1/* 2 * Adaptec U320 device driver firmware for Linux and FreeBSD. 3 * 4 * Copyright (c) 1994-2001 Justin T. Gibbs. 5 * Copyright (c) 2000-2002 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 * 40 * $FreeBSD$ 41 */ 42 43VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#119 $" 44PATCH_ARG_LIST = "struct ahd_softc *ahd" 45PREFIX = "ahd_" 46 47#include "aic79xx.reg" 48#include "scsi_message.h" 49 50restart: 51if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 52 test SEQINTCODE, 0xFF jz idle_loop; 53 SET_SEQINTCODE(NO_SEQINT) 54} 55 56idle_loop: 57 58 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 59 /* 60 * Convert ERROR status into a sequencer 61 * interrupt to handle the case of an 62 * interrupt collision on the hardware 63 * setting of HWERR. 64 */ 65 test ERROR, 0xFF jz no_error_set; 66 SET_SEQINTCODE(SAW_HWERR) 67no_error_set: 68 } 69 SET_MODE(M_SCSI, M_SCSI) 70 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 71 test SEQ_FLAGS2, SELECTOUT_QFROZEN jz check_waiting_list; 72 /* 73 * If the kernel has caught up with us, thaw the queue. 74 */ 75 mov A, KERNEL_QFREEZE_COUNT; 76 cmp QFREEZE_COUNT, A jne check_frozen_completions; 77 mov A, KERNEL_QFREEZE_COUNT[1]; 78 cmp QFREEZE_COUNT[1], A jne check_frozen_completions; 79 and SEQ_FLAGS2, ~SELECTOUT_QFROZEN; 80 jmp check_waiting_list; 81check_frozen_completions: 82 test SSTAT0, SELDO|SELINGO jnz idle_loop_checkbus; 83BEGIN_CRITICAL; 84 /* 85 * If we have completions stalled waiting for the qfreeze 86 * to take effect, move them over to the complete_scb list 87 * now that no selections are pending. 88 */ 89 cmp COMPLETE_ON_QFREEZE_HEAD[1],SCB_LIST_NULL je idle_loop_checkbus; 90 /* 91 * Find the end of the qfreeze list. The first element has 92 * to be treated specially. 93 */ 94 bmov SCBPTR, COMPLETE_ON_QFREEZE_HEAD, 2; 95 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je join_lists; 96 /* 97 * Now the normal loop. 98 */ 99 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 100 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . - 1; 101join_lists: 102 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 103 bmov COMPLETE_SCB_HEAD, COMPLETE_ON_QFREEZE_HEAD, 2; 104 mvi COMPLETE_ON_QFREEZE_HEAD[1], SCB_LIST_NULL; 105 jmp idle_loop_checkbus; 106check_waiting_list: 107 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 108 /* 109 * ENSELO is cleared by a SELDO, so we must test for SELDO 110 * one last time. 111 */ 112 test SSTAT0, SELDO jnz select_out; 113END_CRITICAL; 114 call start_selection; 115idle_loop_checkbus: 116BEGIN_CRITICAL; 117 test SSTAT0, SELDO jnz select_out; 118END_CRITICAL; 119 test SSTAT0, SELDI jnz select_in; 120 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 121 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 122 call unexpected_nonpkt_phase_find_ctxt; 123idle_loop_check_nonpackreq: 124 test SSTAT2, NONPACKREQ jz . + 2; 125 call unexpected_nonpkt_phase_find_ctxt; 126 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 127 /* 128 * On Rev A. hardware, the busy LED is only 129 * turned on automaically during selections 130 * and re-selections. Make the LED status 131 * more useful by forcing it to be on so 132 * long as one of our data FIFOs is active. 133 */ 134 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 135 cmp A, FIFO0FREE|FIFO1FREE jne . + 3; 136 and SBLKCTL, ~DIAGLEDEN|DIAGLEDON; 137 jmp . + 2; 138 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 139 } 140 call idle_loop_gsfifo_in_scsi_mode; 141 call idle_loop_service_fifos; 142 call idle_loop_cchan; 143 jmp idle_loop; 144 145idle_loop_gsfifo: 146 SET_MODE(M_SCSI, M_SCSI) 147BEGIN_CRITICAL; 148idle_loop_gsfifo_in_scsi_mode: 149 test LQISTAT2, LQIGSAVAIL jz return; 150 /* 151 * We have received good status for this transaction. There may 152 * still be data in our FIFOs draining to the host. Complete 153 * the SCB only if all data has transferred to the host. 154 */ 155good_status_IU_done: 156 bmov SCBPTR, GSFIFO, 2; 157 clr SCB_SCSI_STATUS; 158 /* 159 * If a command completed before an attempted task management 160 * function completed, notify the host after disabling any 161 * pending select-outs. 162 */ 163 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally; 164 test SSTAT0, SELDO|SELINGO jnz . + 2; 165 and SCSISEQ0, ~ENSELO; 166 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 167gsfifo_complete_normally: 168 or SCB_CONTROL, STATUS_RCVD; 169 170 /* 171 * Since this status did not consume a FIFO, we have to 172 * be a bit more dilligent in how we check for FIFOs pertaining 173 * to this transaction. There are two states that a FIFO still 174 * transferring data may be in. 175 * 176 * 1) Configured and draining to the host, with a FIFO handler. 177 * 2) Pending cfg4data, fifo not empty. 178 * 179 * Case 1 can be detected by noticing a non-zero FIFO active 180 * count in the SCB. In this case, we allow the routine servicing 181 * the FIFO to complete the SCB. 182 * 183 * Case 2 implies either a pending or yet to occur save data 184 * pointers for this same context in the other FIFO. So, if 185 * we detect case 1, we will properly defer the post of the SCB 186 * and achieve the desired result. The pending cfg4data will 187 * notice that status has been received and complete the SCB. 188 */ 189 test SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode; 190 call complete; 191END_CRITICAL; 192 jmp idle_loop_gsfifo_in_scsi_mode; 193 194idle_loop_service_fifos: 195 SET_MODE(M_DFF0, M_DFF0) 196BEGIN_CRITICAL; 197 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 198 call longjmp; 199END_CRITICAL; 200idle_loop_next_fifo: 201 SET_MODE(M_DFF1, M_DFF1) 202BEGIN_CRITICAL; 203 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp; 204END_CRITICAL; 205return: 206 ret; 207 208idle_loop_cchan: 209 SET_MODE(M_CCHAN, M_CCHAN) 210 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty; 211 or QOFF_CTLSTA, HS_MAILBOX_ACT; 212 mov LOCAL_HS_MAILBOX, HS_MAILBOX; 213hs_mailbox_empty: 214BEGIN_CRITICAL; 215 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 216 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 217 test CCSCBCTL, CCSCBDONE jz return; 218 /* FALLTHROUGH */ 219scbdma_tohost_done: 220 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 221 /* 222 * An SCB has been succesfully uploaded to the host. 223 * If the SCB was uploaded for some reason other than 224 * bad SCSI status (currently only for underruns), we 225 * queue the SCB for normal completion. Otherwise, we 226 * wait until any select-out activity has halted, and 227 * then queue the completion. 228 */ 229 and CCSCBCTL, ~(CCARREN|CCSCBEN); 230 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 231 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . + 2; 232 mvi COMPLETE_DMA_SCB_TAIL[1], SCB_LIST_NULL; 233 test SCB_SCSI_STATUS, 0xff jz scbdma_queue_completion; 234 bmov SCB_NEXT_COMPLETE, COMPLETE_ON_QFREEZE_HEAD, 2; 235 bmov COMPLETE_ON_QFREEZE_HEAD, SCBPTR, 2 ret; 236scbdma_queue_completion: 237 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 238 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 239fill_qoutfifo_dmadone: 240 and CCSCBCTL, ~(CCARREN|CCSCBEN); 241 call qoutfifo_updated; 242 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 243 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 244 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 245 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; 246 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; 247END_CRITICAL; 248 249qoutfifo_updated: 250 /* 251 * If there are more commands waiting to be dma'ed 252 * to the host, always coalesce. Otherwise honor the 253 * host's wishes. 254 */ 255 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 256 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 257 test LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt; 258 259 /* 260 * If we have relatively few commands outstanding, don't 261 * bother waiting for another command to complete. 262 */ 263 test CMDS_PENDING[1], 0xFF jnz coalesce_by_count; 264 /* Add -1 so that jnc means <= not just < */ 265 add A, -1, INT_COALESCING_MINCMDS; 266 add NONE, A, CMDS_PENDING; 267 jnc issue_cmdcmplt; 268 269 /* 270 * If coalescing, only coalesce up to the limit 271 * provided by the host driver. 272 */ 273coalesce_by_count: 274 mov A, INT_COALESCING_MAXCMDS; 275 add NONE, A, INT_COALESCING_CMDCOUNT; 276 jc issue_cmdcmplt; 277 /* 278 * If the timer is not currently active, 279 * fire it up. 280 */ 281 test INTCTL, SWTMINTMASK jz return; 282 bmov SWTIMER, INT_COALESCING_TIMER, 2; 283 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 284 or INTCTL, SWTMINTEN|SWTIMER_START; 285 and INTCTL, ~SWTMINTMASK ret; 286 287issue_cmdcmplt: 288 mvi INTSTAT, CMDCMPLT; 289 clr INT_COALESCING_CMDCOUNT; 290 or INTCTL, SWTMINTMASK ret; 291 292BEGIN_CRITICAL; 293fetch_new_scb_inprog: 294 test CCSCBCTL, ARRDONE jz return; 295fetch_new_scb_done: 296 and CCSCBCTL, ~(CCARREN|CCSCBEN); 297 bmov REG0, SCBPTR, 2; 298 clr A; 299 add CMDS_PENDING, 1; 300 adc CMDS_PENDING[1], A; 301 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { 302 /* 303 * "Short Luns" are not placed into outgoing LQ 304 * packets in the correct byte order. Use a full 305 * sized lun field instead and fill it with the 306 * one byte of lun information we support. 307 */ 308 mov SCB_PKT_LUN[6], SCB_LUN; 309 } 310 /* 311 * The FIFO use count field is shared with the 312 * tag set by the host so that our SCB dma engine 313 * knows the correct location to store the SCB. 314 * Set it to zero before processing the SCB. 315 */ 316 clr SCB_FIFO_USE_COUNT; 317 /* Update the next SCB address to download. */ 318 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 319 mvi SCB_NEXT[1], SCB_LIST_NULL; 320 mvi SCB_NEXT2[1], SCB_LIST_NULL; 321 /* Increment our position in the QINFIFO. */ 322 mov NONE, SNSCB_QOFF; 323 /* 324 * SCBs that want to send messages are always 325 * queued independently. This ensures that they 326 * are at the head of the SCB list to select out 327 * to a target and we will see the MK_MESSAGE flag. 328 */ 329 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb; 330 shr SINDEX, 3, SCB_SCSIID; 331 and SINDEX, ~0x1; 332 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 333 bmov DINDEX, SINDEX, 2; 334 bmov SCBPTR, SINDIR, 2; 335 bmov DINDIR, REG0, 2; 336 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 337 bmov SCB_NEXT, REG0, 2 ret; 338first_new_target_scb: 339 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 340 bmov SCBPTR, WAITING_TID_TAIL, 2; 341 bmov SCB_NEXT2, REG0, 2; 342 bmov WAITING_TID_TAIL, REG0, 2 ret; 343first_new_scb: 344 bmov WAITING_TID_HEAD, REG0, 2; 345 bmov WAITING_TID_TAIL, REG0, 2 ret; 346END_CRITICAL; 347 348scbdma_idle: 349 /* 350 * Give precedence to downloading new SCBs to execute 351 * unless select-outs are currently frozen. 352 */ 353 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2; 354BEGIN_CRITICAL; 355 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 356 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 357 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 358 /* FALLTHROUGH */ 359fill_qoutfifo: 360 /* 361 * Keep track of the SCBs we are dmaing just 362 * in case the DMA fails or is aborted. 363 */ 364 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 365 mvi CCSCBCTL, CCSCBRESET; 366 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 367 mov A, QOUTFIFO_NEXT_ADDR; 368 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 369fill_qoutfifo_loop: 370 bmov CCSCBRAM, SCBPTR, 2; 371 mov CCSCBRAM, SCB_SGPTR[0]; 372 mov CCSCBRAM, QOUTFIFO_ENTRY_VALID_TAG; 373 mov NONE, SDSCB_QOFF; 374 inc INT_COALESCING_CMDCOUNT; 375 add CMDS_PENDING, -1; 376 adc CMDS_PENDING[1], -1; 377 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 378 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 379 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done; 380 /* 381 * Don't cross an ADB or Cachline boundary when DMA'ing 382 * completion entries. In PCI mode, at least in 32/33 383 * configurations, the SCB DMA engine may lose its place 384 * in the data-stream should the target force a retry on 385 * something other than an 8byte aligned boundary. In 386 * PCI-X mode, we do this to avoid split transactions since 387 * many chipsets seem to be unable to format proper split 388 * completions to continue the data transfer. 389 */ 390 add SINDEX, A, CCSCBADDR; 391 test SINDEX, CACHELINE_MASK jz fill_qoutfifo_done; 392 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 393 jmp fill_qoutfifo_loop; 394fill_qoutfifo_done: 395 mov SCBHCNT, CCSCBADDR; 396 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 397 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 398 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 399 400fetch_new_scb: 401 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 402 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 403dma_complete_scb: 404 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 405 bmov SCBHADDR, SCB_BUSADDR, 4; 406 mvi CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb; 407 408/* 409 * Either post or fetch an SCB from host memory. The caller 410 * is responsible for polling for transfer completion. 411 * 412 * Prerequisits: Mode == M_CCHAN 413 * SINDEX contains CCSCBCTL flags 414 * SCBHADDR set to Host SCB address 415 * SCBPTR set to SCB src location on "push" operations 416 */ 417SET_SRC_MODE M_CCHAN; 418SET_DST_MODE M_CCHAN; 419dma_scb: 420 mvi SCBHCNT, SCB_TRANSFER_SIZE; 421 mov CCSCBCTL, SINDEX ret; 422 423setjmp: 424 /* 425 * At least on the A, a return in the same 426 * instruction as the bmov results in a return 427 * to the caller, not to the new address at the 428 * top of the stack. Since we want the latter 429 * (we use setjmp to register a handler from an 430 * interrupt context but not invoke that handler 431 * until we return to our idle loop), use a 432 * separate ret instruction. 433 */ 434 bmov LONGJMP_ADDR, STACK, 2; 435 ret; 436setjmp_inline: 437 bmov LONGJMP_ADDR, STACK, 2; 438longjmp: 439 bmov STACK, LONGJMP_ADDR, 2 ret; 440END_CRITICAL; 441 442/*************************** Chip Bug Work Arounds ****************************/ 443/* 444 * Must disable interrupts when setting the mode pointer 445 * register as an interrupt occurring mid update will 446 * fail to store the new mode value for restoration on 447 * an iret. 448 */ 449if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 450set_mode_work_around: 451 mvi SEQINTCTL, INTVEC1DSL; 452 mov MODE_PTR, SINDEX; 453 clr SEQINTCTL ret; 454} 455 456 457if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 458set_seqint_work_around: 459 mov SEQINTCODE, SINDEX; 460 mvi SEQINTCODE, NO_SEQINT ret; 461} 462 463/************************ Packetized LongJmp Routines *************************/ 464SET_SRC_MODE M_SCSI; 465SET_DST_MODE M_SCSI; 466start_selection: 467BEGIN_CRITICAL; 468 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 469 /* 470 * Razor #494 471 * Rev A hardware fails to update LAST/CURR/NEXTSCB 472 * correctly after a packetized selection in several 473 * situations: 474 * 475 * 1) If only one command existed in the queue, the 476 * LAST/CURR/NEXTSCB are unchanged. 477 * 478 * 2) In a non QAS, protocol allowed phase change, 479 * the queue is shifted 1 too far. LASTSCB is 480 * the last SCB that was correctly processed. 481 * 482 * 3) In the QAS case, if the full list of commands 483 * was successfully sent, NEXTSCB is NULL and neither 484 * CURRSCB nor LASTSCB can be trusted. We must 485 * manually walk the list counting MAXCMDCNT elements 486 * to find the last SCB that was sent correctly. 487 * 488 * To simplify the workaround for this bug in SELDO 489 * handling, we initialize LASTSCB prior to enabling 490 * selection so we can rely on it even for case #1 above. 491 */ 492 bmov LASTSCB, WAITING_TID_HEAD, 2; 493 } 494 bmov CURRSCB, WAITING_TID_HEAD, 2; 495 bmov SCBPTR, WAITING_TID_HEAD, 2; 496 shr SELOID, 4, SCB_SCSIID; 497 /* 498 * If we want to send a message to the device, ensure 499 * we are selecting with atn irregardless of our packetized 500 * agreement. Since SPI4 only allows target reset or PPR 501 * messages if this is a packetized connection, the change 502 * to our negotiation table entry for this selection will 503 * be cleared when the message is acted on. 504 */ 505 test SCB_CONTROL, MK_MESSAGE jz . + 3; 506 mov NEGOADDR, SELOID; 507 or NEGCONOPTS, ENAUTOATNO; 508 or SCSISEQ0, ENSELO ret; 509END_CRITICAL; 510 511/* 512 * Allocate a FIFO for a non-packetized transaction. 513 * In RevA hardware, both FIFOs must be free before we 514 * can allocate a FIFO for a non-packetized transaction. 515 */ 516allocate_fifo_loop: 517 /* 518 * Do whatever work is required to free a FIFO. 519 */ 520 call idle_loop_service_fifos; 521 SET_MODE(M_SCSI, M_SCSI) 522allocate_fifo: 523 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) { 524 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 525 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 526 } else { 527 test DFFSTAT, FIFO1FREE jnz allocate_fifo1; 528 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop; 529 mvi DFFSTAT, B_CURRFIFO_0; 530 SET_MODE(M_DFF0, M_DFF0) 531 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 532 } 533SET_SRC_MODE M_SCSI; 534SET_DST_MODE M_SCSI; 535allocate_fifo1: 536 mvi DFFSTAT, CURRFIFO_1; 537 SET_MODE(M_DFF1, M_DFF1) 538 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 539 540/* 541 * We have been reselected as an initiator 542 * or selected as a target. 543 */ 544SET_SRC_MODE M_SCSI; 545SET_DST_MODE M_SCSI; 546select_in: 547 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 548 /* 549 * On Rev A. hardware, the busy LED is only 550 * turned on automaically during selections 551 * and re-selections. Make the LED status 552 * more useful by forcing it to be on from 553 * the point of selection until our idle 554 * loop determines that neither of our FIFOs 555 * are busy. This handles the non-packetized 556 * case nicely as we will not return to the 557 * idle loop until the busfree at the end of 558 * each transaction. 559 */ 560 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 561 } 562 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 563 /* 564 * Test to ensure that the bus has not 565 * already gone free prior to clearing 566 * any stale busfree status. This avoids 567 * a window whereby a busfree just after 568 * a selection could be missed. 569 */ 570 test SCSISIGI, BSYI jz . + 2; 571 mvi CLRSINT1,CLRBUSFREE; 572 or SIMODE1, ENBUSFREE; 573 } 574 or SXFRCTL0, SPIOEN; 575 and SAVED_SCSIID, SELID_MASK, SELID; 576 and A, OID, IOWNID; 577 or SAVED_SCSIID, A; 578 mvi CLRSINT0, CLRSELDI; 579 jmp ITloop; 580 581/* 582 * We have successfully selected out. 583 * 584 * Clear SELDO. 585 * Dequeue all SCBs sent from the waiting queue 586 * Requeue all SCBs *not* sent to the tail of the waiting queue 587 * Take Razor #494 into account for above. 588 * 589 * In Packetized Mode: 590 * Return to the idle loop. Our interrupt handler will take 591 * care of any incoming L_Qs. 592 * 593 * In Non-Packetize Mode: 594 * Continue to our normal state machine. 595 */ 596SET_SRC_MODE M_SCSI; 597SET_DST_MODE M_SCSI; 598select_out: 599BEGIN_CRITICAL; 600 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 601 /* 602 * On Rev A. hardware, the busy LED is only 603 * turned on automaically during selections 604 * and re-selections. Make the LED status 605 * more useful by forcing it to be on from 606 * the point of re-selection until our idle 607 * loop determines that neither of our FIFOs 608 * are busy. This handles the non-packetized 609 * case nicely as we will not return to the 610 * idle loop until the busfree at the end of 611 * each transaction. 612 */ 613 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 614 } 615 /* Clear out all SCBs that have been successfully sent. */ 616 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 617 /* 618 * For packetized, the LQO manager clears ENSELO on 619 * the assertion of SELDO. If we are non-packetized, 620 * LASTSCB and CURRSCB are accurate. 621 */ 622 test SCSISEQ0, ENSELO jnz use_lastscb; 623 624 /* 625 * The update is correct for LQOSTAT1 errors. All 626 * but LQOBUSFREE are handled by kernel interrupts. 627 * If we see LQOBUSFREE, return to the idle loop. 628 * Once we are out of the select_out critical section, 629 * the kernel will cleanup the LQOBUSFREE and we will 630 * eventually restart the selection if appropriate. 631 */ 632 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 633 634 /* 635 * On a phase change oustside of packet boundaries, 636 * LASTSCB points to the currently active SCB context 637 * on the bus. 638 */ 639 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 640 641 /* 642 * If the hardware has traversed the whole list, NEXTSCB 643 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 644 * but MAXCMDCNT is accurate. If we stop part way through 645 * the list or only had one command to issue, NEXTSCB[1] is 646 * not NULL and LASTSCB is the last command to go out. 647 */ 648 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 649 650 /* 651 * Brute force walk. 652 */ 653 bmov SCBPTR, WAITING_TID_HEAD, 2; 654 mvi SEQINTCTL, INTVEC1DSL; 655 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 656 mov A, MAXCMDCNT; 657 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 658 clr SEQINTCTL; 659find_lastscb_loop: 660 dec A; 661 test A, 0xFF jz found_last_sent_scb; 662 bmov SCBPTR, SCB_NEXT, 2; 663 jmp find_lastscb_loop; 664use_lastscb: 665 bmov SCBPTR, LASTSCB, 2; 666found_last_sent_scb: 667 bmov CURRSCB, SCBPTR, 2; 668curscb_ww_done: 669 } else { 670 bmov SCBPTR, CURRSCB, 2; 671 } 672 673 /* 674 * Requeue any SCBs not sent, to the tail of the waiting Q. 675 */ 676 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done; 677 678 /* 679 * We know that neither the per-TID list nor the list of 680 * TIDs is empty. Use this knowledge to our advantage. 681 */ 682 bmov REG0, SCB_NEXT, 2; 683 bmov SCBPTR, WAITING_TID_TAIL, 2; 684 bmov SCB_NEXT2, REG0, 2; 685 bmov WAITING_TID_TAIL, REG0, 2; 686 jmp select_out_inc_tid_q; 687 688select_out_list_done: 689 /* 690 * The whole list made it. Just clear our TID's tail pointer 691 * unless we were queued independently due to our need to 692 * send a message. 693 */ 694 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q; 695 shr DINDEX, 3, SCB_SCSIID; 696 or DINDEX, 1; /* Want only the second byte */ 697 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 698 mvi DINDIR, SCB_LIST_NULL; 699select_out_inc_tid_q: 700 bmov SCBPTR, WAITING_TID_HEAD, 2; 701 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 702 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 703 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 704 bmov SCBPTR, CURRSCB, 2; 705 mvi CLRSINT0, CLRSELDO; 706 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase; 707 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase; 708 709 /* 710 * If this is a packetized connection, return to our 711 * idle_loop and let our interrupt handler deal with 712 * any connection setup/teardown issues. The only 713 * exceptions are the case of MK_MESSAGE and task management 714 * SCBs. 715 */ 716 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 717 /* 718 * In the A, the LQO manager transitions to LQOSTOP0 even if 719 * we have selected out with ATN asserted and the target 720 * REQs in a non-packet phase. 721 */ 722 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 723 test SCSISIGO, ATNO jnz select_out_non_packetized; 724select_out_no_message: 725 } 726 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized; 727 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop; 728 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE) 729 jmp idle_loop; 730 731select_out_non_packetized: 732 /* Non packetized request. */ 733 and SCSISEQ0, ~ENSELO; 734 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 735 /* 736 * Test to ensure that the bus has not 737 * already gone free prior to clearing 738 * any stale busfree status. This avoids 739 * a window whereby a busfree just after 740 * a selection could be missed. 741 */ 742 test SCSISIGI, BSYI jz . + 2; 743 mvi CLRSINT1,CLRBUSFREE; 744 or SIMODE1, ENBUSFREE; 745 } 746 mov SAVED_SCSIID, SCB_SCSIID; 747 mov SAVED_LUN, SCB_LUN; 748 mvi SEQ_FLAGS, NO_CDB_SENT; 749END_CRITICAL; 750 or SXFRCTL0, SPIOEN; 751 752 /* 753 * As soon as we get a successful selection, the target 754 * should go into the message out phase since we have ATN 755 * asserted. 756 */ 757 mvi MSG_OUT, MSG_IDENTIFYFLAG; 758 759 /* 760 * Main loop for information transfer phases. Wait for the 761 * target to assert REQ before checking MSG, C/D and I/O for 762 * the bus phase. 763 */ 764mesgin_phasemis: 765ITloop: 766 call phase_lock; 767 768 mov A, LASTPHASE; 769 770 test A, ~P_DATAIN_DT jz p_data; 771 cmp A,P_COMMAND je p_command; 772 cmp A,P_MESGOUT je p_mesgout; 773 cmp A,P_STATUS je p_status; 774 cmp A,P_MESGIN je p_mesgin; 775 776 SET_SEQINTCODE(BAD_PHASE) 777 jmp ITloop; /* Try reading the bus again. */ 778 779/* 780 * Command phase. Set up the DMA registers and let 'er rip. 781 */ 782p_command: 783 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay; 784 SET_SEQINTCODE(PROTO_VIOLATION) 785p_command_okay: 786 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 787 jnz p_command_allocate_fifo; 788 /* 789 * Command retry. Free our current FIFO and 790 * re-allocate a FIFO so transfer state is 791 * reset. 792 */ 793SET_SRC_MODE M_DFF1; 794SET_DST_MODE M_DFF1; 795 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 796 SET_MODE(M_SCSI, M_SCSI) 797p_command_allocate_fifo: 798 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 799 call allocate_fifo; 800SET_SRC_MODE M_DFF1; 801SET_DST_MODE M_DFF1; 802 add NONE, -17, SCB_CDB_LEN; 803 jnc p_command_embedded; 804p_command_from_host: 805 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 806 mvi SG_CACHE_PRE, LAST_SEG; 807 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 808 jmp p_command_xfer; 809p_command_embedded: 810 bmov SHCNT[0], SCB_CDB_LEN, 1; 811 bmov DFDAT, SCB_CDB_STORE, 16; 812 mvi DFCNTRL, SCSIEN; 813p_command_xfer: 814 and SEQ_FLAGS, ~NO_CDB_SENT; 815 if ((ahd->features & AHD_FAST_CDB_DELIVERY) != 0) { 816 /* 817 * To speed up CDB delivery in Rev B, all CDB acks 818 * are "released" to the output sync as soon as the 819 * command phase starts. There is only one problem 820 * with this approach. If the target changes phase 821 * before all data are sent, we have left over acks 822 * that can go out on the bus in a data phase. Due 823 * to other chip contraints, this only happens if 824 * the target goes to data-in, but if the acks go 825 * out before we can test SDONE, we'll think that 826 * the transfer has completed successfully. Work 827 * around this by taking advantage of the 400ns or 828 * 800ns dead time between command phase and the REQ 829 * of the new phase. If the transfer has completed 830 * successfully, SCSIEN should fall *long* before we 831 * see a phase change. We thus treat any phasemiss 832 * that occurs before SCSIEN falls as an incomplete 833 * transfer. 834 */ 835 test SSTAT1, PHASEMIS jnz p_command_xfer_failed; 836 test DFCNTRL, SCSIEN jnz . - 1; 837 } else { 838 test DFCNTRL, SCSIEN jnz .; 839 } 840 /* 841 * DMA Channel automatically disabled. 842 * Don't allow a data phase if the command 843 * was not fully transferred. 844 */ 845 test SSTAT2, SDONE jnz ITloop; 846p_command_xfer_failed: 847 or SEQ_FLAGS, NO_CDB_SENT; 848 jmp ITloop; 849 850 851/* 852 * Status phase. Wait for the data byte to appear, then read it 853 * and store it into the SCB. 854 */ 855SET_SRC_MODE M_SCSI; 856SET_DST_MODE M_SCSI; 857p_status: 858 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation; 859p_status_okay: 860 mov SCB_SCSI_STATUS, SCSIDAT; 861 or SCB_CONTROL, STATUS_RCVD; 862 jmp ITloop; 863 864/* 865 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 866 * indentify message sequence and send it to the target. The host may 867 * override this behavior by setting the MK_MESSAGE bit in the SCB 868 * control byte. This will cause us to interrupt the host and allow 869 * it to handle the message phase completely on its own. If the bit 870 * associated with this target is set, we will also interrupt the host, 871 * thereby allowing it to send a message on the next selection regardless 872 * of the transaction being sent. 873 * 874 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 875 * This is done to allow the host to send messages outside of an identify 876 * sequence while protecting the seqencer from testing the MK_MESSAGE bit 877 * on an SCB that might not be for the current nexus. (For example, a 878 * BDR message in responce to a bad reselection would leave us pointed to 879 * an SCB that doesn't have anything to do with the current target). 880 * 881 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 882 * bus device reset). 883 * 884 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 885 * in case the target decides to put us in this phase for some strange 886 * reason. 887 */ 888p_mesgout_retry: 889 /* Turn on ATN for the retry */ 890 mvi SCSISIGO, ATNO; 891p_mesgout: 892 mov SINDEX, MSG_OUT; 893 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 894 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 895p_mesgout_identify: 896 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 897 test SCB_CONTROL, DISCENB jnz . + 2; 898 and SINDEX, ~DISCENB; 899/* 900 * Send a tag message if TAG_ENB is set in the SCB control block. 901 * Use SCB_NONPACKET_TAG as the tag value. 902 */ 903p_mesgout_tag: 904 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 905 mov SCSIDAT, SINDEX; /* Send the identify message */ 906 call phase_lock; 907 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 908 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 909 call phase_lock; 910 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 911 mov SCBPTR jmp p_mesgout_onebyte; 912/* 913 * Interrupt the driver, and allow it to handle this message 914 * phase and any required retries. 915 */ 916p_mesgout_from_host: 917 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 918 jmp host_message_loop; 919 920p_mesgout_onebyte: 921 mvi CLRSINT1, CLRATNO; 922 mov SCSIDAT, SINDEX; 923 924/* 925 * If the next bus phase after ATN drops is message out, it means 926 * that the target is requesting that the last message(s) be resent. 927 */ 928 call phase_lock; 929 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 930 931p_mesgout_done: 932 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 933 mov LAST_MSG, MSG_OUT; 934 mvi MSG_OUT, MSG_NOOP; /* No message left */ 935 jmp ITloop; 936 937/* 938 * Message in phase. Bytes are read using Automatic PIO mode. 939 */ 940p_mesgin: 941 /* read the 1st message byte */ 942 mvi ACCUM call inb_first; 943 944 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 945 cmp A,MSG_DISCONNECT je mesgin_disconnect; 946 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 947 cmp ALLZEROS,A je mesgin_complete; 948 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 949 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 950 cmp A,MSG_NOOP je mesgin_done; 951 952/* 953 * Pushed message loop to allow the kernel to 954 * run it's own message state engine. To avoid an 955 * extra nop instruction after signaling the kernel, 956 * we perform the phase_lock before checking to see 957 * if we should exit the loop and skip the phase_lock 958 * in the ITloop. Performing back to back phase_locks 959 * shouldn't hurt, but why do it twice... 960 */ 961host_message_loop: 962 call phase_lock; /* Benign the first time through. */ 963 SET_SEQINTCODE(HOST_MSG_LOOP) 964 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 965 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 966 mov SCSIDAT, RETURN_2; 967 jmp host_message_loop; 968 /* Must be CONT_MSG_LOOP_READ */ 969 mov NONE, SCSIDAT; /* ACK Byte */ 970 jmp host_message_loop; 971 972mesgin_ign_wide_residue: 973 mov SAVED_MODE, MODE_PTR; 974 SET_MODE(M_SCSI, M_SCSI) 975 shr NEGOADDR, 4, SAVED_SCSIID; 976 mov A, NEGCONOPTS; 977 RESTORE_MODE(SAVED_MODE) 978 test A, WIDEXFER jz mesgin_reject; 979 /* Pull the residue byte */ 980 mvi REG0 call inb_next; 981 cmp REG0, 0x01 jne mesgin_reject; 982 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 983 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done; 984 SET_SEQINTCODE(IGN_WIDE_RES) 985 jmp mesgin_done; 986 987mesgin_proto_violation: 988 SET_SEQINTCODE(PROTO_VIOLATION) 989 jmp mesgin_done; 990mesgin_reject: 991 mvi MSG_MESSAGE_REJECT call mk_mesg; 992mesgin_done: 993 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 994 jmp ITloop; 995 996#define INDEX_DISC_LIST(scsiid, lun) \ 997 and A, 0xC0, scsiid; \ 998 or SCBPTR, A, lun; \ 999 clr SCBPTR[1]; \ 1000 and SINDEX, 0x30, scsiid; \ 1001 shr SINDEX, 3; /* Multiply by 2 */ \ 1002 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 1003 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 1004 1005mesgin_identify: 1006 /* 1007 * Determine whether a target is using tagged or non-tagged 1008 * transactions by first looking at the transaction stored in 1009 * the per-device, disconnected array. If there is no untagged 1010 * transaction for this target, this must be a tagged transaction. 1011 */ 1012 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 1013 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1014 bmov DINDEX, SINDEX, 2; 1015 bmov REG0, SINDIR, 2; 1016 cmp REG0[1], SCB_LIST_NULL je snoop_tag; 1017 /* Untagged. Clear the busy table entry and setup the SCB. */ 1018 bmov DINDIR, ALLONES, 2; 1019 bmov SCBPTR, REG0, 2; 1020 jmp setup_SCB; 1021 1022/* 1023 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 1024 * If we get one, we use the tag returned to find the proper 1025 * SCB. After receiving the tag, look for the SCB at SCB locations tag and 1026 * tag + 256. 1027 */ 1028snoop_tag: 1029 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1030 or SEQ_FLAGS, 0x80; 1031 } 1032 mov NONE, SCSIDAT; /* ACK Identify MSG */ 1033 call phase_lock; 1034 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1035 or SEQ_FLAGS, 0x1; 1036 } 1037 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 1038 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1039 or SEQ_FLAGS, 0x2; 1040 } 1041 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 1042get_tag: 1043 clr SCBPTR[1]; 1044 mvi SCBPTR call inb_next; /* tag value */ 1045verify_scb: 1046 test SCB_CONTROL,DISCONNECTED jz verify_other_scb; 1047 mov A, SAVED_SCSIID; 1048 cmp SCB_SCSIID, A jne verify_other_scb; 1049 mov A, SAVED_LUN; 1050 cmp SCB_LUN, A je setup_SCB_disconnected; 1051verify_other_scb: 1052 xor SCBPTR[1], 1; 1053 test SCBPTR[1], 0xFF jnz verify_scb; 1054 jmp not_found; 1055 1056/* 1057 * Ensure that the SCB the tag points to is for 1058 * an SCB transaction to the reconnecting target. 1059 */ 1060setup_SCB: 1061 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1062 or SEQ_FLAGS, 0x10; 1063 } 1064 test SCB_CONTROL,DISCONNECTED jz not_found; 1065setup_SCB_disconnected: 1066 and SCB_CONTROL,~DISCONNECTED; 1067 clr SEQ_FLAGS; /* make note of IDENTIFY */ 1068 test SCB_SGPTR, SG_LIST_NULL jnz . + 3; 1069 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 1070 call allocate_fifo; 1071 /* See if the host wants to send a message upon reconnection */ 1072 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 1073 mvi HOST_MSG call mk_mesg; 1074 jmp mesgin_done; 1075 1076not_found: 1077 SET_SEQINTCODE(NO_MATCH) 1078 jmp mesgin_done; 1079 1080not_found_ITloop: 1081 SET_SEQINTCODE(NO_MATCH) 1082 jmp ITloop; 1083 1084/* 1085 * We received a "command complete" message. Put the SCB on the complete 1086 * queue and trigger a completion interrupt via the idle loop. Before doing 1087 * so, check to see if there is a residual or the status byte is something 1088 * other than STATUS_GOOD (0). In either of these conditions, we upload the 1089 * SCB back to the host so it can process this information. 1090 */ 1091mesgin_complete: 1092 1093 /* 1094 * If ATN is raised, we still want to give the target a message. 1095 * Perhaps there was a parity error on this last message byte. 1096 * Either way, the target should take us to message out phase 1097 * and then attempt to complete the command again. We should use a 1098 * critical section here to guard against a timeout triggering 1099 * for this command and setting ATN while we are still processing 1100 * the completion. 1101 test SCSISIGI, ATNI jnz mesgin_done; 1102 */ 1103 1104 /* 1105 * If we are identified and have successfully sent the CDB, 1106 * any status will do. Optimize this fast path. 1107 */ 1108 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation; 1109 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted; 1110 1111 /* 1112 * If the target never sent an identify message but instead went 1113 * to mesgin to give an invalid message, let the host abort us. 1114 */ 1115 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation; 1116 1117 /* 1118 * If we recevied good status but never successfully sent the 1119 * cdb, abort the command. 1120 */ 1121 test SCB_SCSI_STATUS,0xff jnz complete_accepted; 1122 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation; 1123complete_accepted: 1124 1125 /* 1126 * See if we attempted to deliver a message but the target ingnored us. 1127 */ 1128 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg; 1129 SET_SEQINTCODE(MKMSG_FAILED) 1130complete_nomsg: 1131 call queue_scb_completion; 1132 jmp await_busfree; 1133 1134BEGIN_CRITICAL; 1135freeze_queue: 1136 /* Cancel any pending select-out. */ 1137 test SSTAT0, SELDO|SELINGO jnz . + 2; 1138 and SCSISEQ0, ~ENSELO; 1139 mov ACCUM_SAVE, A; 1140 clr A; 1141 add QFREEZE_COUNT, 1; 1142 adc QFREEZE_COUNT[1], A; 1143 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 1144 mov A, ACCUM_SAVE ret; 1145END_CRITICAL; 1146 1147/* 1148 * Complete the current FIFO's SCB if data for this same 1149 * SCB is not transferring in the other FIFO. 1150 */ 1151SET_SRC_MODE M_DFF1; 1152SET_DST_MODE M_DFF1; 1153pkt_complete_scb_if_fifos_idle: 1154 bmov ARG_1, SCBPTR, 2; 1155 mvi DFFSXFRCTL, CLRCHN; 1156 SET_MODE(M_SCSI, M_SCSI) 1157 bmov SCBPTR, ARG_1, 2; 1158 test SCB_FIFO_USE_COUNT, 0xFF jnz return; 1159queue_scb_completion: 1160 test SCB_SCSI_STATUS,0xff jnz bad_status; 1161 /* 1162 * Check for residuals 1163 */ 1164 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 1165 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 1166 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 1167complete: 1168BEGIN_CRITICAL; 1169 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 1170 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 1171END_CRITICAL; 1172bad_status: 1173 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 1174 call freeze_queue; 1175upload_scb: 1176 /* 1177 * Restore SCB TAG since we reuse this field 1178 * in the sequencer. We don't want to corrupt 1179 * it on the host. 1180 */ 1181 bmov SCB_TAG, SCBPTR, 2; 1182BEGIN_CRITICAL; 1183 or SCB_SGPTR, SG_STATUS_VALID; 1184 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL; 1185 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne add_dma_scb_tail; 1186 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 1187 bmov COMPLETE_DMA_SCB_TAIL, SCBPTR, 2 ret; 1188add_dma_scb_tail: 1189 bmov REG0, SCBPTR, 2; 1190 bmov SCBPTR, COMPLETE_DMA_SCB_TAIL, 2; 1191 bmov SCB_NEXT_COMPLETE, REG0, 2; 1192 bmov COMPLETE_DMA_SCB_TAIL, REG0, 2 ret; 1193END_CRITICAL; 1194 1195/* 1196 * Is it a disconnect message? Set a flag in the SCB to remind us 1197 * and await the bus going free. If this is an untagged transaction 1198 * store the SCB id for it in our untagged target table for lookup on 1199 * a reselction. 1200 */ 1201mesgin_disconnect: 1202 /* 1203 * If ATN is raised, we still want to give the target a message. 1204 * Perhaps there was a parity error on this last message byte 1205 * or we want to abort this command. Either way, the target 1206 * should take us to message out phase and then attempt to 1207 * disconnect again. 1208 * XXX - Wait for more testing. 1209 test SCSISIGI, ATNI jnz mesgin_done; 1210 */ 1211 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT 1212 jnz mesgin_proto_violation; 1213 or SCB_CONTROL,DISCONNECTED; 1214 test SCB_CONTROL, TAG_ENB jnz await_busfree; 1215queue_disc_scb: 1216 bmov REG0, SCBPTR, 2; 1217 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1218 bmov DINDEX, SINDEX, 2; 1219 bmov DINDIR, REG0, 2; 1220 bmov SCBPTR, REG0, 2; 1221 /* FALLTHROUGH */ 1222await_busfree: 1223 and SIMODE1, ~ENBUSFREE; 1224 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) { 1225 /* 1226 * In the BUSFREEREV_BUG case, the 1227 * busfree status was cleared at the 1228 * beginning of the connection. 1229 */ 1230 mvi CLRSINT1,CLRBUSFREE; 1231 } 1232 mov NONE, SCSIDAT; /* Ack the last byte */ 1233 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1234 jnz await_busfree_not_m_dff; 1235SET_SRC_MODE M_DFF1; 1236SET_DST_MODE M_DFF1; 1237await_busfree_clrchn: 1238 mvi DFFSXFRCTL, CLRCHN; 1239await_busfree_not_m_dff: 1240 /* clear target specific flags */ 1241 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT; 1242 test SSTAT1,REQINIT|BUSFREE jz .; 1243 /* 1244 * We only set BUSFREE status once either a new 1245 * phase has been detected or we are really 1246 * BUSFREE. This allows the driver to know 1247 * that we are active on the bus even though 1248 * no identified transaction exists should a 1249 * timeout occur while awaiting busfree. 1250 */ 1251 mvi LASTPHASE, P_BUSFREE; 1252 test SSTAT1, BUSFREE jnz idle_loop; 1253 SET_SEQINTCODE(MISSED_BUSFREE) 1254 1255 1256/* 1257 * Save data pointers message: 1258 * Copying RAM values back to SCB, for Save Data Pointers message, but 1259 * only if we've actually been into a data phase to change them. This 1260 * protects against bogus data in scratch ram and the residual counts 1261 * since they are only initialized when we go into data_in or data_out. 1262 * Ack the message as soon as possible. 1263 */ 1264SET_SRC_MODE M_DFF1; 1265SET_DST_MODE M_DFF1; 1266mesgin_sdptrs: 1267 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1268 test SEQ_FLAGS, DPHASE jz ITloop; 1269 call save_pointers; 1270 jmp ITloop; 1271 1272save_pointers: 1273 /* 1274 * If we are asked to save our position at the end of the 1275 * transfer, just mark us at the end rather than perform a 1276 * full save. 1277 */ 1278 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1279 or SCB_SGPTR, SG_LIST_NULL ret; 1280 1281save_pointers_full: 1282 /* 1283 * The SCB_DATAPTR becomes the current SHADDR. 1284 * All other information comes directly from our residual 1285 * state. 1286 */ 1287 bmov SCB_DATAPTR, SHADDR, 8; 1288 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1289 1290/* 1291 * Restore pointers message? Data pointers are recopied from the 1292 * SCB anytime we enter a data phase for the first time, so all 1293 * we need to do is clear the DPHASE flag and let the data phase 1294 * code do the rest. We also reset/reallocate the FIFO to make 1295 * sure we have a clean start for the next data or command phase. 1296 */ 1297mesgin_rdptrs: 1298 and SEQ_FLAGS, ~DPHASE; 1299 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1300 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1301 SET_MODE(M_SCSI, M_SCSI) 1302msgin_rdptrs_get_fifo: 1303 call allocate_fifo; 1304 jmp mesgin_done; 1305 1306phase_lock: 1307 if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) { 1308 /* 1309 * Don't ignore persistent REQ assertions just because 1310 * they were asserted within the bus settle delay window. 1311 * This allows us to tolerate devices like the GEM318 1312 * that violate the SCSI spec. We are careful not to 1313 * count REQ while we are waiting for it to fall during 1314 * an async phase due to our asserted ACK. Each 1315 * sequencer instruction takes ~25ns, so the REQ must 1316 * last at least 100ns in order to be counted as a true 1317 * REQ. 1318 */ 1319 test SCSIPHASE, 0xFF jnz phase_locked; 1320 test SCSISIGI, ACKI jnz phase_lock; 1321 test SCSISIGI, REQI jz phase_lock; 1322 test SCSIPHASE, 0xFF jnz phase_locked; 1323 test SCSISIGI, ACKI jnz phase_lock; 1324 test SCSISIGI, REQI jz phase_lock; 1325phase_locked: 1326 } else { 1327 test SCSIPHASE, 0xFF jz .; 1328 } 1329 test SSTAT1, SCSIPERR jnz phase_lock; 1330phase_lock_latch_phase: 1331 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1332 1333/* 1334 * Functions to read data in Automatic PIO mode. 1335 * 1336 * An ACK is not sent on input from the target until SCSIDATL is read from. 1337 * So we wait until SCSIDATL is latched (the usual way), then read the data 1338 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1339 * line, or we just want to acknowledge the byte, then we do a dummy read 1340 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1341 * data byte on the bus until we send our ACK. 1342 * 1343 * The assumption here is that these are called in a particular sequence, 1344 * and that REQ is already set when inb_first is called. inb_{first,next} 1345 * use the same calling convention as inb. 1346 */ 1347inb_next: 1348 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1349inb_next_wait: 1350 /* 1351 * If there is a parity error, wait for the kernel to 1352 * see the interrupt and prepare our message response 1353 * before continuing. 1354 */ 1355 test SCSIPHASE, 0xFF jz .; 1356 test SSTAT1, SCSIPERR jnz inb_next_wait; 1357inb_next_check_phase: 1358 and LASTPHASE, PHASE_MASK, SCSISIGI; 1359 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1360inb_first: 1361 clr DINDEX[1]; 1362 mov DINDEX,SINDEX; 1363 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1364inb_last: 1365 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1366 1367mk_mesg: 1368 mvi SCSISIGO, ATNO; 1369 mov MSG_OUT,SINDEX ret; 1370 1371SET_SRC_MODE M_DFF1; 1372SET_DST_MODE M_DFF1; 1373disable_ccsgen: 1374 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; 1375 clr CCSGCTL; 1376disable_ccsgen_fetch_done: 1377 clr SG_STATE ret; 1378 1379service_fifo: 1380 /* 1381 * Do we have any prefetch left??? 1382 */ 1383 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1384 1385 /* 1386 * Can this FIFO have access to the S/G cache yet? 1387 */ 1388 test CCSGCTL, SG_CACHE_AVAIL jz return; 1389 1390 /* Did we just finish fetching segs? */ 1391 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete; 1392 1393 /* Are we actively fetching segments? */ 1394 test CCSGCTL, CCSGENACK jnz return; 1395 1396 /* 1397 * Should the other FIFO get the S/G cache first? If 1398 * both FIFOs have been allocated since we last checked 1399 * any FIFO, it is important that we service a FIFO 1400 * that is not actively on the bus first. This guarantees 1401 * that a FIFO will be freed to handle snapshot requests for 1402 * any FIFO that is still on the bus. Chips with RTI do not 1403 * perform snapshots, so don't bother with this test there. 1404 */ 1405 if ((ahd->features & AHD_RTI) == 0) { 1406 /* 1407 * If we're not still receiving SCSI data, 1408 * it is safe to allocate the S/G cache to 1409 * this FIFO. 1410 */ 1411 test DFCNTRL, SCSIEN jz idle_sgfetch_start; 1412 1413 /* 1414 * Switch to the other FIFO. Non-RTI chips 1415 * also have the "set mode" bug, so we must 1416 * disable interrupts during the switch. 1417 */ 1418 mvi SEQINTCTL, INTVEC1DSL; 1419 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1420 1421 /* 1422 * If the other FIFO needs loading, then it 1423 * must not have claimed the S/G cache yet 1424 * (SG_CACHE_AVAIL would have been cleared in 1425 * the orginal FIFO mode and we test this above). 1426 * Return to the idle loop so we can process the 1427 * FIFO not currently on the bus first. 1428 */ 1429 test SG_STATE, LOADING_NEEDED jz idle_sgfetch_okay; 1430 clr SEQINTCTL ret; 1431idle_sgfetch_okay: 1432 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1433 clr SEQINTCTL; 1434 } 1435 1436idle_sgfetch_start: 1437 /* 1438 * We fetch a "cacheline aligned" and sized amount of data 1439 * so we don't end up referencing a non-existant page. 1440 * Cacheline aligned is in quotes because the kernel will 1441 * set the prefetch amount to a reasonable level if the 1442 * cacheline size is unknown. 1443 */ 1444 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4; 1445 mvi SGHCNT, SG_PREFETCH_CNT; 1446 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) { 1447 /* 1448 * Need two instructions between "touches" of SGHADDR. 1449 */ 1450 nop; 1451 } 1452 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1453 mvi CCSGCTL, CCSGEN|CCSGRESET; 1454 or SG_STATE, FETCH_INPROG ret; 1455idle_sgfetch_complete: 1456 /* 1457 * Guard against SG_CACHE_AVAIL activating during sg fetch 1458 * request in the other FIFO. 1459 */ 1460 test SG_STATE, FETCH_INPROG jz return; 1461 clr CCSGCTL; 1462 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1463 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1464idle_sg_avail: 1465 /* Does the hardware have space for another SG entry? */ 1466 test DFSTATUS, PRELOAD_AVAIL jz return; 1467 /* 1468 * On the A, preloading a segment before HDMAENACK 1469 * comes true can clobber the shaddow address of the 1470 * first segment in the S/G FIFO. Wait until it is 1471 * safe to proceed. 1472 */ 1473 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) { 1474 test DFCNTRL, HDMAENACK jz return; 1475 } 1476 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1477 bmov HADDR, CCSGRAM, 8; 1478 } else { 1479 bmov HADDR, CCSGRAM, 4; 1480 } 1481 bmov HCNT, CCSGRAM, 3; 1482 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1483 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1484 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1485 } 1486 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1487 /* Skip 4 bytes of pad. */ 1488 add CCSGADDR, 4; 1489 } 1490sg_advance: 1491 clr A; /* add sizeof(struct scatter) */ 1492 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1493 adc SCB_RESIDUAL_SGPTR[1],A; 1494 adc SCB_RESIDUAL_SGPTR[2],A; 1495 adc SCB_RESIDUAL_SGPTR[3],A; 1496 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1497 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1498 or SINDEX, LAST_SEG; 1499 clr SG_STATE; 1500 mov SG_CACHE_PRE, SINDEX; 1501 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { 1502 /* 1503 * Use SCSIENWRDIS so that SCSIEN is never 1504 * modified by this operation. 1505 */ 1506 or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS; 1507 } else { 1508 or DFCNTRL, PRELOADEN|HDMAEN; 1509 } 1510 /* 1511 * Do we have another segment in the cache? 1512 */ 1513 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1514 jnc return; 1515 and SG_STATE, ~SEGS_AVAIL ret; 1516 1517/* 1518 * Initialize the DMA address and counter from the SCB. 1519 */ 1520load_first_seg: 1521 bmov HADDR, SCB_DATAPTR, 11; 1522 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0]; 1523 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1524 or REG_ISR, LAST_SEG; 1525 mov SG_CACHE_PRE, REG_ISR; 1526 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1527 /* 1528 * Since we've are entering a data phase, we will 1529 * rely on the SCB_RESID* fields. Initialize the 1530 * residual and clear the full residual flag. 1531 */ 1532 and SCB_SGPTR[0], ~SG_FULL_RESID; 1533 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1534 /* If we need more S/G elements, tell the idle loop */ 1535 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1536 mvi SG_STATE, LOADING_NEEDED ret; 1537 clr SG_STATE ret; 1538 1539p_data_handle_xfer: 1540 call setjmp; 1541 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1542p_data_clear_handler: 1543 or LONGJMP_ADDR[1], INVALID_ADDR ret; 1544 1545p_data: 1546 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1547 SET_SEQINTCODE(PROTO_VIOLATION) 1548p_data_allowed: 1549 1550 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1551 1552 /* 1553 * If we re-enter the data phase after going through another 1554 * phase, our transfer location has almost certainly been 1555 * corrupted by the interveining, non-data, transfers. Ask 1556 * the host driver to fix us up based on the transfer residual 1557 * unless we already know that we should be bitbucketing. 1558 */ 1559 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1560 SET_SEQINTCODE(PDATA_REINIT) 1561 jmp data_phase_inbounds; 1562 1563p_data_bitbucket: 1564 /* 1565 * Turn on `Bit Bucket' mode, wait until the target takes 1566 * us to another phase, and then notify the host. 1567 */ 1568 mov SAVED_MODE, MODE_PTR; 1569 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1570 jnz bitbucket_not_m_dff; 1571 /* 1572 * Ensure that any FIFO contents are cleared out and the 1573 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1574 * doesn't discard data already in the FIFO. 1575 */ 1576 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1577 SET_MODE(M_SCSI, M_SCSI) 1578bitbucket_not_m_dff: 1579 or SXFRCTL1,BITBUCKET; 1580 /* Wait for non-data phase. */ 1581 test SCSIPHASE, ~DATA_PHASE_MASK jz .; 1582 and SXFRCTL1, ~BITBUCKET; 1583 RESTORE_MODE(SAVED_MODE) 1584SET_SRC_MODE M_DFF1; 1585SET_DST_MODE M_DFF1; 1586 SET_SEQINTCODE(DATA_OVERRUN) 1587 jmp ITloop; 1588 1589data_phase_initialize: 1590 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1591 call load_first_seg; 1592data_phase_inbounds: 1593 /* We have seen a data phase at least once. */ 1594 or SEQ_FLAGS, DPHASE; 1595 mov SAVED_MODE, MODE_PTR; 1596 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop; 1597 call p_data_handle_xfer; 1598data_group_dma_loop: 1599 /* 1600 * The transfer is complete if either the last segment 1601 * completes or the target changes phase. Both conditions 1602 * will clear SCSIEN. 1603 */ 1604 call idle_loop_service_fifos; 1605 call idle_loop_cchan; 1606 call idle_loop_gsfifo; 1607 RESTORE_MODE(SAVED_MODE) 1608 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1609 1610data_group_dmafinish: 1611 /* 1612 * The transfer has terminated either due to a phase 1613 * change, and/or the completion of the last segment. 1614 * We have two goals here. Do as much other work 1615 * as possible while the data fifo drains on a read 1616 * and respond as quickly as possible to the standard 1617 * messages (save data pointers/disconnect and command 1618 * complete) that usually follow a data phase. 1619 */ 1620 call calc_residual; 1621 1622 /* 1623 * Go ahead and shut down the DMA engine now. 1624 */ 1625 test DFCNTRL, DIRECTION jnz data_phase_finish; 1626data_group_fifoflush: 1627 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1628 or DFCNTRL, FIFOFLUSH; 1629 } 1630 /* 1631 * We have enabled the auto-ack feature. This means 1632 * that the controller may have already transferred 1633 * some overrun bytes into the data FIFO and acked them 1634 * on the bus. The only way to detect this situation is 1635 * to wait for LAST_SEG_DONE to come true on a completed 1636 * transfer and then test to see if the data FIFO is 1637 * non-empty. We know there is more data yet to transfer 1638 * if SG_LIST_NULL is not yet set, thus there cannot be 1639 * an overrun. 1640 */ 1641 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1642 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1643 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1644 /* Overrun */ 1645 jmp p_data; 1646data_phase_finish: 1647 /* 1648 * If the target has left us in data phase, loop through 1649 * the dma code again. We will only loop if there is a 1650 * data overrun. 1651 */ 1652 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1653 test SSTAT0, TARGET jnz data_phase_done; 1654 } 1655 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1656 test SSTAT1, REQINIT jz .; 1657 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1658 } 1659 1660data_phase_done: 1661 /* Kill off any pending prefetch */ 1662 call disable_ccsgen; 1663 or LONGJMP_ADDR[1], INVALID_ADDR; 1664 1665 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1666 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1667 /* 1668 and SEQ_FLAGS, ~DPHASE_PENDING; 1669 * For data-in phases, wait for any pending acks from the 1670 * initiator before changing phase. We only need to 1671 * send Ignore Wide Residue messages for data-in phases. 1672 test DFCNTRL, DIRECTION jz target_ITloop; 1673 test SSTAT1, REQINIT jnz .; 1674 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop; 1675 SET_MODE(M_SCSI, M_SCSI) 1676 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1677 */ 1678 /* 1679 * Issue an Ignore Wide Residue Message. 1680 mvi P_MESGIN|BSYO call change_phase; 1681 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1682 mvi 1 call target_outb; 1683 jmp target_ITloop; 1684 */ 1685 } else { 1686 jmp ITloop; 1687 } 1688 1689/* 1690 * We assume that, even though data may still be 1691 * transferring to the host, that the SCSI side of 1692 * the DMA engine is now in a static state. This 1693 * allows us to update our notion of where we are 1694 * in this transfer. 1695 * 1696 * If, by chance, we stopped before being able 1697 * to fetch additional segments for this transfer, 1698 * yet the last S/G was completely exhausted, 1699 * call our idle loop until it is able to load 1700 * another segment. This will allow us to immediately 1701 * pickup on the next segment on the next data phase. 1702 * 1703 * If we happened to stop on the last segment, then 1704 * our residual information is still correct from 1705 * the idle loop and there is no need to perform 1706 * any fixups. 1707 */ 1708residual_before_last_seg: 1709 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1710 /* 1711 * Can never happen from an interrupt as the packetized 1712 * hardware will only interrupt us once SHVALID or 1713 * LAST_SEG_DONE. 1714 */ 1715 call idle_loop_service_fifos; 1716 RESTORE_MODE(SAVED_MODE) 1717 /* FALLTHROUGH */ 1718calc_residual: 1719 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1720 /* Record if we've consumed all S/G entries */ 1721 test MDFFSTAT, SHVALID jz . + 2; 1722 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1723 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1724 1725sgptr_fixup: 1726 /* 1727 * Fixup the residual next S/G pointer. The S/G preload 1728 * feature of the chip allows us to load two elements 1729 * in addition to the currently active element. We 1730 * store the bottom byte of the next S/G pointer in 1731 * the SG_CACHE_PTR register so we can restore the 1732 * correct value when the DMA completes. If the next 1733 * sg ptr value has advanced to the point where higher 1734 * bytes in the address have been affected, fix them 1735 * too. 1736 */ 1737 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1738 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1739 add SCB_RESIDUAL_SGPTR[1], -1; 1740 adc SCB_RESIDUAL_SGPTR[2], -1; 1741 adc SCB_RESIDUAL_SGPTR[3], -1; 1742sgptr_fixup_done: 1743 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1744 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1745 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1746 1747export timer_isr: 1748 call issue_cmdcmplt; 1749 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 1750 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 1751 /* 1752 * In H2A4, the mode pointer is not saved 1753 * for intvec2, but is restored on iret. 1754 * This can lead to the restoration of a 1755 * bogus mode ptr. Manually clear the 1756 * intmask bits and do a normal return 1757 * to compensate. 1758 */ 1759 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret; 1760 } else { 1761 or SEQINTCTL, IRET ret; 1762 } 1763 1764export seq_isr: 1765 if ((ahd->features & AHD_RTI) == 0) { 1766 /* 1767 * On RevA Silicon, if the target returns us to data-out 1768 * after we have already trained for data-out, it is 1769 * possible for us to transition the free running clock to 1770 * data-valid before the required 100ns P1 setup time (8 P1 1771 * assertions in fast-160 mode). This will only happen if 1772 * this L-Q is a continuation of a data transfer for which 1773 * we have already prefetched data into our FIFO (LQ/Data 1774 * followed by LQ/Data for the same write transaction). 1775 * This can cause some target implementations to miss the 1776 * first few data transfers on the bus. We detect this 1777 * situation by noticing that this is the first data transfer 1778 * after an LQ (LQIWORKONLQ true), that the data transfer is 1779 * a continuation of a transfer already setup in our FIFO 1780 * (SAVEPTRS interrupt), and that the transaction is a write 1781 * (DIRECTION set in DFCNTRL). The delay is performed by 1782 * disabling SCSIEN until we see the first REQ from the 1783 * target. 1784 * 1785 * First instruction in an ISR cannot be a branch on 1786 * Rev A. Snapshot LQISTAT2 so the status is not missed 1787 * and deffer the test by one instruction. 1788 */ 1789 mov REG_ISR, LQISTAT2; 1790 test REG_ISR, LQIWORKONLQ jz main_isr; 1791 test SEQINTSRC, SAVEPTRS jz main_isr; 1792 test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo; 1793 /* 1794 * Switch to the active FIFO after clearing the snapshot 1795 * savepointer in the current FIFO. We do this so that 1796 * a pending CTXTDONE or SAVEPTR is visible in the active 1797 * FIFO. This status is the only way we can detect if we 1798 * have lost the race (e.g. host paused us) and our attempts 1799 * to disable the channel occurred after all REQs were 1800 * already seen and acked (REQINIT never comes true). 1801 */ 1802 mvi DFFSXFRCTL, CLRCHN; 1803 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1804 test DFCNTRL, DIRECTION jz interrupt_return; 1805 and DFCNTRL, ~SCSIEN; 1806snapshot_wait_data_valid: 1807 test SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz interrupt_return; 1808 test SSTAT1, REQINIT jz snapshot_wait_data_valid; 1809snapshot_data_valid: 1810 or DFCNTRL, SCSIEN; 1811 or SEQINTCTL, IRET ret; 1812snapshot_saveptr: 1813 mvi DFFSXFRCTL, CLRCHN; 1814 or SEQINTCTL, IRET ret; 1815main_isr: 1816 } 1817 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1818 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1819 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1820 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1821 SET_SEQINTCODE(INVALID_SEQINT) 1822 1823/* 1824 * There are two types of save pointers interrupts: 1825 * The first is a snapshot save pointers where the current FIFO is not 1826 * active and contains a snapshot of the current poniter information. 1827 * This happens between packets in a stream for a single L_Q. Since we 1828 * are not performing a pointer save, we can safely clear the channel 1829 * so it can be used for other transactions. On RTI capable controllers, 1830 * where snapshots can, and are, disabled, the code to handle this type 1831 * of snapshot is not active. 1832 * 1833 * The second case is a save pointers on an active FIFO which occurs 1834 * if the target changes to a new L_Q or busfrees/QASes and the transfer 1835 * has a residual. This should occur coincident with a ctxtdone. We 1836 * disable the interrupt and allow our active routine to handle the 1837 * save. 1838 */ 1839saveptr_intr: 1840 if ((ahd->features & AHD_RTI) == 0) { 1841 test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr; 1842 } 1843saveptr_active_fifo: 1844 and SEQIMODE, ~ENSAVEPTRS; 1845 or SEQINTCTL, IRET ret; 1846 1847cfg4data_intr: 1848 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count; 1849 call load_first_seg; 1850 call pkt_handle_xfer; 1851 inc SCB_FIFO_USE_COUNT; 1852interrupt_return: 1853 or SEQINTCTL, IRET ret; 1854 1855cfg4istat_intr: 1856 call freeze_queue; 1857 add NONE, -13, SCB_CDB_LEN; 1858 jnc cfg4istat_have_sense_addr; 1859 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1860 /* 1861 * Host sets up address/count and enables transfer. 1862 */ 1863 SET_SEQINTCODE(CFG4ISTAT_INTR) 1864 jmp cfg4istat_setup_handler; 1865cfg4istat_have_sense_addr: 1866 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1867 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1868 mvi SG_CACHE_PRE, LAST_SEG; 1869 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1870cfg4istat_setup_handler: 1871 /* 1872 * Status pkt is transferring to host. 1873 * Wait in idle loop for transfer to complete. 1874 * If a command completed before an attempted 1875 * task management function completed, notify the host. 1876 */ 1877 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func; 1878 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 1879cfg4istat_no_taskmgmt_func: 1880 call pkt_handle_status; 1881 or SEQINTCTL, IRET ret; 1882 1883cfg4icmd_intr: 1884 /* 1885 * In the case of DMAing a CDB from the host, the normal 1886 * CDB buffer is formatted with an 8 byte address followed 1887 * by a 1 byte count. 1888 */ 1889 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 1890 mvi SG_CACHE_PRE, LAST_SEG; 1891 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1892 call pkt_handle_cdb; 1893 or SEQINTCTL, IRET ret; 1894 1895/* 1896 * See if the target has gone on in this context creating an 1897 * overrun condition. For the write case, the hardware cannot 1898 * ack bytes until data are provided. So, if the target begins 1899 * another packet without changing contexts, implying we are 1900 * not sitting on a packet boundary, we are in an overrun 1901 * situation. For the read case, the hardware will continue to 1902 * ack bytes into the FIFO, and may even ack the last overrun packet 1903 * into the FIFO. If the FIFO should become non-empty, we are in 1904 * a read overrun case. 1905 */ 1906#define check_overrun \ 1907 /* Not on a packet boundary. */ \ 1908 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1909 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1910 1911pkt_handle_xfer: 1912 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1913 call setjmp; 1914 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1915 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1916 test SCSISIGO, ATNO jnz . + 2; 1917 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 1918 /* 1919 * Defer handling of this NONPACKREQ until we 1920 * can be sure it pertains to this FIFO. SAVEPTRS 1921 * will not be asserted if the NONPACKREQ is for us, 1922 * so we must simulate it if shaddow is valid. If 1923 * shaddow is not valid, keep running this FIFO until we 1924 * have satisfied the transfer by loading segments and 1925 * waiting for either shaddow valid or last_seg_done. 1926 */ 1927 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 1928pkt_service_fifo: 1929 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1930pkt_last_seg: 1931 call setjmp; 1932 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1933 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done; 1934 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1935 test SCSISIGO, ATNO jnz . + 2; 1936 test SSTAT2, NONPACKREQ jz return; 1937 test MDFFSTAT, SHVALID jz return; 1938 /* FALLTHROUGH */ 1939 1940/* 1941 * Either a SAVEPTRS interrupt condition is pending for this FIFO 1942 * or we have a pending NONPACKREQ for this FIFO. We differentiate 1943 * between the two by capturing the state of the SAVEPTRS interrupt 1944 * prior to clearing this status and executing the common code for 1945 * these two cases. 1946 */ 1947pkt_saveptrs: 1948BEGIN_CRITICAL; 1949 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1950 or DFCNTRL, FIFOFLUSH; 1951 } 1952 mov REG0, SEQINTSRC; 1953 call calc_residual; 1954 call save_pointers; 1955 mvi CLRSEQINTSRC, CLRSAVEPTRS; 1956 call disable_ccsgen; 1957 or SEQIMODE, ENSAVEPTRS; 1958 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status; 1959 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status; 1960 /* 1961 * Keep a handler around for this FIFO until it drains 1962 * to the host to guarantee that we don't complete the 1963 * command to the host before the data arrives. 1964 */ 1965pkt_saveptrs_wait_fifoemp: 1966 call setjmp; 1967 test DFSTATUS, FIFOEMP jz return; 1968pkt_saveptrs_check_status: 1969 or LONGJMP_ADDR[1], INVALID_ADDR; 1970 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 1971 dec SCB_FIFO_USE_COUNT; 1972 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 1973 mvi DFFSXFRCTL, CLRCHN ret; 1974 1975/* 1976 * LAST_SEG_DONE status has been seen in the current FIFO. 1977 * This indicates that all of the allowed data for this 1978 * command has transferred across the SCSI and host buses. 1979 * Check for overrun and see if we can complete this command. 1980 */ 1981pkt_last_seg_done: 1982 /* 1983 * Mark transfer as completed. 1984 */ 1985 or SCB_SGPTR, SG_LIST_NULL; 1986 1987 /* 1988 * Wait for the current context to finish to verify that 1989 * no overrun condition has occurred. 1990 */ 1991 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 1992 call setjmp; 1993pkt_wait_ctxt_done_loop: 1994 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 1995 /* 1996 * A sufficiently large overrun or a NONPACKREQ may 1997 * prevent CTXTDONE from ever asserting, so we must 1998 * poll for these statuses too. 1999 */ 2000 check_overrun; 2001 test SSTAT2, NONPACKREQ jz return; 2002 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 2003 /* FALLTHROUGH */ 2004 2005pkt_ctxt_done: 2006 check_overrun; 2007 or LONGJMP_ADDR[1], INVALID_ADDR; 2008 /* 2009 * If status has been received, it is safe to skip 2010 * the check to see if another FIFO is active because 2011 * LAST_SEG_DONE has been observed. However, we check 2012 * the FIFO anyway since it costs us only one extra 2013 * instruction to leverage common code to perform the 2014 * SCB completion. 2015 */ 2016 dec SCB_FIFO_USE_COUNT; 2017 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2018 mvi DFFSXFRCTL, CLRCHN ret; 2019END_CRITICAL; 2020 2021/* 2022 * Must wait until CDB xfer is over before issuing the 2023 * clear channel. 2024 */ 2025pkt_handle_cdb: 2026 call setjmp; 2027 test SG_CACHE_SHADOW, LAST_SEG_DONE jz return; 2028 or LONGJMP_ADDR[1], INVALID_ADDR; 2029 mvi DFFSXFRCTL, CLRCHN ret; 2030 2031/* 2032 * Watch over the status transfer. Our host sense buffer is 2033 * large enough to take the maximum allowed status packet. 2034 * None-the-less, we must still catch and report overruns to 2035 * the host. Additionally, properly catch unexpected non-packet 2036 * phases that are typically caused by CRC errors in status packet 2037 * transmission. 2038 */ 2039pkt_handle_status: 2040 call setjmp; 2041 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 2042 test SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq; 2043 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 2044pkt_status_IU_done: 2045 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 2046 or DFCNTRL, FIFOFLUSH; 2047 } 2048 test DFSTATUS, FIFOEMP jz return; 2049BEGIN_CRITICAL; 2050 or LONGJMP_ADDR[1], INVALID_ADDR; 2051 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 2052 or SCB_CONTROL, STATUS_RCVD; 2053 jmp pkt_complete_scb_if_fifos_idle; 2054END_CRITICAL; 2055pkt_status_check_overrun: 2056 /* 2057 * Status PKT overruns are uncerimoniously recovered with a 2058 * bus reset. If we've overrun, let the host know so that 2059 * recovery can be performed. 2060 * 2061 * LAST_SEG_DONE has been observed. If either CTXTDONE or 2062 * a NONPACKREQ phase change have occurred and the FIFO is 2063 * empty, there is no overrun. 2064 */ 2065 test DFSTATUS, FIFOEMP jz pkt_status_report_overrun; 2066 test SEQINTSRC, CTXTDONE jz . + 2; 2067 test DFSTATUS, FIFOEMP jnz pkt_status_IU_done; 2068 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 2069 test DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq; 2070pkt_status_report_overrun: 2071 SET_SEQINTCODE(STATUS_OVERRUN) 2072 /* SEQUENCER RESTARTED */ 2073pkt_status_check_nonpackreq: 2074 /* 2075 * CTXTDONE may be held off if a NONPACKREQ is associated with 2076 * the current context. If a NONPACKREQ is observed, decide 2077 * if it is for the current context. If it is for the current 2078 * context, we must defer NONPACKREQ processing until all data 2079 * has transferred to the host. 2080 */ 2081 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 2082 test SCSISIGO, ATNO jnz . + 2; 2083 test SSTAT2, NONPACKREQ jz return; 2084 test SEQINTSRC, CTXTDONE jnz pkt_status_IU_done; 2085 test DFSTATUS, FIFOEMP jz return; 2086 /* 2087 * The unexpected nonpkt phase handler assumes that any 2088 * data channel use will have a FIFO reference count. It 2089 * turns out that the status handler doesn't need a refernce 2090 * count since the status received flag, and thus completion 2091 * processing, cannot be set until the handler is finished. 2092 * We increment the count here to make the nonpkt handler 2093 * happy. 2094 */ 2095 inc SCB_FIFO_USE_COUNT; 2096 /* FALLTHROUGH */ 2097 2098/* 2099 * Nonpackreq is a polled status. It can come true in three situations: 2100 * we have received an L_Q, we have sent one or more L_Qs, or there is no 2101 * L_Q context associated with this REQ (REQ occurs immediately after a 2102 * (re)selection). Routines that know that the context responsible for this 2103 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 2104 * top level idle loop, we exhaust all active contexts prior to determining that 2105 * we simply do not have the full I_T_L_Q for this phase. 2106 */ 2107unexpected_nonpkt_phase_find_ctxt: 2108 /* 2109 * This nonpackreq is most likely associated with one of the tags 2110 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 2111 * nonpackreq if we've cleared out the FIFOs and handled any 2112 * pending SELDO. 2113 */ 2114SET_SRC_MODE M_SCSI; 2115SET_DST_MODE M_SCSI; 2116 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 2117 cmp A, FIFO1FREE|FIFO0FREE jne return; 2118 test SSTAT0, SELDO jnz return; 2119 mvi SCBPTR[1], SCB_LIST_NULL; 2120unexpected_nonpkt_phase: 2121 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 2122 jnz unexpected_nonpkt_mode_cleared; 2123SET_SRC_MODE M_DFF0; 2124SET_DST_MODE M_DFF0; 2125 or LONGJMP_ADDR[1], INVALID_ADDR; 2126 dec SCB_FIFO_USE_COUNT; 2127 mvi DFFSXFRCTL, CLRCHN; 2128unexpected_nonpkt_mode_cleared: 2129 mvi CLRSINT2, CLRNONPACKREQ; 2130 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 2131 SET_SEQINTCODE(ENTERING_NONPACK) 2132 jmp ITloop; 2133 2134illegal_phase: 2135 SET_SEQINTCODE(ILLEGAL_PHASE) 2136 jmp ITloop; 2137 2138/* 2139 * We have entered an overrun situation. If we have working 2140 * BITBUCKET, flip that on and let the hardware eat any overrun 2141 * data. Otherwise use an overrun buffer in the host to simulate 2142 * BITBUCKET. 2143 */ 2144pkt_handle_overrun_inc_use_count: 2145 inc SCB_FIFO_USE_COUNT; 2146pkt_handle_overrun: 2147 SET_SEQINTCODE(CFG4OVERRUN) 2148 call freeze_queue; 2149 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 2150 or DFFSXFRCTL, DFFBITBUCKET; 2151SET_SRC_MODE M_DFF1; 2152SET_DST_MODE M_DFF1; 2153 } else { 2154 call load_overrun_buf; 2155 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 2156 } 2157 call setjmp; 2158 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2159 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done; 2160 call load_overrun_buf; 2161 or DFCNTRL, PRELOADEN; 2162overrun_load_done: 2163 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 2164 } else { 2165 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end; 2166 } 2167 test SSTAT2, NONPACKREQ jz return; 2168pkt_overrun_end: 2169 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 2170 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 2171 dec SCB_FIFO_USE_COUNT; 2172 or LONGJMP_ADDR[1], INVALID_ADDR; 2173 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2174 mvi DFFSXFRCTL, CLRCHN ret; 2175 2176if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2177load_overrun_buf: 2178 /* 2179 * Load a dummy segment if preload space is available. 2180 */ 2181 mov HADDR[0], SHARED_DATA_ADDR; 2182 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 2183 mov ACCUM_SAVE, A; 2184 clr A; 2185 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 2186 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 2187 mov A, ACCUM_SAVE; 2188 bmov HADDR[4], ALLZEROS, 4; 2189 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 2190 clr HCNT[0]; 2191 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 2192 clr HCNT[2] ret; 2193} 2194