xref: /freebsd/sys/dev/aic7xxx/aic79xx_inline.h (revision adcf242ea95f5d068de43de09dba6f1b22216ed8)
1 /*
2  * Inline routines shareable across OS platforms.
3  *
4  * Copyright (c) 1994-2001 Justin T. Gibbs.
5  * Copyright (c) 2000-2002 Adaptec Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    substantially similar to the "NO WARRANTY" disclaimer below
16  *    ("Disclaimer") and any redistribution must be conditioned upon
17  *    including a substantially similar Disclaimer requirement for further
18  *    binary redistribution.
19  * 3. Neither the names of the above-listed copyright holders nor the names
20  *    of any contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * Alternatively, this software may be distributed under the terms of the
24  * GNU General Public License ("GPL") version 2 as published by the Free
25  * Software Foundation.
26  *
27  * NO WARRANTY
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGES.
39  *
40  * $Id: //depot/aic7xxx/aic7xxx/aic79xx_inline.h#34 $
41  *
42  * $FreeBSD$
43  */
44 
45 #ifndef _AIC79XX_INLINE_H_
46 #define _AIC79XX_INLINE_H_
47 
48 /******************************** Debugging ***********************************/
49 static __inline char *ahd_name(struct ahd_softc *ahd);
50 
51 static __inline char *
52 ahd_name(struct ahd_softc *ahd)
53 {
54 	return (ahd->name);
55 }
56 
57 /************************ Sequencer Execution Control *************************/
58 static __inline void ahd_known_modes(struct ahd_softc *ahd,
59 				     ahd_mode src, ahd_mode dst);
60 static __inline ahd_mode_state ahd_build_mode_state(struct ahd_softc *ahd,
61 						    ahd_mode src,
62 						    ahd_mode dst);
63 static __inline void ahd_extract_mode_state(struct ahd_softc *ahd,
64 					    ahd_mode_state state,
65 					    ahd_mode *src, ahd_mode *dst);
66 static __inline void ahd_set_modes(struct ahd_softc *ahd, ahd_mode src,
67 				   ahd_mode dst);
68 static __inline void ahd_update_modes(struct ahd_softc *ahd);
69 static __inline void ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
70 				      ahd_mode dstmode, const char *file,
71 				      int line);
72 static __inline ahd_mode_state ahd_save_modes(struct ahd_softc *ahd);
73 static __inline void ahd_restore_modes(struct ahd_softc *ahd,
74 				       ahd_mode_state state);
75 static __inline int  ahd_is_paused(struct ahd_softc *ahd);
76 static __inline void ahd_pause(struct ahd_softc *ahd);
77 static __inline void ahd_unpause(struct ahd_softc *ahd);
78 
79 static __inline void
80 ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
81 {
82 	ahd->src_mode = src;
83 	ahd->dst_mode = dst;
84 	ahd->saved_src_mode = src;
85 	ahd->saved_dst_mode = dst;
86 }
87 
88 static __inline ahd_mode_state
89 ahd_build_mode_state(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
90 {
91 	return ((src << SRC_MODE_SHIFT) | (dst << DST_MODE_SHIFT));
92 }
93 
94 static __inline void
95 ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state,
96 		       ahd_mode *src, ahd_mode *dst)
97 {
98 	*src = (state & SRC_MODE) >> SRC_MODE_SHIFT;
99 	*dst = (state & DST_MODE) >> DST_MODE_SHIFT;
100 }
101 
102 static __inline void
103 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
104 {
105 	if (ahd->src_mode == src && ahd->dst_mode == dst)
106 		return;
107 #ifdef AHD_DEBUG
108 	if (ahd->src_mode == AHD_MODE_UNKNOWN
109 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
110 		panic("Setting mode prior to saving it.\n");
111 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
112 		printf("Setting mode 0x%x\n",
113 		       ahd_build_mode_state(ahd, src, dst));
114 #endif
115 	ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
116 	ahd->src_mode = src;
117 	ahd->dst_mode = dst;
118 }
119 
120 static __inline void
121 ahd_update_modes(struct ahd_softc *ahd)
122 {
123 	ahd_mode_state mode_ptr;
124 	ahd_mode src;
125 	ahd_mode dst;
126 
127 	mode_ptr = ahd_inb(ahd, MODE_PTR);
128 #ifdef AHD_DEBUG
129 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
130 		printf("Reading mode 0x%x\n", mode_ptr);
131 #endif
132 	ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
133 	ahd_known_modes(ahd, src, dst);
134 }
135 
136 static __inline void
137 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
138 		 ahd_mode dstmode, const char *file, int line)
139 {
140 #ifdef AHD_DEBUG
141 	if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
142 	 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
143 		panic("%s:%s:%d: Mode assertion failed.\n",
144 		       ahd_name(ahd), file, line);
145 	}
146 #endif
147 }
148 
149 static __inline ahd_mode_state
150 ahd_save_modes(struct ahd_softc *ahd)
151 {
152 	if (ahd->src_mode == AHD_MODE_UNKNOWN
153 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
154 		ahd_update_modes(ahd);
155 
156 	return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
157 }
158 
159 static __inline void
160 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
161 {
162 	ahd_mode src;
163 	ahd_mode dst;
164 
165 	ahd_extract_mode_state(ahd, state, &src, &dst);
166 	ahd_set_modes(ahd, src, dst);
167 }
168 
169 #define AHD_ASSERT_MODES(ahd, source, dest) \
170 	ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
171 
172 /*
173  * Determine whether the sequencer has halted code execution.
174  * Returns non-zero status if the sequencer is stopped.
175  */
176 static __inline int
177 ahd_is_paused(struct ahd_softc *ahd)
178 {
179 	return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
180 }
181 
182 /*
183  * Request that the sequencer stop and wait, indefinitely, for it
184  * to stop.  The sequencer will only acknowledge that it is paused
185  * once it has reached an instruction boundary and PAUSEDIS is
186  * cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
187  * for critical sections.
188  */
189 static __inline void
190 ahd_pause(struct ahd_softc *ahd)
191 {
192 	ahd_outb(ahd, HCNTRL, ahd->pause);
193 
194 	/*
195 	 * Since the sequencer can disable pausing in a critical section, we
196 	 * must loop until it actually stops.
197 	 */
198 	while (ahd_is_paused(ahd) == 0)
199 		;
200 }
201 
202 /*
203  * Allow the sequencer to continue program execution.
204  * We check here to ensure that no additional interrupt
205  * sources that would cause the sequencer to halt have been
206  * asserted.  If, for example, a SCSI bus reset is detected
207  * while we are fielding a different, pausing, interrupt type,
208  * we don't want to release the sequencer before going back
209  * into our interrupt handler and dealing with this new
210  * condition.
211  */
212 static __inline void
213 ahd_unpause(struct ahd_softc *ahd)
214 {
215 	/*
216 	 * Automatically restore our modes to those saved
217 	 * prior to the first change of the mode.
218 	 */
219 	if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
220 	 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN)
221 		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
222 
223 	if ((ahd_inb(ahd, INTSTAT) & ~(SWTMINT | CMDCMPLT)) == 0)
224 		ahd_outb(ahd, HCNTRL, ahd->unpause);
225 
226 	ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
227 }
228 
229 /*********************** Untagged Transaction Routines ************************/
230 static __inline void	ahd_freeze_untagged_queues(struct ahd_softc *ahd);
231 static __inline void	ahd_release_untagged_queues(struct ahd_softc *ahd);
232 
233 /*
234  * Block our completion routine from starting the next untagged
235  * transaction for this target or target lun.
236  */
237 static __inline void
238 ahd_freeze_untagged_queues(struct ahd_softc *ahd)
239 {
240 	/*
241 	 * Assume we have enough space in the card's SCB
242 	 * to obviate the need for a per target untagged
243 	 * transaction limit.
244 	 */
245 #if 0
246 	ahd->untagged_queue_lock++;
247 #endif
248 }
249 
250 /*
251  * Allow the next untagged transaction for this target or target lun
252  * to be executed.  We use a counting semaphore to allow the lock
253  * to be acquired recursively.  Once the count drops to zero, the
254  * transaction queues will be run.
255  */
256 static __inline void
257 ahd_release_untagged_queues(struct ahd_softc *ahd)
258 {
259 	/*
260 	 * Assume we have enough space in the card's SCB
261 	 * to obviate the need for a per target untagged
262 	 * transaction limit.
263 	 */
264 #if 0
265 	ahd->untagged_queue_lock--;
266 	if (ahd->untagged_queue_lock == 0)
267 		ahd_run_untagged_queues(ahd);
268 #endif
269 }
270 
271 /*********************** Scatter Gather List Handling *************************/
272 static __inline void	*ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
273 				      void *sgptr, bus_addr_t addr,
274 				      bus_size_t len, int last);
275 static __inline void	 ahd_setup_scb_common(struct ahd_softc *ahd,
276 					      struct scb *scb);
277 static __inline void	 ahd_setup_data_scb(struct ahd_softc *ahd,
278 					    struct scb *scb);
279 static __inline void	 ahd_setup_noxfer_scb(struct ahd_softc *ahd,
280 					      struct scb *scb);
281 
282 static __inline void *
283 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
284 	     void *sgptr, bus_addr_t addr, bus_size_t len, int last)
285 {
286 	scb->sg_count++;
287 	if (sizeof(bus_addr_t) > 4
288 	 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
289 		struct ahd_dma64_seg *sg;
290 
291 		sg = (struct ahd_dma64_seg *)sgptr;
292 		sg->addr = ahd_htole64(addr);
293 		sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
294 		return (sg + 1);
295 	} else {
296 		struct ahd_dma_seg *sg;
297 
298 		sg = (struct ahd_dma_seg *)sgptr;
299 		sg->addr = ahd_htole64(addr);
300 		sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
301 				    | (last ? AHD_DMA_LAST_SEG : 0));
302 		return (sg + 1);
303 	}
304 }
305 
306 static __inline void
307 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
308 {
309 	/* XXX Handle target mode SCBs. */
310 	if ((scb->flags & SCB_PACKETIZED) != 0) {
311 		/* XXX what about ACA??  It is type 4, but TAG_TYPE == 0x3. */
312 		scb->hscb->task_attribute_nonpkt_tag =
313 		    scb->hscb->control & SCB_TAG_TYPE;
314 		scb->hscb->task_management = 0;
315 		/*
316 		 * For Rev A short lun workaround.
317 		 */
318 		scb->hscb->pkt_long_lun[6] = scb->hscb->lun;
319 	} else {
320 		scb->hscb->task_attribute_nonpkt_tag = SCB_GET_TAG(scb);
321 	}
322 
323 	if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
324 	 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
325 		scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
326 		    ahd_htole32(scb->sense_busaddr);
327 }
328 
329 static __inline void
330 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
331 {
332 	/*
333 	 * Copy the first SG into the "current" data ponter area.
334 	 */
335 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
336 		struct ahd_dma64_seg *sg;
337 
338 		sg = (struct ahd_dma64_seg *)scb->sg_list;
339 		scb->hscb->dataptr = sg->addr;
340 		scb->hscb->datacnt = sg->len;
341 	} else {
342 		struct ahd_dma_seg *sg;
343 
344 		sg = (struct ahd_dma_seg *)scb->sg_list;
345 		scb->hscb->dataptr = sg->addr;
346 		if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
347 			uint64_t high_addr;
348 
349 			high_addr = ahd_le32toh(sg->len) & 0x7F000000;
350 			scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
351 		}
352 		scb->hscb->datacnt = sg->len;
353 	}
354 	/*
355 	 * Note where to find the SG entries in bus space.
356 	 * We also set the full residual flag which the
357 	 * sequencer will clear as soon as a data transfer
358 	 * occurs.
359 	 */
360 	scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
361 }
362 
363 static __inline void
364 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
365 {
366 	scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
367 	scb->hscb->dataptr = 0;
368 	scb->hscb->datacnt = 0;
369 }
370 
371 /************************** Memory mapping routines ***************************/
372 static __inline size_t	ahd_sg_size(struct ahd_softc *ahd);
373 static __inline void *
374 			ahd_sg_bus_to_virt(struct ahd_softc *ahd,
375 					   struct scb *scb,
376 					   uint32_t sg_busaddr);
377 static __inline uint32_t
378 			ahd_sg_virt_to_bus(struct ahd_softc *ahd,
379 					   struct scb *scb,
380 					   void *sg);
381 static __inline void	ahd_sync_scb(struct ahd_softc *ahd,
382 				     struct scb *scb, int op);
383 static __inline void	ahd_sync_sglist(struct ahd_softc *ahd,
384 					struct scb *scb, int op);
385 static __inline void	ahd_sync_sense(struct ahd_softc *ahd,
386 				       struct scb *scb, int op);
387 static __inline uint32_t
388 			ahd_targetcmd_offset(struct ahd_softc *ahd,
389 					     u_int index);
390 
391 static __inline size_t
392 ahd_sg_size(struct ahd_softc *ahd)
393 {
394 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
395 		return (sizeof(struct ahd_dma64_seg));
396 	return (sizeof(struct ahd_dma_seg));
397 }
398 
399 static __inline void *
400 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
401 {
402 	bus_addr_t sg_offset;
403 
404 	/* sg_list_phys points to entry 1, not 0 */
405 	sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
406 	return ((uint8_t *)scb->sg_list + sg_offset);
407 }
408 
409 static __inline uint32_t
410 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
411 {
412 	bus_addr_t sg_offset;
413 
414 	/* sg_list_phys points to entry 1, not 0 */
415 	sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
416 		  - ahd_sg_size(ahd);
417 
418 	return (scb->sg_list_busaddr + sg_offset);
419 }
420 
421 static __inline void
422 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
423 {
424 	ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
425 			scb->hscb_map->dmamap,
426 			/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
427 			/*len*/sizeof(*scb->hscb), op);
428 }
429 
430 static __inline void
431 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
432 {
433 	if (scb->sg_count == 0)
434 		return;
435 
436 	ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
437 			scb->sg_map->dmamap,
438 			/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
439 			/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
440 }
441 
442 static __inline void
443 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
444 {
445 	ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
446 			scb->sense_map->dmamap,
447 			/*offset*/scb->sense_busaddr,
448 			/*len*/AHD_SENSE_BUFSIZE, op);
449 }
450 
451 static __inline uint32_t
452 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
453 {
454 	return (((uint8_t *)&ahd->targetcmds[index])
455 	       - (uint8_t *)ahd->qoutfifo);
456 }
457 
458 /*********************** Miscelaneous Support Functions ***********************/
459 static __inline void	ahd_complete_scb(struct ahd_softc *ahd,
460 					 struct scb *scb);
461 static __inline void	ahd_update_residual(struct ahd_softc *ahd,
462 					    struct scb *scb);
463 static __inline struct ahd_initiator_tinfo *
464 			ahd_fetch_transinfo(struct ahd_softc *ahd,
465 					    char channel, u_int our_id,
466 					    u_int remote_id,
467 					    struct ahd_tmode_tstate **tstate);
468 static __inline uint16_t
469 			ahd_inw(struct ahd_softc *ahd, u_int port);
470 static __inline void	ahd_outw(struct ahd_softc *ahd, u_int port,
471 				 u_int value);
472 static __inline uint32_t
473 			ahd_inl(struct ahd_softc *ahd, u_int port);
474 static __inline void	ahd_outl(struct ahd_softc *ahd, u_int port,
475 				 uint32_t value);
476 static __inline uint64_t
477 			ahd_inq(struct ahd_softc *ahd, u_int port);
478 static __inline void	ahd_outq(struct ahd_softc *ahd, u_int port,
479 				 uint64_t value);
480 static __inline u_int	ahd_get_scbptr(struct ahd_softc *ahd);
481 static __inline void	ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr);
482 static __inline u_int	ahd_get_hnscb_qoff(struct ahd_softc *ahd);
483 static __inline void	ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value);
484 static __inline u_int	ahd_get_hescb_qoff(struct ahd_softc *ahd);
485 static __inline void	ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value);
486 static __inline u_int	ahd_get_snscb_qoff(struct ahd_softc *ahd);
487 static __inline void	ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value);
488 static __inline u_int	ahd_get_sescb_qoff(struct ahd_softc *ahd);
489 static __inline void	ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value);
490 static __inline u_int	ahd_get_sdscb_qoff(struct ahd_softc *ahd);
491 static __inline void	ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value);
492 static __inline u_int	ahd_inb_scbram(struct ahd_softc *ahd, u_int offset);
493 static __inline u_int	ahd_inw_scbram(struct ahd_softc *ahd, u_int offset);
494 static __inline uint32_t
495 			ahd_inl_scbram(struct ahd_softc *ahd, u_int offset);
496 static __inline void	ahd_swap_with_next_hscb(struct ahd_softc *ahd,
497 						struct scb *scb);
498 static __inline void	ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb);
499 static __inline uint8_t *
500 			ahd_get_sense_buf(struct ahd_softc *ahd,
501 					  struct scb *scb);
502 static __inline uint32_t
503 			ahd_get_sense_bufaddr(struct ahd_softc *ahd,
504 					      struct scb *scb);
505 
506 static __inline void
507 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
508 {
509 	uint32_t sgptr;
510 
511 	sgptr = ahd_le32toh(scb->hscb->sgptr);
512 	if ((sgptr & SG_STATUS_VALID) != 0)
513 		ahd_handle_scb_status(ahd, scb);
514 	else
515 		ahd_done(ahd, scb);
516 }
517 
518 /*
519  * Determine whether the sequencer reported a residual
520  * for this SCB/transaction.
521  */
522 static __inline void
523 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
524 {
525 	uint32_t sgptr;
526 
527 	sgptr = ahd_le32toh(scb->hscb->sgptr);
528 	if ((sgptr & SG_STATUS_VALID) != 0)
529 		ahd_calc_residual(ahd, scb);
530 }
531 
532 /*
533  * Return pointers to the transfer negotiation information
534  * for the specified our_id/remote_id pair.
535  */
536 static __inline struct ahd_initiator_tinfo *
537 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
538 		    u_int remote_id, struct ahd_tmode_tstate **tstate)
539 {
540 	/*
541 	 * Transfer data structures are stored from the perspective
542 	 * of the target role.  Since the parameters for a connection
543 	 * in the initiator role to a given target are the same as
544 	 * when the roles are reversed, we pretend we are the target.
545 	 */
546 	if (channel == 'B')
547 		our_id += 8;
548 	*tstate = ahd->enabled_targets[our_id];
549 	return (&(*tstate)->transinfo[remote_id]);
550 }
551 
552 #define AHD_COPY_COL_IDX(dst, src)				\
553 do {								\
554 	dst->hscb->scsiid = src->hscb->scsiid;			\
555 	dst->hscb->lun = src->hscb->lun;			\
556 } while (0)
557 
558 static __inline uint16_t
559 ahd_inw(struct ahd_softc *ahd, u_int port)
560 {
561 	return ((ahd_inb(ahd, port+1) << 8) | ahd_inb(ahd, port));
562 }
563 
564 static __inline void
565 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
566 {
567 	ahd_outb(ahd, port, value & 0xFF);
568 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
569 }
570 
571 static __inline uint32_t
572 ahd_inl(struct ahd_softc *ahd, u_int port)
573 {
574 	return ((ahd_inb(ahd, port))
575 	      | (ahd_inb(ahd, port+1) << 8)
576 	      | (ahd_inb(ahd, port+2) << 16)
577 	      | (ahd_inb(ahd, port+3) << 24));
578 }
579 
580 static __inline void
581 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
582 {
583 	ahd_outb(ahd, port, (value) & 0xFF);
584 	ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
585 	ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
586 	ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
587 }
588 
589 static __inline uint64_t
590 ahd_inq(struct ahd_softc *ahd, u_int port)
591 {
592 	return ((ahd_inb(ahd, port))
593 	      | (ahd_inb(ahd, port+1) << 8)
594 	      | (ahd_inb(ahd, port+2) << 16)
595 	      | (ahd_inb(ahd, port+3) << 24)
596 	      | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
597 	      | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
598 	      | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
599 	      | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
600 }
601 
602 static __inline void
603 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
604 {
605 	ahd_outb(ahd, port, value & 0xFF);
606 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
607 	ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
608 	ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
609 	ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
610 	ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
611 	ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
612 	ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
613 }
614 
615 static __inline u_int
616 ahd_get_scbptr(struct ahd_softc *ahd)
617 {
618 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
619 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
620 	return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
621 }
622 
623 static __inline void
624 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
625 {
626 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
627 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
628 	ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
629 	ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
630 }
631 
632 static __inline u_int
633 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
634 {
635 	return (ahd_inw_atomic(ahd, HNSCB_QOFF));
636 }
637 
638 static __inline void
639 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
640 {
641 	ahd_outw_atomic(ahd, HNSCB_QOFF, value);
642 }
643 
644 static __inline u_int
645 ahd_get_hescb_qoff(struct ahd_softc *ahd)
646 {
647 	return (ahd_inb(ahd, HESCB_QOFF));
648 }
649 
650 static __inline void
651 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
652 {
653 	ahd_outb(ahd, HESCB_QOFF, value);
654 }
655 
656 static __inline u_int
657 ahd_get_snscb_qoff(struct ahd_softc *ahd)
658 {
659 	u_int oldvalue;
660 
661 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
662 	oldvalue = ahd_inw(ahd, SNSCB_QOFF);
663 	ahd_outw(ahd, SNSCB_QOFF, oldvalue);
664 	return (oldvalue);
665 }
666 
667 static __inline void
668 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
669 {
670 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
671 	ahd_outw(ahd, SNSCB_QOFF, value);
672 }
673 
674 static __inline u_int
675 ahd_get_sescb_qoff(struct ahd_softc *ahd)
676 {
677 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
678 	return (ahd_inb(ahd, SESCB_QOFF));
679 }
680 
681 static __inline void
682 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
683 {
684 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
685 	ahd_outb(ahd, SESCB_QOFF, value);
686 }
687 
688 static __inline u_int
689 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
690 {
691 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
692 	return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
693 }
694 
695 static __inline void
696 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
697 {
698 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
699 	ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
700 	ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
701 }
702 
703 static __inline u_int
704 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
705 {
706 	u_int value;
707 
708 	/*
709 	 * Workaround PCI-X Rev A. hardware bug.
710 	 * After a host read of SCB memory, the chip
711 	 * may become confused into thinking prefetch
712 	 * was required.  This starts the discard timer
713 	 * running and can cause an unexpected discard
714 	 * timer interrupt.  The work around is to read
715 	 * a normal register prior to the exhaustion of
716 	 * the discard timer.  The mode pointer register
717 	 * has no side effects and so serves well for
718 	 * this purpose.
719 	 *
720 	 * Razor #528
721 	 */
722 	value = ahd_inb(ahd, offset);
723 	ahd_inb(ahd, MODE_PTR);
724 	return (value);
725 }
726 
727 static __inline u_int
728 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
729 {
730 	return (ahd_inb_scbram(ahd, offset)
731 	      | (ahd_inb_scbram(ahd, offset+1) << 8));
732 }
733 
734 static __inline uint32_t
735 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
736 {
737 	return (ahd_inb_scbram(ahd, offset)
738 	      | (ahd_inb_scbram(ahd, offset+1) << 8)
739 	      | (ahd_inb_scbram(ahd, offset+2) << 16)
740 	      | (ahd_inb_scbram(ahd, offset+3) << 24));
741 }
742 
743 static __inline struct scb *
744 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
745 {
746 	struct scb* scb;
747 
748 	if (tag >= AHD_SCB_MAX)
749 		return (NULL);
750 	scb = ahd->scb_data.scbindex[tag];
751 	if (scb != NULL)
752 		ahd_sync_scb(ahd, scb,
753 			     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
754 	return (scb);
755 }
756 
757 static __inline void
758 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
759 {
760 	struct hardware_scb *q_hscb;
761 	uint32_t saved_hscb_busaddr;
762 
763 	/*
764 	 * Our queuing method is a bit tricky.  The card
765 	 * knows in advance which HSCB (by address) to download,
766 	 * and we can't disappoint it.  To achieve this, the next
767 	 * HSCB to download is saved off in ahd->next_queued_hscb.
768 	 * When we are called to queue "an arbitrary scb",
769 	 * we copy the contents of the incoming HSCB to the one
770 	 * the sequencer knows about, swap HSCB pointers and
771 	 * finally assign the SCB to the tag indexed location
772 	 * in the scb_array.  This makes sure that we can still
773 	 * locate the correct SCB by SCB_TAG.
774 	 */
775 	q_hscb = ahd->next_queued_hscb;
776 	saved_hscb_busaddr = q_hscb->hscb_busaddr;
777 	memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
778 	q_hscb->hscb_busaddr = saved_hscb_busaddr;
779 	q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
780 
781 	/* Now swap HSCB pointers. */
782 	ahd->next_queued_hscb = scb->hscb;
783 	scb->hscb = q_hscb;
784 
785 	/* Now define the mapping from tag to SCB in the scbindex */
786 /* XXX This should be constant now.  Can we avoid the mapping? */
787 	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
788 }
789 
790 /*
791  * Tell the sequencer about a new transaction to execute.
792  */
793 static __inline void
794 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
795 {
796 	ahd_swap_with_next_hscb(ahd, scb);
797 
798 	if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
799 		panic("Attempt to queue invalid SCB tag %x\n",
800 		      SCB_GET_TAG(scb));
801 
802 	/*
803 	 * Keep a history of SCBs we've downloaded in the qinfifo.
804 	 */
805 	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
806 	ahd->qinfifonext++;
807 
808 	if (scb->sg_count != 0)
809 		ahd_setup_data_scb(ahd, scb);
810 	else
811 		ahd_setup_noxfer_scb(ahd, scb);
812 	ahd_setup_scb_common(ahd, scb);
813 
814 	/*
815 	 * Make sure our data is consistant from the
816 	 * perspective of the adapter.
817 	 */
818 	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
819 
820 #ifdef AHD_DEBUG
821 	if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
822 		printf("%s: Queueing SCB 0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
823 		       ahd_name(ahd),
824 		       SCB_GET_TAG(scb), scb->hscb->hscb_busaddr,
825 		       (u_int)((scb->hscb->dataptr >> 32) & 0xFFFFFFFF),
826 		       (u_int)(scb->hscb->dataptr & 0xFFFFFFFF),
827 		       scb->hscb->datacnt);
828 	}
829 #endif
830 	/* Tell the adapter about the newly queued SCB */
831 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
832 }
833 
834 static __inline uint8_t *
835 ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb)
836 {
837 	return (scb->sense_data);
838 }
839 
840 static __inline uint32_t
841 ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb)
842 {
843 	return (scb->sense_busaddr);
844 }
845 
846 /************************** Interrupt Processing ******************************/
847 static __inline void	ahd_sync_qoutfifo(struct ahd_softc *ahd, int op);
848 static __inline void	ahd_sync_tqinfifo(struct ahd_softc *ahd, int op);
849 static __inline u_int	ahd_check_cmdcmpltqueues(struct ahd_softc *ahd);
850 static __inline void	ahd_intr(struct ahd_softc *ahd);
851 
852 static __inline void
853 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
854 {
855 	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_dmamap,
856 			/*offset*/0, /*len*/AHC_SCB_MAX * sizeof(uint16_t), op);
857 }
858 
859 static __inline void
860 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
861 {
862 #ifdef AHD_TARGET_MODE
863 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
864 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
865 				ahd->shared_data_dmamap,
866 				ahd_targetcmd_offset(ahd, 0),
867 				sizeof(struct target_cmd) * AHD_TMODE_CMDS,
868 				op);
869 	}
870 #endif
871 }
872 
873 /*
874  * See if the firmware has posted any completed commands
875  * into our in-core command complete fifos.
876  */
877 #define AHD_RUN_QOUTFIFO 0x1
878 #define AHD_RUN_TQINFIFO 0x2
879 static __inline u_int
880 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
881 {
882 	u_int retval;
883 
884 	retval = 0;
885 	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_dmamap,
886 			/*offset*/ahd->qoutfifonext, /*len*/2,
887 			BUS_DMASYNC_POSTREAD);
888 	if ((ahd->qoutfifo[ahd->qoutfifonext]
889 	     & QOUTFIFO_ENTRY_VALID_LE) == ahd->qoutfifonext_valid_tag)
890 		retval |= AHD_RUN_QOUTFIFO;
891 #ifdef AHD_TARGET_MODE
892 	if ((ahd->flags & AHD_TARGETROLE) != 0
893 	 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
894 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
895 				ahd->shared_data_dmamap,
896 				ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
897 				/*len*/sizeof(struct target_cmd),
898 				BUS_DMASYNC_POSTREAD);
899 		if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
900 			retval |= AHD_RUN_TQINFIFO;
901 	}
902 #endif
903 	return (retval);
904 }
905 
906 /*
907  * Catch an interrupt from the adapter
908  */
909 static __inline void
910 ahd_intr(struct ahd_softc *ahd)
911 {
912 	u_int	intstat;
913 
914 	if ((ahd->pause & INTEN) == 0) {
915 		/*
916 		 * Our interrupt is not enabled on the chip
917 		 * and may be disabled for re-entrancy reasons,
918 		 * so just return.  This is likely just a shared
919 		 * interrupt.
920 		 */
921 		return;
922 	}
923 
924 	/*
925 	 * Instead of directly reading the interrupt status register,
926 	 * infer the cause of the interrupt by checking our in-core
927 	 * completion queues.  This avoids a costly PCI bus read in
928 	 * most cases.
929 	 */
930 	if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
931 	 && (ahd_check_cmdcmpltqueues(ahd) != 0))
932 		intstat = CMDCMPLT;
933 	else
934 		intstat = ahd_inb(ahd, INTSTAT);
935 
936 	if (intstat & CMDCMPLT) {
937 		ahd_outb(ahd, CLRINT, CLRCMDINT);
938 
939 		/*
940 		 * Ensure that the chip sees that we've cleared
941 		 * this interrupt before we walk the output fifo.
942 		 * Otherwise, we may, due to posted bus writes,
943 		 * clear the interrupt after we finish the scan,
944 		 * and after the sequencer has added new entries
945 		 * and asserted the interrupt again.
946 		 */
947 		ahd_flush_device_writes(ahd);
948 		ahd_run_qoutfifo(ahd);
949 #ifdef AHD_TARGET_MODE
950 		if ((ahd->flags & AHD_TARGETROLE) != 0)
951 			ahd_run_tqinfifo(ahd, /*paused*/FALSE);
952 #endif
953 	}
954 
955 	if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0)
956 		/* Hot eject */
957 		return;
958 
959 	if ((intstat & INT_PEND) == 0)
960 		return;
961 
962 	if (intstat & HWERRINT) {
963 		ahd_handle_hwerrint(ahd);
964 		return;
965 	}
966 
967 	if ((intstat & (PCIINT|SPLTINT)) != 0) {
968 		ahd->bus_intr(ahd);
969 		return;
970 	}
971 
972 	if ((intstat & SEQINT) != 0)
973 		ahd_handle_seqint(ahd, intstat);
974 
975 	if ((intstat & SCSIINT) != 0)
976 		ahd_handle_scsiint(ahd, intstat);
977 }
978 
979 #endif  /* _AIC79XX_INLINE_H_ */
980