 } 2968 2969 static void 2970 al_eth_config_rx_fwd(struct al_eth_adapter *adapter) 2971 { 2972 struct al_eth_fwd_ctrl_table_entry entry; 2973 int i; 2974 2975 /* let priority be equal to pbits */ 2976 for (i = 0; i < AL_ETH_FWD_PBITS_TABLE_NUM; i++) 2977 al_eth_fwd_pbits_table_set(&adapter->hal_adapter, i, i); 2978 2979 /* map priority to queue index, queue id = priority/2 */ 2980 for (i = 0; i < AL_ETH_FWD_PRIO_TABLE_NUM; i++) 2981 al_eth_fwd_priority_table_set(&adapter->hal_adapter, i, i >> 1); 2982 2983 entry.prio_sel = AL_ETH_CTRL_TABLE_PRIO_SEL_VAL_0; 2984 entry.queue_sel_1 = AL_ETH_CTRL_TABLE_QUEUE_SEL_1_THASH_TABLE; 2985 entry.queue_sel_2 = AL_ETH_CTRL_TABLE_QUEUE_SEL_2_NO_PRIO; 2986 entry.udma_sel = AL_ETH_CTRL_TABLE_UDMA_SEL_MAC_TABLE; 2987 entry.filter = FALSE; 2988 2989 al_eth_ctrl_table_def_set(&adapter->hal_adapter, FALSE, &entry); 2990 2991 /* 2992 * By default set the mac table to forward all unicast packets to our 2993 * MAC address and all broadcast. all the rest will be dropped. 2994 */ 2995 al_eth_mac_table_unicast_add(adapter, AL_ETH_MAC_TABLE_UNICAST_IDX_BASE, 2996 adapter->mac_addr, 1); 2997 al_eth_mac_table_broadcast_add(adapter, AL_ETH_MAC_TABLE_BROADCAST_IDX, 1); 2998 al_eth_mac_table_promiscuous_set(adapter, false); 2999 3000 /* set toeplitz hash keys */ 3001 for (i = 0; i < sizeof(adapter->toeplitz_hash_key); i++) 3002 *((uint8_t*)adapter->toeplitz_hash_key + i) = (uint8_t)random(); 3003 3004 for (i = 0; i < AL_ETH_RX_HASH_KEY_NUM; i++) 3005 al_eth_hash_key_set(&adapter->hal_adapter, i, 3006 htonl(adapter->toeplitz_hash_key[i])); 3007 3008 for (i = 0; i < AL_ETH_RX_RSS_TABLE_SIZE; i++) { 3009 adapter->rss_ind_tbl[i] = ethtool_rxfh_indir_default(i, 3010 AL_ETH_NUM_QUEUES); 3011 al_eth_set_thash_table_entry(adapter, i, 0, 3012 adapter->rss_ind_tbl[i]); 3013 } 3014 3015 al_eth_fsm_table_init(adapter); 3016 } 3017 3018 static void 3019 al_eth_req_rx_buff_size(struct al_eth_adapter *adapter, int size) 3020 { 3021 3022 /* 3023 * Determine the correct mbuf pool 3024 * for doing jumbo frames 3025 * Try from the smallest up to maximum supported 3026 */ 3027 adapter->rx_mbuf_sz = MCLBYTES; 3028 if (size > 2048) { 3029 if (adapter->max_rx_buff_alloc_size > 2048) 3030 adapter->rx_mbuf_sz = MJUMPAGESIZE; 3031 else 3032 return; 3033 } 3034 if (size > 4096) { 3035 if (adapter->max_rx_buff_alloc_size > 4096) 3036 adapter->rx_mbuf_sz = MJUM9BYTES; 3037 else 3038 return; 3039 } 3040 if (size > 9216) { 3041 if (adapter->max_rx_buff_alloc_size > 9216) 3042 adapter->rx_mbuf_sz = MJUM16BYTES; 3043 else 3044 return; 3045 } 3046 } 3047 3048 static int 3049 al_eth_change_mtu(struct al_eth_adapter *adapter, int new_mtu) 3050 { 3051 int max_frame = new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + 3052 ETHER_VLAN_ENCAP_LEN; 3053 3054 al_eth_req_rx_buff_size(adapter, new_mtu); 3055 3056 device_printf_dbg(adapter->dev, "set MTU to %d\n", new_mtu); 3057 al_eth_rx_pkt_limit_config(&adapter->hal_adapter, 3058 AL_ETH_MIN_FRAME_LEN, max_frame); 3059 3060 al_eth_tso_mss_config(&adapter->hal_adapter, 0, new_mtu - 100); 3061 3062 return (0); 3063 } 3064 3065 static int 3066 al_eth_check_mtu(struct al_eth_adapter *adapter, int new_mtu) 3067 { 3068 int max_frame = new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN; 3069 3070 if ((new_mtu < AL_ETH_MIN_FRAME_LEN) || 3071 (max_frame > AL_ETH_MAX_FRAME_LEN)) { 3072 return (EINVAL); 3073 } 3074 3075 return (0); 3076 } 3077 3078 static int 3079 al_eth_udma_queue_enable(struct al_eth_adapter *adapter, enum al_udma_type type, 3080 int qid) 3081 { 3082 int rc = 0; 3083 char *name = (type == UDMA_TX) ? "Tx" : "Rx"; 3084 struct al_udma_q_params *q_params; 3085 3086 if (type == UDMA_TX) 3087 q_params = &adapter->tx_ring[qid].q_params; 3088 else 3089 q_params = &adapter->rx_ring[qid].q_params; 3090 3091 rc = al_eth_queue_config(&adapter->hal_adapter, type, qid, q_params); 3092 if (rc < 0) { 3093 device_printf(adapter->dev, "config %s queue %u failed\n", name, 3094 qid); 3095 return (rc); 3096 } 3097 return (rc); 3098 } 3099 3100 static int 3101 al_eth_udma_queues_enable_all(struct al_eth_adapter *adapter) 3102 { 3103 int i; 3104 3105 for (i = 0; i < adapter->num_tx_queues; i++) 3106 al_eth_udma_queue_enable(adapter, UDMA_TX, i); 3107 3108 for (i = 0; i < adapter->num_rx_queues; i++) 3109 al_eth_udma_queue_enable(adapter, UDMA_RX, i); 3110 3111 return (0); 3112 } 3113 3114 static void 3115 al_eth_up_complete(struct al_eth_adapter *adapter) 3116 { 3117 3118 al_eth_configure_int_mode(adapter); 3119 al_eth_config_rx_fwd(adapter); 3120 al_eth_change_mtu(adapter, adapter->netdev->if_mtu); 3121 al_eth_udma_queues_enable_all(adapter); 3122 al_eth_refill_all_rx_bufs(adapter); 3123 al_eth_interrupts_unmask(adapter); 3124 3125 /* enable forwarding interrupts from eth through pci end point */ 3126 if ((adapter->board_type == ALPINE_FPGA_NIC) || 3127 (adapter->board_type == ALPINE_NIC)) { 3128 al_eth_forward_int_config((uint32_t*)adapter->internal_pcie_base + 3129 AL_REG_OFFSET_FORWARD_INTR, AL_EN_FORWARD_INTR); 3130 } 3131 3132 al_eth_flow_ctrl_enable(adapter); 3133 3134 mtx_lock(&adapter->stats_mtx); 3135 callout_reset(&adapter->stats_callout, hz, al_tick_stats, (void*)adapter); 3136 mtx_unlock(&adapter->stats_mtx); 3137 3138 al_eth_mac_start(&adapter->hal_adapter); 3139 } 3140 3141 static int 3142 al_media_update(struct ifnet *ifp) 3143 { 3144 struct al_eth_adapter *adapter = ifp->if_softc; 3145 3146 if ((ifp->if_flags & IFF_UP) != 0) 3147 mii_mediachg(adapter->mii); 3148 3149 return (0); 3150 } 3151 3152 static void 3153 al_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 3154 { 3155 struct al_eth_adapter *sc = ifp->if_softc; 3156 struct mii_data *mii; 3157 3158 if (sc->mii == NULL) { 3159 ifmr->ifm_active = IFM_ETHER | IFM_NONE; 3160 ifmr->ifm_status = 0; 3161 3162 return; 3163 } 3164 3165 mii = sc->mii; 3166 mii_pollstat(mii); 3167 3168 ifmr->ifm_active = mii->mii_media_active; 3169 ifmr->ifm_status = mii->mii_media_status; 3170 } 3171 3172 static void 3173 al_tick(void *arg) 3174 { 3175 struct al_eth_adapter *adapter = arg; 3176 3177 mii_tick(adapter->mii); 3178 3179 /* Schedule another timeout one second from now */ 3180 callout_schedule(&adapter->wd_callout, hz); 3181 } 3182 3183 static void 3184 al_tick_stats(void *arg) 3185 { 3186 struct al_eth_adapter *adapter = arg; 3187 3188 al_eth_update_stats(adapter); 3189 3190 callout_schedule(&adapter->stats_callout, hz); 3191 } 3192 3193 static int 3194 al_eth_up(struct al_eth_adapter *adapter) 3195 { 3196 struct ifnet *ifp = adapter->netdev; 3197 int rc; 3198 3199 if (adapter->up) 3200 return (0); 3201 3202 if ((adapter->flags & AL_ETH_FLAG_RESET_REQUESTED) != 0) { 3203 al_eth_function_reset(adapter); 3204 adapter->flags &= ~AL_ETH_FLAG_RESET_REQUESTED; 3205 } 3206 3207 ifp->if_hwassist = 0; 3208 if ((ifp->if_capenable & IFCAP_TSO) != 0) 3209 ifp->if_hwassist |= CSUM_TSO; 3210 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 3211 ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP); 3212 if ((ifp->if_capenable & IFCAP_TXCSUM_IPV6) != 0) 3213 ifp->if_hwassist |= (CSUM_TCP_IPV6 | CSUM_UDP_IPV6); 3214 3215 al_eth_serdes_init(adapter); 3216 3217 rc = al_eth_hw_init(adapter); 3218 if (rc != 0) 3219 goto err_hw_init_open; 3220 3221 rc = al_eth_setup_int_mode(adapter); 3222 if (rc != 0) { 3223 device_printf(adapter->dev, 3224 "%s failed at setup interrupt mode!\n", __func__); 3225 goto err_setup_int; 3226 } 3227 3228 /* allocate transmit descriptors */ 3229 rc = al_eth_setup_all_tx_resources(adapter); 3230 if (rc != 0) 3231 goto err_setup_tx; 3232 3233 /* allocate receive descriptors */ 3234 rc = al_eth_setup_all_rx_resources(adapter); 3235 if (rc != 0) 3236 goto err_setup_rx; 3237 3238 rc = al_eth_request_irq(adapter); 3239 if (rc != 0) 3240 goto err_req_irq; 3241 3242 al_eth_up_complete(adapter); 3243 3244 adapter->up = true; 3245 3246 if (adapter->mac_mode == AL_ETH_MAC_MODE_10GbE_Serial) 3247 adapter->netdev->if_link_state = LINK_STATE_UP; 3248 3249 if (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII) { 3250 mii_mediachg(adapter->mii); 3251 3252 /* Schedule watchdog timeout */ 3253 mtx_lock(&adapter->wd_mtx); 3254 callout_reset(&adapter->wd_callout, hz, al_tick, adapter); 3255 mtx_unlock(&adapter->wd_mtx); 3256 3257 mii_pollstat(adapter->mii); 3258 } 3259 3260 return (rc); 3261 3262 err_req_irq: 3263 al_eth_free_all_rx_resources(adapter); 3264 err_setup_rx: 3265 al_eth_free_all_tx_resources(adapter); 3266 err_setup_tx: 3267 al_eth_free_irq(adapter); 3268 err_setup_int: 3269 al_eth_hw_stop(adapter); 3270 err_hw_init_open: 3271 al_eth_function_reset(adapter); 3272 3273 return (rc); 3274 } 3275 3276 static int 3277 al_shutdown(device_t dev) 3278 { 3279 struct al_eth_adapter *adapter = device_get_softc(dev); 3280 3281 al_eth_down(adapter); 3282 3283 return (0); 3284 } 3285 3286 static void 3287 al_eth_down(struct al_eth_adapter *adapter) 3288 { 3289 3290 device_printf_dbg(adapter->dev, "al_eth_down: begin\n"); 3291 3292 adapter->up = false; 3293 3294 mtx_lock(&adapter->wd_mtx); 3295 callout_stop(&adapter->wd_callout); 3296 mtx_unlock(&adapter->wd_mtx); 3297 3298 al_eth_disable_int_sync(adapter); 3299 3300 mtx_lock(&adapter->stats_mtx); 3301 callout_stop(&adapter->stats_callout); 3302 mtx_unlock(&adapter->stats_mtx); 3303 3304 al_eth_free_irq(adapter); 3305 al_eth_hw_stop(adapter); 3306 3307 al_eth_free_all_tx_resources(adapter); 3308 al_eth_free_all_rx_resources(adapter); 3309 } 3310 3311 static int 3312 al_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 3313 { 3314 struct al_eth_adapter *adapter = ifp->if_softc; 3315 struct ifreq *ifr = (struct ifreq *)data; 3316 int error = 0; 3317 3318 switch (command) { 3319 case SIOCSIFMTU: 3320 { 3321 error = al_eth_check_mtu(adapter, ifr->ifr_mtu); 3322 if (error != 0) { 3323 device_printf(adapter->dev, "ioctl wrong mtu %u\n", 3324 adapter->netdev->if_mtu); 3325 break; 3326 } 3327 3328 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3329 adapter->netdev->if_mtu = ifr->ifr_mtu; 3330 al_init(adapter); 3331 break; 3332 } 3333 case SIOCSIFFLAGS: 3334 if ((ifp->if_flags & IFF_UP) != 0) { 3335 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 3336 if (((ifp->if_flags ^ adapter->if_flags) & 3337 (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3338 device_printf_dbg(adapter->dev, 3339 "ioctl promisc/allmulti\n"); 3340 al_eth_set_rx_mode(adapter); 3341 } 3342 } else { 3343 error = al_eth_up(adapter); 3344 if (error == 0) 3345 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3346 } 3347 } else { 3348 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 3349 al_eth_down(adapter); 3350 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3351 } 3352 } 3353 3354 adapter->if_flags = ifp->if_flags; 3355 break; 3356 3357 case SIOCADDMULTI: 3358 case SIOCDELMULTI: 3359 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 3360 device_printf_dbg(adapter->dev, 3361 "ioctl add/del multi before\n"); 3362 al_eth_set_rx_mode(adapter); 3363 #ifdef DEVICE_POLLING 3364 if ((ifp->if_capenable & IFCAP_POLLING) == 0) 3365 #endif 3366 } 3367 break; 3368 case SIOCSIFMEDIA: 3369 case SIOCGIFMEDIA: 3370 if (adapter->mii != NULL) 3371 error = ifmedia_ioctl(ifp, ifr, 3372 &adapter->mii->mii_media, command); 3373 else 3374 error = ifmedia_ioctl(ifp, ifr, 3375 &adapter->media, command); 3376 break; 3377 case SIOCSIFCAP: 3378 { 3379 int mask, reinit; 3380 3381 reinit = 0; 3382 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 3383 #ifdef DEVICE_POLLING 3384 if ((mask & IFCAP_POLLING) != 0) { 3385 if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) { 3386 if (error != 0) 3387 return (error); 3388 ifp->if_capenable |= IFCAP_POLLING; 3389 } else { 3390 error = ether_poll_deregister(ifp); 3391 /* Enable interrupt even in error case */ 3392 ifp->if_capenable &= ~IFCAP_POLLING; 3393 } 3394 } 3395 #endif 3396 if ((mask & IFCAP_HWCSUM) != 0) { 3397 /* apply to both rx and tx */ 3398 ifp->if_capenable ^= IFCAP_HWCSUM; 3399 reinit = 1; 3400 } 3401 if ((mask & IFCAP_HWCSUM_IPV6) != 0) { 3402 ifp->if_capenable ^= IFCAP_HWCSUM_IPV6; 3403 reinit = 1; 3404 } 3405 if ((mask & IFCAP_TSO) != 0) { 3406 ifp->if_capenable ^= IFCAP_TSO; 3407 reinit = 1; 3408 } 3409 if ((mask & IFCAP_LRO) != 0) { 3410 ifp->if_capenable ^= IFCAP_LRO; 3411 } 3412 if ((mask & IFCAP_VLAN_HWTAGGING) != 0) { 3413 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 3414 reinit = 1; 3415 } 3416 if ((mask & IFCAP_VLAN_HWFILTER) != 0) { 3417 ifp->if_capenable ^= IFCAP_VLAN_HWFILTER; 3418 reinit = 1; 3419 } 3420 if ((mask & IFCAP_VLAN_HWTSO) != 0) { 3421 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 3422 reinit = 1; 3423 } 3424 if ((reinit != 0) && 3425 ((ifp->if_drv_flags & IFF_DRV_RUNNING)) != 0) 3426 { 3427 al_init(adapter); 3428 } 3429 break; 3430 } 3431 3432 default: 3433 error = ether_ioctl(ifp, command, data); 3434 break; 3435 } 3436 3437 return (error); 3438 } 3439 3440 static int 3441 al_is_device_supported(device_t dev) 3442 { 3443 uint16_t pci_vendor_id = pci_get_vendor(dev); 3444 uint16_t pci_device_id = pci_get_device(dev); 3445 3446 return (pci_vendor_id == PCI_VENDOR_ID_ANNAPURNA_LABS && 3447 (pci_device_id == PCI_DEVICE_ID_AL_ETH || 3448 pci_device_id == PCI_DEVICE_ID_AL_ETH_ADVANCED || 3449 pci_device_id == PCI_DEVICE_ID_AL_ETH_NIC || 3450 pci_device_id == PCI_DEVICE_ID_AL_ETH_FPGA_NIC)); 3451 } 3452 3453 /* Time in mSec to keep trying to read / write from MDIO in case of error */ 3454 #define MDIO_TIMEOUT_MSEC 100 3455 #define MDIO_PAUSE_MSEC 10 3456 3457 static int 3458 al_miibus_readreg(device_t dev, int phy, int reg) 3459 { 3460 struct al_eth_adapter *adapter = device_get_softc(dev); 3461 uint16_t value = 0; 3462 int rc; 3463 int timeout = MDIO_TIMEOUT_MSEC; 3464 3465 while (timeout > 0) { 3466 rc = al_eth_mdio_read(&adapter->hal_adapter, adapter->phy_addr, 3467 -1, reg, &value); 3468 3469 if (rc == 0) 3470 return (value); 3471 3472 device_printf_dbg(adapter->dev, 3473 "mdio read failed. try again in 10 msec\n"); 3474 3475 timeout -= MDIO_PAUSE_MSEC; 3476 pause("readred pause", MDIO_PAUSE_MSEC); 3477 } 3478 3479 if (rc != 0) 3480 device_printf(adapter->dev, "MDIO read failed on timeout\n"); 3481 3482 return (value); 3483 } 3484 3485 static int 3486 al_miibus_writereg(device_t dev, int phy, int reg, int value) 3487 { 3488 struct al_eth_adapter *adapter = device_get_softc(dev); 3489 int rc; 3490 int timeout = MDIO_TIMEOUT_MSEC; 3491 3492 while (timeout > 0) { 3493 rc = al_eth_mdio_write(&adapter->hal_adapter, adapter->phy_addr, 3494 -1, reg, value); 3495 3496 if (rc == 0) 3497 return (0); 3498 3499 device_printf(adapter->dev, 3500 "mdio write failed. try again in 10 msec\n"); 3501 3502 timeout -= MDIO_PAUSE_MSEC; 3503 pause("miibus writereg", MDIO_PAUSE_MSEC); 3504 } 3505 3506 if (rc != 0) 3507 device_printf(adapter->dev, "MDIO write failed on timeout\n"); 3508 3509 return (rc); 3510 } 3511 3512 static void 3513 al_miibus_statchg(device_t dev) 3514 { 3515 struct al_eth_adapter *adapter = device_get_softc(dev); 3516 3517 device_printf_dbg(adapter->dev, 3518 "al_miibus_statchg: state has changed!\n"); 3519 device_printf_dbg(adapter->dev, 3520 "al_miibus_statchg: active = 0x%x status = 0x%x\n", 3521 adapter->mii->mii_media_active, adapter->mii->mii_media_status); 3522 3523 if (adapter->up == 0) 3524 return; 3525 3526 if ((adapter->mii->mii_media_status & IFM_AVALID) != 0) { 3527 if (adapter->mii->mii_media_status & IFM_ACTIVE) { 3528 device_printf(adapter->dev, "link is UP\n"); 3529 adapter->netdev->if_link_state = LINK_STATE_UP; 3530 } else { 3531 device_printf(adapter->dev, "link is DOWN\n"); 3532 adapter->netdev->if_link_state = LINK_STATE_DOWN; 3533 } 3534 } 3535 } 3536 3537 static void 3538 al_miibus_linkchg(device_t dev) 3539 { 3540 struct al_eth_adapter *adapter = device_get_softc(dev); 3541 uint8_t duplex = 0; 3542 uint8_t speed = 0; 3543 3544 if (adapter->mii == NULL) 3545 return; 3546 3547 if ((adapter->netdev->if_flags & IFF_UP) == 0) 3548 return; 3549 3550 /* Ignore link changes when link is not ready */ 3551 if ((adapter->mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) != 3552 (IFM_AVALID | IFM_ACTIVE)) { 3553 return; 3554 } 3555 3556 if ((adapter->mii->mii_media_active & IFM_FDX) != 0) 3557 duplex = 1; 3558 3559 speed = IFM_SUBTYPE(adapter->mii->mii_media_active); 3560 3561 if (speed == IFM_10_T) { 3562 al_eth_mac_link_config(&adapter->hal_adapter, 0, 1, 3563 AL_10BASE_T_SPEED, duplex); 3564 return; 3565 } 3566 3567 if (speed == IFM_100_TX) { 3568 al_eth_mac_link_config(&adapter->hal_adapter, 0, 1, 3569 AL_100BASE_TX_SPEED, duplex); 3570 return; 3571 } 3572 3573 if (speed == IFM_1000_T) { 3574 al_eth_mac_link_config(&adapter->hal_adapter, 0, 1, 3575 AL_1000BASE_T_SPEED, duplex); 3576 return; 3577 } 3578 3579 device_printf(adapter->dev, "ERROR: unknown MII media active 0x%08x\n", 3580 adapter->mii->mii_media_active); 3581 } 3582