xref: /freebsd/sys/dev/al_eth/al_eth.c (revision 0dbdecfd4f23486da21345fe446a28a1c27db3f2)
1 /*-
2  * Copyright (c) 2015,2016 Annapurna Labs Ltd. and affiliates
3  * All rights reserved.
4  *
5  * Developed by Semihalf.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/kernel.h>
36 #include <sys/kthread.h>
37 #include <sys/lock.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 #include <sys/taskqueue.h>
46 
47 #include <machine/atomic.h>
48 
49 #include "opt_inet.h"
50 #include "opt_inet6.h"
51 
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_var.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 #include <netinet/in.h>
60 #include <net/if_vlan_var.h>
61 #include <netinet/tcp.h>
62 #include <netinet/tcp_lro.h>
63 
64 #ifdef INET
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69 #endif
70 
71 #ifdef INET6
72 #include <netinet/ip6.h>
73 #endif
74 
75 #include <sys/sockio.h>
76 
77 #include <dev/pci/pcireg.h>
78 #include <dev/pci/pcivar.h>
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <al_hal_common.h>
84 #include <al_hal_plat_services.h>
85 #include <al_hal_udma_config.h>
86 #include <al_hal_udma_iofic.h>
87 #include <al_hal_udma_debug.h>
88 #include <al_hal_eth.h>
89 
90 #include "al_eth.h"
91 #include "al_init_eth_lm.h"
92 #include "arm/annapurna/alpine/alpine_serdes.h"
93 
94 #include "miibus_if.h"
95 
96 #define	device_printf_dbg(fmt, ...) do {				\
97 	if (AL_DBG_LEVEL >= AL_DBG_LEVEL_DBG) { AL_DBG_LOCK();		\
98 	    device_printf(fmt, __VA_ARGS__); AL_DBG_UNLOCK();}		\
99 	} while (0)
100 
101 MALLOC_DEFINE(M_IFAL, "if_al_malloc", "All allocated data for AL ETH driver");
102 
103 /* move out to some pci header file */
104 #define	PCI_VENDOR_ID_ANNAPURNA_LABS	0x1c36
105 #define	PCI_DEVICE_ID_AL_ETH		0x0001
106 #define	PCI_DEVICE_ID_AL_ETH_ADVANCED	0x0002
107 #define	PCI_DEVICE_ID_AL_ETH_NIC	0x0003
108 #define	PCI_DEVICE_ID_AL_ETH_FPGA_NIC	0x0030
109 #define	PCI_DEVICE_ID_AL_CRYPTO		0x0011
110 #define	PCI_DEVICE_ID_AL_CRYPTO_VF	0x8011
111 #define	PCI_DEVICE_ID_AL_RAID_DMA	0x0021
112 #define	PCI_DEVICE_ID_AL_RAID_DMA_VF	0x8021
113 #define	PCI_DEVICE_ID_AL_USB		0x0041
114 
115 #define	MAC_ADDR_STR "%02x:%02x:%02x:%02x:%02x:%02x"
116 #define	MAC_ADDR(addr) addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]
117 
118 #define	AL_ETH_MAC_TABLE_UNICAST_IDX_BASE	0
119 #define	AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT	4
120 #define	AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX	(AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + \
121 						 AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT)
122 
123 #define	AL_ETH_MAC_TABLE_DROP_IDX		(AL_ETH_FWD_MAC_NUM - 1)
124 #define	AL_ETH_MAC_TABLE_BROADCAST_IDX		(AL_ETH_MAC_TABLE_DROP_IDX - 1)
125 
126 #define	AL_ETH_THASH_UDMA_SHIFT		0
127 #define	AL_ETH_THASH_UDMA_MASK		(0xF << AL_ETH_THASH_UDMA_SHIFT)
128 
129 #define	AL_ETH_THASH_Q_SHIFT		4
130 #define	AL_ETH_THASH_Q_MASK		(0x3 << AL_ETH_THASH_Q_SHIFT)
131 
132 /* the following defines should be moved to hal */
133 #define	AL_ETH_FSM_ENTRY_IPV4_TCP		0
134 #define	AL_ETH_FSM_ENTRY_IPV4_UDP		1
135 #define	AL_ETH_FSM_ENTRY_IPV6_TCP		2
136 #define	AL_ETH_FSM_ENTRY_IPV6_UDP		3
137 #define	AL_ETH_FSM_ENTRY_IPV6_NO_UDP_TCP	4
138 #define	AL_ETH_FSM_ENTRY_IPV4_NO_UDP_TCP	5
139 
140 /* FSM DATA format */
141 #define	AL_ETH_FSM_DATA_OUTER_2_TUPLE	0
142 #define	AL_ETH_FSM_DATA_OUTER_4_TUPLE	1
143 #define	AL_ETH_FSM_DATA_INNER_2_TUPLE	2
144 #define	AL_ETH_FSM_DATA_INNER_4_TUPLE	3
145 
146 #define	AL_ETH_FSM_DATA_HASH_SEL	(1 << 2)
147 
148 #define	AL_ETH_FSM_DATA_DEFAULT_Q	0
149 #define	AL_ETH_FSM_DATA_DEFAULT_UDMA	0
150 
151 #define	AL_BR_SIZE	512
152 #define	AL_TSO_SIZE	65500
153 #define	AL_DEFAULT_MTU	1500
154 
155 #define	CSUM_OFFLOAD		(CSUM_IP|CSUM_TCP|CSUM_UDP|CSUM_SCTP)
156 
157 #define	AL_IP_ALIGNMENT_OFFSET	2
158 
159 #define	SFP_I2C_ADDR		0x50
160 
161 #define	AL_MASK_GROUP_A_INT	0x7
162 #define	AL_MASK_GROUP_B_INT	0xF
163 #define	AL_MASK_GROUP_C_INT	0xF
164 #define	AL_MASK_GROUP_D_INT	0xFFFFFFFF
165 
166 #define	AL_REG_OFFSET_FORWARD_INTR	(0x1800000 + 0x1210)
167 #define	AL_EN_FORWARD_INTR	0x1FFFF
168 #define	AL_DIS_FORWARD_INTR	0
169 
170 #define	AL_M2S_MASK_INIT	0x480
171 #define	AL_S2M_MASK_INIT	0x1E0
172 #define	AL_M2S_S2M_MASK_NOT_INT	(0x3f << 25)
173 
174 #define	AL_10BASE_T_SPEED	10
175 #define	AL_100BASE_TX_SPEED	100
176 #define	AL_1000BASE_T_SPEED	1000
177 
178 static devclass_t al_devclass;
179 
180 #define	AL_RX_LOCK_INIT(_sc)	mtx_init(&((_sc)->if_rx_lock), "ALRXL", "ALRXL", MTX_DEF)
181 #define	AL_RX_LOCK(_sc)		mtx_lock(&((_sc)->if_rx_lock))
182 #define	AL_RX_UNLOCK(_sc)	mtx_unlock(&((_sc)->if_rx_lock))
183 
184 /* helper functions */
185 static int al_is_device_supported(device_t);
186 
187 static void al_eth_init_rings(struct al_eth_adapter *);
188 static void al_eth_flow_ctrl_disable(struct al_eth_adapter *);
189 int al_eth_fpga_read_pci_config(void *, int, uint32_t *);
190 int al_eth_fpga_write_pci_config(void *, int, uint32_t);
191 int al_eth_read_pci_config(void *, int, uint32_t *);
192 int al_eth_write_pci_config(void *, int, uint32_t);
193 void al_eth_irq_config(uint32_t *, uint32_t);
194 void al_eth_forward_int_config(uint32_t *, uint32_t);
195 static void al_eth_start_xmit(void *, int);
196 static void al_eth_rx_recv_work(void *, int);
197 static int al_eth_up(struct al_eth_adapter *);
198 static void al_eth_down(struct al_eth_adapter *);
199 static void al_eth_interrupts_unmask(struct al_eth_adapter *);
200 static void al_eth_interrupts_mask(struct al_eth_adapter *);
201 static int al_eth_check_mtu(struct al_eth_adapter *, int);
202 static uint64_t al_get_counter(struct ifnet *, ift_counter);
203 static void al_eth_req_rx_buff_size(struct al_eth_adapter *, int);
204 static int al_eth_board_params_init(struct al_eth_adapter *);
205 static int al_media_update(struct ifnet *);
206 static void al_media_status(struct ifnet *, struct ifmediareq *);
207 static int al_eth_function_reset(struct al_eth_adapter *);
208 static int al_eth_hw_init_adapter(struct al_eth_adapter *);
209 static void al_eth_serdes_init(struct al_eth_adapter *);
210 static void al_eth_lm_config(struct al_eth_adapter *);
211 static int al_eth_hw_init(struct al_eth_adapter *);
212 
213 static void al_tick_stats(void *);
214 
215 /* ifnet entry points */
216 static void al_init(void *);
217 static int al_mq_start(struct ifnet *, struct mbuf *);
218 static void al_qflush(struct ifnet *);
219 static int al_ioctl(struct ifnet * ifp, u_long, caddr_t);
220 
221 /* bus entry points */
222 static int al_probe(device_t);
223 static int al_attach(device_t);
224 static int al_detach(device_t);
225 static int al_shutdown(device_t);
226 
227 /* mii bus support routines */
228 static int al_miibus_readreg(device_t, int, int);
229 static int al_miibus_writereg(device_t, int, int, int);
230 static void al_miibus_statchg(device_t);
231 static void al_miibus_linkchg(device_t);
232 
233 struct al_eth_adapter* g_adapters[16];
234 uint32_t g_adapters_count;
235 
236 /* flag for napi-like mbuf processing, controlled from sysctl */
237 static int napi = 0;
238 
239 static device_method_t al_methods[] = {
240 	/* Device interface */
241 	DEVMETHOD(device_probe,		al_probe),
242 	DEVMETHOD(device_attach,	al_attach),
243 	DEVMETHOD(device_detach,	al_detach),
244 	DEVMETHOD(device_shutdown,	al_shutdown),
245 
246 	DEVMETHOD(miibus_readreg,	al_miibus_readreg),
247 	DEVMETHOD(miibus_writereg,	al_miibus_writereg),
248 	DEVMETHOD(miibus_statchg,	al_miibus_statchg),
249 	DEVMETHOD(miibus_linkchg,	al_miibus_linkchg),
250 	{ 0, 0 }
251 };
252 
253 static driver_t al_driver = {
254 	"al",
255 	al_methods,
256 	sizeof(struct al_eth_adapter),
257 };
258 
259 DRIVER_MODULE(al, pci, al_driver, al_devclass, 0, 0);
260 DRIVER_MODULE(miibus, al, miibus_driver, miibus_devclass, 0, 0);
261 
262 static int
263 al_probe(device_t dev)
264 {
265 	if ((al_is_device_supported(dev)) != 0) {
266 		device_set_desc(dev, "al");
267 		return (BUS_PROBE_DEFAULT);
268 	}
269 	return (ENXIO);
270 }
271 
272 static int
273 al_attach(device_t dev)
274 {
275 	struct al_eth_adapter *adapter;
276 	struct sysctl_oid_list *child;
277 	struct sysctl_ctx_list *ctx;
278 	struct sysctl_oid *tree;
279 	struct ifnet *ifp;
280 	uint32_t dev_id;
281 	uint32_t rev_id;
282 	int bar_udma;
283 	int bar_mac;
284 	int bar_ec;
285 	int err;
286 
287 	err = 0;
288 	ifp = NULL;
289 	dev_id = rev_id = 0;
290 	ctx = device_get_sysctl_ctx(dev);
291 	tree = SYSCTL_PARENT(device_get_sysctl_tree(dev));
292 	child = SYSCTL_CHILDREN(tree);
293 
294 	if (g_adapters_count == 0) {
295 		SYSCTL_ADD_INT(ctx, child, OID_AUTO, "napi",
296 		    CTLFLAG_RW, &napi, 0, "Use pseudo-napi mechanism");
297 	}
298 	adapter = device_get_softc(dev);
299 	adapter->dev = dev;
300 	adapter->board_type = ALPINE_INTEGRATED;
301 	snprintf(adapter->name, AL_ETH_NAME_MAX_LEN, "%s",
302 	    device_get_nameunit(dev));
303 	AL_RX_LOCK_INIT(adapter);
304 
305 	g_adapters[g_adapters_count] = adapter;
306 
307 	bar_udma = PCIR_BAR(AL_ETH_UDMA_BAR);
308 	adapter->udma_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
309 	    &bar_udma, RF_ACTIVE);
310 	if (adapter->udma_res == NULL) {
311 		device_printf(adapter->dev,
312 		    "could not allocate memory resources for DMA.\n");
313 		err = ENOMEM;
314 		goto err_res_dma;
315 	}
316 	adapter->udma_base = al_bus_dma_to_va(rman_get_bustag(adapter->udma_res),
317 	    rman_get_bushandle(adapter->udma_res));
318 	bar_mac = PCIR_BAR(AL_ETH_MAC_BAR);
319 	adapter->mac_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
320 	    &bar_mac, RF_ACTIVE);
321 	if (adapter->mac_res == NULL) {
322 		device_printf(adapter->dev,
323 		    "could not allocate memory resources for MAC.\n");
324 		err = ENOMEM;
325 		goto err_res_mac;
326 	}
327 	adapter->mac_base = al_bus_dma_to_va(rman_get_bustag(adapter->mac_res),
328 	    rman_get_bushandle(adapter->mac_res));
329 
330 	bar_ec = PCIR_BAR(AL_ETH_EC_BAR);
331 	adapter->ec_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &bar_ec,
332 	    RF_ACTIVE);
333 	if (adapter->ec_res == NULL) {
334 		device_printf(adapter->dev,
335 		    "could not allocate memory resources for EC.\n");
336 		err = ENOMEM;
337 		goto err_res_ec;
338 	}
339 	adapter->ec_base = al_bus_dma_to_va(rman_get_bustag(adapter->ec_res),
340 	    rman_get_bushandle(adapter->ec_res));
341 
342 	adapter->netdev = ifp = if_alloc(IFT_ETHER);
343 
344 	adapter->netdev->if_link_state = LINK_STATE_DOWN;
345 
346 	ifp->if_softc = adapter;
347 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
348 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
349 	ifp->if_flags = ifp->if_drv_flags;
350 	ifp->if_flags |= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_ALLMULTI;
351 	ifp->if_transmit = al_mq_start;
352 	ifp->if_qflush = al_qflush;
353 	ifp->if_ioctl = al_ioctl;
354 	ifp->if_init = al_init;
355 	ifp->if_get_counter = al_get_counter;
356 	ifp->if_mtu = AL_DEFAULT_MTU;
357 
358 	adapter->if_flags = ifp->if_flags;
359 
360 	ifp->if_capabilities = ifp->if_capenable = 0;
361 
362 	ifp->if_capabilities |= IFCAP_HWCSUM |
363 	    IFCAP_HWCSUM_IPV6 | IFCAP_TSO |
364 	    IFCAP_LRO | IFCAP_JUMBO_MTU;
365 
366 	ifp->if_capenable = ifp->if_capabilities;
367 
368 	adapter->id_number = g_adapters_count;
369 
370 	if (adapter->board_type == ALPINE_INTEGRATED) {
371 		dev_id = pci_get_device(adapter->dev);
372 		rev_id = pci_get_revid(adapter->dev);
373 	} else {
374 		al_eth_fpga_read_pci_config(adapter->internal_pcie_base,
375 		    PCIR_DEVICE, &dev_id);
376 		al_eth_fpga_read_pci_config(adapter->internal_pcie_base,
377 		    PCIR_REVID, &rev_id);
378 	}
379 
380 	adapter->dev_id = dev_id;
381 	adapter->rev_id = rev_id;
382 
383 	/* set default ring sizes */
384 	adapter->tx_ring_count = AL_ETH_DEFAULT_TX_SW_DESCS;
385 	adapter->tx_descs_count = AL_ETH_DEFAULT_TX_HW_DESCS;
386 	adapter->rx_ring_count = AL_ETH_DEFAULT_RX_DESCS;
387 	adapter->rx_descs_count = AL_ETH_DEFAULT_RX_DESCS;
388 
389 	adapter->num_tx_queues = AL_ETH_NUM_QUEUES;
390 	adapter->num_rx_queues = AL_ETH_NUM_QUEUES;
391 
392 	adapter->small_copy_len	= AL_ETH_DEFAULT_SMALL_PACKET_LEN;
393 	adapter->link_poll_interval = AL_ETH_DEFAULT_LINK_POLL_INTERVAL;
394 	adapter->max_rx_buff_alloc_size = AL_ETH_DEFAULT_MAX_RX_BUFF_ALLOC_SIZE;
395 
396 	al_eth_req_rx_buff_size(adapter, adapter->netdev->if_mtu);
397 
398 	adapter->link_config.force_1000_base_x = AL_ETH_DEFAULT_FORCE_1000_BASEX;
399 
400 	err = al_eth_board_params_init(adapter);
401 	if (err != 0)
402 		goto err;
403 
404 	if (adapter->mac_mode == AL_ETH_MAC_MODE_10GbE_Serial) {
405 		ifmedia_init(&adapter->media, IFM_IMASK,
406 		    al_media_update, al_media_status);
407 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_LX, 0, NULL);
408 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_LR, 0, NULL);
409 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
410 		ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
411 	}
412 
413 	al_eth_function_reset(adapter);
414 
415 	err = al_eth_hw_init_adapter(adapter);
416 	if (err != 0)
417 		goto err;
418 
419 	al_eth_init_rings(adapter);
420 	g_adapters_count++;
421 
422 	al_eth_lm_config(adapter);
423 	mtx_init(&adapter->stats_mtx, "AlStatsMtx", NULL, MTX_DEF);
424 	mtx_init(&adapter->wd_mtx, "AlWdMtx", NULL, MTX_DEF);
425 	callout_init_mtx(&adapter->stats_callout, &adapter->stats_mtx, 0);
426 	callout_init_mtx(&adapter->wd_callout, &adapter->wd_mtx, 0);
427 
428 	ether_ifattach(ifp, adapter->mac_addr);
429 	ifp->if_mtu = AL_DEFAULT_MTU;
430 
431 	if (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII) {
432 		al_eth_hw_init(adapter);
433 
434 		/* Attach PHY(s) */
435 		err = mii_attach(adapter->dev, &adapter->miibus, adapter->netdev,
436 		    al_media_update, al_media_status, BMSR_DEFCAPMASK, 0,
437 		    MII_OFFSET_ANY, 0);
438 		if (err != 0) {
439 			device_printf(adapter->dev, "attaching PHYs failed\n");
440 			return (err);
441 		}
442 
443 		adapter->mii = device_get_softc(adapter->miibus);
444 	}
445 
446 	return (err);
447 
448 err:
449 	bus_release_resource(dev, SYS_RES_MEMORY, bar_ec, adapter->ec_res);
450 err_res_ec:
451 	bus_release_resource(dev, SYS_RES_MEMORY, bar_mac, adapter->mac_res);
452 err_res_mac:
453 	bus_release_resource(dev, SYS_RES_MEMORY, bar_udma, adapter->udma_res);
454 err_res_dma:
455 	return (err);
456 }
457 
458 static int
459 al_detach(device_t dev)
460 {
461 	struct al_eth_adapter *adapter;
462 
463 	adapter = device_get_softc(dev);
464 	ether_ifdetach(adapter->netdev);
465 
466 	mtx_destroy(&adapter->stats_mtx);
467 	mtx_destroy(&adapter->wd_mtx);
468 
469 	al_eth_down(adapter);
470 
471 	bus_release_resource(dev, SYS_RES_IRQ,    0, adapter->irq_res);
472 	bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->ec_res);
473 	bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->mac_res);
474 	bus_release_resource(dev, SYS_RES_MEMORY, 0, adapter->udma_res);
475 
476 	return (0);
477 }
478 
479 int
480 al_eth_fpga_read_pci_config(void *handle, int where, uint32_t *val)
481 {
482 
483 	/* handle is the base address of the adapter */
484 	*val = al_reg_read32((void*)((u_long)handle + where));
485 
486 	return (0);
487 }
488 
489 int
490 al_eth_fpga_write_pci_config(void *handle, int where, uint32_t val)
491 {
492 
493 	/* handle is the base address of the adapter */
494 	al_reg_write32((void*)((u_long)handle + where), val);
495 	return (0);
496 }
497 
498 int
499 al_eth_read_pci_config(void *handle, int where, uint32_t *val)
500 {
501 
502 	/* handle is a pci_dev */
503 	*val = pci_read_config((device_t)handle, where, sizeof(*val));
504 	return (0);
505 }
506 
507 int
508 al_eth_write_pci_config(void *handle, int where, uint32_t val)
509 {
510 
511 	/* handle is a pci_dev */
512 	pci_write_config((device_t)handle, where, val, sizeof(val));
513 	return (0);
514 }
515 
516 void
517 al_eth_irq_config(uint32_t *offset, uint32_t value)
518 {
519 
520 	al_reg_write32_relaxed(offset, value);
521 }
522 
523 void
524 al_eth_forward_int_config(uint32_t *offset, uint32_t value)
525 {
526 
527 	al_reg_write32(offset, value);
528 }
529 
530 static void
531 al_eth_serdes_init(struct al_eth_adapter *adapter)
532 {
533 	void __iomem	*serdes_base;
534 
535 	adapter->serdes_init = false;
536 
537 	serdes_base = alpine_serdes_resource_get(adapter->serdes_grp);
538 	if (serdes_base == NULL) {
539 		device_printf(adapter->dev, "serdes_base get failed!\n");
540 		return;
541 	}
542 
543 	serdes_base = al_bus_dma_to_va(serdes_tag, serdes_base);
544 
545 	al_serdes_handle_grp_init(serdes_base, adapter->serdes_grp,
546 	    &adapter->serdes_obj);
547 
548 	adapter->serdes_init = true;
549 }
550 
551 static void
552 al_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
553 {
554 	bus_addr_t *paddr;
555 
556 	paddr = arg;
557 	*paddr = segs->ds_addr;
558 }
559 
560 static int
561 al_dma_alloc_coherent(struct device *dev, bus_dma_tag_t *tag, bus_dmamap_t *map,
562     bus_addr_t *baddr, void **vaddr, uint32_t size)
563 {
564 	int ret;
565 	uint32_t maxsize = ((size - 1)/PAGE_SIZE + 1) * PAGE_SIZE;
566 
567 	ret = bus_dma_tag_create(bus_get_dma_tag(dev), 8, 0,
568 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
569 	    maxsize, 1, maxsize, BUS_DMA_COHERENT, NULL, NULL, tag);
570 	if (ret != 0) {
571 		device_printf(dev,
572 		    "failed to create bus tag, ret = %d\n", ret);
573 		return (ret);
574 	}
575 
576 	ret = bus_dmamem_alloc(*tag, vaddr,
577 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
578 	if (ret != 0) {
579 		device_printf(dev,
580 		    "failed to allocate dmamem, ret = %d\n", ret);
581 		return (ret);
582 	}
583 
584 	ret = bus_dmamap_load(*tag, *map, *vaddr,
585 	    size, al_dma_map_addr, baddr, 0);
586 	if (ret != 0) {
587 		device_printf(dev,
588 		    "failed to allocate bus_dmamap_load, ret = %d\n", ret);
589 		return (ret);
590 	}
591 
592 	return (0);
593 }
594 
595 static void
596 al_dma_free_coherent(bus_dma_tag_t tag, bus_dmamap_t map, void *vaddr)
597 {
598 
599 	bus_dmamap_unload(tag, map);
600 	bus_dmamem_free(tag, vaddr, map);
601 	bus_dma_tag_destroy(tag);
602 }
603 
604 static void
605 al_eth_mac_table_unicast_add(struct al_eth_adapter *adapter,
606     uint8_t idx, uint8_t *addr, uint8_t udma_mask)
607 {
608 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
609 
610 	memcpy(entry.addr, adapter->mac_addr, sizeof(adapter->mac_addr));
611 
612 	memset(entry.mask, 0xff, sizeof(entry.mask));
613 	entry.rx_valid = true;
614 	entry.tx_valid = false;
615 	entry.udma_mask = udma_mask;
616 	entry.filter = false;
617 
618 	device_printf_dbg(adapter->dev,
619 	    "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
620 	    __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
621 
622 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
623 }
624 
625 static void
626 al_eth_mac_table_all_multicast_add(struct al_eth_adapter *adapter, uint8_t idx,
627     uint8_t udma_mask)
628 {
629 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
630 
631 	memset(entry.addr, 0x00, sizeof(entry.addr));
632 	memset(entry.mask, 0x00, sizeof(entry.mask));
633 	entry.mask[0] |= 1;
634 	entry.addr[0] |= 1;
635 
636 	entry.rx_valid = true;
637 	entry.tx_valid = false;
638 	entry.udma_mask = udma_mask;
639 	entry.filter = false;
640 
641 	device_printf_dbg(adapter->dev,
642 	    "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
643 	    __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
644 
645 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
646 }
647 
648 static void
649 al_eth_mac_table_broadcast_add(struct al_eth_adapter *adapter,
650     uint8_t idx, uint8_t udma_mask)
651 {
652 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
653 
654 	memset(entry.addr, 0xff, sizeof(entry.addr));
655 	memset(entry.mask, 0xff, sizeof(entry.mask));
656 
657 	entry.rx_valid = true;
658 	entry.tx_valid = false;
659 	entry.udma_mask = udma_mask;
660 	entry.filter = false;
661 
662 	device_printf_dbg(adapter->dev,
663 	    "%s: [%d]: addr "MAC_ADDR_STR" mask "MAC_ADDR_STR"\n",
664 	    __func__, idx, MAC_ADDR(entry.addr), MAC_ADDR(entry.mask));
665 
666 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
667 }
668 
669 static void
670 al_eth_mac_table_promiscuous_set(struct al_eth_adapter *adapter,
671     boolean_t promiscuous)
672 {
673 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
674 
675 	memset(entry.addr, 0x00, sizeof(entry.addr));
676 	memset(entry.mask, 0x00, sizeof(entry.mask));
677 
678 	entry.rx_valid = true;
679 	entry.tx_valid = false;
680 	entry.udma_mask = (promiscuous) ? 1 : 0;
681 	entry.filter = (promiscuous) ? false : true;
682 
683 	device_printf_dbg(adapter->dev, "%s: %s promiscuous mode\n",
684 	    __func__, (promiscuous) ? "enter" : "exit");
685 
686 	al_eth_fwd_mac_table_set(&adapter->hal_adapter,
687 	    AL_ETH_MAC_TABLE_DROP_IDX, &entry);
688 }
689 
690 static void
691 al_eth_set_thash_table_entry(struct al_eth_adapter *adapter, uint8_t idx,
692     uint8_t udma, uint32_t queue)
693 {
694 
695 	if (udma != 0)
696 		panic("only UDMA0 is supporter");
697 
698 	if (queue >= AL_ETH_NUM_QUEUES)
699 		panic("invalid queue number");
700 
701 	al_eth_thash_table_set(&adapter->hal_adapter, idx, udma, queue);
702 }
703 
704 /* init FSM, no tunneling supported yet, if packet is tcp/udp over ipv4/ipv6, use 4 tuple hash */
705 static void
706 al_eth_fsm_table_init(struct al_eth_adapter *adapter)
707 {
708 	uint32_t val;
709 	int i;
710 
711 	for (i = 0; i < AL_ETH_RX_FSM_TABLE_SIZE; i++) {
712 		uint8_t outer_type = AL_ETH_FSM_ENTRY_OUTER(i);
713 		switch (outer_type) {
714 		case AL_ETH_FSM_ENTRY_IPV4_TCP:
715 		case AL_ETH_FSM_ENTRY_IPV4_UDP:
716 		case AL_ETH_FSM_ENTRY_IPV6_TCP:
717 		case AL_ETH_FSM_ENTRY_IPV6_UDP:
718 			val = AL_ETH_FSM_DATA_OUTER_4_TUPLE |
719 			    AL_ETH_FSM_DATA_HASH_SEL;
720 			break;
721 		case AL_ETH_FSM_ENTRY_IPV6_NO_UDP_TCP:
722 		case AL_ETH_FSM_ENTRY_IPV4_NO_UDP_TCP:
723 			val = AL_ETH_FSM_DATA_OUTER_2_TUPLE |
724 			    AL_ETH_FSM_DATA_HASH_SEL;
725 			break;
726 		default:
727 			val = AL_ETH_FSM_DATA_DEFAULT_Q |
728 			    AL_ETH_FSM_DATA_DEFAULT_UDMA;
729 		}
730 		al_eth_fsm_table_set(&adapter->hal_adapter, i, val);
731 	}
732 }
733 
734 static void
735 al_eth_mac_table_entry_clear(struct al_eth_adapter *adapter,
736     uint8_t idx)
737 {
738 	struct al_eth_fwd_mac_table_entry entry = { { 0 } };
739 
740 	device_printf_dbg(adapter->dev, "%s: clear entry %d\n", __func__, idx);
741 
742 	al_eth_fwd_mac_table_set(&adapter->hal_adapter, idx, &entry);
743 }
744 
745 static int
746 al_eth_hw_init_adapter(struct al_eth_adapter *adapter)
747 {
748 	struct al_eth_adapter_params *params = &adapter->eth_hal_params;
749 	int rc;
750 
751 	/* params->dev_id = adapter->dev_id; */
752 	params->rev_id = adapter->rev_id;
753 	params->udma_id = 0;
754 	params->enable_rx_parser = 1; /* enable rx epe parser*/
755 	params->udma_regs_base = adapter->udma_base; /* UDMA register base address */
756 	params->ec_regs_base = adapter->ec_base; /* Ethernet controller registers base address */
757 	params->mac_regs_base = adapter->mac_base; /* Ethernet MAC registers base address */
758 	params->name = adapter->name;
759 	params->serdes_lane = adapter->serdes_lane;
760 
761 	rc = al_eth_adapter_init(&adapter->hal_adapter, params);
762 	if (rc != 0)
763 		device_printf(adapter->dev, "%s failed at hal init!\n",
764 		    __func__);
765 
766 	if ((adapter->board_type == ALPINE_NIC) ||
767 	    (adapter->board_type == ALPINE_FPGA_NIC)) {
768 		/* in pcie NIC mode, force eth UDMA to access PCIE0 using the vmid */
769 		struct al_udma_gen_tgtid_conf conf;
770 		int i;
771 		for (i = 0; i < DMA_MAX_Q; i++) {
772 			conf.tx_q_conf[i].queue_en = AL_TRUE;
773 			conf.tx_q_conf[i].desc_en = AL_FALSE;
774 			conf.tx_q_conf[i].tgtid = 0x100; /* for access from PCIE0 */
775 			conf.rx_q_conf[i].queue_en = AL_TRUE;
776 			conf.rx_q_conf[i].desc_en = AL_FALSE;
777 			conf.rx_q_conf[i].tgtid = 0x100; /* for access from PCIE0 */
778 		}
779 		al_udma_gen_tgtid_conf_set(adapter->udma_base, &conf);
780 	}
781 
782 	return (rc);
783 }
784 
785 static void
786 al_eth_lm_config(struct al_eth_adapter *adapter)
787 {
788 	struct al_eth_lm_init_params params = {0};
789 
790 	params.adapter = &adapter->hal_adapter;
791 	params.serdes_obj = &adapter->serdes_obj;
792 	params.lane = adapter->serdes_lane;
793 	params.sfp_detection = adapter->sfp_detection_needed;
794 	if (adapter->sfp_detection_needed == true) {
795 		params.sfp_bus_id = adapter->i2c_adapter_id;
796 		params.sfp_i2c_addr = SFP_I2C_ADDR;
797 	}
798 
799 	if (adapter->sfp_detection_needed == false) {
800 		switch (adapter->mac_mode) {
801 		case AL_ETH_MAC_MODE_10GbE_Serial:
802 			if ((adapter->lt_en != 0) && (adapter->an_en != 0))
803 				params.default_mode = AL_ETH_LM_MODE_10G_DA;
804 			else
805 				params.default_mode = AL_ETH_LM_MODE_10G_OPTIC;
806 			break;
807 		case AL_ETH_MAC_MODE_SGMII:
808 			params.default_mode = AL_ETH_LM_MODE_1G;
809 			break;
810 		default:
811 			params.default_mode = AL_ETH_LM_MODE_10G_DA;
812 		}
813 	} else
814 		params.default_mode = AL_ETH_LM_MODE_10G_DA;
815 
816 	params.link_training = adapter->lt_en;
817 	params.rx_equal = true;
818 	params.static_values = !adapter->dont_override_serdes;
819 	params.i2c_context = adapter;
820 	params.kr_fec_enable = false;
821 
822 	params.retimer_exist = adapter->retimer.exist;
823 	params.retimer_bus_id = adapter->retimer.bus_id;
824 	params.retimer_i2c_addr = adapter->retimer.i2c_addr;
825 	params.retimer_channel = adapter->retimer.channel;
826 
827 	al_eth_lm_init(&adapter->lm_context, &params);
828 }
829 
830 static int
831 al_eth_board_params_init(struct al_eth_adapter *adapter)
832 {
833 
834 	if (adapter->board_type == ALPINE_NIC) {
835 		adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
836 		adapter->sfp_detection_needed = false;
837 		adapter->phy_exist = false;
838 		adapter->an_en = false;
839 		adapter->lt_en = false;
840 		adapter->ref_clk_freq = AL_ETH_REF_FREQ_375_MHZ;
841 		adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
842 	} else if (adapter->board_type == ALPINE_FPGA_NIC) {
843 		adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
844 		adapter->sfp_detection_needed = false;
845 		adapter->phy_exist = false;
846 		adapter->an_en = false;
847 		adapter->lt_en = false;
848 		adapter->ref_clk_freq = AL_ETH_REF_FREQ_375_MHZ;
849 		adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
850 	} else {
851 		struct al_eth_board_params params;
852 		int rc;
853 
854 		adapter->auto_speed = false;
855 
856 		rc = al_eth_board_params_get(adapter->mac_base, &params);
857 		if (rc != 0) {
858 			device_printf(adapter->dev,
859 			    "board info not available\n");
860 			return (-1);
861 		}
862 
863 		adapter->phy_exist = params.phy_exist == TRUE;
864 		adapter->phy_addr = params.phy_mdio_addr;
865 		adapter->an_en = params.autoneg_enable;
866 		adapter->lt_en = params.kr_lt_enable;
867 		adapter->serdes_grp = params.serdes_grp;
868 		adapter->serdes_lane = params.serdes_lane;
869 		adapter->sfp_detection_needed = params.sfp_plus_module_exist;
870 		adapter->i2c_adapter_id = params.i2c_adapter_id;
871 		adapter->ref_clk_freq = params.ref_clk_freq;
872 		adapter->dont_override_serdes = params.dont_override_serdes;
873 		adapter->link_config.active_duplex = !params.half_duplex;
874 		adapter->link_config.autoneg = !params.an_disable;
875 		adapter->link_config.force_1000_base_x = params.force_1000_base_x;
876 		adapter->retimer.exist = params.retimer_exist;
877 		adapter->retimer.bus_id = params.retimer_bus_id;
878 		adapter->retimer.i2c_addr = params.retimer_i2c_addr;
879 		adapter->retimer.channel = params.retimer_channel;
880 
881 		switch (params.speed) {
882 		default:
883 			device_printf(adapter->dev,
884 			    "%s: invalid speed (%d)\n", __func__, params.speed);
885 		case AL_ETH_BOARD_1G_SPEED_1000M:
886 			adapter->link_config.active_speed = 1000;
887 			break;
888 		case AL_ETH_BOARD_1G_SPEED_100M:
889 			adapter->link_config.active_speed = 100;
890 			break;
891 		case AL_ETH_BOARD_1G_SPEED_10M:
892 			adapter->link_config.active_speed = 10;
893 			break;
894 		}
895 
896 		switch (params.mdio_freq) {
897 		default:
898 			device_printf(adapter->dev,
899 			    "%s: invalid mdio freq (%d)\n", __func__,
900 			    params.mdio_freq);
901 		case AL_ETH_BOARD_MDIO_FREQ_2_5_MHZ:
902 			adapter->mdio_freq = AL_ETH_DEFAULT_MDIO_FREQ_KHZ;
903 			break;
904 		case AL_ETH_BOARD_MDIO_FREQ_1_MHZ:
905 			adapter->mdio_freq = AL_ETH_MDIO_FREQ_1000_KHZ;
906 			break;
907 		}
908 
909 		switch (params.media_type) {
910 		case AL_ETH_BOARD_MEDIA_TYPE_RGMII:
911 			if (params.sfp_plus_module_exist == TRUE)
912 				/* Backward compatibility */
913 				adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
914 			else
915 				adapter->mac_mode = AL_ETH_MAC_MODE_RGMII;
916 
917 			adapter->use_lm = false;
918 			break;
919 		case AL_ETH_BOARD_MEDIA_TYPE_SGMII:
920 			adapter->mac_mode = AL_ETH_MAC_MODE_SGMII;
921 			adapter->use_lm = true;
922 			break;
923 		case AL_ETH_BOARD_MEDIA_TYPE_10GBASE_SR:
924 			adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
925 			adapter->use_lm = true;
926 			break;
927 		case AL_ETH_BOARD_MEDIA_TYPE_AUTO_DETECT:
928 			adapter->sfp_detection_needed = TRUE;
929 			adapter->auto_speed = false;
930 			adapter->use_lm = true;
931 			break;
932 		case AL_ETH_BOARD_MEDIA_TYPE_AUTO_DETECT_AUTO_SPEED:
933 			adapter->sfp_detection_needed = TRUE;
934 			adapter->auto_speed = true;
935 			adapter->mac_mode_set = false;
936 			adapter->use_lm = true;
937 
938 			adapter->mac_mode = AL_ETH_MAC_MODE_10GbE_Serial;
939 			break;
940 		default:
941 			device_printf(adapter->dev,
942 			    "%s: unsupported media type %d\n",
943 			    __func__, params.media_type);
944 			return (-1);
945 		}
946 
947 		device_printf(adapter->dev,
948 		    "Board info: phy exist %s. phy addr %d. mdio freq %u Khz. "
949 		    "SFP connected %s. media %d\n",
950 		    params.phy_exist == TRUE ? "Yes" : "No",
951 		    params.phy_mdio_addr, adapter->mdio_freq,
952 		    params.sfp_plus_module_exist == TRUE ? "Yes" : "No",
953 		    params.media_type);
954 	}
955 
956 	al_eth_mac_addr_read(adapter->ec_base, 0, adapter->mac_addr);
957 
958 	return (0);
959 }
960 
961 static int
962 al_eth_function_reset(struct al_eth_adapter *adapter)
963 {
964 	struct al_eth_board_params params;
965 	int rc;
966 
967 	/* save board params so we restore it after reset */
968 	al_eth_board_params_get(adapter->mac_base, &params);
969 	al_eth_mac_addr_read(adapter->ec_base, 0, adapter->mac_addr);
970 	if (adapter->board_type == ALPINE_INTEGRATED)
971 		rc = al_eth_flr_rmn(&al_eth_read_pci_config,
972 		    &al_eth_write_pci_config,
973 		    adapter->dev, adapter->mac_base);
974 	else
975 		rc = al_eth_flr_rmn(&al_eth_fpga_read_pci_config,
976 		    &al_eth_fpga_write_pci_config,
977 		    adapter->internal_pcie_base, adapter->mac_base);
978 
979 	/* restore params */
980 	al_eth_board_params_set(adapter->mac_base, &params);
981 	al_eth_mac_addr_store(adapter->ec_base, 0, adapter->mac_addr);
982 
983 	return (rc);
984 }
985 
986 static void
987 al_eth_init_rings(struct al_eth_adapter *adapter)
988 {
989 	int i;
990 
991 	for (i = 0; i < adapter->num_tx_queues; i++) {
992 		struct al_eth_ring *ring = &adapter->tx_ring[i];
993 
994 		ring->ring_id = i;
995 		ring->dev = adapter->dev;
996 		ring->adapter = adapter;
997 		ring->netdev = adapter->netdev;
998 		al_udma_q_handle_get(&adapter->hal_adapter.tx_udma, i,
999 		    &ring->dma_q);
1000 		ring->sw_count = adapter->tx_ring_count;
1001 		ring->hw_count = adapter->tx_descs_count;
1002 		ring->unmask_reg_offset = al_udma_iofic_unmask_offset_get((struct unit_regs *)adapter->udma_base, AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_C);
1003 		ring->unmask_val = ~(1 << i);
1004 	}
1005 
1006 	for (i = 0; i < adapter->num_rx_queues; i++) {
1007 		struct al_eth_ring *ring = &adapter->rx_ring[i];
1008 
1009 		ring->ring_id = i;
1010 		ring->dev = adapter->dev;
1011 		ring->adapter = adapter;
1012 		ring->netdev = adapter->netdev;
1013 		al_udma_q_handle_get(&adapter->hal_adapter.rx_udma, i, &ring->dma_q);
1014 		ring->sw_count = adapter->rx_ring_count;
1015 		ring->hw_count = adapter->rx_descs_count;
1016 		ring->unmask_reg_offset = al_udma_iofic_unmask_offset_get(
1017 		    (struct unit_regs *)adapter->udma_base,
1018 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_B);
1019 		ring->unmask_val = ~(1 << i);
1020 	}
1021 }
1022 
1023 static void
1024 al_init_locked(void *arg)
1025 {
1026 	struct al_eth_adapter *adapter = arg;
1027 	if_t ifp = adapter->netdev;
1028 	int rc = 0;
1029 
1030 	al_eth_down(adapter);
1031 	rc = al_eth_up(adapter);
1032 
1033 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1034 	if (rc == 0)
1035 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1036 }
1037 
1038 static void
1039 al_init(void *arg)
1040 {
1041 	struct al_eth_adapter *adapter = arg;
1042 
1043 	al_init_locked(adapter);
1044 }
1045 
1046 static inline int
1047 al_eth_alloc_rx_buf(struct al_eth_adapter *adapter,
1048     struct al_eth_ring *rx_ring,
1049     struct al_eth_rx_buffer *rx_info)
1050 {
1051 	struct al_buf *al_buf;
1052 	bus_dma_segment_t segs[2];
1053 	int error;
1054 	int nsegs;
1055 
1056 	if (rx_info->m != NULL)
1057 		return (0);
1058 
1059 	rx_info->data_size = adapter->rx_mbuf_sz;
1060 
1061 	AL_RX_LOCK(adapter);
1062 
1063 	/* Get mbuf using UMA allocator */
1064 	rx_info->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1065 	    rx_info->data_size);
1066 	AL_RX_UNLOCK(adapter);
1067 
1068 	if (rx_info->m == NULL)
1069 		return (ENOMEM);
1070 
1071 	rx_info->m->m_pkthdr.len = rx_info->m->m_len = adapter->rx_mbuf_sz;
1072 
1073 	/* Map packets for DMA */
1074 	error = bus_dmamap_load_mbuf_sg(rx_ring->dma_buf_tag, rx_info->dma_map,
1075 	    rx_info->m, segs, &nsegs, BUS_DMA_NOWAIT);
1076 	if (__predict_false(error)) {
1077 		device_printf(rx_ring->dev, "failed to map mbuf, error = %d\n",
1078 		    error);
1079 		m_freem(rx_info->m);
1080 		rx_info->m = NULL;
1081 		return (EFAULT);
1082 	}
1083 
1084 	al_buf = &rx_info->al_buf;
1085 	al_buf->addr = segs[0].ds_addr + AL_IP_ALIGNMENT_OFFSET;
1086 	al_buf->len = rx_info->data_size - AL_IP_ALIGNMENT_OFFSET;
1087 
1088 	return (0);
1089 }
1090 
1091 static int
1092 al_eth_refill_rx_bufs(struct al_eth_adapter *adapter, unsigned int qid,
1093     unsigned int num)
1094 {
1095 	struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
1096 	uint16_t next_to_use;
1097 	unsigned int i;
1098 
1099 	next_to_use = rx_ring->next_to_use;
1100 
1101 	for (i = 0; i < num; i++) {
1102 		int rc;
1103 		struct al_eth_rx_buffer *rx_info =
1104 		    &rx_ring->rx_buffer_info[next_to_use];
1105 
1106 		if (__predict_false(al_eth_alloc_rx_buf(adapter,
1107 		    rx_ring, rx_info) < 0)) {
1108 			device_printf(adapter->dev,
1109 			    "failed to alloc buffer for rx queue %d\n", qid);
1110 			break;
1111 		}
1112 
1113 		rc = al_eth_rx_buffer_add(rx_ring->dma_q,
1114 		    &rx_info->al_buf, AL_ETH_RX_FLAGS_INT, NULL);
1115 		if (__predict_false(rc)) {
1116 			device_printf(adapter->dev,
1117 			    "failed to add buffer for rx queue %d\n", qid);
1118 			break;
1119 		}
1120 
1121 		next_to_use = AL_ETH_RX_RING_IDX_NEXT(rx_ring, next_to_use);
1122 	}
1123 
1124 	if (__predict_false(i < num))
1125 		device_printf(adapter->dev,
1126 		    "refilled rx queue %d with %d pages only - available %d\n",
1127 		    qid, i, al_udma_available_get(rx_ring->dma_q));
1128 
1129 	if (__predict_true(i))
1130 		al_eth_rx_buffer_action(rx_ring->dma_q, i);
1131 
1132 	rx_ring->next_to_use = next_to_use;
1133 
1134 	return (i);
1135 }
1136 
1137 /*
1138  * al_eth_refill_all_rx_bufs - allocate all queues Rx buffers
1139  * @adapter: board private structure
1140  */
1141 static void
1142 al_eth_refill_all_rx_bufs(struct al_eth_adapter *adapter)
1143 {
1144 	int i;
1145 
1146 	for (i = 0; i < adapter->num_rx_queues; i++)
1147 		al_eth_refill_rx_bufs(adapter, i, AL_ETH_DEFAULT_RX_DESCS - 1);
1148 }
1149 
1150 static void
1151 al_eth_tx_do_cleanup(struct al_eth_ring *tx_ring)
1152 {
1153 	unsigned int total_done;
1154 	uint16_t next_to_clean;
1155 	int qid = tx_ring->ring_id;
1156 
1157 	total_done = al_eth_comp_tx_get(tx_ring->dma_q);
1158 	device_printf_dbg(tx_ring->dev,
1159 	    "tx_poll: q %d total completed descs %x\n", qid, total_done);
1160 	next_to_clean = tx_ring->next_to_clean;
1161 
1162 	while (total_done != 0) {
1163 		struct al_eth_tx_buffer *tx_info;
1164 		struct mbuf *mbuf;
1165 
1166 		tx_info = &tx_ring->tx_buffer_info[next_to_clean];
1167 		/* stop if not all descriptors of the packet are completed */
1168 		if (tx_info->tx_descs > total_done)
1169 			break;
1170 
1171 		mbuf = tx_info->m;
1172 
1173 		tx_info->m = NULL;
1174 
1175 		device_printf_dbg(tx_ring->dev,
1176 		    "tx_poll: q %d mbuf %p completed\n", qid, mbuf);
1177 
1178 		/* map is no longer required */
1179 		bus_dmamap_unload(tx_ring->dma_buf_tag, tx_info->dma_map);
1180 
1181 		m_freem(mbuf);
1182 		total_done -= tx_info->tx_descs;
1183 		next_to_clean = AL_ETH_TX_RING_IDX_NEXT(tx_ring, next_to_clean);
1184 	}
1185 
1186 	tx_ring->next_to_clean = next_to_clean;
1187 
1188 	device_printf_dbg(tx_ring->dev, "tx_poll: q %d done next to clean %x\n",
1189 	    qid, next_to_clean);
1190 
1191 	/*
1192 	 * need to make the rings circular update visible to
1193 	 * al_eth_start_xmit() before checking for netif_queue_stopped().
1194 	 */
1195 	al_smp_data_memory_barrier();
1196 }
1197 
1198 static void
1199 al_eth_tx_csum(struct al_eth_ring *tx_ring, struct al_eth_tx_buffer *tx_info,
1200     struct al_eth_pkt *hal_pkt, struct mbuf *m)
1201 {
1202 	uint32_t mss = m->m_pkthdr.tso_segsz;
1203 	struct ether_vlan_header *eh;
1204 	uint16_t etype;
1205 	struct ip *ip;
1206 	struct ip6_hdr *ip6;
1207 	struct tcphdr *th = NULL;
1208 	int	ehdrlen, ip_hlen = 0;
1209 	uint8_t	ipproto = 0;
1210 	uint32_t offload = 0;
1211 
1212 	if (mss != 0)
1213 		offload = 1;
1214 
1215 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0)
1216 		offload = 1;
1217 
1218 	if ((m->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
1219 		offload = 1;
1220 
1221 	if (offload != 0) {
1222 		struct al_eth_meta_data *meta = &tx_ring->hal_meta;
1223 
1224 		if (mss != 0)
1225 			hal_pkt->flags |= (AL_ETH_TX_FLAGS_TSO |
1226 			    AL_ETH_TX_FLAGS_L4_CSUM);
1227 		else
1228 			hal_pkt->flags |= (AL_ETH_TX_FLAGS_L4_CSUM |
1229 			    AL_ETH_TX_FLAGS_L4_PARTIAL_CSUM);
1230 
1231 		/*
1232 		 * Determine where frame payload starts.
1233 		 * Jump over vlan headers if already present,
1234 		 * helpful for QinQ too.
1235 		 */
1236 		eh = mtod(m, struct ether_vlan_header *);
1237 		if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1238 			etype = ntohs(eh->evl_proto);
1239 			ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1240 		} else {
1241 			etype = ntohs(eh->evl_encap_proto);
1242 			ehdrlen = ETHER_HDR_LEN;
1243 		}
1244 
1245 		switch (etype) {
1246 		case ETHERTYPE_IP:
1247 			ip = (struct ip *)(m->m_data + ehdrlen);
1248 			ip_hlen = ip->ip_hl << 2;
1249 			ipproto = ip->ip_p;
1250 			hal_pkt->l3_proto_idx = AL_ETH_PROTO_ID_IPv4;
1251 			th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
1252 			if (mss != 0)
1253 				hal_pkt->flags |= AL_ETH_TX_FLAGS_IPV4_L3_CSUM;
1254 			if (ipproto == IPPROTO_TCP)
1255 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_TCP;
1256 			else
1257 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_UDP;
1258 			break;
1259 		case ETHERTYPE_IPV6:
1260 			ip6 = (struct ip6_hdr *)(m->m_data + ehdrlen);
1261 			hal_pkt->l3_proto_idx = AL_ETH_PROTO_ID_IPv6;
1262 			ip_hlen = sizeof(struct ip6_hdr);
1263 			th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen);
1264 			ipproto = ip6->ip6_nxt;
1265 			if (ipproto == IPPROTO_TCP)
1266 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_TCP;
1267 			else
1268 				hal_pkt->l4_proto_idx = AL_ETH_PROTO_ID_UDP;
1269 			break;
1270 		default:
1271 			break;
1272 		}
1273 
1274 		meta->words_valid = 4;
1275 		meta->l3_header_len = ip_hlen;
1276 		meta->l3_header_offset = ehdrlen;
1277 		if (th != NULL)
1278 			meta->l4_header_len = th->th_off; /* this param needed only for TSO */
1279 		meta->mss_idx_sel = 0;			/* check how to select MSS */
1280 		meta->mss_val = mss;
1281 		hal_pkt->meta = meta;
1282 	} else
1283 		hal_pkt->meta = NULL;
1284 }
1285 
1286 #define	XMIT_QUEUE_TIMEOUT	100
1287 
1288 static void
1289 al_eth_xmit_mbuf(struct al_eth_ring *tx_ring, struct mbuf *m)
1290 {
1291 	struct al_eth_tx_buffer *tx_info;
1292 	int error;
1293 	int nsegs, a;
1294 	uint16_t next_to_use;
1295 	bus_dma_segment_t segs[AL_ETH_PKT_MAX_BUFS + 1];
1296 	struct al_eth_pkt *hal_pkt;
1297 	struct al_buf *al_buf;
1298 	boolean_t remap;
1299 
1300 	/* Check if queue is ready */
1301 	if (unlikely(tx_ring->stall) != 0) {
1302 		for (a = 0; a < XMIT_QUEUE_TIMEOUT; a++) {
1303 			if (al_udma_available_get(tx_ring->dma_q) >=
1304 			    (AL_ETH_DEFAULT_TX_HW_DESCS -
1305 			    AL_ETH_TX_WAKEUP_THRESH)) {
1306 				tx_ring->stall = 0;
1307 				break;
1308 			}
1309 			pause("stall", 1);
1310 		}
1311 		if (a == XMIT_QUEUE_TIMEOUT) {
1312 			device_printf(tx_ring->dev,
1313 			    "timeout waiting for queue %d ready!\n",
1314 			    tx_ring->ring_id);
1315 			return;
1316 		} else {
1317 			device_printf_dbg(tx_ring->dev,
1318 			    "queue %d is ready!\n", tx_ring->ring_id);
1319 		}
1320 	}
1321 
1322 	next_to_use = tx_ring->next_to_use;
1323 	tx_info = &tx_ring->tx_buffer_info[next_to_use];
1324 	tx_info->m = m;
1325 	hal_pkt = &tx_info->hal_pkt;
1326 
1327 	if (m == NULL) {
1328 		device_printf(tx_ring->dev, "mbuf is NULL\n");
1329 		return;
1330 	}
1331 
1332 	remap = TRUE;
1333 	/* Map packets for DMA */
1334 retry:
1335 	error = bus_dmamap_load_mbuf_sg(tx_ring->dma_buf_tag, tx_info->dma_map,
1336 	    m, segs, &nsegs, BUS_DMA_NOWAIT);
1337 	if (__predict_false(error)) {
1338 		struct mbuf *m_new;
1339 
1340 		if (error == EFBIG) {
1341 			/* Try it again? - one try */
1342 			if (remap == TRUE) {
1343 				remap = FALSE;
1344 				m_new = m_defrag(m, M_NOWAIT);
1345 				if (m_new == NULL) {
1346 					device_printf(tx_ring->dev,
1347 					    "failed to defrag mbuf\n");
1348 					goto exit;
1349 				}
1350 				m = m_new;
1351 				goto retry;
1352 			} else {
1353 				device_printf(tx_ring->dev,
1354 				    "failed to map mbuf, error %d\n", error);
1355 				goto exit;
1356 			}
1357 		} else {
1358 			device_printf(tx_ring->dev,
1359 			    "failed to map mbuf, error %d\n", error);
1360 			goto exit;
1361 		}
1362 	}
1363 
1364 	/* set flags and meta data */
1365 	hal_pkt->flags = AL_ETH_TX_FLAGS_INT;
1366 	al_eth_tx_csum(tx_ring, tx_info, hal_pkt, m);
1367 
1368 	al_buf = hal_pkt->bufs;
1369 	for (a = 0; a < nsegs; a++) {
1370 		al_buf->addr = segs[a].ds_addr;
1371 		al_buf->len = segs[a].ds_len;
1372 
1373 		al_buf++;
1374 	}
1375 
1376 	hal_pkt->num_of_bufs = nsegs;
1377 
1378 	/* prepare the packet's descriptors to dma engine */
1379 	tx_info->tx_descs = al_eth_tx_pkt_prepare(tx_ring->dma_q, hal_pkt);
1380 
1381 	if (tx_info->tx_descs == 0)
1382 		goto exit;
1383 
1384 	/*
1385 	 * stop the queue when no more space available, the packet can have up
1386 	 * to AL_ETH_PKT_MAX_BUFS + 1 buffers and a meta descriptor
1387 	 */
1388 	if (unlikely(al_udma_available_get(tx_ring->dma_q) <
1389 	    (AL_ETH_PKT_MAX_BUFS + 2))) {
1390 		tx_ring->stall = 1;
1391 		device_printf_dbg(tx_ring->dev, "stall, stopping queue %d...\n",
1392 		    tx_ring->ring_id);
1393 		al_data_memory_barrier();
1394 	}
1395 
1396 	tx_ring->next_to_use = AL_ETH_TX_RING_IDX_NEXT(tx_ring, next_to_use);
1397 
1398 	/* trigger the dma engine */
1399 	al_eth_tx_dma_action(tx_ring->dma_q, tx_info->tx_descs);
1400 	return;
1401 
1402 exit:
1403 	m_freem(m);
1404 }
1405 
1406 static void
1407 al_eth_tx_cmpl_work(void *arg, int pending)
1408 {
1409 	struct al_eth_ring *tx_ring = arg;
1410 
1411 	if (napi != 0) {
1412 		tx_ring->cmpl_is_running = 1;
1413 		al_data_memory_barrier();
1414 	}
1415 
1416 	al_eth_tx_do_cleanup(tx_ring);
1417 
1418 	if (napi != 0) {
1419 		tx_ring->cmpl_is_running = 0;
1420 		al_data_memory_barrier();
1421 	}
1422 	/* all work done, enable IRQs */
1423 	al_eth_irq_config(tx_ring->unmask_reg_offset, tx_ring->unmask_val);
1424 }
1425 
1426 static int
1427 al_eth_tx_cmlp_irq_filter(void *arg)
1428 {
1429 	struct al_eth_ring *tx_ring = arg;
1430 
1431 	/* Interrupt should be auto-masked upon arrival */
1432 
1433 	device_printf_dbg(tx_ring->dev, "%s for ring ID = %d\n", __func__,
1434 	    tx_ring->ring_id);
1435 
1436 	/*
1437 	 * For napi, if work is not running, schedule it. Always schedule
1438 	 * for casual (non-napi) packet handling.
1439 	 */
1440 	if ((napi == 0) || (napi && tx_ring->cmpl_is_running == 0))
1441 		taskqueue_enqueue(tx_ring->cmpl_tq, &tx_ring->cmpl_task);
1442 
1443 	/* Do not run bottom half */
1444 	return (FILTER_HANDLED);
1445 }
1446 
1447 static int
1448 al_eth_rx_recv_irq_filter(void *arg)
1449 {
1450 	struct al_eth_ring *rx_ring = arg;
1451 
1452 	/* Interrupt should be auto-masked upon arrival */
1453 
1454 	device_printf_dbg(rx_ring->dev, "%s for ring ID = %d\n", __func__,
1455 	    rx_ring->ring_id);
1456 
1457 	/*
1458 	 * For napi, if work is not running, schedule it. Always schedule
1459 	 * for casual (non-napi) packet handling.
1460 	 */
1461 	if ((napi == 0) || (napi && rx_ring->enqueue_is_running == 0))
1462 		taskqueue_enqueue(rx_ring->enqueue_tq, &rx_ring->enqueue_task);
1463 
1464 	/* Do not run bottom half */
1465 	return (FILTER_HANDLED);
1466 }
1467 
1468 /*
1469  * al_eth_rx_checksum - indicate in mbuf if hw indicated a good cksum
1470  * @adapter: structure containing adapter specific data
1471  * @hal_pkt: HAL structure for the packet
1472  * @mbuf: mbuf currently being received and modified
1473  */
1474 static inline void
1475 al_eth_rx_checksum(struct al_eth_adapter *adapter,
1476     struct al_eth_pkt *hal_pkt, struct mbuf *mbuf)
1477 {
1478 
1479 	/* if IPv4 and error */
1480 	if (unlikely((adapter->netdev->if_capenable & IFCAP_RXCSUM) &&
1481 	    (hal_pkt->l3_proto_idx == AL_ETH_PROTO_ID_IPv4) &&
1482 	    (hal_pkt->flags & AL_ETH_RX_FLAGS_L3_CSUM_ERR))) {
1483 		device_printf(adapter->dev,"rx ipv4 header checksum error\n");
1484 		return;
1485 	}
1486 
1487 	/* if IPv6 and error */
1488 	if (unlikely((adapter->netdev->if_capenable & IFCAP_RXCSUM_IPV6) &&
1489 	    (hal_pkt->l3_proto_idx == AL_ETH_PROTO_ID_IPv6) &&
1490 	    (hal_pkt->flags & AL_ETH_RX_FLAGS_L3_CSUM_ERR))) {
1491 		device_printf(adapter->dev,"rx ipv6 header checksum error\n");
1492 		return;
1493 	}
1494 
1495 	/* if TCP/UDP */
1496 	if (likely((hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_TCP) ||
1497 	   (hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_UDP))) {
1498 		if (unlikely(hal_pkt->flags & AL_ETH_RX_FLAGS_L4_CSUM_ERR)) {
1499 			device_printf_dbg(adapter->dev, "rx L4 checksum error\n");
1500 
1501 			/* TCP/UDP checksum error */
1502 			mbuf->m_pkthdr.csum_flags = 0;
1503 		} else {
1504 			device_printf_dbg(adapter->dev, "rx checksum correct\n");
1505 
1506 			/* IP Checksum Good */
1507 			mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
1508 			mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1509 		}
1510 	}
1511 }
1512 
1513 static struct mbuf*
1514 al_eth_rx_mbuf(struct al_eth_adapter *adapter,
1515     struct al_eth_ring *rx_ring, struct al_eth_pkt *hal_pkt,
1516     unsigned int descs, uint16_t *next_to_clean)
1517 {
1518 	struct mbuf *mbuf;
1519 	struct al_eth_rx_buffer *rx_info =
1520 	    &rx_ring->rx_buffer_info[*next_to_clean];
1521 	unsigned int len;
1522 
1523 	len = hal_pkt->bufs[0].len;
1524 	device_printf_dbg(adapter->dev, "rx_info %p data %p\n", rx_info,
1525 	   rx_info->m);
1526 
1527 	if (rx_info->m == NULL) {
1528 		*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring,
1529 		    *next_to_clean);
1530 		return (NULL);
1531 	}
1532 
1533 	mbuf = rx_info->m;
1534 	mbuf->m_pkthdr.len = len;
1535 	mbuf->m_len = len;
1536 	mbuf->m_pkthdr.rcvif = rx_ring->netdev;
1537 	mbuf->m_flags |= M_PKTHDR;
1538 
1539 	if (len <= adapter->small_copy_len) {
1540 		struct mbuf *smbuf;
1541 		device_printf_dbg(adapter->dev, "rx small packet. len %d\n", len);
1542 
1543 		AL_RX_LOCK(adapter);
1544 		smbuf = m_gethdr(M_NOWAIT, MT_DATA);
1545 		AL_RX_UNLOCK(adapter);
1546 		if (__predict_false(smbuf == NULL)) {
1547 			device_printf(adapter->dev, "smbuf is NULL\n");
1548 			return (NULL);
1549 		}
1550 
1551 		smbuf->m_data = smbuf->m_data + AL_IP_ALIGNMENT_OFFSET;
1552 		memcpy(smbuf->m_data, mbuf->m_data + AL_IP_ALIGNMENT_OFFSET, len);
1553 
1554 		smbuf->m_len = len;
1555 		smbuf->m_pkthdr.rcvif = rx_ring->netdev;
1556 
1557 		/* first desc of a non-ps chain */
1558 		smbuf->m_flags |= M_PKTHDR;
1559 		smbuf->m_pkthdr.len = smbuf->m_len;
1560 
1561 		*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring,
1562 		    *next_to_clean);
1563 
1564 		return (smbuf);
1565 	}
1566 	mbuf->m_data = mbuf->m_data + AL_IP_ALIGNMENT_OFFSET;
1567 
1568 	/* Unmap the buffer */
1569 	bus_dmamap_unload(rx_ring->dma_buf_tag, rx_info->dma_map);
1570 
1571 	rx_info->m = NULL;
1572 	*next_to_clean = AL_ETH_RX_RING_IDX_NEXT(rx_ring, *next_to_clean);
1573 
1574 	return (mbuf);
1575 }
1576 
1577 static void
1578 al_eth_rx_recv_work(void *arg, int pending)
1579 {
1580 	struct al_eth_ring *rx_ring = arg;
1581 	struct mbuf *mbuf;
1582 	struct lro_entry *queued;
1583 	unsigned int qid = rx_ring->ring_id;
1584 	struct al_eth_pkt *hal_pkt = &rx_ring->hal_pkt;
1585 	uint16_t next_to_clean = rx_ring->next_to_clean;
1586 	uint32_t refill_required;
1587 	uint32_t refill_actual;
1588 	uint32_t do_if_input;
1589 
1590 	if (napi != 0) {
1591 		rx_ring->enqueue_is_running = 1;
1592 		al_data_memory_barrier();
1593 	}
1594 
1595 	do {
1596 		unsigned int descs;
1597 
1598 		descs = al_eth_pkt_rx(rx_ring->dma_q, hal_pkt);
1599 		if (unlikely(descs == 0))
1600 			break;
1601 
1602 		device_printf_dbg(rx_ring->dev, "rx_poll: q %d got packet "
1603 		    "from hal. descs %d\n", qid, descs);
1604 		device_printf_dbg(rx_ring->dev, "rx_poll: q %d flags %x. "
1605 		    "l3 proto %d l4 proto %d\n", qid, hal_pkt->flags,
1606 		    hal_pkt->l3_proto_idx, hal_pkt->l4_proto_idx);
1607 
1608 		/* ignore if detected dma or eth controller errors */
1609 		if ((hal_pkt->flags & (AL_ETH_RX_ERROR |
1610 		    AL_UDMA_CDESC_ERROR)) != 0) {
1611 			device_printf(rx_ring->dev, "receive packet with error. "
1612 			    "flags = 0x%x\n", hal_pkt->flags);
1613 			next_to_clean = AL_ETH_RX_RING_IDX_ADD(rx_ring,
1614 			    next_to_clean, descs);
1615 			continue;
1616 		}
1617 
1618 		/* allocate mbuf and fill it */
1619 		mbuf = al_eth_rx_mbuf(rx_ring->adapter, rx_ring, hal_pkt, descs,
1620 		    &next_to_clean);
1621 
1622 		/* exit if we failed to retrieve a buffer */
1623 		if (unlikely(mbuf == NULL)) {
1624 			next_to_clean = AL_ETH_RX_RING_IDX_ADD(rx_ring,
1625 			    next_to_clean, descs);
1626 			break;
1627 		}
1628 
1629 		if (__predict_true(rx_ring->netdev->if_capenable & IFCAP_RXCSUM ||
1630 		    rx_ring->netdev->if_capenable & IFCAP_RXCSUM_IPV6)) {
1631 			al_eth_rx_checksum(rx_ring->adapter, hal_pkt, mbuf);
1632 		}
1633 
1634 #if __FreeBSD_version >= 800000
1635 		mbuf->m_pkthdr.flowid = qid;
1636 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
1637 #endif
1638 
1639 		/*
1640 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
1641 		 * should be computed by hardware.
1642 		 */
1643 		do_if_input = 1;
1644 		if ((rx_ring->lro_enabled != 0) &&
1645 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1646 		    hal_pkt->l4_proto_idx == AL_ETH_PROTO_ID_TCP) {
1647 			/*
1648 			 * Send to the stack if:
1649 			 *  - LRO not enabled, or
1650 			 *  - no LRO resources, or
1651 			 *  - lro enqueue fails
1652 			 */
1653 			if (rx_ring->lro.lro_cnt != 0) {
1654 				if (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0)
1655 					do_if_input = 0;
1656 			}
1657 		}
1658 
1659 		if (do_if_input)
1660 			(*rx_ring->netdev->if_input)(rx_ring->netdev, mbuf);
1661 
1662 	} while (1);
1663 
1664 	rx_ring->next_to_clean = next_to_clean;
1665 
1666 	refill_required = al_udma_available_get(rx_ring->dma_q);
1667 	refill_actual = al_eth_refill_rx_bufs(rx_ring->adapter, qid,
1668 	    refill_required);
1669 
1670 	if (unlikely(refill_actual < refill_required)) {
1671 		device_printf_dbg(rx_ring->dev,
1672 		    "%s: not filling rx queue %d\n", __func__, qid);
1673 	}
1674 
1675 	while (((queued = LIST_FIRST(&rx_ring->lro.lro_active)) != NULL)) {
1676 		LIST_REMOVE(queued, next);
1677 		tcp_lro_flush(&rx_ring->lro, queued);
1678 	}
1679 
1680 	if (napi != 0) {
1681 		rx_ring->enqueue_is_running = 0;
1682 		al_data_memory_barrier();
1683 	}
1684 	/* unmask irq */
1685 	al_eth_irq_config(rx_ring->unmask_reg_offset, rx_ring->unmask_val);
1686 }
1687 
1688 static void
1689 al_eth_start_xmit(void *arg, int pending)
1690 {
1691 	struct al_eth_ring *tx_ring = arg;
1692 	struct mbuf *mbuf;
1693 
1694 	if (napi != 0) {
1695 		tx_ring->enqueue_is_running = 1;
1696 		al_data_memory_barrier();
1697 	}
1698 
1699 	while (1) {
1700 		mtx_lock(&tx_ring->br_mtx);
1701 		mbuf = drbr_dequeue(NULL, tx_ring->br);
1702 		mtx_unlock(&tx_ring->br_mtx);
1703 
1704 		if (mbuf == NULL)
1705 			break;
1706 
1707 		al_eth_xmit_mbuf(tx_ring, mbuf);
1708 	}
1709 
1710 	if (napi != 0) {
1711 		tx_ring->enqueue_is_running = 0;
1712 		al_data_memory_barrier();
1713 		while (1) {
1714 			mtx_lock(&tx_ring->br_mtx);
1715 			mbuf = drbr_dequeue(NULL, tx_ring->br);
1716 			mtx_unlock(&tx_ring->br_mtx);
1717 			if (mbuf == NULL)
1718 				break;
1719 			al_eth_xmit_mbuf(tx_ring, mbuf);
1720 		}
1721 	}
1722 }
1723 
1724 static int
1725 al_mq_start(struct ifnet *ifp, struct mbuf *m)
1726 {
1727 	struct al_eth_adapter *adapter = ifp->if_softc;
1728 	struct al_eth_ring *tx_ring;
1729 	int i;
1730 	int ret;
1731 
1732 	/* Which queue to use */
1733 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
1734 		i = m->m_pkthdr.flowid % adapter->num_tx_queues;
1735 	else
1736 		i = curcpu % adapter->num_tx_queues;
1737 
1738 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1739 	    IFF_DRV_RUNNING) {
1740 		return (EFAULT);
1741 	}
1742 
1743 	tx_ring = &adapter->tx_ring[i];
1744 
1745 	device_printf_dbg(adapter->dev, "dgb start() - assuming link is active, "
1746 	    "sending packet to queue %d\n", i);
1747 
1748 	ret = drbr_enqueue(ifp, tx_ring->br, m);
1749 
1750 	/*
1751 	 * For napi, if work is not running, schedule it. Always schedule
1752 	 * for casual (non-napi) packet handling.
1753 	 */
1754 	if ((napi == 0) || ((napi != 0) && (tx_ring->enqueue_is_running == 0)))
1755 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
1756 
1757 	return (ret);
1758 }
1759 
1760 static void
1761 al_qflush(struct ifnet * ifp)
1762 {
1763 
1764 	/* unused */
1765 }
1766 
1767 static inline void
1768 al_eth_flow_ctrl_init(struct al_eth_adapter *adapter)
1769 {
1770 	uint8_t default_flow_ctrl;
1771 
1772 	default_flow_ctrl = AL_ETH_FLOW_CTRL_TX_PAUSE;
1773 	default_flow_ctrl |= AL_ETH_FLOW_CTRL_RX_PAUSE;
1774 
1775 	adapter->link_config.flow_ctrl_supported = default_flow_ctrl;
1776 }
1777 
1778 static int
1779 al_eth_flow_ctrl_config(struct al_eth_adapter *adapter)
1780 {
1781 	struct al_eth_flow_control_params *flow_ctrl_params;
1782 	uint8_t active = adapter->link_config.flow_ctrl_active;
1783 	int i;
1784 
1785 	flow_ctrl_params = &adapter->flow_ctrl_params;
1786 
1787 	flow_ctrl_params->type = AL_ETH_FLOW_CONTROL_TYPE_LINK_PAUSE;
1788 	flow_ctrl_params->obay_enable =
1789 	    ((active & AL_ETH_FLOW_CTRL_RX_PAUSE) != 0);
1790 	flow_ctrl_params->gen_enable =
1791 	    ((active & AL_ETH_FLOW_CTRL_TX_PAUSE) != 0);
1792 
1793 	flow_ctrl_params->rx_fifo_th_high = AL_ETH_FLOW_CTRL_RX_FIFO_TH_HIGH;
1794 	flow_ctrl_params->rx_fifo_th_low = AL_ETH_FLOW_CTRL_RX_FIFO_TH_LOW;
1795 	flow_ctrl_params->quanta = AL_ETH_FLOW_CTRL_QUANTA;
1796 	flow_ctrl_params->quanta_th = AL_ETH_FLOW_CTRL_QUANTA_TH;
1797 
1798 	/* map priority to queue index, queue id = priority/2 */
1799 	for (i = 0; i < AL_ETH_FWD_PRIO_TABLE_NUM; i++)
1800 		flow_ctrl_params->prio_q_map[0][i] =  1 << (i >> 1);
1801 
1802 	al_eth_flow_control_config(&adapter->hal_adapter, flow_ctrl_params);
1803 
1804 	return (0);
1805 }
1806 
1807 static void
1808 al_eth_flow_ctrl_enable(struct al_eth_adapter *adapter)
1809 {
1810 
1811 	/*
1812 	 * change the active configuration to the default / force by ethtool
1813 	 * and call to configure
1814 	 */
1815 	adapter->link_config.flow_ctrl_active =
1816 	    adapter->link_config.flow_ctrl_supported;
1817 
1818 	al_eth_flow_ctrl_config(adapter);
1819 }
1820 
1821 static void
1822 al_eth_flow_ctrl_disable(struct al_eth_adapter *adapter)
1823 {
1824 
1825 	adapter->link_config.flow_ctrl_active = 0;
1826 	al_eth_flow_ctrl_config(adapter);
1827 }
1828 
1829 static int
1830 al_eth_hw_init(struct al_eth_adapter *adapter)
1831 {
1832 	int rc;
1833 
1834 	rc = al_eth_hw_init_adapter(adapter);
1835 	if (rc != 0)
1836 		return (rc);
1837 
1838 	rc = al_eth_mac_config(&adapter->hal_adapter, adapter->mac_mode);
1839 	if (rc < 0) {
1840 		device_printf(adapter->dev, "%s failed to configure mac!\n",
1841 		    __func__);
1842 		return (rc);
1843 	}
1844 
1845 	if ((adapter->mac_mode == AL_ETH_MAC_MODE_SGMII) ||
1846 	    (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII &&
1847 	     adapter->phy_exist == FALSE)) {
1848 		rc = al_eth_mac_link_config(&adapter->hal_adapter,
1849 		    adapter->link_config.force_1000_base_x,
1850 		    adapter->link_config.autoneg,
1851 		    adapter->link_config.active_speed,
1852 		    adapter->link_config.active_duplex);
1853 		if (rc != 0) {
1854 			device_printf(adapter->dev,
1855 			    "%s failed to configure link parameters!\n",
1856 			    __func__);
1857 			return (rc);
1858 		}
1859 	}
1860 
1861 	rc = al_eth_mdio_config(&adapter->hal_adapter,
1862 	    AL_ETH_MDIO_TYPE_CLAUSE_22, TRUE /* shared_mdio_if */,
1863 	    adapter->ref_clk_freq, adapter->mdio_freq);
1864 	if (rc != 0) {
1865 		device_printf(adapter->dev, "%s failed at mdio config!\n",
1866 		    __func__);
1867 		return (rc);
1868 	}
1869 
1870 	al_eth_flow_ctrl_init(adapter);
1871 
1872 	return (rc);
1873 }
1874 
1875 static int
1876 al_eth_hw_stop(struct al_eth_adapter *adapter)
1877 {
1878 
1879 	al_eth_mac_stop(&adapter->hal_adapter);
1880 
1881 	/*
1882 	 * wait till pending rx packets written and UDMA becomes idle,
1883 	 * the MAC has ~10KB fifo, 10us should be enought time for the
1884 	 * UDMA to write to the memory
1885 	 */
1886 	DELAY(10);
1887 
1888 	al_eth_adapter_stop(&adapter->hal_adapter);
1889 
1890 	adapter->flags |= AL_ETH_FLAG_RESET_REQUESTED;
1891 
1892 	/* disable flow ctrl to avoid pause packets*/
1893 	al_eth_flow_ctrl_disable(adapter);
1894 
1895 	return (0);
1896 }
1897 
1898 /*
1899  * al_eth_intr_intx_all - Legacy Interrupt Handler for all interrupts
1900  * @irq: interrupt number
1901  * @data: pointer to a network interface device structure
1902  */
1903 static int
1904 al_eth_intr_intx_all(void *data)
1905 {
1906 	struct al_eth_adapter *adapter = data;
1907 
1908 	struct unit_regs __iomem *regs_base =
1909 	    (struct unit_regs __iomem *)adapter->udma_base;
1910 	uint32_t reg;
1911 
1912 	reg = al_udma_iofic_read_cause(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
1913 	    AL_INT_GROUP_A);
1914 	if (likely(reg))
1915 		device_printf_dbg(adapter->dev, "%s group A cause %x\n",
1916 		    __func__, reg);
1917 
1918 	if (unlikely(reg & AL_INT_GROUP_A_GROUP_D_SUM)) {
1919 		struct al_iofic_grp_ctrl __iomem *sec_ints_base;
1920 		uint32_t cause_d =  al_udma_iofic_read_cause(regs_base,
1921 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_D);
1922 
1923 		sec_ints_base =
1924 		    &regs_base->gen.interrupt_regs.secondary_iofic_ctrl[0];
1925 		if (cause_d != 0) {
1926 			device_printf_dbg(adapter->dev,
1927 			    "got interrupt from group D. cause %x\n", cause_d);
1928 
1929 			cause_d = al_iofic_read_cause(sec_ints_base,
1930 			    AL_INT_GROUP_A);
1931 			device_printf(adapter->dev,
1932 			    "secondary A cause %x\n", cause_d);
1933 
1934 			cause_d = al_iofic_read_cause(sec_ints_base,
1935 			    AL_INT_GROUP_B);
1936 
1937 			device_printf_dbg(adapter->dev,
1938 			    "secondary B cause %x\n", cause_d);
1939 		}
1940 	}
1941 	if ((reg & AL_INT_GROUP_A_GROUP_B_SUM) != 0 ) {
1942 		uint32_t cause_b = al_udma_iofic_read_cause(regs_base,
1943 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_B);
1944 		int qid;
1945 		device_printf_dbg(adapter->dev, "secondary B cause %x\n",
1946 		    cause_b);
1947 		for (qid = 0; qid < adapter->num_rx_queues; qid++) {
1948 			if (cause_b & (1 << qid)) {
1949 				/* mask */
1950 				al_udma_iofic_mask(
1951 				    (struct unit_regs __iomem *)adapter->udma_base,
1952 				    AL_UDMA_IOFIC_LEVEL_PRIMARY,
1953 				    AL_INT_GROUP_B, 1 << qid);
1954 			}
1955 		}
1956 	}
1957 	if ((reg & AL_INT_GROUP_A_GROUP_C_SUM) != 0) {
1958 		uint32_t cause_c = al_udma_iofic_read_cause(regs_base,
1959 		    AL_UDMA_IOFIC_LEVEL_PRIMARY, AL_INT_GROUP_C);
1960 		int qid;
1961 		device_printf_dbg(adapter->dev, "secondary C cause %x\n", cause_c);
1962 		for (qid = 0; qid < adapter->num_tx_queues; qid++) {
1963 			if ((cause_c & (1 << qid)) != 0) {
1964 				al_udma_iofic_mask(
1965 				    (struct unit_regs __iomem *)adapter->udma_base,
1966 				    AL_UDMA_IOFIC_LEVEL_PRIMARY,
1967 				    AL_INT_GROUP_C, 1 << qid);
1968 			}
1969 		}
1970 	}
1971 
1972 	al_eth_tx_cmlp_irq_filter(adapter->tx_ring);
1973 
1974 	return (0);
1975 }
1976 
1977 static int
1978 al_eth_intr_msix_all(void *data)
1979 {
1980 	struct al_eth_adapter *adapter = data;
1981 
1982 	device_printf_dbg(adapter->dev, "%s\n", __func__);
1983 	return (0);
1984 }
1985 
1986 static int
1987 al_eth_intr_msix_mgmt(void *data)
1988 {
1989 	struct al_eth_adapter *adapter = data;
1990 
1991 	device_printf_dbg(adapter->dev, "%s\n", __func__);
1992 	return (0);
1993 }
1994 
1995 static int
1996 al_eth_enable_msix(struct al_eth_adapter *adapter)
1997 {
1998 	int i, msix_vecs, rc, count;
1999 
2000 	device_printf_dbg(adapter->dev, "%s\n", __func__);
2001 	msix_vecs = 1 + adapter->num_rx_queues + adapter->num_tx_queues;
2002 
2003 	device_printf_dbg(adapter->dev,
2004 	    "Try to enable MSIX, vector numbers = %d\n", msix_vecs);
2005 
2006 	adapter->msix_entries = malloc(msix_vecs*sizeof(*adapter->msix_entries),
2007 	    M_IFAL, M_ZERO | M_WAITOK);
2008 
2009 	if (adapter->msix_entries == NULL) {
2010 		device_printf_dbg(adapter->dev, "failed to allocate"
2011 		    " msix_entries %d\n", msix_vecs);
2012 		rc = ENOMEM;
2013 		goto exit;
2014 	}
2015 
2016 	/* management vector (GROUP_A) @2*/
2017 	adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].entry = 2;
2018 	adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector = 0;
2019 
2020 	/* rx queues start @3 */
2021 	for (i = 0; i < adapter->num_rx_queues; i++) {
2022 		int irq_idx = AL_ETH_RXQ_IRQ_IDX(adapter, i);
2023 
2024 		adapter->msix_entries[irq_idx].entry = 3 + i;
2025 		adapter->msix_entries[irq_idx].vector = 0;
2026 	}
2027 	/* tx queues start @7 */
2028 	for (i = 0; i < adapter->num_tx_queues; i++) {
2029 		int irq_idx = AL_ETH_TXQ_IRQ_IDX(adapter, i);
2030 
2031 		adapter->msix_entries[irq_idx].entry = 3 +
2032 		    AL_ETH_MAX_HW_QUEUES + i;
2033 		adapter->msix_entries[irq_idx].vector = 0;
2034 	}
2035 
2036 	count = msix_vecs + 2; /* entries start from 2 */
2037 	rc = pci_alloc_msix(adapter->dev, &count);
2038 
2039 	if (rc != 0) {
2040 		device_printf_dbg(adapter->dev, "failed to allocate MSIX "
2041 		    "vectors %d\n", msix_vecs+2);
2042 		device_printf_dbg(adapter->dev, "ret = %d\n", rc);
2043 		goto msix_entries_exit;
2044 	}
2045 
2046 	if (count != msix_vecs + 2) {
2047 		device_printf_dbg(adapter->dev, "failed to allocate all MSIX "
2048 		    "vectors %d, allocated %d\n", msix_vecs+2, count);
2049 		rc = ENOSPC;
2050 		goto msix_entries_exit;
2051 	}
2052 
2053 	for (i = 0; i < msix_vecs; i++)
2054 	    adapter->msix_entries[i].vector = 2 + 1 + i;
2055 
2056 	device_printf_dbg(adapter->dev, "successfully enabled MSIX,"
2057 	    " vectors %d\n", msix_vecs);
2058 
2059 	adapter->msix_vecs = msix_vecs;
2060 	adapter->flags |= AL_ETH_FLAG_MSIX_ENABLED;
2061 	goto exit;
2062 
2063 msix_entries_exit:
2064 	adapter->msix_vecs = 0;
2065 	free(adapter->msix_entries, M_IFAL);
2066 	adapter->msix_entries = NULL;
2067 
2068 exit:
2069 	return (rc);
2070 }
2071 
2072 static int
2073 al_eth_setup_int_mode(struct al_eth_adapter *adapter)
2074 {
2075 	int i, rc;
2076 
2077 	rc = al_eth_enable_msix(adapter);
2078 	if (rc != 0) {
2079 		device_printf(adapter->dev, "Failed to enable MSIX mode.\n");
2080 		return (rc);
2081 	}
2082 
2083 	adapter->irq_vecs = max(1, adapter->msix_vecs);
2084 	/* single INTX mode */
2085 	if (adapter->msix_vecs == 0) {
2086 		snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name,
2087 		    AL_ETH_IRQNAME_SIZE, "al-eth-intx-all@pci:%s",
2088 		    device_get_name(adapter->dev));
2089 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler =
2090 		    al_eth_intr_intx_all;
2091 		/* IRQ vector will be resolved from device resources */
2092 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector = 0;
2093 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
2094 
2095 		device_printf(adapter->dev, "%s and vector %d \n", __func__,
2096 		    adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector);
2097 
2098 		return (0);
2099 	}
2100 	/* single MSI-X mode */
2101 	if (adapter->msix_vecs == 1) {
2102 		snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name,
2103 		    AL_ETH_IRQNAME_SIZE, "al-eth-msix-all@pci:%s",
2104 		    device_get_name(adapter->dev));
2105 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler =
2106 		    al_eth_intr_msix_all;
2107 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector =
2108 		    adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector;
2109 		adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
2110 
2111 		return (0);
2112 	}
2113 	/* MSI-X per queue */
2114 	snprintf(adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].name, AL_ETH_IRQNAME_SIZE,
2115 	    "al-eth-msix-mgmt@pci:%s", device_get_name(adapter->dev));
2116 	adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].handler = al_eth_intr_msix_mgmt;
2117 
2118 	adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].data = adapter;
2119 	adapter->irq_tbl[AL_ETH_MGMT_IRQ_IDX].vector =
2120 	    adapter->msix_entries[AL_ETH_MGMT_IRQ_IDX].vector;
2121 
2122 	for (i = 0; i < adapter->num_rx_queues; i++) {
2123 		int irq_idx = AL_ETH_RXQ_IRQ_IDX(adapter, i);
2124 
2125 		snprintf(adapter->irq_tbl[irq_idx].name, AL_ETH_IRQNAME_SIZE,
2126 		    "al-eth-rx-comp-%d@pci:%s", i,
2127 		    device_get_name(adapter->dev));
2128 		adapter->irq_tbl[irq_idx].handler = al_eth_rx_recv_irq_filter;
2129 		adapter->irq_tbl[irq_idx].data = &adapter->rx_ring[i];
2130 		adapter->irq_tbl[irq_idx].vector =
2131 		    adapter->msix_entries[irq_idx].vector;
2132 	}
2133 
2134 	for (i = 0; i < adapter->num_tx_queues; i++) {
2135 		int irq_idx = AL_ETH_TXQ_IRQ_IDX(adapter, i);
2136 
2137 		snprintf(adapter->irq_tbl[irq_idx].name,
2138 		    AL_ETH_IRQNAME_SIZE, "al-eth-tx-comp-%d@pci:%s", i,
2139 		    device_get_name(adapter->dev));
2140 		adapter->irq_tbl[irq_idx].handler = al_eth_tx_cmlp_irq_filter;
2141 		adapter->irq_tbl[irq_idx].data = &adapter->tx_ring[i];
2142 		adapter->irq_tbl[irq_idx].vector =
2143 		    adapter->msix_entries[irq_idx].vector;
2144 	}
2145 
2146 	return (0);
2147 }
2148 
2149 static void
2150 __al_eth_free_irq(struct al_eth_adapter *adapter)
2151 {
2152 	struct al_eth_irq *irq;
2153 	int i, rc;
2154 
2155 	for (i = 0; i < adapter->irq_vecs; i++) {
2156 		irq = &adapter->irq_tbl[i];
2157 		if (irq->requested != 0) {
2158 			device_printf_dbg(adapter->dev, "tear down irq: %d\n",
2159 			    irq->vector);
2160 			rc = bus_teardown_intr(adapter->dev, irq->res,
2161 			    irq->cookie);
2162 			if (rc != 0)
2163 				device_printf(adapter->dev, "failed to tear "
2164 				    "down irq: %d\n", irq->vector);
2165 
2166 		}
2167 		irq->requested = 0;
2168 	}
2169 }
2170 
2171 static void
2172 al_eth_free_irq(struct al_eth_adapter *adapter)
2173 {
2174 	struct al_eth_irq *irq;
2175 	int i, rc;
2176 #ifdef CONFIG_RFS_ACCEL
2177 	if (adapter->msix_vecs >= 1) {
2178 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
2179 		adapter->netdev->rx_cpu_rmap = NULL;
2180 	}
2181 #endif
2182 
2183 	__al_eth_free_irq(adapter);
2184 
2185 	for (i = 0; i < adapter->irq_vecs; i++) {
2186 		irq = &adapter->irq_tbl[i];
2187 		if (irq->res == NULL)
2188 			continue;
2189 		device_printf_dbg(adapter->dev, "release resource irq: %d\n",
2190 		    irq->vector);
2191 		rc = bus_release_resource(adapter->dev, SYS_RES_IRQ, irq->vector,
2192 		    irq->res);
2193 		irq->res = NULL;
2194 		if (rc != 0)
2195 			device_printf(adapter->dev, "dev has no parent while "
2196 			    "releasing res for irq: %d\n", irq->vector);
2197 	}
2198 
2199 	pci_release_msi(adapter->dev);
2200 
2201 	adapter->flags &= ~AL_ETH_FLAG_MSIX_ENABLED;
2202 
2203 	adapter->msix_vecs = 0;
2204 	free(adapter->msix_entries, M_IFAL);
2205 	adapter->msix_entries = NULL;
2206 }
2207 
2208 static int
2209 al_eth_request_irq(struct al_eth_adapter *adapter)
2210 {
2211 	unsigned long flags;
2212 	struct al_eth_irq *irq;
2213 	int rc = 0, i, v;
2214 
2215 	if ((adapter->flags & AL_ETH_FLAG_MSIX_ENABLED) != 0)
2216 		flags = RF_ACTIVE;
2217 	else
2218 		flags = RF_ACTIVE | RF_SHAREABLE;
2219 
2220 	for (i = 0; i < adapter->irq_vecs; i++) {
2221 		irq = &adapter->irq_tbl[i];
2222 
2223 		if (irq->requested != 0)
2224 			continue;
2225 
2226 		irq->res = bus_alloc_resource_any(adapter->dev, SYS_RES_IRQ,
2227 		    &irq->vector, flags);
2228 		if (irq->res == NULL) {
2229 			device_printf(adapter->dev, "could not allocate "
2230 			    "irq vector=%d\n", irq->vector);
2231 			rc = ENXIO;
2232 			goto exit_res;
2233 		}
2234 
2235 		if ((rc = bus_setup_intr(adapter->dev, irq->res,
2236 		    INTR_TYPE_NET | INTR_MPSAFE, irq->handler,
2237 		    NULL, irq->data, &irq->cookie)) != 0) {
2238 			device_printf(adapter->dev, "failed to register "
2239 			    "interrupt handler for irq %ju: %d\n",
2240 			    (uintmax_t)rman_get_start(irq->res), rc);
2241 			goto exit_intr;
2242 		}
2243 		irq->requested = 1;
2244 	}
2245 	goto exit;
2246 
2247 exit_intr:
2248 	v = i - 1; /* -1 because we omit the operation that failed */
2249 	while (v-- >= 0) {
2250 		int bti;
2251 		irq = &adapter->irq_tbl[v];
2252 		bti = bus_teardown_intr(adapter->dev, irq->res, irq->cookie);
2253 		if (bti != 0) {
2254 			device_printf(adapter->dev, "failed to tear "
2255 			    "down irq: %d\n", irq->vector);
2256 		}
2257 
2258 		irq->requested = 0;
2259 		device_printf_dbg(adapter->dev, "exit_intr: releasing irq %d\n",
2260 		    irq->vector);
2261 	}
2262 
2263 exit_res:
2264 	v = i - 1; /* -1 because we omit the operation that failed */
2265 	while (v-- >= 0) {
2266 		int brr;
2267 		irq = &adapter->irq_tbl[v];
2268 		device_printf_dbg(adapter->dev, "exit_res: releasing resource"
2269 		    " for irq %d\n", irq->vector);
2270 		brr = bus_release_resource(adapter->dev, SYS_RES_IRQ,
2271 		    irq->vector, irq->res);
2272 		if (brr != 0)
2273 			device_printf(adapter->dev, "dev has no parent while "
2274 			    "releasing res for irq: %d\n", irq->vector);
2275 		irq->res = NULL;
2276 	}
2277 
2278 exit:
2279 	return (rc);
2280 }
2281 
2282 /**
2283  * al_eth_setup_tx_resources - allocate Tx resources (Descriptors)
2284  * @adapter: network interface device structure
2285  * @qid: queue index
2286  *
2287  * Return 0 on success, negative on failure
2288  **/
2289 static int
2290 al_eth_setup_tx_resources(struct al_eth_adapter *adapter, int qid)
2291 {
2292 	struct al_eth_ring *tx_ring = &adapter->tx_ring[qid];
2293 	struct device *dev = tx_ring->dev;
2294 	struct al_udma_q_params *q_params = &tx_ring->q_params;
2295 	int size;
2296 	int ret;
2297 
2298 	if (adapter->up)
2299 		return (0);
2300 
2301 	size = sizeof(struct al_eth_tx_buffer) * tx_ring->sw_count;
2302 
2303 	tx_ring->tx_buffer_info = malloc(size, M_IFAL, M_ZERO | M_WAITOK);
2304 	if (tx_ring->tx_buffer_info == NULL)
2305 		return (ENOMEM);
2306 
2307 	tx_ring->descs_size = tx_ring->hw_count * sizeof(union al_udma_desc);
2308 	q_params->size = tx_ring->hw_count;
2309 
2310 	ret = al_dma_alloc_coherent(dev, &q_params->desc_phy_base_tag,
2311 	    (bus_dmamap_t *)&q_params->desc_phy_base_map,
2312 	    (bus_addr_t *)&q_params->desc_phy_base,
2313 	    (void**)&q_params->desc_base, tx_ring->descs_size);
2314 	if (ret != 0) {
2315 		device_printf(dev, "failed to al_dma_alloc_coherent,"
2316 		    " ret = %d\n", ret);
2317 		return (ENOMEM);
2318 	}
2319 
2320 	if (q_params->desc_base == NULL)
2321 		return (ENOMEM);
2322 
2323 	device_printf_dbg(dev, "Initializing ring queues %d\n", qid);
2324 
2325 	/* Allocate Ring Queue */
2326 	mtx_init(&tx_ring->br_mtx, "AlRingMtx", NULL, MTX_DEF);
2327 	tx_ring->br = buf_ring_alloc(AL_BR_SIZE, M_DEVBUF, M_WAITOK,
2328 	    &tx_ring->br_mtx);
2329 	if (tx_ring->br == NULL) {
2330 		device_printf(dev, "Critical Failure setting up buf ring\n");
2331 		return (ENOMEM);
2332 	}
2333 
2334 	/* Allocate taskqueues */
2335 	TASK_INIT(&tx_ring->enqueue_task, 0, al_eth_start_xmit, tx_ring);
2336 	tx_ring->enqueue_tq = taskqueue_create_fast("al_tx_enque", M_NOWAIT,
2337 	    taskqueue_thread_enqueue, &tx_ring->enqueue_tq);
2338 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, PI_NET, "%s txeq",
2339 	    device_get_nameunit(adapter->dev));
2340 	TASK_INIT(&tx_ring->cmpl_task, 0, al_eth_tx_cmpl_work, tx_ring);
2341 	tx_ring->cmpl_tq = taskqueue_create_fast("al_tx_cmpl", M_NOWAIT,
2342 	    taskqueue_thread_enqueue, &tx_ring->cmpl_tq);
2343 	taskqueue_start_threads(&tx_ring->cmpl_tq, 1, PI_REALTIME, "%s txcq",
2344 	    device_get_nameunit(adapter->dev));
2345 
2346 	/* Setup DMA descriptor areas. */
2347 	ret = bus_dma_tag_create(bus_get_dma_tag(dev),
2348 	    1, 0,			/* alignment, bounds */
2349 	    BUS_SPACE_MAXADDR,		/* lowaddr */
2350 	    BUS_SPACE_MAXADDR,		/* highaddr */
2351 	    NULL, NULL,			/* filter, filterarg */
2352 	    AL_TSO_SIZE,		/* maxsize */
2353 	    AL_ETH_PKT_MAX_BUFS,	/* nsegments */
2354 	    PAGE_SIZE,			/* maxsegsize */
2355 	    0,				/* flags */
2356 	    NULL,			/* lockfunc */
2357 	    NULL,			/* lockfuncarg */
2358 	    &tx_ring->dma_buf_tag);
2359 
2360 	if (ret != 0) {
2361 		device_printf(dev,"Unable to allocate dma_buf_tag, ret = %d\n",
2362 		    ret);
2363 		return (ret);
2364 	}
2365 
2366 	for (size = 0; size < tx_ring->sw_count; size++) {
2367 		ret = bus_dmamap_create(tx_ring->dma_buf_tag, 0,
2368 		    &tx_ring->tx_buffer_info[size].dma_map);
2369 		if (ret != 0) {
2370 			device_printf(dev, "Unable to map DMA TX "
2371 			    "buffer memory [iter=%d]\n", size);
2372 			return (ret);
2373 		}
2374 	}
2375 
2376 	/* completion queue not used for tx */
2377 	q_params->cdesc_base = NULL;
2378 	/* size in bytes of the udma completion ring descriptor */
2379 	q_params->cdesc_size = 8;
2380 	tx_ring->next_to_use = 0;
2381 	tx_ring->next_to_clean = 0;
2382 
2383 	return (0);
2384 }
2385 
2386 /*
2387  * al_eth_free_tx_resources - Free Tx Resources per Queue
2388  * @adapter: network interface device structure
2389  * @qid: queue index
2390  *
2391  * Free all transmit software resources
2392  */
2393 static void
2394 al_eth_free_tx_resources(struct al_eth_adapter *adapter, int qid)
2395 {
2396 	struct al_eth_ring *tx_ring = &adapter->tx_ring[qid];
2397 	struct al_udma_q_params *q_params = &tx_ring->q_params;
2398 	int size;
2399 
2400 	/* At this point interrupts' handlers must be deactivated */
2401 	while (taskqueue_cancel(tx_ring->cmpl_tq, &tx_ring->cmpl_task, NULL))
2402 		taskqueue_drain(tx_ring->cmpl_tq, &tx_ring->cmpl_task);
2403 
2404 	taskqueue_free(tx_ring->cmpl_tq);
2405 	while (taskqueue_cancel(tx_ring->enqueue_tq,
2406 	    &tx_ring->enqueue_task, NULL)) {
2407 		taskqueue_drain(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
2408 	}
2409 
2410 	taskqueue_free(tx_ring->enqueue_tq);
2411 
2412 	if (tx_ring->br != NULL) {
2413 		drbr_flush(adapter->netdev, tx_ring->br);
2414 		buf_ring_free(tx_ring->br, M_DEVBUF);
2415 	}
2416 
2417 	for (size = 0; size < tx_ring->sw_count; size++) {
2418 		m_freem(tx_ring->tx_buffer_info[size].m);
2419 		tx_ring->tx_buffer_info[size].m = NULL;
2420 
2421 		bus_dmamap_unload(tx_ring->dma_buf_tag,
2422 		    tx_ring->tx_buffer_info[size].dma_map);
2423 		bus_dmamap_destroy(tx_ring->dma_buf_tag,
2424 		    tx_ring->tx_buffer_info[size].dma_map);
2425 	}
2426 	bus_dma_tag_destroy(tx_ring->dma_buf_tag);
2427 
2428 	free(tx_ring->tx_buffer_info, M_IFAL);
2429 	tx_ring->tx_buffer_info = NULL;
2430 
2431 	mtx_destroy(&tx_ring->br_mtx);
2432 
2433 	/* if not set, then don't free */
2434 	if (q_params->desc_base == NULL)
2435 		return;
2436 
2437 	al_dma_free_coherent(q_params->desc_phy_base_tag,
2438 	    q_params->desc_phy_base_map, q_params->desc_base);
2439 
2440 	q_params->desc_base = NULL;
2441 }
2442 
2443 /*
2444  * al_eth_free_all_tx_resources - Free Tx Resources for All Queues
2445  * @adapter: board private structure
2446  *
2447  * Free all transmit software resources
2448  */
2449 static void
2450 al_eth_free_all_tx_resources(struct al_eth_adapter *adapter)
2451 {
2452 	int i;
2453 
2454 	for (i = 0; i < adapter->num_tx_queues; i++)
2455 		if (adapter->tx_ring[i].q_params.desc_base)
2456 			al_eth_free_tx_resources(adapter, i);
2457 }
2458 
2459 /*
2460  * al_eth_setup_rx_resources - allocate Rx resources (Descriptors)
2461  * @adapter: network interface device structure
2462  * @qid: queue index
2463  *
2464  * Returns 0 on success, negative on failure
2465  */
2466 static int
2467 al_eth_setup_rx_resources(struct al_eth_adapter *adapter, unsigned int qid)
2468 {
2469 	struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
2470 	struct device *dev = rx_ring->dev;
2471 	struct al_udma_q_params *q_params = &rx_ring->q_params;
2472 	int size;
2473 	int ret;
2474 
2475 	size = sizeof(struct al_eth_rx_buffer) * rx_ring->sw_count;
2476 
2477 	/* alloc extra element so in rx path we can always prefetch rx_info + 1 */
2478 	size += 1;
2479 
2480 	rx_ring->rx_buffer_info = malloc(size, M_IFAL, M_ZERO | M_WAITOK);
2481 	if (rx_ring->rx_buffer_info == NULL)
2482 		return (ENOMEM);
2483 
2484 	rx_ring->descs_size = rx_ring->hw_count * sizeof(union al_udma_desc);
2485 	q_params->size = rx_ring->hw_count;
2486 
2487 	ret = al_dma_alloc_coherent(dev, &q_params->desc_phy_base_tag,
2488 	    &q_params->desc_phy_base_map,
2489 	    (bus_addr_t *)&q_params->desc_phy_base,
2490 	    (void**)&q_params->desc_base, rx_ring->descs_size);
2491 
2492 	if ((q_params->desc_base == NULL) || (ret != 0))
2493 		return (ENOMEM);
2494 
2495 	/* size in bytes of the udma completion ring descriptor */
2496 	q_params->cdesc_size = 16;
2497 	rx_ring->cdescs_size = rx_ring->hw_count * q_params->cdesc_size;
2498 	ret = al_dma_alloc_coherent(dev, &q_params->cdesc_phy_base_tag,
2499 	    &q_params->cdesc_phy_base_map,
2500 	    (bus_addr_t *)&q_params->cdesc_phy_base,
2501 	    (void**)&q_params->cdesc_base, rx_ring->cdescs_size);
2502 
2503 	if ((q_params->cdesc_base == NULL) || (ret != 0))
2504 		return (ENOMEM);
2505 
2506 	/* Allocate taskqueues */
2507 	TASK_INIT(&rx_ring->enqueue_task, 0, al_eth_rx_recv_work, rx_ring);
2508 	rx_ring->enqueue_tq = taskqueue_create_fast("al_rx_enque", M_NOWAIT,
2509 	    taskqueue_thread_enqueue, &rx_ring->enqueue_tq);
2510 	taskqueue_start_threads(&rx_ring->enqueue_tq, 1, PI_NET, "%s rxeq",
2511 	    device_get_nameunit(adapter->dev));
2512 
2513 	/* Setup DMA descriptor areas. */
2514 	ret = bus_dma_tag_create(bus_get_dma_tag(dev),
2515 	    1, 0,			/* alignment, bounds */
2516 	    BUS_SPACE_MAXADDR,		/* lowaddr */
2517 	    BUS_SPACE_MAXADDR,		/* highaddr */
2518 	    NULL, NULL,			/* filter, filterarg */
2519 	    AL_TSO_SIZE,		/* maxsize */
2520 	    1,				/* nsegments */
2521 	    AL_TSO_SIZE,		/* maxsegsize */
2522 	    0,				/* flags */
2523 	    NULL,			/* lockfunc */
2524 	    NULL,			/* lockfuncarg */
2525 	    &rx_ring->dma_buf_tag);
2526 
2527 	if (ret != 0) {
2528 		device_printf(dev,"Unable to allocate RX dma_buf_tag\n");
2529 		return (ret);
2530 	}
2531 
2532 	for (size = 0; size < rx_ring->sw_count; size++) {
2533 		ret = bus_dmamap_create(rx_ring->dma_buf_tag, 0,
2534 		    &rx_ring->rx_buffer_info[size].dma_map);
2535 		if (ret != 0) {
2536 			device_printf(dev,"Unable to map DMA RX buffer memory\n");
2537 			return (ret);
2538 		}
2539 	}
2540 
2541 	/* Zero out the descriptor ring */
2542 	memset(q_params->cdesc_base, 0, rx_ring->cdescs_size);
2543 
2544 	/* Create LRO for the ring */
2545 	if ((adapter->netdev->if_capenable & IFCAP_LRO) != 0) {
2546 		int err = tcp_lro_init(&rx_ring->lro);
2547 		if (err != 0) {
2548 			device_printf(adapter->dev,
2549 			    "LRO[%d] Initialization failed!\n", qid);
2550 		} else {
2551 			device_printf_dbg(adapter->dev,
2552 			    "RX Soft LRO[%d] Initialized\n", qid);
2553 			rx_ring->lro_enabled = TRUE;
2554 			rx_ring->lro.ifp = adapter->netdev;
2555 		}
2556 	}
2557 
2558 	rx_ring->next_to_clean = 0;
2559 	rx_ring->next_to_use = 0;
2560 
2561 	return (0);
2562 }
2563 
2564 /*
2565  * al_eth_free_rx_resources - Free Rx Resources
2566  * @adapter: network interface device structure
2567  * @qid: queue index
2568  *
2569  * Free all receive software resources
2570  */
2571 static void
2572 al_eth_free_rx_resources(struct al_eth_adapter *adapter, unsigned int qid)
2573 {
2574 	struct al_eth_ring *rx_ring = &adapter->rx_ring[qid];
2575 	struct al_udma_q_params *q_params = &rx_ring->q_params;
2576 	int size;
2577 
2578 	/* At this point interrupts' handlers must be deactivated */
2579 	while (taskqueue_cancel(rx_ring->enqueue_tq,
2580 	    &rx_ring->enqueue_task, NULL)) {
2581 		taskqueue_drain(rx_ring->enqueue_tq, &rx_ring->enqueue_task);
2582 	}
2583 
2584 	taskqueue_free(rx_ring->enqueue_tq);
2585 
2586 	for (size = 0; size < rx_ring->sw_count; size++) {
2587 		m_freem(rx_ring->rx_buffer_info[size].m);
2588 		rx_ring->rx_buffer_info[size].m = NULL;
2589 		bus_dmamap_unload(rx_ring->dma_buf_tag,
2590 		    rx_ring->rx_buffer_info[size].dma_map);
2591 		bus_dmamap_destroy(rx_ring->dma_buf_tag,
2592 		    rx_ring->rx_buffer_info[size].dma_map);
2593 	}
2594 	bus_dma_tag_destroy(rx_ring->dma_buf_tag);
2595 
2596 	free(rx_ring->rx_buffer_info, M_IFAL);
2597 	rx_ring->rx_buffer_info = NULL;
2598 
2599 	/* if not set, then don't free */
2600 	if (q_params->desc_base == NULL)
2601 		return;
2602 
2603 	al_dma_free_coherent(q_params->desc_phy_base_tag,
2604 	    q_params->desc_phy_base_map, q_params->desc_base);
2605 
2606 	q_params->desc_base = NULL;
2607 
2608 	/* if not set, then don't free */
2609 	if (q_params->cdesc_base == NULL)
2610 		return;
2611 
2612 	al_dma_free_coherent(q_params->cdesc_phy_base_tag,
2613 	    q_params->cdesc_phy_base_map, q_params->cdesc_base);
2614 
2615 	q_params->cdesc_phy_base = 0;
2616 
2617 	/* Free LRO resources */
2618 	tcp_lro_free(&rx_ring->lro);
2619 }
2620 
2621 /*
2622  * al_eth_free_all_rx_resources - Free Rx Resources for All Queues
2623  * @adapter: board private structure
2624  *
2625  * Free all receive software resources
2626  */
2627 static void
2628 al_eth_free_all_rx_resources(struct al_eth_adapter *adapter)
2629 {
2630 	int i;
2631 
2632 	for (i = 0; i < adapter->num_rx_queues; i++)
2633 		if (adapter->rx_ring[i].q_params.desc_base != 0)
2634 			al_eth_free_rx_resources(adapter, i);
2635 }
2636 
2637 /*
2638  * al_eth_setup_all_rx_resources - allocate all queues Rx resources
2639  * @adapter: board private structure
2640  *
2641  * Return 0 on success, negative on failure
2642  */
2643 static int
2644 al_eth_setup_all_rx_resources(struct al_eth_adapter *adapter)
2645 {
2646 	int i, rc = 0;
2647 
2648 	for (i = 0; i < adapter->num_rx_queues; i++) {
2649 		rc = al_eth_setup_rx_resources(adapter, i);
2650 		if (rc == 0)
2651 			continue;
2652 
2653 		device_printf(adapter->dev, "Allocation for Rx Queue %u failed\n", i);
2654 		goto err_setup_rx;
2655 	}
2656 	return (0);
2657 
2658 err_setup_rx:
2659 	/* rewind the index freeing the rings as we go */
2660 	while (i--)
2661 		al_eth_free_rx_resources(adapter, i);
2662 	return (rc);
2663 }
2664 
2665 /*
2666  * al_eth_setup_all_tx_resources - allocate all queues Tx resources
2667  * @adapter: private structure
2668  *
2669  * Return 0 on success, negative on failure
2670  */
2671 static int
2672 al_eth_setup_all_tx_resources(struct al_eth_adapter *adapter)
2673 {
2674 	int i, rc = 0;
2675 
2676 	for (i = 0; i < adapter->num_tx_queues; i++) {
2677 		rc = al_eth_setup_tx_resources(adapter, i);
2678 		if (rc == 0)
2679 			continue;
2680 
2681 		device_printf(adapter->dev,
2682 		    "Allocation for Tx Queue %u failed\n", i);
2683 		goto err_setup_tx;
2684 	}
2685 
2686 	return (0);
2687 
2688 err_setup_tx:
2689 	/* rewind the index freeing the rings as we go */
2690 	while (i--)
2691 		al_eth_free_tx_resources(adapter, i);
2692 
2693 	return (rc);
2694 }
2695 
2696 static void
2697 al_eth_disable_int_sync(struct al_eth_adapter *adapter)
2698 {
2699 
2700 	/* disable forwarding interrupts from eth through pci end point */
2701 	if ((adapter->board_type == ALPINE_FPGA_NIC) ||
2702 	    (adapter->board_type == ALPINE_NIC)) {
2703 		al_eth_forward_int_config((uint32_t*)adapter->internal_pcie_base +
2704 		    AL_REG_OFFSET_FORWARD_INTR, AL_DIS_FORWARD_INTR);
2705 	}
2706 
2707 	/* mask hw interrupts */
2708 	al_eth_interrupts_mask(adapter);
2709 }
2710 
2711 static void
2712 al_eth_interrupts_unmask(struct al_eth_adapter *adapter)
2713 {
2714 	uint32_t group_a_mask = AL_INT_GROUP_A_GROUP_D_SUM; /* enable group D summery */
2715 	uint32_t group_b_mask = (1 << adapter->num_rx_queues) - 1;/* bit per Rx q*/
2716 	uint32_t group_c_mask = (1 << adapter->num_tx_queues) - 1;/* bit per Tx q*/
2717 	uint32_t group_d_mask = 3 << 8;
2718 	struct unit_regs __iomem *regs_base =
2719 	    (struct unit_regs __iomem *)adapter->udma_base;
2720 
2721 	if (adapter->int_mode == AL_IOFIC_MODE_LEGACY)
2722 		group_a_mask |= AL_INT_GROUP_A_GROUP_B_SUM |
2723 		    AL_INT_GROUP_A_GROUP_C_SUM |
2724 		    AL_INT_GROUP_A_GROUP_D_SUM;
2725 
2726 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2727 	    AL_INT_GROUP_A, group_a_mask);
2728 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2729 	    AL_INT_GROUP_B, group_b_mask);
2730 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2731 	    AL_INT_GROUP_C, group_c_mask);
2732 	al_udma_iofic_unmask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2733 	    AL_INT_GROUP_D, group_d_mask);
2734 }
2735 
2736 static void
2737 al_eth_interrupts_mask(struct al_eth_adapter *adapter)
2738 {
2739 	struct unit_regs __iomem *regs_base =
2740 	    (struct unit_regs __iomem *)adapter->udma_base;
2741 
2742 	/* mask all interrupts */
2743 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2744 	    AL_INT_GROUP_A, AL_MASK_GROUP_A_INT);
2745 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2746 	    AL_INT_GROUP_B, AL_MASK_GROUP_B_INT);
2747 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2748 	    AL_INT_GROUP_C, AL_MASK_GROUP_C_INT);
2749 	al_udma_iofic_mask(regs_base, AL_UDMA_IOFIC_LEVEL_PRIMARY,
2750 	    AL_INT_GROUP_D, AL_MASK_GROUP_D_INT);
2751 }
2752 
2753 static int
2754 al_eth_configure_int_mode(struct al_eth_adapter *adapter)
2755 {
2756 	enum al_iofic_mode int_mode;
2757 	uint32_t m2s_errors_disable = AL_M2S_MASK_INIT;
2758 	uint32_t m2s_aborts_disable = AL_M2S_MASK_INIT;
2759 	uint32_t s2m_errors_disable = AL_S2M_MASK_INIT;
2760 	uint32_t s2m_aborts_disable = AL_S2M_MASK_INIT;
2761 
2762 	/* single INTX mode */
2763 	if (adapter->msix_vecs == 0)
2764 		int_mode = AL_IOFIC_MODE_LEGACY;
2765 	else if (adapter->msix_vecs > 1)
2766 		int_mode = AL_IOFIC_MODE_MSIX_PER_Q;
2767 	else {
2768 		device_printf(adapter->dev,
2769 		    "udma doesn't support single MSI-X mode yet.\n");
2770 		return (EIO);
2771 	}
2772 
2773 	if (adapter->board_type != ALPINE_INTEGRATED) {
2774 		m2s_errors_disable |= AL_M2S_S2M_MASK_NOT_INT;
2775 		m2s_errors_disable |= AL_M2S_S2M_MASK_NOT_INT;
2776 		s2m_aborts_disable |= AL_M2S_S2M_MASK_NOT_INT;
2777 		s2m_aborts_disable |= AL_M2S_S2M_MASK_NOT_INT;
2778 	}
2779 
2780 	if (al_udma_iofic_config((struct unit_regs __iomem *)adapter->udma_base,
2781 	    int_mode, m2s_errors_disable, m2s_aborts_disable,
2782 	    s2m_errors_disable, s2m_aborts_disable)) {
2783 		device_printf(adapter->dev,
2784 		    "al_udma_unit_int_config failed!.\n");
2785 		return (EIO);
2786 	}
2787 	adapter->int_mode = int_mode;
2788 	device_printf_dbg(adapter->dev, "using %s interrupt mode\n",
2789 	    int_mode == AL_IOFIC_MODE_LEGACY ? "INTx" :
2790 	    int_mode == AL_IOFIC_MODE_MSIX_PER_Q ? "MSI-X per Queue" : "Unknown");
2791 	/* set interrupt moderation resolution to 15us */
2792 	al_iofic_moder_res_config(&((struct unit_regs *)(adapter->udma_base))->gen.interrupt_regs.main_iofic, AL_INT_GROUP_B, 15);
2793 	al_iofic_moder_res_config(&((struct unit_regs *)(adapter->udma_base))->gen.interrupt_regs.main_iofic, AL_INT_GROUP_C, 15);
2794 	/* by default interrupt coalescing is disabled */
2795 	adapter->tx_usecs = 0;
2796 	adapter->rx_usecs = 0;
2797 
2798 	return (0);
2799 }
2800 
2801 /*
2802  * ethtool_rxfh_indir_default - get default value for RX flow hash indirection
2803  * @index: Index in RX flow hash indirection table
2804  * @n_rx_rings: Number of RX rings to use
2805  *
2806  * This function provides the default policy for RX flow hash indirection.
2807  */
2808 static inline uint32_t
2809 ethtool_rxfh_indir_default(uint32_t index, uint32_t n_rx_rings)
2810 {
2811 
2812 	return (index % n_rx_rings);
2813 }
2814 
2815 static void*
2816 al_eth_update_stats(struct al_eth_adapter *adapter)
2817 {
2818 	struct al_eth_mac_stats *mac_stats = &adapter->mac_stats;
2819 
2820 	if (adapter->up == 0)
2821 		return (NULL);
2822 
2823 	al_eth_mac_stats_get(&adapter->hal_adapter, mac_stats);
2824 
2825 	return (NULL);
2826 }
2827 
2828 static uint64_t
2829 al_get_counter(struct ifnet *ifp, ift_counter cnt)
2830 {
2831 	struct al_eth_adapter *adapter;
2832 	struct al_eth_mac_stats *mac_stats;
2833 	uint64_t rv;
2834 
2835 	adapter = if_getsoftc(ifp);
2836 	mac_stats = &adapter->mac_stats;
2837 
2838 	switch (cnt) {
2839 	case IFCOUNTER_IPACKETS:
2840 		return (mac_stats->aFramesReceivedOK); /* including pause frames */
2841 	case IFCOUNTER_OPACKETS:
2842 		return (mac_stats->aFramesTransmittedOK);
2843 	case IFCOUNTER_IBYTES:
2844 		return (mac_stats->aOctetsReceivedOK);
2845 	case IFCOUNTER_OBYTES:
2846 		return (mac_stats->aOctetsTransmittedOK);
2847 	case IFCOUNTER_IMCASTS:
2848 		return (mac_stats->ifInMulticastPkts);
2849 	case IFCOUNTER_OMCASTS:
2850 		return (mac_stats->ifOutMulticastPkts);
2851 	case IFCOUNTER_COLLISIONS:
2852 		return (0);
2853 	case IFCOUNTER_IQDROPS:
2854 		return (mac_stats->etherStatsDropEvents);
2855 	case IFCOUNTER_IERRORS:
2856 		rv = mac_stats->ifInErrors +
2857 		    mac_stats->etherStatsUndersizePkts + /* good but short */
2858 		    mac_stats->etherStatsFragments + /* short and bad*/
2859 		    mac_stats->etherStatsJabbers + /* with crc errors */
2860 		    mac_stats->etherStatsOversizePkts +
2861 		    mac_stats->aFrameCheckSequenceErrors +
2862 		    mac_stats->aAlignmentErrors;
2863 		return (rv);
2864 	case IFCOUNTER_OERRORS:
2865 		return (mac_stats->ifOutErrors);
2866 	default:
2867 		return (if_get_counter_default(ifp, cnt));
2868 	}
2869 }
2870 
2871 /*
2872  *  Unicast, Multicast and Promiscuous mode set
2873  *
2874  *  The set_rx_mode entry point is called whenever the unicast or multicast
2875  *  address lists or the network interface flags are updated.  This routine is
2876  *  responsible for configuring the hardware for proper unicast, multicast,
2877  *  promiscuous mode, and all-multi behavior.
2878  */
2879 #define	MAX_NUM_MULTICAST_ADDRESSES 32
2880 #define	MAX_NUM_ADDRESSES           32
2881 
2882 static void
2883 al_eth_set_rx_mode(struct al_eth_adapter *adapter)
2884 {
2885 	struct ifnet *ifp = adapter->netdev;
2886 	struct ifmultiaddr *ifma; /* multicast addresses configured */
2887 	struct ifaddr *ifua; /* unicast address */
2888 	int mc = 0;
2889 	int uc = 0;
2890 	uint8_t i;
2891 	unsigned char *mac;
2892 
2893 	if_maddr_rlock(ifp);
2894 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2895 		if (ifma->ifma_addr->sa_family != AF_LINK)
2896 			continue;
2897 		if (mc == MAX_NUM_MULTICAST_ADDRESSES)
2898 			break;
2899 
2900 		mac = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2901 		/* default mc address inside mac address */
2902 		if (mac[3] != 0 && mac[4] != 0 && mac[5] != 1)
2903 			mc++;
2904 	}
2905 	if_maddr_runlock(ifp);
2906 
2907 	if_addr_rlock(ifp);
2908 	CK_STAILQ_FOREACH(ifua, &ifp->if_addrhead, ifa_link) {
2909 		if (ifua->ifa_addr->sa_family != AF_LINK)
2910 			continue;
2911 		if (uc == MAX_NUM_ADDRESSES)
2912 			break;
2913 		uc++;
2914 	}
2915 	if_addr_runlock(ifp);
2916 
2917 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2918 		al_eth_mac_table_promiscuous_set(adapter, true);
2919 	} else {
2920 		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
2921 			/* This interface is in all-multicasts mode (used by multicast routers). */
2922 			al_eth_mac_table_all_multicast_add(adapter,
2923 			    AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX, 1);
2924 		} else {
2925 			if (mc == 0) {
2926 				al_eth_mac_table_entry_clear(adapter,
2927 				    AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX);
2928 			} else {
2929 				al_eth_mac_table_all_multicast_add(adapter,
2930 				    AL_ETH_MAC_TABLE_ALL_MULTICAST_IDX, 1);
2931 			}
2932 		}
2933 		if (uc != 0) {
2934 			i = AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + 1;
2935 			if (uc > AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT) {
2936 				/*
2937 				 * In this case there are more addresses then
2938 				 * entries in the mac table - set promiscuous
2939 				 */
2940 				al_eth_mac_table_promiscuous_set(adapter, true);
2941 				return;
2942 			}
2943 
2944 			/* clear the last configuration */
2945 			while (i < (AL_ETH_MAC_TABLE_UNICAST_IDX_BASE +
2946 				    AL_ETH_MAC_TABLE_UNICAST_MAX_COUNT)) {
2947 				al_eth_mac_table_entry_clear(adapter, i);
2948 				i++;
2949 			}
2950 
2951 			/* set new addresses */
2952 			i = AL_ETH_MAC_TABLE_UNICAST_IDX_BASE + 1;
2953 			if_addr_rlock(ifp);
2954 			CK_STAILQ_FOREACH(ifua, &ifp->if_addrhead, ifa_link) {
2955 				if (ifua->ifa_addr->sa_family != AF_LINK) {
2956 					continue;
2957 				}
2958 				al_eth_mac_table_unicast_add(adapter, i,
2959 				    (unsigned char *)ifua->ifa_addr, 1);
2960 				i++;
2961 			}
2962 			if_addr_runlock(ifp);
2963 
2964 		}
2965 		al_eth_mac_table_promiscuous_set(adapter, false);
2966 	}
2967 }
2968 
2969 static void
2970 al_eth_config_rx_fwd(struct al_eth_adapter *adapter)
2971 {
2972 	struct al_eth_fwd_ctrl_table_entry entry;
2973 	int i;
2974 
2975 	/* let priority be equal to pbits */
2976 	for (i = 0; i < AL_ETH_FWD_PBITS_TABLE_NUM; i++)
2977 		al_eth_fwd_pbits_table_set(&adapter->hal_adapter, i, i);
2978 
2979 	/* map priority to queue index, queue id = priority/2 */
2980 	for (i = 0; i < AL_ETH_FWD_PRIO_TABLE_NUM; i++)
2981 		al_eth_fwd_priority_table_set(&adapter->hal_adapter, i, i >> 1);
2982 
2983 	entry.prio_sel = AL_ETH_CTRL_TABLE_PRIO_SEL_VAL_0;
2984 	entry.queue_sel_1 = AL_ETH_CTRL_TABLE_QUEUE_SEL_1_THASH_TABLE;
2985 	entry.queue_sel_2 = AL_ETH_CTRL_TABLE_QUEUE_SEL_2_NO_PRIO;
2986 	entry.udma_sel = AL_ETH_CTRL_TABLE_UDMA_SEL_MAC_TABLE;
2987 	entry.filter = FALSE;
2988 
2989 	al_eth_ctrl_table_def_set(&adapter->hal_adapter, FALSE, &entry);
2990 
2991 	/*
2992 	 * By default set the mac table to forward all unicast packets to our
2993 	 * MAC address and all broadcast. all the rest will be dropped.
2994 	 */
2995 	al_eth_mac_table_unicast_add(adapter, AL_ETH_MAC_TABLE_UNICAST_IDX_BASE,
2996 	    adapter->mac_addr, 1);
2997 	al_eth_mac_table_broadcast_add(adapter, AL_ETH_MAC_TABLE_BROADCAST_IDX, 1);
2998 	al_eth_mac_table_promiscuous_set(adapter, false);
2999 
3000 	/* set toeplitz hash keys */
3001 	for (i = 0; i < sizeof(adapter->toeplitz_hash_key); i++)
3002 		*((uint8_t*)adapter->toeplitz_hash_key + i) = (uint8_t)random();
3003 
3004 	for (i = 0; i < AL_ETH_RX_HASH_KEY_NUM; i++)
3005 		al_eth_hash_key_set(&adapter->hal_adapter, i,
3006 		    htonl(adapter->toeplitz_hash_key[i]));
3007 
3008 	for (i = 0; i < AL_ETH_RX_RSS_TABLE_SIZE; i++) {
3009 		adapter->rss_ind_tbl[i] = ethtool_rxfh_indir_default(i,
3010 		    AL_ETH_NUM_QUEUES);
3011 		al_eth_set_thash_table_entry(adapter, i, 0,
3012 		    adapter->rss_ind_tbl[i]);
3013 	}
3014 
3015 	al_eth_fsm_table_init(adapter);
3016 }
3017 
3018 static void
3019 al_eth_req_rx_buff_size(struct al_eth_adapter *adapter, int size)
3020 {
3021 
3022 	/*
3023 	* Determine the correct mbuf pool
3024 	* for doing jumbo frames
3025 	* Try from the smallest up to maximum supported
3026 	*/
3027 	adapter->rx_mbuf_sz = MCLBYTES;
3028 	if (size > 2048) {
3029 		if (adapter->max_rx_buff_alloc_size > 2048)
3030 			adapter->rx_mbuf_sz = MJUMPAGESIZE;
3031 		else
3032 			return;
3033 	}
3034 	if (size > 4096) {
3035 		if (adapter->max_rx_buff_alloc_size > 4096)
3036 			adapter->rx_mbuf_sz = MJUM9BYTES;
3037 		else
3038 			return;
3039 	}
3040 	if (size > 9216) {
3041 		if (adapter->max_rx_buff_alloc_size > 9216)
3042 			adapter->rx_mbuf_sz = MJUM16BYTES;
3043 		else
3044 			return;
3045 	}
3046 }
3047 
3048 static int
3049 al_eth_change_mtu(struct al_eth_adapter *adapter, int new_mtu)
3050 {
3051 	int max_frame = new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
3052 	    ETHER_VLAN_ENCAP_LEN;
3053 
3054 	al_eth_req_rx_buff_size(adapter, new_mtu);
3055 
3056 	device_printf_dbg(adapter->dev, "set MTU to %d\n", new_mtu);
3057 	al_eth_rx_pkt_limit_config(&adapter->hal_adapter,
3058 	    AL_ETH_MIN_FRAME_LEN, max_frame);
3059 
3060 	al_eth_tso_mss_config(&adapter->hal_adapter, 0, new_mtu - 100);
3061 
3062 	return (0);
3063 }
3064 
3065 static int
3066 al_eth_check_mtu(struct al_eth_adapter *adapter, int new_mtu)
3067 {
3068 	int max_frame = new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
3069 
3070 	if ((new_mtu < AL_ETH_MIN_FRAME_LEN) ||
3071 	    (max_frame > AL_ETH_MAX_FRAME_LEN)) {
3072 		return (EINVAL);
3073 	}
3074 
3075 	return (0);
3076 }
3077 
3078 static int
3079 al_eth_udma_queue_enable(struct al_eth_adapter *adapter, enum al_udma_type type,
3080     int qid)
3081 {
3082 	int rc = 0;
3083 	char *name = (type == UDMA_TX) ? "Tx" : "Rx";
3084 	struct al_udma_q_params *q_params;
3085 
3086 	if (type == UDMA_TX)
3087 		q_params = &adapter->tx_ring[qid].q_params;
3088 	else
3089 		q_params = &adapter->rx_ring[qid].q_params;
3090 
3091 	rc = al_eth_queue_config(&adapter->hal_adapter, type, qid, q_params);
3092 	if (rc < 0) {
3093 		device_printf(adapter->dev, "config %s queue %u failed\n", name,
3094 		    qid);
3095 		return (rc);
3096 	}
3097 	return (rc);
3098 }
3099 
3100 static int
3101 al_eth_udma_queues_enable_all(struct al_eth_adapter *adapter)
3102 {
3103 	int i;
3104 
3105 	for (i = 0; i < adapter->num_tx_queues; i++)
3106 		al_eth_udma_queue_enable(adapter, UDMA_TX, i);
3107 
3108 	for (i = 0; i < adapter->num_rx_queues; i++)
3109 		al_eth_udma_queue_enable(adapter, UDMA_RX, i);
3110 
3111 	return (0);
3112 }
3113 
3114 static void
3115 al_eth_up_complete(struct al_eth_adapter *adapter)
3116 {
3117 
3118 	al_eth_configure_int_mode(adapter);
3119 	al_eth_config_rx_fwd(adapter);
3120 	al_eth_change_mtu(adapter, adapter->netdev->if_mtu);
3121 	al_eth_udma_queues_enable_all(adapter);
3122 	al_eth_refill_all_rx_bufs(adapter);
3123 	al_eth_interrupts_unmask(adapter);
3124 
3125 	/* enable forwarding interrupts from eth through pci end point */
3126 	if ((adapter->board_type == ALPINE_FPGA_NIC) ||
3127 	    (adapter->board_type == ALPINE_NIC)) {
3128 		al_eth_forward_int_config((uint32_t*)adapter->internal_pcie_base +
3129 		    AL_REG_OFFSET_FORWARD_INTR, AL_EN_FORWARD_INTR);
3130 	}
3131 
3132 	al_eth_flow_ctrl_enable(adapter);
3133 
3134 	mtx_lock(&adapter->stats_mtx);
3135 	callout_reset(&adapter->stats_callout, hz, al_tick_stats, (void*)adapter);
3136 	mtx_unlock(&adapter->stats_mtx);
3137 
3138 	al_eth_mac_start(&adapter->hal_adapter);
3139 }
3140 
3141 static int
3142 al_media_update(struct ifnet *ifp)
3143 {
3144 	struct al_eth_adapter *adapter = ifp->if_softc;
3145 
3146 	if ((ifp->if_flags & IFF_UP) != 0)
3147 		mii_mediachg(adapter->mii);
3148 
3149 	return (0);
3150 }
3151 
3152 static void
3153 al_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
3154 {
3155 	struct al_eth_adapter *sc = ifp->if_softc;
3156 	struct mii_data *mii;
3157 
3158 	if (sc->mii == NULL) {
3159 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3160 		ifmr->ifm_status = 0;
3161 
3162 		return;
3163 	}
3164 
3165 	mii = sc->mii;
3166 	mii_pollstat(mii);
3167 
3168 	ifmr->ifm_active = mii->mii_media_active;
3169 	ifmr->ifm_status = mii->mii_media_status;
3170 }
3171 
3172 static void
3173 al_tick(void *arg)
3174 {
3175 	struct al_eth_adapter *adapter = arg;
3176 
3177 	mii_tick(adapter->mii);
3178 
3179 	/* Schedule another timeout one second from now */
3180 	callout_schedule(&adapter->wd_callout, hz);
3181 }
3182 
3183 static void
3184 al_tick_stats(void *arg)
3185 {
3186 	struct al_eth_adapter *adapter = arg;
3187 
3188 	al_eth_update_stats(adapter);
3189 
3190 	callout_schedule(&adapter->stats_callout, hz);
3191 }
3192 
3193 static int
3194 al_eth_up(struct al_eth_adapter *adapter)
3195 {
3196 	struct ifnet *ifp = adapter->netdev;
3197 	int rc;
3198 
3199 	if (adapter->up)
3200 		return (0);
3201 
3202 	if ((adapter->flags & AL_ETH_FLAG_RESET_REQUESTED) != 0) {
3203 		al_eth_function_reset(adapter);
3204 		adapter->flags &= ~AL_ETH_FLAG_RESET_REQUESTED;
3205 	}
3206 
3207 	ifp->if_hwassist = 0;
3208 	if ((ifp->if_capenable & IFCAP_TSO) != 0)
3209 		ifp->if_hwassist |= CSUM_TSO;
3210 	if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3211 		ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
3212 	if ((ifp->if_capenable & IFCAP_TXCSUM_IPV6) != 0)
3213 		ifp->if_hwassist |= (CSUM_TCP_IPV6 | CSUM_UDP_IPV6);
3214 
3215 	al_eth_serdes_init(adapter);
3216 
3217 	rc = al_eth_hw_init(adapter);
3218 	if (rc != 0)
3219 		goto err_hw_init_open;
3220 
3221 	rc = al_eth_setup_int_mode(adapter);
3222 	if (rc != 0) {
3223 		device_printf(adapter->dev,
3224 		    "%s failed at setup interrupt mode!\n", __func__);
3225 		goto err_setup_int;
3226 	}
3227 
3228 	/* allocate transmit descriptors */
3229 	rc = al_eth_setup_all_tx_resources(adapter);
3230 	if (rc != 0)
3231 		goto err_setup_tx;
3232 
3233 	/* allocate receive descriptors */
3234 	rc = al_eth_setup_all_rx_resources(adapter);
3235 	if (rc != 0)
3236 		goto err_setup_rx;
3237 
3238 	rc = al_eth_request_irq(adapter);
3239 	if (rc != 0)
3240 		goto err_req_irq;
3241 
3242 	al_eth_up_complete(adapter);
3243 
3244 	adapter->up = true;
3245 
3246 	if (adapter->mac_mode == AL_ETH_MAC_MODE_10GbE_Serial)
3247 		adapter->netdev->if_link_state = LINK_STATE_UP;
3248 
3249 	if (adapter->mac_mode == AL_ETH_MAC_MODE_RGMII) {
3250 		mii_mediachg(adapter->mii);
3251 
3252 		/* Schedule watchdog timeout */
3253 		mtx_lock(&adapter->wd_mtx);
3254 		callout_reset(&adapter->wd_callout, hz, al_tick, adapter);
3255 		mtx_unlock(&adapter->wd_mtx);
3256 
3257 		mii_pollstat(adapter->mii);
3258 	}
3259 
3260 	return (rc);
3261 
3262 err_req_irq:
3263 	al_eth_free_all_rx_resources(adapter);
3264 err_setup_rx:
3265 	al_eth_free_all_tx_resources(adapter);
3266 err_setup_tx:
3267 	al_eth_free_irq(adapter);
3268 err_setup_int:
3269 	al_eth_hw_stop(adapter);
3270 err_hw_init_open:
3271 	al_eth_function_reset(adapter);
3272 
3273 	return (rc);
3274 }
3275 
3276 static int
3277 al_shutdown(device_t dev)
3278 {
3279 	struct al_eth_adapter *adapter = device_get_softc(dev);
3280 
3281 	al_eth_down(adapter);
3282 
3283 	return (0);
3284 }
3285 
3286 static void
3287 al_eth_down(struct al_eth_adapter *adapter)
3288 {
3289 
3290 	device_printf_dbg(adapter->dev, "al_eth_down: begin\n");
3291 
3292 	adapter->up = false;
3293 
3294 	mtx_lock(&adapter->wd_mtx);
3295 	callout_stop(&adapter->wd_callout);
3296 	mtx_unlock(&adapter->wd_mtx);
3297 
3298 	al_eth_disable_int_sync(adapter);
3299 
3300 	mtx_lock(&adapter->stats_mtx);
3301 	callout_stop(&adapter->stats_callout);
3302 	mtx_unlock(&adapter->stats_mtx);
3303 
3304 	al_eth_free_irq(adapter);
3305 	al_eth_hw_stop(adapter);
3306 
3307 	al_eth_free_all_tx_resources(adapter);
3308 	al_eth_free_all_rx_resources(adapter);
3309 }
3310 
3311 static int
3312 al_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3313 {
3314 	struct al_eth_adapter	*adapter = ifp->if_softc;
3315 	struct ifreq		*ifr = (struct ifreq *)data;
3316 	int			error = 0;
3317 
3318 	switch (command) {
3319 	case SIOCSIFMTU:
3320 	{
3321 		error = al_eth_check_mtu(adapter, ifr->ifr_mtu);
3322 		if (error != 0) {
3323 			device_printf(adapter->dev, "ioctl wrong mtu %u\n",
3324 			    adapter->netdev->if_mtu);
3325 			break;
3326 		}
3327 
3328 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3329 		adapter->netdev->if_mtu = ifr->ifr_mtu;
3330 		al_init(adapter);
3331 		break;
3332 	}
3333 	case SIOCSIFFLAGS:
3334 		if ((ifp->if_flags & IFF_UP) != 0) {
3335 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3336 				if (((ifp->if_flags ^ adapter->if_flags) &
3337 				    (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3338 					device_printf_dbg(adapter->dev,
3339 					    "ioctl promisc/allmulti\n");
3340 					al_eth_set_rx_mode(adapter);
3341 				}
3342 			} else {
3343 				error = al_eth_up(adapter);
3344 				if (error == 0)
3345 					ifp->if_drv_flags |= IFF_DRV_RUNNING;
3346 			}
3347 		} else {
3348 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3349 				al_eth_down(adapter);
3350 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3351 			}
3352 		}
3353 
3354 		adapter->if_flags = ifp->if_flags;
3355 		break;
3356 
3357 	case SIOCADDMULTI:
3358 	case SIOCDELMULTI:
3359 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3360 			device_printf_dbg(adapter->dev,
3361 			    "ioctl add/del multi before\n");
3362 			al_eth_set_rx_mode(adapter);
3363 #ifdef DEVICE_POLLING
3364 			if ((ifp->if_capenable & IFCAP_POLLING) == 0)
3365 #endif
3366 		}
3367 		break;
3368 	case SIOCSIFMEDIA:
3369 	case SIOCGIFMEDIA:
3370 		if (adapter->mii != NULL)
3371 			error = ifmedia_ioctl(ifp, ifr,
3372 			    &adapter->mii->mii_media, command);
3373 		else
3374 			error = ifmedia_ioctl(ifp, ifr,
3375 			    &adapter->media, command);
3376 		break;
3377 	case SIOCSIFCAP:
3378 	    {
3379 		int mask, reinit;
3380 
3381 		reinit = 0;
3382 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3383 #ifdef DEVICE_POLLING
3384 		if ((mask & IFCAP_POLLING) != 0) {
3385 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
3386 				if (error != 0)
3387 					return (error);
3388 				ifp->if_capenable |= IFCAP_POLLING;
3389 			} else {
3390 				error = ether_poll_deregister(ifp);
3391 				/* Enable interrupt even in error case */
3392 				ifp->if_capenable &= ~IFCAP_POLLING;
3393 			}
3394 		}
3395 #endif
3396 		if ((mask & IFCAP_HWCSUM) != 0) {
3397 			/* apply to both rx and tx */
3398 			ifp->if_capenable ^= IFCAP_HWCSUM;
3399 			reinit = 1;
3400 		}
3401 		if ((mask & IFCAP_HWCSUM_IPV6) != 0) {
3402 			ifp->if_capenable ^= IFCAP_HWCSUM_IPV6;
3403 			reinit = 1;
3404 		}
3405 		if ((mask & IFCAP_TSO) != 0) {
3406 			ifp->if_capenable ^= IFCAP_TSO;
3407 			reinit = 1;
3408 		}
3409 		if ((mask & IFCAP_LRO) != 0) {
3410 			ifp->if_capenable ^= IFCAP_LRO;
3411 		}
3412 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
3413 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3414 			reinit = 1;
3415 		}
3416 		if ((mask & IFCAP_VLAN_HWFILTER) != 0) {
3417 			ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
3418 			reinit = 1;
3419 		}
3420 		if ((mask & IFCAP_VLAN_HWTSO) != 0) {
3421 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
3422 			reinit = 1;
3423 		}
3424 		if ((reinit != 0) &&
3425 		    ((ifp->if_drv_flags & IFF_DRV_RUNNING)) != 0)
3426 		{
3427 			al_init(adapter);
3428 		}
3429 		break;
3430 	    }
3431 
3432 	default:
3433 		error = ether_ioctl(ifp, command, data);
3434 		break;
3435 	}
3436 
3437 	return (error);
3438 }
3439 
3440 static int
3441 al_is_device_supported(device_t dev)
3442 {
3443 	uint16_t pci_vendor_id = pci_get_vendor(dev);
3444 	uint16_t pci_device_id = pci_get_device(dev);
3445 
3446 	return (pci_vendor_id == PCI_VENDOR_ID_ANNAPURNA_LABS &&
3447 	    (pci_device_id == PCI_DEVICE_ID_AL_ETH ||
3448 	    pci_device_id == PCI_DEVICE_ID_AL_ETH_ADVANCED ||
3449 	    pci_device_id == PCI_DEVICE_ID_AL_ETH_NIC ||
3450 	    pci_device_id == PCI_DEVICE_ID_AL_ETH_FPGA_NIC));
3451 }
3452 
3453 /* Time in mSec to keep trying to read / write from MDIO in case of error */
3454 #define	MDIO_TIMEOUT_MSEC	100
3455 #define	MDIO_PAUSE_MSEC		10
3456 
3457 static int
3458 al_miibus_readreg(device_t dev, int phy, int reg)
3459 {
3460 	struct al_eth_adapter *adapter = device_get_softc(dev);
3461 	uint16_t value = 0;
3462 	int rc;
3463 	int timeout = MDIO_TIMEOUT_MSEC;
3464 
3465 	while (timeout > 0) {
3466 		rc = al_eth_mdio_read(&adapter->hal_adapter, adapter->phy_addr,
3467 		    -1, reg, &value);
3468 
3469 		if (rc == 0)
3470 			return (value);
3471 
3472 		device_printf_dbg(adapter->dev,
3473 		    "mdio read failed. try again in 10 msec\n");
3474 
3475 		timeout -= MDIO_PAUSE_MSEC;
3476 		pause("readred pause", MDIO_PAUSE_MSEC);
3477 	}
3478 
3479 	if (rc != 0)
3480 		device_printf(adapter->dev, "MDIO read failed on timeout\n");
3481 
3482 	return (value);
3483 }
3484 
3485 static int
3486 al_miibus_writereg(device_t dev, int phy, int reg, int value)
3487 {
3488 	struct al_eth_adapter *adapter = device_get_softc(dev);
3489 	int rc;
3490 	int timeout = MDIO_TIMEOUT_MSEC;
3491 
3492 	while (timeout > 0) {
3493 		rc = al_eth_mdio_write(&adapter->hal_adapter, adapter->phy_addr,
3494 		    -1, reg, value);
3495 
3496 		if (rc == 0)
3497 			return (0);
3498 
3499 		device_printf(adapter->dev,
3500 		    "mdio write failed. try again in 10 msec\n");
3501 
3502 		timeout -= MDIO_PAUSE_MSEC;
3503 		pause("miibus writereg", MDIO_PAUSE_MSEC);
3504 	}
3505 
3506 	if (rc != 0)
3507 		device_printf(adapter->dev, "MDIO write failed on timeout\n");
3508 
3509 	return (rc);
3510 }
3511 
3512 static void
3513 al_miibus_statchg(device_t dev)
3514 {
3515 	struct al_eth_adapter *adapter = device_get_softc(dev);
3516 
3517 	device_printf_dbg(adapter->dev,
3518 	    "al_miibus_statchg: state has changed!\n");
3519 	device_printf_dbg(adapter->dev,
3520 	    "al_miibus_statchg: active = 0x%x status = 0x%x\n",
3521 	    adapter->mii->mii_media_active, adapter->mii->mii_media_status);
3522 
3523 	if (adapter->up == 0)
3524 		return;
3525 
3526 	if ((adapter->mii->mii_media_status & IFM_AVALID) != 0) {
3527 		if (adapter->mii->mii_media_status & IFM_ACTIVE) {
3528 			device_printf(adapter->dev, "link is UP\n");
3529 			adapter->netdev->if_link_state = LINK_STATE_UP;
3530 		} else {
3531 			device_printf(adapter->dev, "link is DOWN\n");
3532 			adapter->netdev->if_link_state = LINK_STATE_DOWN;
3533 		}
3534 	}
3535 }
3536 
3537 static void
3538 al_miibus_linkchg(device_t dev)
3539 {
3540 	struct al_eth_adapter *adapter = device_get_softc(dev);
3541 	uint8_t duplex = 0;
3542 	uint8_t speed = 0;
3543 
3544 	if (adapter->mii == NULL)
3545 		return;
3546 
3547 	if ((adapter->netdev->if_flags & IFF_UP) == 0)
3548 		return;
3549 
3550 	/* Ignore link changes when link is not ready */
3551 	if ((adapter->mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
3552 	    (IFM_AVALID | IFM_ACTIVE)) {
3553 		return;
3554 	}
3555 
3556 	if ((adapter->mii->mii_media_active & IFM_FDX) != 0)
3557 		duplex = 1;
3558 
3559 	speed = IFM_SUBTYPE(adapter->mii->mii_media_active);
3560 
3561 	if (speed == IFM_10_T) {
3562 		al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
3563 		    AL_10BASE_T_SPEED, duplex);
3564 		return;
3565 	}
3566 
3567 	if (speed == IFM_100_TX) {
3568 		al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
3569 		    AL_100BASE_TX_SPEED, duplex);
3570 		return;
3571 	}
3572 
3573 	if (speed == IFM_1000_T) {
3574 		al_eth_mac_link_config(&adapter->hal_adapter, 0, 1,
3575 		    AL_1000BASE_T_SPEED, duplex);
3576 		return;
3577 	}
3578 
3579 	device_printf(adapter->dev, "ERROR: unknown MII media active 0x%08x\n",
3580 	    adapter->mii->mii_media_active);
3581 }
3582