xref: /freebsd/sys/dev/aic7xxx/aic79xx_inline.h (revision 0794987d0198458537d492dd5883f9664e414a5f)
1 /*
2  * Inline routines shareable across OS platforms.
3  *
4  * Copyright (c) 1994-2001 Justin T. Gibbs.
5  * Copyright (c) 2000-2003 Adaptec Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    substantially similar to the "NO WARRANTY" disclaimer below
16  *    ("Disclaimer") and any redistribution must be conditioned upon
17  *    including a substantially similar Disclaimer requirement for further
18  *    binary redistribution.
19  * 3. Neither the names of the above-listed copyright holders nor the names
20  *    of any contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * Alternatively, this software may be distributed under the terms of the
24  * GNU General Public License ("GPL") version 2 as published by the Free
25  * Software Foundation.
26  *
27  * NO WARRANTY
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGES.
39  *
40  * $Id: //depot/aic7xxx/aic7xxx/aic79xx_inline.h#41 $
41  *
42  * $FreeBSD$
43  */
44 
45 #ifndef _AIC79XX_INLINE_H_
46 #define _AIC79XX_INLINE_H_
47 
48 /******************************** Debugging ***********************************/
49 static __inline char *ahd_name(struct ahd_softc *ahd);
50 
51 static __inline char *
52 ahd_name(struct ahd_softc *ahd)
53 {
54 	return (ahd->name);
55 }
56 
57 /************************ Sequencer Execution Control *************************/
58 static __inline void ahd_known_modes(struct ahd_softc *ahd,
59 				     ahd_mode src, ahd_mode dst);
60 static __inline ahd_mode_state ahd_build_mode_state(struct ahd_softc *ahd,
61 						    ahd_mode src,
62 						    ahd_mode dst);
63 static __inline void ahd_extract_mode_state(struct ahd_softc *ahd,
64 					    ahd_mode_state state,
65 					    ahd_mode *src, ahd_mode *dst);
66 static __inline void ahd_set_modes(struct ahd_softc *ahd, ahd_mode src,
67 				   ahd_mode dst);
68 static __inline void ahd_update_modes(struct ahd_softc *ahd);
69 static __inline void ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
70 				      ahd_mode dstmode, const char *file,
71 				      int line);
72 static __inline ahd_mode_state ahd_save_modes(struct ahd_softc *ahd);
73 static __inline void ahd_restore_modes(struct ahd_softc *ahd,
74 				       ahd_mode_state state);
75 static __inline int  ahd_is_paused(struct ahd_softc *ahd);
76 static __inline void ahd_pause(struct ahd_softc *ahd);
77 static __inline void ahd_unpause(struct ahd_softc *ahd);
78 
79 static __inline void
80 ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
81 {
82 	ahd->src_mode = src;
83 	ahd->dst_mode = dst;
84 	ahd->saved_src_mode = src;
85 	ahd->saved_dst_mode = dst;
86 }
87 
88 static __inline ahd_mode_state
89 ahd_build_mode_state(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
90 {
91 	return ((src << SRC_MODE_SHIFT) | (dst << DST_MODE_SHIFT));
92 }
93 
94 static __inline void
95 ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state,
96 		       ahd_mode *src, ahd_mode *dst)
97 {
98 	*src = (state & SRC_MODE) >> SRC_MODE_SHIFT;
99 	*dst = (state & DST_MODE) >> DST_MODE_SHIFT;
100 }
101 
102 static __inline void
103 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
104 {
105 	if (ahd->src_mode == src && ahd->dst_mode == dst)
106 		return;
107 #ifdef AHD_DEBUG
108 	if (ahd->src_mode == AHD_MODE_UNKNOWN
109 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
110 		panic("Setting mode prior to saving it.\n");
111 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
112 		printf("%s: Setting mode 0x%x\n", ahd_name(ahd),
113 		       ahd_build_mode_state(ahd, src, dst));
114 #endif
115 	ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
116 	ahd->src_mode = src;
117 	ahd->dst_mode = dst;
118 }
119 
120 static __inline void
121 ahd_update_modes(struct ahd_softc *ahd)
122 {
123 	ahd_mode_state mode_ptr;
124 	ahd_mode src;
125 	ahd_mode dst;
126 
127 	mode_ptr = ahd_inb(ahd, MODE_PTR);
128 #ifdef AHD_DEBUG
129 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
130 		printf("Reading mode 0x%x\n", mode_ptr);
131 #endif
132 	ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
133 	ahd_known_modes(ahd, src, dst);
134 }
135 
136 static __inline void
137 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
138 		 ahd_mode dstmode, const char *file, int line)
139 {
140 #ifdef AHD_DEBUG
141 	if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
142 	 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
143 		panic("%s:%s:%d: Mode assertion failed.\n",
144 		       ahd_name(ahd), file, line);
145 	}
146 #endif
147 }
148 
149 static __inline ahd_mode_state
150 ahd_save_modes(struct ahd_softc *ahd)
151 {
152 	if (ahd->src_mode == AHD_MODE_UNKNOWN
153 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
154 		ahd_update_modes(ahd);
155 
156 	return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
157 }
158 
159 static __inline void
160 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
161 {
162 	ahd_mode src;
163 	ahd_mode dst;
164 
165 	ahd_extract_mode_state(ahd, state, &src, &dst);
166 	ahd_set_modes(ahd, src, dst);
167 }
168 
169 #define AHD_ASSERT_MODES(ahd, source, dest) \
170 	ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
171 
172 /*
173  * Determine whether the sequencer has halted code execution.
174  * Returns non-zero status if the sequencer is stopped.
175  */
176 static __inline int
177 ahd_is_paused(struct ahd_softc *ahd)
178 {
179 	return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
180 }
181 
182 /*
183  * Request that the sequencer stop and wait, indefinitely, for it
184  * to stop.  The sequencer will only acknowledge that it is paused
185  * once it has reached an instruction boundary and PAUSEDIS is
186  * cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
187  * for critical sections.
188  */
189 static __inline void
190 ahd_pause(struct ahd_softc *ahd)
191 {
192 	ahd_outb(ahd, HCNTRL, ahd->pause);
193 
194 	/*
195 	 * Since the sequencer can disable pausing in a critical section, we
196 	 * must loop until it actually stops.
197 	 */
198 	while (ahd_is_paused(ahd) == 0)
199 		;
200 }
201 
202 /*
203  * Allow the sequencer to continue program execution.
204  * We check here to ensure that no additional interrupt
205  * sources that would cause the sequencer to halt have been
206  * asserted.  If, for example, a SCSI bus reset is detected
207  * while we are fielding a different, pausing, interrupt type,
208  * we don't want to release the sequencer before going back
209  * into our interrupt handler and dealing with this new
210  * condition.
211  */
212 static __inline void
213 ahd_unpause(struct ahd_softc *ahd)
214 {
215 	/*
216 	 * Automatically restore our modes to those saved
217 	 * prior to the first change of the mode.
218 	 */
219 	if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
220 	 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
221 		if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
222 			ahd_reset_cmds_pending(ahd);
223 		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
224 	}
225 
226 	if ((ahd_inb(ahd, INTSTAT) & ~(SWTMINT | CMDCMPLT)) == 0)
227 		ahd_outb(ahd, HCNTRL, ahd->unpause);
228 
229 	ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
230 }
231 
232 /*********************** Scatter Gather List Handling *************************/
233 static __inline void	*ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
234 				      void *sgptr, bus_addr_t addr,
235 				      bus_size_t len, int last);
236 static __inline void	 ahd_setup_scb_common(struct ahd_softc *ahd,
237 					      struct scb *scb);
238 static __inline void	 ahd_setup_data_scb(struct ahd_softc *ahd,
239 					    struct scb *scb);
240 static __inline void	 ahd_setup_noxfer_scb(struct ahd_softc *ahd,
241 					      struct scb *scb);
242 
243 static __inline void *
244 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
245 	     void *sgptr, bus_addr_t addr, bus_size_t len, int last)
246 {
247 	scb->sg_count++;
248 	if (sizeof(bus_addr_t) > 4
249 	 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
250 		struct ahd_dma64_seg *sg;
251 
252 		sg = (struct ahd_dma64_seg *)sgptr;
253 		sg->addr = ahd_htole64(addr);
254 		sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
255 		return (sg + 1);
256 	} else {
257 		struct ahd_dma_seg *sg;
258 
259 		sg = (struct ahd_dma_seg *)sgptr;
260 		sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
261 		sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
262 				    | (last ? AHD_DMA_LAST_SEG : 0));
263 		return (sg + 1);
264 	}
265 }
266 
267 static __inline void
268 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
269 {
270 	/* XXX Handle target mode SCBs. */
271 	scb->crc_retry_count = 0;
272 	if ((scb->flags & SCB_PACKETIZED) != 0) {
273 		/* XXX what about ACA??  It is type 4, but TAG_TYPE == 0x3. */
274 		scb->hscb->task_attribute= scb->hscb->control & SCB_TAG_TYPE;
275 		/*
276 		 * For Rev A short lun workaround.
277 		 */
278 		scb->hscb->pkt_long_lun[6] = scb->hscb->lun;
279 	}
280 
281 	if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
282 	 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
283 		scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
284 		    ahd_htole32(scb->sense_busaddr);
285 }
286 
287 static __inline void
288 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
289 {
290 	/*
291 	 * Copy the first SG into the "current" data ponter area.
292 	 */
293 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
294 		struct ahd_dma64_seg *sg;
295 
296 		sg = (struct ahd_dma64_seg *)scb->sg_list;
297 		scb->hscb->dataptr = sg->addr;
298 		scb->hscb->datacnt = sg->len;
299 	} else {
300 		struct ahd_dma_seg *sg;
301 
302 		sg = (struct ahd_dma_seg *)scb->sg_list;
303 		scb->hscb->dataptr = sg->addr;
304 		if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
305 			uint64_t high_addr;
306 
307 			high_addr = ahd_le32toh(sg->len) & 0x7F000000;
308 			scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
309 		}
310 		scb->hscb->datacnt = sg->len;
311 	}
312 	/*
313 	 * Note where to find the SG entries in bus space.
314 	 * We also set the full residual flag which the
315 	 * sequencer will clear as soon as a data transfer
316 	 * occurs.
317 	 */
318 	scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
319 }
320 
321 static __inline void
322 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
323 {
324 	scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
325 	scb->hscb->dataptr = 0;
326 	scb->hscb->datacnt = 0;
327 }
328 
329 /************************** Memory mapping routines ***************************/
330 static __inline size_t	ahd_sg_size(struct ahd_softc *ahd);
331 static __inline void *
332 			ahd_sg_bus_to_virt(struct ahd_softc *ahd,
333 					   struct scb *scb,
334 					   uint32_t sg_busaddr);
335 static __inline uint32_t
336 			ahd_sg_virt_to_bus(struct ahd_softc *ahd,
337 					   struct scb *scb,
338 					   void *sg);
339 static __inline void	ahd_sync_scb(struct ahd_softc *ahd,
340 				     struct scb *scb, int op);
341 static __inline void	ahd_sync_sglist(struct ahd_softc *ahd,
342 					struct scb *scb, int op);
343 static __inline void	ahd_sync_sense(struct ahd_softc *ahd,
344 				       struct scb *scb, int op);
345 static __inline uint32_t
346 			ahd_targetcmd_offset(struct ahd_softc *ahd,
347 					     u_int index);
348 
349 static __inline size_t
350 ahd_sg_size(struct ahd_softc *ahd)
351 {
352 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
353 		return (sizeof(struct ahd_dma64_seg));
354 	return (sizeof(struct ahd_dma_seg));
355 }
356 
357 static __inline void *
358 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
359 {
360 	bus_addr_t sg_offset;
361 
362 	/* sg_list_phys points to entry 1, not 0 */
363 	sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
364 	return ((uint8_t *)scb->sg_list + sg_offset);
365 }
366 
367 static __inline uint32_t
368 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
369 {
370 	bus_addr_t sg_offset;
371 
372 	/* sg_list_phys points to entry 1, not 0 */
373 	sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
374 		  - ahd_sg_size(ahd);
375 
376 	return (scb->sg_list_busaddr + sg_offset);
377 }
378 
379 static __inline void
380 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
381 {
382 	ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
383 			scb->hscb_map->dmamap,
384 			/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
385 			/*len*/sizeof(*scb->hscb), op);
386 }
387 
388 static __inline void
389 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
390 {
391 	if (scb->sg_count == 0)
392 		return;
393 
394 	ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
395 			scb->sg_map->dmamap,
396 			/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
397 			/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
398 }
399 
400 static __inline void
401 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
402 {
403 	ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
404 			scb->sense_map->dmamap,
405 			/*offset*/scb->sense_busaddr,
406 			/*len*/AHD_SENSE_BUFSIZE, op);
407 }
408 
409 static __inline uint32_t
410 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
411 {
412 	return (((uint8_t *)&ahd->targetcmds[index])
413 	       - (uint8_t *)ahd->qoutfifo);
414 }
415 
416 /*********************** Miscelaneous Support Functions ***********************/
417 static __inline void	ahd_complete_scb(struct ahd_softc *ahd,
418 					 struct scb *scb);
419 static __inline void	ahd_update_residual(struct ahd_softc *ahd,
420 					    struct scb *scb);
421 static __inline struct ahd_initiator_tinfo *
422 			ahd_fetch_transinfo(struct ahd_softc *ahd,
423 					    char channel, u_int our_id,
424 					    u_int remote_id,
425 					    struct ahd_tmode_tstate **tstate);
426 static __inline uint16_t
427 			ahd_inw(struct ahd_softc *ahd, u_int port);
428 static __inline void	ahd_outw(struct ahd_softc *ahd, u_int port,
429 				 u_int value);
430 static __inline uint32_t
431 			ahd_inl(struct ahd_softc *ahd, u_int port);
432 static __inline void	ahd_outl(struct ahd_softc *ahd, u_int port,
433 				 uint32_t value);
434 static __inline uint64_t
435 			ahd_inq(struct ahd_softc *ahd, u_int port);
436 static __inline void	ahd_outq(struct ahd_softc *ahd, u_int port,
437 				 uint64_t value);
438 static __inline u_int	ahd_get_scbptr(struct ahd_softc *ahd);
439 static __inline void	ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr);
440 static __inline u_int	ahd_get_hnscb_qoff(struct ahd_softc *ahd);
441 static __inline void	ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value);
442 static __inline u_int	ahd_get_hescb_qoff(struct ahd_softc *ahd);
443 static __inline void	ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value);
444 static __inline u_int	ahd_get_snscb_qoff(struct ahd_softc *ahd);
445 static __inline void	ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value);
446 static __inline u_int	ahd_get_sescb_qoff(struct ahd_softc *ahd);
447 static __inline void	ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value);
448 static __inline u_int	ahd_get_sdscb_qoff(struct ahd_softc *ahd);
449 static __inline void	ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value);
450 static __inline u_int	ahd_inb_scbram(struct ahd_softc *ahd, u_int offset);
451 static __inline u_int	ahd_inw_scbram(struct ahd_softc *ahd, u_int offset);
452 static __inline uint32_t
453 			ahd_inl_scbram(struct ahd_softc *ahd, u_int offset);
454 static __inline void	ahd_swap_with_next_hscb(struct ahd_softc *ahd,
455 						struct scb *scb);
456 static __inline void	ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb);
457 static __inline uint8_t *
458 			ahd_get_sense_buf(struct ahd_softc *ahd,
459 					  struct scb *scb);
460 static __inline uint32_t
461 			ahd_get_sense_bufaddr(struct ahd_softc *ahd,
462 					      struct scb *scb);
463 
464 static __inline void
465 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
466 {
467 	uint32_t sgptr;
468 
469 	sgptr = ahd_le32toh(scb->hscb->sgptr);
470 	if ((sgptr & SG_STATUS_VALID) != 0)
471 		ahd_handle_scb_status(ahd, scb);
472 	else
473 		ahd_done(ahd, scb);
474 }
475 
476 /*
477  * Determine whether the sequencer reported a residual
478  * for this SCB/transaction.
479  */
480 static __inline void
481 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
482 {
483 	uint32_t sgptr;
484 
485 	sgptr = ahd_le32toh(scb->hscb->sgptr);
486 	if ((sgptr & SG_STATUS_VALID) != 0)
487 		ahd_calc_residual(ahd, scb);
488 }
489 
490 /*
491  * Return pointers to the transfer negotiation information
492  * for the specified our_id/remote_id pair.
493  */
494 static __inline struct ahd_initiator_tinfo *
495 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
496 		    u_int remote_id, struct ahd_tmode_tstate **tstate)
497 {
498 	/*
499 	 * Transfer data structures are stored from the perspective
500 	 * of the target role.  Since the parameters for a connection
501 	 * in the initiator role to a given target are the same as
502 	 * when the roles are reversed, we pretend we are the target.
503 	 */
504 	if (channel == 'B')
505 		our_id += 8;
506 	*tstate = ahd->enabled_targets[our_id];
507 	return (&(*tstate)->transinfo[remote_id]);
508 }
509 
510 #define AHD_COPY_COL_IDX(dst, src)				\
511 do {								\
512 	dst->hscb->scsiid = src->hscb->scsiid;			\
513 	dst->hscb->lun = src->hscb->lun;			\
514 } while (0)
515 
516 static __inline uint16_t
517 ahd_inw(struct ahd_softc *ahd, u_int port)
518 {
519 	return ((ahd_inb(ahd, port+1) << 8) | ahd_inb(ahd, port));
520 }
521 
522 static __inline void
523 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
524 {
525 	ahd_outb(ahd, port, value & 0xFF);
526 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
527 }
528 
529 static __inline uint32_t
530 ahd_inl(struct ahd_softc *ahd, u_int port)
531 {
532 	return ((ahd_inb(ahd, port))
533 	      | (ahd_inb(ahd, port+1) << 8)
534 	      | (ahd_inb(ahd, port+2) << 16)
535 	      | (ahd_inb(ahd, port+3) << 24));
536 }
537 
538 static __inline void
539 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
540 {
541 	ahd_outb(ahd, port, (value) & 0xFF);
542 	ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
543 	ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
544 	ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
545 }
546 
547 static __inline uint64_t
548 ahd_inq(struct ahd_softc *ahd, u_int port)
549 {
550 	return ((ahd_inb(ahd, port))
551 	      | (ahd_inb(ahd, port+1) << 8)
552 	      | (ahd_inb(ahd, port+2) << 16)
553 	      | (ahd_inb(ahd, port+3) << 24)
554 	      | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
555 	      | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
556 	      | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
557 	      | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
558 }
559 
560 static __inline void
561 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
562 {
563 	ahd_outb(ahd, port, value & 0xFF);
564 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
565 	ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
566 	ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
567 	ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
568 	ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
569 	ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
570 	ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
571 }
572 
573 static __inline u_int
574 ahd_get_scbptr(struct ahd_softc *ahd)
575 {
576 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
577 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
578 	return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
579 }
580 
581 static __inline void
582 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
583 {
584 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
585 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
586 	ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
587 	ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
588 }
589 
590 static __inline u_int
591 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
592 {
593 	return (ahd_inw_atomic(ahd, HNSCB_QOFF));
594 }
595 
596 static __inline void
597 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
598 {
599 	ahd_outw_atomic(ahd, HNSCB_QOFF, value);
600 }
601 
602 static __inline u_int
603 ahd_get_hescb_qoff(struct ahd_softc *ahd)
604 {
605 	return (ahd_inb(ahd, HESCB_QOFF));
606 }
607 
608 static __inline void
609 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
610 {
611 	ahd_outb(ahd, HESCB_QOFF, value);
612 }
613 
614 static __inline u_int
615 ahd_get_snscb_qoff(struct ahd_softc *ahd)
616 {
617 	u_int oldvalue;
618 
619 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
620 	oldvalue = ahd_inw(ahd, SNSCB_QOFF);
621 	ahd_outw(ahd, SNSCB_QOFF, oldvalue);
622 	return (oldvalue);
623 }
624 
625 static __inline void
626 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
627 {
628 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
629 	ahd_outw(ahd, SNSCB_QOFF, value);
630 }
631 
632 static __inline u_int
633 ahd_get_sescb_qoff(struct ahd_softc *ahd)
634 {
635 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
636 	return (ahd_inb(ahd, SESCB_QOFF));
637 }
638 
639 static __inline void
640 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
641 {
642 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
643 	ahd_outb(ahd, SESCB_QOFF, value);
644 }
645 
646 static __inline u_int
647 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
648 {
649 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
650 	return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
651 }
652 
653 static __inline void
654 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
655 {
656 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
657 	ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
658 	ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
659 }
660 
661 static __inline u_int
662 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
663 {
664 	u_int value;
665 
666 	/*
667 	 * Workaround PCI-X Rev A. hardware bug.
668 	 * After a host read of SCB memory, the chip
669 	 * may become confused into thinking prefetch
670 	 * was required.  This starts the discard timer
671 	 * running and can cause an unexpected discard
672 	 * timer interrupt.  The work around is to read
673 	 * a normal register prior to the exhaustion of
674 	 * the discard timer.  The mode pointer register
675 	 * has no side effects and so serves well for
676 	 * this purpose.
677 	 *
678 	 * Razor #528
679 	 */
680 	value = ahd_inb(ahd, offset);
681 	ahd_inb(ahd, MODE_PTR);
682 	return (value);
683 }
684 
685 static __inline u_int
686 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
687 {
688 	return (ahd_inb_scbram(ahd, offset)
689 	      | (ahd_inb_scbram(ahd, offset+1) << 8));
690 }
691 
692 static __inline uint32_t
693 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
694 {
695 	return (ahd_inb_scbram(ahd, offset)
696 	      | (ahd_inb_scbram(ahd, offset+1) << 8)
697 	      | (ahd_inb_scbram(ahd, offset+2) << 16)
698 	      | (ahd_inb_scbram(ahd, offset+3) << 24));
699 }
700 
701 static __inline struct scb *
702 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
703 {
704 	struct scb* scb;
705 
706 	if (tag >= AHD_SCB_MAX)
707 		return (NULL);
708 	scb = ahd->scb_data.scbindex[tag];
709 	if (scb != NULL)
710 		ahd_sync_scb(ahd, scb,
711 			     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
712 	return (scb);
713 }
714 
715 static __inline void
716 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
717 {
718 	struct hardware_scb *q_hscb;
719 	uint32_t saved_hscb_busaddr;
720 
721 	/*
722 	 * Our queuing method is a bit tricky.  The card
723 	 * knows in advance which HSCB (by address) to download,
724 	 * and we can't disappoint it.  To achieve this, the next
725 	 * HSCB to download is saved off in ahd->next_queued_hscb.
726 	 * When we are called to queue "an arbitrary scb",
727 	 * we copy the contents of the incoming HSCB to the one
728 	 * the sequencer knows about, swap HSCB pointers and
729 	 * finally assign the SCB to the tag indexed location
730 	 * in the scb_array.  This makes sure that we can still
731 	 * locate the correct SCB by SCB_TAG.
732 	 */
733 	q_hscb = ahd->next_queued_hscb;
734 	saved_hscb_busaddr = q_hscb->hscb_busaddr;
735 	memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
736 	q_hscb->hscb_busaddr = saved_hscb_busaddr;
737 	q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
738 
739 	/* Now swap HSCB pointers. */
740 	ahd->next_queued_hscb = scb->hscb;
741 	scb->hscb = q_hscb;
742 
743 	/* Now define the mapping from tag to SCB in the scbindex */
744 	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
745 }
746 
747 /*
748  * Tell the sequencer about a new transaction to execute.
749  */
750 static __inline void
751 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
752 {
753 	ahd_swap_with_next_hscb(ahd, scb);
754 
755 	if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
756 		panic("Attempt to queue invalid SCB tag %x\n",
757 		      SCB_GET_TAG(scb));
758 
759 	/*
760 	 * Keep a history of SCBs we've downloaded in the qinfifo.
761 	 */
762 	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
763 	ahd->qinfifonext++;
764 
765 	if (scb->sg_count != 0)
766 		ahd_setup_data_scb(ahd, scb);
767 	else
768 		ahd_setup_noxfer_scb(ahd, scb);
769 	ahd_setup_scb_common(ahd, scb);
770 
771 	/*
772 	 * Make sure our data is consistant from the
773 	 * perspective of the adapter.
774 	 */
775 	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
776 
777 #ifdef AHD_DEBUG
778 	if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
779 		printf("%s: Queueing SCB 0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
780 		       ahd_name(ahd),
781 		       SCB_GET_TAG(scb), scb->hscb->hscb_busaddr,
782 		       (u_int)((scb->hscb->dataptr >> 32) & 0xFFFFFFFF),
783 		       (u_int)(scb->hscb->dataptr & 0xFFFFFFFF),
784 		       scb->hscb->datacnt);
785 	}
786 #endif
787 	/* Tell the adapter about the newly queued SCB */
788 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
789 }
790 
791 static __inline uint8_t *
792 ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb)
793 {
794 	return (scb->sense_data);
795 }
796 
797 static __inline uint32_t
798 ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb)
799 {
800 	return (scb->sense_busaddr);
801 }
802 
803 /************************** Interrupt Processing ******************************/
804 static __inline void	ahd_sync_qoutfifo(struct ahd_softc *ahd, int op);
805 static __inline void	ahd_sync_tqinfifo(struct ahd_softc *ahd, int op);
806 static __inline u_int	ahd_check_cmdcmpltqueues(struct ahd_softc *ahd);
807 static __inline void	ahd_intr(struct ahd_softc *ahd);
808 
809 static __inline void
810 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
811 {
812 	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_dmamap,
813 			/*offset*/0, /*len*/AHC_SCB_MAX * sizeof(uint16_t), op);
814 }
815 
816 static __inline void
817 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
818 {
819 #ifdef AHD_TARGET_MODE
820 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
821 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
822 				ahd->shared_data_dmamap,
823 				ahd_targetcmd_offset(ahd, 0),
824 				sizeof(struct target_cmd) * AHD_TMODE_CMDS,
825 				op);
826 	}
827 #endif
828 }
829 
830 /*
831  * See if the firmware has posted any completed commands
832  * into our in-core command complete fifos.
833  */
834 #define AHD_RUN_QOUTFIFO 0x1
835 #define AHD_RUN_TQINFIFO 0x2
836 static __inline u_int
837 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
838 {
839 	u_int retval;
840 
841 	retval = 0;
842 	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_dmamap,
843 			/*offset*/ahd->qoutfifonext, /*len*/2,
844 			BUS_DMASYNC_POSTREAD);
845 	if ((ahd->qoutfifo[ahd->qoutfifonext]
846 	     & QOUTFIFO_ENTRY_VALID_LE) == ahd->qoutfifonext_valid_tag)
847 		retval |= AHD_RUN_QOUTFIFO;
848 #ifdef AHD_TARGET_MODE
849 	if ((ahd->flags & AHD_TARGETROLE) != 0
850 	 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
851 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
852 				ahd->shared_data_dmamap,
853 				ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
854 				/*len*/sizeof(struct target_cmd),
855 				BUS_DMASYNC_POSTREAD);
856 		if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
857 			retval |= AHD_RUN_TQINFIFO;
858 	}
859 #endif
860 	return (retval);
861 }
862 
863 /*
864  * Catch an interrupt from the adapter
865  */
866 static __inline void
867 ahd_intr(struct ahd_softc *ahd)
868 {
869 	u_int	intstat;
870 
871 	if ((ahd->pause & INTEN) == 0) {
872 		/*
873 		 * Our interrupt is not enabled on the chip
874 		 * and may be disabled for re-entrancy reasons,
875 		 * so just return.  This is likely just a shared
876 		 * interrupt.
877 		 */
878 		return;
879 	}
880 
881 	/*
882 	 * Instead of directly reading the interrupt status register,
883 	 * infer the cause of the interrupt by checking our in-core
884 	 * completion queues.  This avoids a costly PCI bus read in
885 	 * most cases.
886 	 */
887 	if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
888 	 && (ahd_check_cmdcmpltqueues(ahd) != 0))
889 		intstat = CMDCMPLT;
890 	else
891 		intstat = ahd_inb(ahd, INTSTAT);
892 
893 	if (intstat & CMDCMPLT) {
894 		ahd_outb(ahd, CLRINT, CLRCMDINT);
895 
896 		/*
897 		 * Ensure that the chip sees that we've cleared
898 		 * this interrupt before we walk the output fifo.
899 		 * Otherwise, we may, due to posted bus writes,
900 		 * clear the interrupt after we finish the scan,
901 		 * and after the sequencer has added new entries
902 		 * and asserted the interrupt again.
903 		 */
904 		if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
905 			if (ahd_is_paused(ahd)) {
906 				/*
907 				 * Potentially lost SEQINT.
908 				 * If SEQINTCODE is non-zero,
909 				 * simulate the SEQINT.
910 				 */
911 				if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
912 					intstat |= SEQINT;
913 			}
914 		} else {
915 			ahd_flush_device_writes(ahd);
916 		}
917 		ahd_run_qoutfifo(ahd);
918 		ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
919 		ahd->cmdcmplt_total++;
920 #ifdef AHD_TARGET_MODE
921 		if ((ahd->flags & AHD_TARGETROLE) != 0)
922 			ahd_run_tqinfifo(ahd, /*paused*/FALSE);
923 #endif
924 	}
925 
926 	if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0)
927 		/* Hot eject */
928 		return;
929 
930 	if ((intstat & INT_PEND) == 0)
931 		return;
932 
933 	if (intstat & HWERRINT) {
934 		ahd_handle_hwerrint(ahd);
935 		return;
936 	}
937 
938 	if ((intstat & (PCIINT|SPLTINT)) != 0) {
939 		ahd->bus_intr(ahd);
940 		return;
941 	}
942 
943 	if ((intstat & SEQINT) != 0)
944 		ahd_handle_seqint(ahd, intstat);
945 
946 	if ((intstat & SCSIINT) != 0)
947 		ahd_handle_scsiint(ahd, intstat);
948 }
949 
950 #endif  /* _AIC79XX_INLINE_H_ */
951