xref: /freebsd/sys/dev/aic7xxx/aic79xx.seq (revision c59c8a72cf6cd2f6d421d57846292d700c50f59b)
1/*
2 * Adaptec U320 device driver firmware for Linux and FreeBSD.
3 *
4 * Copyright (c) 1994-2001 Justin T. Gibbs.
5 * Copyright (c) 2000-2002 Adaptec Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 *    substantially similar to the "NO WARRANTY" disclaimer below
16 *    ("Disclaimer") and any redistribution must be conditioned upon
17 *    including a substantially similar Disclaimer requirement for further
18 *    binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 *    of any contributors may be used to endorse or promote products derived
21 *    from this software without specific prior written permission.
22 *
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
26 *
27 * NO WARRANTY
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
39 *
40 * $FreeBSD$
41 */
42
43VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#60 $"
44PATCH_ARG_LIST = "struct ahd_softc *ahd"
45PREFIX = "ahd_"
46
47#include "aic79xx.reg"
48#include "scsi_message.h"
49
50idle_loop:
51	SET_MODE(M_SCSI, M_SCSI)
52	test	SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus;
53	test	SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus;
54	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus;
55	/*
56	 * ENSELO is cleared by a SELDO, so we must test for SELDO
57	 * one last time.
58	 */
59BEGIN_CRITICAL;
60	test	SSTAT0, SELDO jnz select_out;
61END_CRITICAL;
62	call	start_selection;
63idle_loop_checkbus:
64BEGIN_CRITICAL;
65	test	SSTAT0, SELDO jnz select_out;
66END_CRITICAL;
67	test	SSTAT0, SELDI jnz select_in;
68	test	SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq;
69	test	SCSISIGO, ATNO jz idle_loop_check_nonpackreq;
70	call	unexpected_nonpkt_phase_find_ctxt;
71idle_loop_check_nonpackreq:
72	test	SSTAT2, NONPACKREQ jz idle_loop_scsi;
73	call	unexpected_nonpkt_phase_find_ctxt;
74idle_loop_scsi:
75BEGIN_CRITICAL;
76	test	LQISTAT2, LQIGSAVAIL jz idle_loop_service_fifos;
77	/*
78	 * We have received good status for this transaction.  There may
79	 * still be data in our FIFOs draining to the host.  Setup
80	 * monitoring of the draining process or complete the SCB.
81	 */
82good_status_IU_done:
83	bmov	SCBPTR, GSFIFO, 2;
84	clr	SCB_SCSI_STATUS;
85	or	SCB_CONTROL, STATUS_RCVD;
86
87	/*
88	 * Since this status did not consume a FIFO, we have to
89	 * be a bit more dilligent in how we check for FIFOs pertaining
90	 * to this transaction.  There are three states that a FIFO still
91	 * transferring data may be in.
92	 *
93	 * 1) Configured and draining to the host, with a pending CLRCHN.
94	 * 2) Configured and draining to the host, no pending CLRCHN.
95	 * 3) Pending cfg4data, fifo not empty.
96	 *
97	 * Cases 1 and 2 can be detected by noticing that a longjmp is
98	 * active for the FIFO and LONGJMP_SCB matches our SCB.  In this
99	 * case, we allow the routine servicing the FIFO to complete the SCB.
100	 *
101	 * Case 3 implies either a pending or yet to occur save data
102	 * pointers for this same context in the other FIFO.  So, if
103	 * we detect case 2, we will properly defer the post of the SCB
104	 * and achieve the desired result.  The pending cfg4data will
105	 * notice that status has been received and complete the SCB.
106	 */
107	test	SCB_SGPTR, SG_LIST_NULL jz good_status_check_fifos;
108	/*
109	 * All segments have been loaded (or no data transfer), so
110	 * it is safe to complete the command.  Since this was a
111	 * cheap command to check for completion, loop to see if
112	 * more entries can be removed from the GSFIFO.
113	 */
114	call	complete;
115END_CRITICAL;
116	jmp	idle_loop_scsi;
117BEGIN_CRITICAL;
118good_status_check_fifos:
119	clc;
120	bmov	ARG_1, SCBPTR, 2;
121	SET_MODE(M_DFF0, M_DFF0)
122	call	check_fifo;
123	jc	idle_loop_service_fifos;
124	SET_MODE(M_DFF1, M_DFF1)
125	call	check_fifo;
126	jc	idle_loop_service_fifos;
127	SET_MODE(M_SCSI, M_SCSI)
128	call	queue_scb_completion;
129END_CRITICAL;
130idle_loop_service_fifos:
131	SET_MODE(M_DFF0, M_DFF0)
132	test	LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo;
133	call	longjmp;
134idle_loop_next_fifo:
135	SET_MODE(M_DFF1, M_DFF1)
136	test	LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_last_fifo_done;
137	call	longjmp;
138idle_loop_last_fifo_done:
139	call	idle_loop_cchan;
140	jmp	idle_loop;
141
142idle_loop_cchan:
143	SET_MODE(M_CCHAN, M_CCHAN)
144BEGIN_CRITICAL;
145	test	CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle;
146	test	CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog;
147	test	CCSCBCTL, CCSCBDONE jz return;
148END_CRITICAL;
149	/* FALLTHROUGH */
150scbdma_tohost_done:
151	test	CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone;
152	/*
153	 * A complete SCB upload requires no intervention.
154	 * The SCB is already on the COMPLETE_SCB list
155	 * and its completion notification will now be
156	 * handled just like any other SCB.
157	 */
158	and	CCSCBCTL, ~(CCARREN|CCSCBEN) ret;
159fill_qoutfifo_dmadone:
160	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
161	mvi	INTSTAT, CMDCMPLT;
162	mvi	COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL;
163	bmov	QOUTFIFO_NEXT_ADDR, SCBHADDR, 4;
164	test	QOFF_CTLSTA, SDSCB_ROLLOVR jz return;
165	bmov	QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4;
166	xor	QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret;
167
168BEGIN_CRITICAL;
169fetch_new_scb_inprog:
170	test	CCSCBCTL, ARRDONE jz return;
171fetch_new_scb_done:
172	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
173	bmov	REG0, SCBPTR, 2;
174	/* Update the next SCB address to download. */
175	bmov	NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4;
176	mvi	SCB_NEXT[1], SCB_LIST_NULL;
177	mvi	SCB_NEXT2[1], SCB_LIST_NULL;
178	/*
179	 * SCBs that want to send messages are always
180	 * queued independently.  This ensures that they
181	 * are at the head of the SCB list to select out
182	 * to a target and we will see the MK_MESSAGE flag.
183	 */
184	test	SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb;
185	shr	SINDEX, 3, SCB_SCSIID;
186	and	SINDEX, ~0x1;
187	mvi	SINDEX[1], (WAITING_SCB_TAILS >> 8);
188	bmov	DINDEX, SINDEX, 2;
189	bmov	SCBPTR, SINDIR, 2;
190	bmov	DINDIR, REG0, 2;
191	cmp	SCBPTR[1], SCB_LIST_NULL je first_new_target_scb;
192	bmov	SCB_NEXT, REG0, 2;
193fetch_new_scb_fini:
194	/* Increment our position in the QINFIFO. */
195	mov	NONE, SNSCB_QOFF ret;
196first_new_target_scb:
197	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb;
198	bmov	SCBPTR, WAITING_TID_TAIL, 2;
199	bmov	SCB_NEXT2, REG0, 2;
200	bmov	WAITING_TID_TAIL, REG0, 2;
201	/* Increment our position in the QINFIFO. */
202	mov	NONE, SNSCB_QOFF ret;
203first_new_scb:
204	bmov	WAITING_TID_HEAD, REG0, 2;
205	bmov	WAITING_TID_TAIL, REG0, 2;
206	/* Increment our position in the QINFIFO. */
207	mov	NONE, SNSCB_QOFF ret;
208END_CRITICAL;
209
210scbdma_idle:
211	/*
212	 * Give precedence to downloading new SCBs to execute
213	 * unless select-outs are currently frozen.
214	 * XXX Use a timer to prevent completion starvation.
215	 */
216	test	SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2;
217BEGIN_CRITICAL;
218	test	QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb;
219	cmp	COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb;
220	cmp	COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return;
221	/* FALLTHROUGH */
222fill_qoutfifo:
223	/*
224	 * Keep track of the SCBs we are dmaing just
225	 * in case the DMA fails or is aborted.
226	 */
227	mov	A, QOUTFIFO_ENTRY_VALID_TAG;
228	bmov	COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2;
229	mvi	CCSCBCTL, CCSCBRESET;
230	bmov	SCBHADDR, QOUTFIFO_NEXT_ADDR, 4;
231	mov	CCSCBRAM, COMPLETE_SCB_HEAD;
232	or	CCSCBRAM, A, COMPLETE_SCB_HEAD[1];
233	bmov	SCBPTR, COMPLETE_SCB_HEAD, 2;
234	jmp	fill_qoutfifo_first_entry;
235fill_qoutfifo_loop:
236	mov	CCSCBRAM, SCB_NEXT_COMPLETE;
237	or	CCSCBRAM, A, SCB_NEXT_COMPLETE[1];
238	bmov	SCBPTR, SCB_NEXT_COMPLETE, 2;
239fill_qoutfifo_first_entry:
240	mov	NONE, SDSCB_QOFF;
241	cmp	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done;
242	cmp	CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done;
243	test	QOFF_CTLSTA, SDSCB_ROLLOVR jz fill_qoutfifo_loop;
244fill_qoutfifo_done:
245	mov	SCBHCNT, CCSCBADDR;
246	mvi	CCSCBCTL, CCSCBEN|CCSCBRESET;
247	bmov	COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
248	mvi	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret;
249
250fetch_new_scb:
251	bmov	SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4;
252	mvi	CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb;
253dma_complete_scb:
254	bmov	SCBPTR, COMPLETE_DMA_SCB_HEAD, 2;
255	bmov	SCBHADDR, SCB_BUSADDR, 4;
256	mvi	CCARREN|CCSCBEN|CCSCBRESET call dma_scb;
257	/*
258	 * Now that we've started the DMA, push us onto
259	 * the normal completion queue to have our SCBID
260	 * posted to the kernel.
261	 */
262	bmov	COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
263	bmov	SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
264	bmov	COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
265END_CRITICAL;
266
267/*
268 * Either post or fetch an SCB from host memory.  The caller
269 * is responsible for polling for transfer completion.
270 *
271 * Prerequisits: Mode == M_CCHAN
272 *		 SINDEX contains CCSCBCTL flags
273 *		 SCBHADDR set to Host SCB address
274 *		 SCBPTR set to SCB src location on "push" operations
275 */
276SET_SRC_MODE	M_CCHAN;
277SET_DST_MODE	M_CCHAN;
278dma_scb:
279	mvi	SCBHCNT, SCB_TRANSFER_SIZE;
280	mov	CCSCBCTL, SINDEX ret;
281
282BEGIN_CRITICAL;
283setjmp_setscb:
284	bmov	LONGJMP_SCB, SCBPTR, 2;
285setjmp:
286	bmov	LONGJMP_ADDR, STACK, 2 ret;
287setjmp_inline:
288	bmov	LONGJMP_ADDR, STACK, 2;
289longjmp:
290	bmov	STACK, LONGJMP_ADDR, 2 ret;
291END_CRITICAL;
292
293/************************ Packetized LongJmp Routines *************************/
294/*
295 * Must disable interrupts when setting the mode pointer
296 * register as an interrupt occurring mid update will
297 * fail to store the new mode value for restoration on
298 * an iret.
299 */
300if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
301set_mode_work_around:
302	mvi	SEQINTCTL, INTVEC1DSL;
303	mov	MODE_PTR, SINDEX;
304	clr	SEQINTCTL ret;
305
306toggle_dff_mode_work_around:
307	mvi	SEQINTCTL, INTVEC1DSL;
308	xor	MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
309	clr	SEQINTCTL ret;
310}
311
312SET_SRC_MODE	M_SCSI;
313SET_DST_MODE	M_SCSI;
314start_selection:
315BEGIN_CRITICAL;
316	if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
317		/*
318		 * Razor #494
319		 * Rev A hardware fails to update LAST/CURR/NEXTSCB
320		 * correctly after a packetized selection in several
321		 * situations:
322		 *
323		 * 1) If only one command existed in the queue, the
324		 *    LAST/CURR/NEXTSCB are unchanged.
325		 *
326		 * 2) In a non QAS, protocol allowed phase change,
327		 *    the queue is shifted 1 too far.  LASTSCB is
328		 *    the last SCB that was correctly processed.
329		 *
330		 * 3) In the QAS case, if the full list of commands
331		 *    was successfully sent, NEXTSCB is NULL and neither
332		 *    CURRSCB nor LASTSCB can be trusted.  We must
333		 *    manually walk the list counting MAXCMDCNT elements
334		 *    to find the last SCB that was sent correctly.
335		 *
336		 * To simplify the workaround for this bug in SELDO
337		 * handling, we initialize LASTSCB prior to enabling
338		 * selection so we can rely on it even for case #1 above.
339		 */
340		bmov	LASTSCB, WAITING_TID_HEAD, 2;
341	}
342	bmov	CURRSCB, WAITING_TID_HEAD, 2;
343	bmov	SCBPTR, WAITING_TID_HEAD, 2;
344	shr	SELOID, 4, SCB_SCSIID;
345	/*
346	 * If we want to send a message to the device, ensure
347	 * we are selecting with atn irregardless of our packetized
348	 * agreement.  Since SPI4 only allows target reset or PPR
349	 * messages if this is a packetized connection, the change
350	 * to our negotiation table entry for this selection will
351	 * be cleared when the message is acted on.
352	 */
353	test	SCB_CONTROL, MK_MESSAGE jz . + 3;
354	mov	NEGOADDR, SELOID;
355	or	NEGCONOPTS, ENAUTOATNO;
356	or	SCSISEQ0, ENSELO ret;
357END_CRITICAL;
358
359/*
360 * Allocate a FIFO for a non-packetized transaction.
361 * For some reason unkown to me, both FIFOs must be free before we
362 * can allocate a FIFO for a non-packetized transaction.  This
363 * may be fixed in Rev B.
364 */
365allocate_fifo_loop:
366	/*
367	 * Do whatever work is required to free a FIFO.
368	 */
369	SET_MODE(M_DFF0, M_DFF0)
370	test	LONGJMP_ADDR[1], INVALID_ADDR jnz . + 2;
371	call	longjmp;
372	SET_MODE(M_DFF1, M_DFF1)
373	test	LONGJMP_ADDR[1], INVALID_ADDR jnz . + 2;
374	call	longjmp;
375	SET_MODE(M_SCSI, M_SCSI)
376allocate_fifo:
377	and	A, FIFO0FREE|FIFO1FREE, DFFSTAT;
378	cmp	A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop;
379take_fifo:
380	or	DFFSTAT, CURRFIFO;
381	SET_MODE(M_DFF1, M_DFF1)
382	bmov	SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
383
384/*
385 * We have been reselected as an initiator
386 * or selected as a target.
387 */
388SET_SRC_MODE	M_SCSI;
389SET_DST_MODE	M_SCSI;
390select_in:
391	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
392		/*
393		 * This exposes a window whereby a
394		 * busfree just after a selection will
395		 * be missed, but there is not other safe
396		 * way to enable busfree detection if
397		 * the busfreerev function is broken.
398		 */
399		mvi	CLRSINT1,CLRBUSFREE;
400		or	SIMODE1, ENBUSFREE;
401	}
402	or	SXFRCTL0, SPIOEN;
403	and	SAVED_SCSIID, SELID_MASK, SELID;
404	and	A, OID, IOWNID;
405	or	SAVED_SCSIID, A;
406	mvi	CLRSINT0, CLRSELDI;
407	jmp	ITloop;
408
409/*
410 * We have successfully selected out.
411 *
412 * Clear SELDO.
413 * Dequeue all SCBs sent from the waiting queue
414 * Requeue all SCBs *not* sent to the tail of the waiting queue
415 * Take Razor #494 into account for above.
416 *
417 * In Packetized Mode:
418 *	Return to the idle loop.  Our interrupt handler will take
419 *	care of any incoming L_Qs.
420 *
421 * In Non-Packetize Mode:
422 *	Continue to our normal state machine.
423 */
424SET_SRC_MODE	M_SCSI;
425SET_DST_MODE	M_SCSI;
426select_out:
427BEGIN_CRITICAL;
428	/* Clear out all SCBs that have been successfully sent. */
429	if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
430		/*
431		 * For packetized, the LQO manager clears ENSELO on
432		 * the assertion of SELDO.  If we are non-packetized,
433		 * LASTSCB and CURRSCB are acuate.
434		 */
435		test	SCSISEQ0, ENSELO jnz use_lastscb;
436
437		/*
438		 * The update is correct for LQOSTAT1 errors.  All
439		 * but LQOBUSFREE are handled by kernel interrupts.
440		 * If we see LQOBUSFREE, return to the idle loop.
441		 * Once we are out of the select_out critical section,
442		 * the kernel will cleanup the LQOBUSFREE and we will
443		 * eventually restart the selection if appropriate.
444		 */
445		test	LQOSTAT1, LQOBUSFREE jnz idle_loop;
446
447		/*
448		 * On a phase change oustside of packet boundaries,
449		 * LASTSCB points to the currently active SCB context
450		 * on the bus.
451		 */
452		test	LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb;
453
454		/*
455		 * If the hardware has traversed the whole list, NEXTSCB
456		 * will be NULL, CURRSCB and LASTSCB cannot be trusted,
457		 * but MAXCMDCNT is accurate.  If we stop part way through
458		 * the list or only had one command to issue, NEXTSCB[1] is
459		 * not NULL and LASTSCB is the last command to go out.
460		 */
461		cmp	NEXTSCB[1], SCB_LIST_NULL jne use_lastscb;
462
463		/*
464		 * Brute force walk.
465		 */
466		bmov	SCBPTR, WAITING_TID_HEAD, 2;
467		mvi	SEQINTCTL, INTVEC1DSL;
468		mvi	MODE_PTR, MK_MODE(M_CFG, M_CFG);
469		mov	A, MAXCMDCNT;
470		mvi	MODE_PTR, MK_MODE(M_SCSI, M_SCSI);
471		clr	SEQINTCTL;
472find_lastscb_loop:
473		dec	A;
474		test	A, 0xFF jz found_last_sent_scb;
475		bmov	SCBPTR, SCB_NEXT, 2;
476		jmp	find_lastscb_loop;
477use_lastscb:
478		bmov	SCBPTR, LASTSCB, 2;
479found_last_sent_scb:
480		bmov	CURRSCB, SCBPTR, 2;
481curscb_ww_done:
482	} else {
483		/*
484		 * Untested - Verify with Rev B.
485		 */
486		bmov	SCBPTR, CURRSCB, 2;
487	}
488	/*
489	 * Requeue any SCBs not sent, to the tail of the waiting Q.
490	 */
491	cmp	SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done;
492
493	/*
494	 * We know that neither the per-TID list nor the list of
495	 * TIDs is empty.  Use this knowledge to our advantage.
496	 */
497	bmov	REG0, SCB_NEXT, 2;
498	bmov	SCBPTR, WAITING_TID_TAIL, 2;
499	bmov	SCB_NEXT2, REG0, 2;
500	bmov	WAITING_TID_TAIL, REG0, 2;
501	jmp	select_out_inc_tid_q;
502
503select_out_list_done:
504	/*
505	 * The whole list made it.  Just clear our TID's tail pointer
506	 * unless we were queued independently due to our need to
507	 * send a message.
508	 */
509	test	SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q;
510	shr	DINDEX, 3, SCB_SCSIID;
511	or	DINDEX, 1;	/* Want only the second byte */
512	mvi	DINDEX[1], ((WAITING_SCB_TAILS) >> 8);
513	mvi	DINDIR, SCB_LIST_NULL;
514select_out_inc_tid_q:
515	bmov	SCBPTR, WAITING_TID_HEAD, 2;
516	bmov	WAITING_TID_HEAD, SCB_NEXT2, 2;
517	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2;
518	mvi	WAITING_TID_TAIL[1], SCB_LIST_NULL;
519	bmov	SCBPTR, CURRSCB, 2;
520END_CRITICAL;
521
522	mvi	CLRSINT0, CLRSELDO;
523
524	test	LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase;
525	test	LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase;
526
527	/*
528	 * If this is a packetized connection, return to our
529	 * idle_loop and let our interrupt handler deal with
530	 * any connection setup/teardown issues.  The only
531	 * exception is the case of MK_MESSAGE SCBs.  In the
532	 * A, the LQO manager transitions to LQOSTOP0 even if
533	 * we have selected out with ATN asserted and the target
534	 * REQs in a non-packet phase.
535	 */
536	if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) {
537		test 	SCB_CONTROL, MK_MESSAGE jz select_out_no_message;
538		test	SCSISIGO, ATNO jnz select_out_non_packetized;
539select_out_no_message:
540	}
541	test	LQOSTAT2, LQOSTOP0 jnz idle_loop;
542
543select_out_non_packetized:
544	/* Non packetized request. */
545	and     SCSISEQ0, ~ENSELO;
546	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
547		/*
548		 * This exposes a window whereby a
549		 * busfree just after a selection will
550		 * be missed, but there is not other safe
551		 * way to enable busfree detection if
552		 * the busfreerev function is broken.
553		 */
554		mvi	CLRSINT1,CLRBUSFREE;
555		or	SIMODE1, ENBUSFREE;
556	}
557	mov	SAVED_SCSIID, SCB_SCSIID;
558	mov	SAVED_LUN, SCB_LUN;
559	or	SXFRCTL0, SPIOEN;
560
561	/*
562	 * As soon as we get a successful selection, the target
563	 * should go into the message out phase since we have ATN
564	 * asserted.
565	 */
566	mvi	MSG_OUT, MSG_IDENTIFYFLAG;
567	mvi	SEQ_FLAGS, NO_CDB_SENT;
568
569	/*
570	 * Main loop for information transfer phases.  Wait for the
571	 * target to assert REQ before checking MSG, C/D and I/O for
572	 * the bus phase.
573	 */
574mesgin_phasemis:
575ITloop:
576	call	phase_lock;
577
578	mov	A, LASTPHASE;
579
580	test	A, ~P_DATAIN_DT	jz p_data;
581	cmp	A,P_COMMAND	je p_command;
582	cmp	A,P_MESGOUT	je p_mesgout;
583	cmp	A,P_STATUS	je p_status;
584	cmp	A,P_MESGIN	je p_mesgin;
585
586	mvi	SEQINTCODE, BAD_PHASE;
587	jmp	ITloop;			/* Try reading the bus again. */
588
589/*
590 * Command phase.  Set up the DMA registers and let 'er rip.
591 */
592p_command:
593SET_SRC_MODE	M_DFF1;
594SET_DST_MODE	M_DFF1;
595	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
596		jnz p_command_allocate_fifo;
597	/*
598	 * Command retry.  Free our current FIFO and
599	 * re-allocate a FIFO so transfer state is
600	 * reset.
601	 */
602	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
603p_command_allocate_fifo:
604	bmov	ALLOCFIFO_SCBPTR, SCBPTR, 2;
605	call	allocate_fifo;
606	add	NONE, -17, SCB_CDB_LEN;
607	jnc	p_command_embedded;
608p_command_from_host:
609	bmov	HADDR[0], SCB_CDB_PTR, 11;
610	mvi	SG_CACHE_PRE, LAST_SEG;
611	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
612	jmp	p_command_loop;
613p_command_embedded:
614	bmov	SHCNT[0], SCB_CDB_LEN,  1;
615	bmov	SHCNT[1], ALLZEROS, 2;
616	bmov	DFDAT, SCB_CDB_STORE, 16;
617	mvi	DFCNTRL, SCSIEN;
618p_command_loop:
619	test	DFCNTRL, SCSIEN jnz p_command_loop;
620	/*
621	 * DMA Channel automatically disabled.
622	 * Don't allow a data phase if the command
623	 * was not fully transferred.  Make sure that
624	 * we clear the IDENTIFY SEEN flag if a retry
625	 * falls short too.
626	 */
627	and	SEQ_FLAGS, ~NO_CDB_SENT;
628	test	SSTAT2, SDONE jnz ITloop;
629	or	SEQ_FLAGS, NO_CDB_SENT;
630	jmp	ITloop;
631
632
633/*
634 * Status phase.  Wait for the data byte to appear, then read it
635 * and store it into the SCB.
636 */
637SET_SRC_MODE	M_SCSI;
638SET_DST_MODE	M_SCSI;
639p_status:
640	test	SEQ_FLAGS,NOT_IDENTIFIED jz p_status_okay;
641	mvi	SEQINTCODE, PROTO_VIOLATION;
642	jmp	mesgin_done;
643p_status_okay:
644	mov	SCB_SCSI_STATUS, SCSIDAT;
645	or	SCB_CONTROL, STATUS_RCVD;
646	jmp	ITloop;
647
648/*
649 * Message out phase.  If MSG_OUT is MSG_IDENTIFYFLAG, build a full
650 * indentify message sequence and send it to the target.  The host may
651 * override this behavior by setting the MK_MESSAGE bit in the SCB
652 * control byte.  This will cause us to interrupt the host and allow
653 * it to handle the message phase completely on its own.  If the bit
654 * associated with this target is set, we will also interrupt the host,
655 * thereby allowing it to send a message on the next selection regardless
656 * of the transaction being sent.
657 *
658 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message.
659 * This is done to allow the host to send messages outside of an identify
660 * sequence while protecting the seqencer from testing the MK_MESSAGE bit
661 * on an SCB that might not be for the current nexus. (For example, a
662 * BDR message in responce to a bad reselection would leave us pointed to
663 * an SCB that doesn't have anything to do with the current target).
664 *
665 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag,
666 * bus device reset).
667 *
668 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP,
669 * in case the target decides to put us in this phase for some strange
670 * reason.
671 */
672p_mesgout_retry:
673	/* Turn on ATN for the retry */
674	mvi	SCSISIGO, ATNO;
675p_mesgout:
676	mov	SINDEX, MSG_OUT;
677	cmp	SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host;
678	test	SCB_CONTROL,MK_MESSAGE	jnz host_message_loop;
679p_mesgout_identify:
680	or	SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN;
681	test	SCB_CONTROL, DISCENB jnz . + 2;
682	and	SINDEX, ~DISCENB;
683/*
684 * Send a tag message if TAG_ENB is set in the SCB control block.
685 * Use SCB_NONPACKET_TAG as the tag value.
686 */
687p_mesgout_tag:
688	test	SCB_CONTROL,TAG_ENB jz  p_mesgout_onebyte;
689	mov	SCSIDAT, SINDEX;	/* Send the identify message */
690	call	phase_lock;
691	cmp	LASTPHASE, P_MESGOUT	jne p_mesgout_done;
692	and	SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL;
693	call	phase_lock;
694	cmp	LASTPHASE, P_MESGOUT	jne p_mesgout_done;
695	mov	SCBPTR jmp p_mesgout_onebyte;
696/*
697 * Interrupt the driver, and allow it to handle this message
698 * phase and any required retries.
699 */
700p_mesgout_from_host:
701	cmp	SINDEX, HOST_MSG	jne p_mesgout_onebyte;
702	jmp	host_message_loop;
703
704p_mesgout_onebyte:
705	mvi	CLRSINT1, CLRATNO;
706	mov	SCSIDAT, SINDEX;
707
708/*
709 * If the next bus phase after ATN drops is message out, it means
710 * that the target is requesting that the last message(s) be resent.
711 */
712	call	phase_lock;
713	cmp	LASTPHASE, P_MESGOUT	je p_mesgout_retry;
714
715p_mesgout_done:
716	mvi	CLRSINT1,CLRATNO;	/* Be sure to turn ATNO off */
717	mov	LAST_MSG, MSG_OUT;
718	mvi	MSG_OUT, MSG_NOOP;	/* No message left */
719	jmp	ITloop;
720
721/*
722 * Message in phase.  Bytes are read using Automatic PIO mode.
723 */
724p_mesgin:
725	/* read the 1st message byte */
726	mvi	ACCUM		call inb_first;
727
728	test	A,MSG_IDENTIFYFLAG	jnz mesgin_identify;
729	cmp	A,MSG_DISCONNECT	je mesgin_disconnect;
730	cmp	A,MSG_SAVEDATAPOINTER	je mesgin_sdptrs;
731	cmp	ALLZEROS,A		je mesgin_complete;
732	cmp	A,MSG_RESTOREPOINTERS	je mesgin_rdptrs;
733	cmp	A,MSG_IGN_WIDE_RESIDUE	je mesgin_ign_wide_residue;
734	cmp	A,MSG_NOOP		je mesgin_done;
735
736/*
737 * Pushed message loop to allow the kernel to
738 * run it's own message state engine.  To avoid an
739 * extra nop instruction after signaling the kernel,
740 * we perform the phase_lock before checking to see
741 * if we should exit the loop and skip the phase_lock
742 * in the ITloop.  Performing back to back phase_locks
743 * shouldn't hurt, but why do it twice...
744 */
745host_message_loop:
746	call	phase_lock;	/* Benign the first time through. */
747	mvi	SEQINTCODE, HOST_MSG_LOOP;
748	cmp	RETURN_1, EXIT_MSG_LOOP	je ITloop;
749	cmp	RETURN_1, CONT_MSG_LOOP_WRITE	jne . + 3;
750	mov	SCSIDAT, RETURN_2;
751	jmp	host_message_loop;
752	/* Must be CONT_MSG_LOOP_READ */
753	mov	NONE, SCSIDAT;	/* ACK Byte */
754	jmp	host_message_loop;
755
756mesgin_ign_wide_residue:
757	shr	NEGOADDR, 4, SAVED_SCSIID;
758	test	NEGCONOPTS, WIDEXFER jz mesgin_reject;
759	/* Pull the residue byte */
760	mvi	REG0	call inb_next;
761	cmp	REG0, 0x01 jne mesgin_reject;
762	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2;
763	test	DATA_COUNT_ODD, 0x1	jz mesgin_done;
764	mvi	SEQINTCODE, IGN_WIDE_RES;
765	jmp	mesgin_done;
766
767mesgin_reject:
768	mvi	MSG_MESSAGE_REJECT	call mk_mesg;
769mesgin_done:
770	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
771	jmp	ITloop;
772
773#define INDEX_DISC_LIST(scsiid, lun)					\
774	and	A, 0xC0, scsiid;					\
775	or	SCBPTR, A, lun;						\
776	clr	SCBPTR[1];						\
777	and	SINDEX, 0x30, scsiid;					\
778	shr	SINDEX, 3;	/* Multiply by 2 */			\
779	add	SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF);		\
780	mvi	SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF)
781
782mesgin_identify:
783	/*
784	 * Determine whether a target is using tagged or non-tagged
785	 * transactions by first looking at the transaction stored in
786	 * the per-device, disconnected array.  If there is no untagged
787	 * transaction for this target, this must be a tagged transaction.
788	 */
789	and	SAVED_LUN, MSG_IDENTIFY_LUNMASK, A;
790	INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
791	bmov	DINDEX, SINDEX, 2;
792	bmov	REG0, SINDIR, 2;
793	cmp	REG0[1], SCB_LIST_NULL je snoop_tag;
794	/* Untagged.  Clear the busy table entry and setup the SCB. */
795	bmov	DINDIR, ALLONES, 2;
796	bmov	SCBPTR, REG0, 2;
797	jmp	setup_SCB;
798
799/*
800 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
801 * If we get one, we use the tag returned to find the proper
802 * SCB.  After receiving the tag, look for the SCB at SCB locations tag and
803 * tag + 256.
804 */
805snoop_tag:
806	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
807		or	SEQ_FLAGS, 0x80;
808	}
809	mov	NONE, SCSIDAT;		/* ACK Identify MSG */
810	call	phase_lock;
811	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
812		or	SEQ_FLAGS, 0x1;
813	}
814	cmp	LASTPHASE, P_MESGIN	jne not_found_ITloop;
815	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
816		or	SEQ_FLAGS, 0x2;
817	}
818	cmp	SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found;
819get_tag:
820	clr	SCBPTR[1];
821	mvi	SCBPTR	call inb_next;	/* tag value */
822verify_scb:
823	test	SCB_CONTROL,DISCONNECTED jz verify_other_scb;
824	mov	A, SAVED_SCSIID;
825	cmp	SCB_SCSIID, A jne verify_other_scb;
826	mov	A, SAVED_LUN;
827	cmp	SCB_LUN, A je setup_SCB_disconnected;
828verify_other_scb:
829	xor	SCBPTR[1], 1;
830	test	SCBPTR[1], 0xFF jnz verify_scb;
831	jmp	not_found;
832
833/*
834 * Ensure that the SCB the tag points to is for
835 * an SCB transaction to the reconnecting target.
836 */
837setup_SCB:
838	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
839		or	SEQ_FLAGS, 0x10;
840	}
841	test	SCB_CONTROL,DISCONNECTED jz not_found;
842setup_SCB_disconnected:
843	and	SCB_CONTROL,~DISCONNECTED;
844	clr	SEQ_FLAGS;	/* make note of IDENTIFY */
845	test	SCB_SGPTR, SG_LIST_NULL jnz . + 3;
846	bmov	ALLOCFIFO_SCBPTR, SCBPTR, 2;
847	call	allocate_fifo;
848	/* See if the host wants to send a message upon reconnection */
849	test	SCB_CONTROL, MK_MESSAGE jz mesgin_done;
850	mvi	HOST_MSG	call mk_mesg;
851	jmp	mesgin_done;
852
853not_found:
854	mvi	SEQINTCODE, NO_MATCH;
855	jmp	mesgin_done;
856
857not_found_ITloop:
858	mvi	SEQINTCODE, NO_MATCH;
859	jmp	ITloop;
860
861/*
862 * We received a "command complete" message.  Put the SCB on the complete
863 * queue and trigger a completion interrupt via the idle loop.  Before doing
864 * so, check to see if there
865 * is a residual or the status byte is something other than STATUS_GOOD (0).
866 * In either of these conditions, we upload the SCB back to the host so it can
867 * process this information.  In the case of a non zero status byte, we
868 * additionally interrupt the kernel driver synchronously, allowing it to
869 * decide if sense should be retrieved.  If the kernel driver wishes to request
870 * sense, it will fill the kernel SCB with a request sense command, requeue
871 * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting
872 * RETURN_1 to SEND_SENSE.
873 */
874mesgin_complete_proto_violation:
875	mvi	SEQINTCODE, PROTO_VIOLATION;
876	jmp	mesgin_done;
877mesgin_complete:
878
879	/*
880	 * If ATN is raised, we still want to give the target a message.
881	 * Perhaps there was a parity error on this last message byte.
882	 * Either way, the target should take us to message out phase
883	 * and then attempt to complete the command again.  We should use a
884	 * critical section here to guard against a timeout triggering
885	 * for this command and setting ATN while we are still processing
886	 * the completion.
887	test	SCSISIGI, ATNI jnz mesgin_done;
888	 */
889
890	/*
891	 * If we are identified and have successfully sent the CDB,
892	 * any status will do.  Optimize this fast path.
893	 */
894	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jnz . + 2;
895	test	SCB_CONTROL, STATUS_RCVD jnz complete_accepted;
896
897	/*
898	 * If the target never sent an identify message but instead went
899	 * to mesgin to give an invalid message, let the host abort us.
900	 */
901	test	SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_complete_proto_violation;
902
903	/*
904	 * If the target never gave us status information, have
905	 * the host abort the command.
906	 */
907	test	SCB_CONTROL, STATUS_RCVD jz mesgin_complete_proto_violation;
908
909	/*
910	 * If we recevied good status but never successfully sent the
911	 * cdb, abort the command.
912	 */
913	test	SCB_SCSI_STATUS,0xff	jnz complete_accepted;
914	test	SEQ_FLAGS, NO_CDB_SENT jnz mesgin_complete_proto_violation;
915complete_accepted:
916
917	/*
918	 * See if we attempted to deliver a message but the target ingnored us.
919	 */
920	test	SCB_CONTROL, MK_MESSAGE jz . + 2;
921	mvi	SEQINTCODE, MKMSG_FAILED;
922	call	queue_scb_completion;
923	jmp	await_busfree;
924
925freeze_queue:
926	/* Cancel any pending select-out. */
927	test	SSTAT0, SELDO jnz . + 2;
928	and	SCSISEQ0, ~ENSELO;
929	mov	ACCUM_SAVE, A;
930	clr	A;
931	add	QFREEZE_COUNT, 1;
932	adc	QFREEZE_COUNT[1], A;
933	or	SEQ_FLAGS2, SELECTOUT_QFROZEN;
934	mov	A, ACCUM_SAVE ret;
935
936queue_arg1_scb_completion:
937	SET_MODE(M_SCSI, M_SCSI)
938	bmov	SCBPTR, ARG_1, 2;
939queue_scb_completion:
940	test	SCB_SCSI_STATUS,0xff	jnz bad_status;
941	/*
942	 * Check for residuals
943	 */
944	test	SCB_SGPTR, SG_LIST_NULL jnz complete;	/* No xfer */
945	test	SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */
946	test	SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb;
947complete:
948	bmov	SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
949	bmov	COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
950bad_status:
951	cmp	SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb;
952	call	freeze_queue;
953upload_scb:
954	bmov	SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2;
955	bmov	COMPLETE_DMA_SCB_HEAD, SCBPTR, 2;
956	or	SCB_SGPTR, SG_STATUS_VALID ret;
957
958/*
959 * Is it a disconnect message?  Set a flag in the SCB to remind us
960 * and await the bus going free.  If this is an untagged transaction
961 * store the SCB id for it in our untagged target table for lookup on
962 * a reselction.
963 */
964mesgin_disconnect:
965	/*
966	 * If ATN is raised, we still want to give the target a message.
967	 * Perhaps there was a parity error on this last message byte
968	 * or we want to abort this command.  Either way, the target
969	 * should take us to message out phase and then attempt to
970	 * disconnect again.
971	 * XXX - Wait for more testing.
972	test	SCSISIGI, ATNI jnz mesgin_done;
973	 */
974	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT	jz disconnect_allowed;
975	mvi	SEQINTCODE, PROTO_VIOLATION;
976	jmp	mesgin_done;
977disconnect_allowed:
978	or	SCB_CONTROL,DISCONNECTED;
979	test	SCB_CONTROL, TAG_ENB jnz await_busfree;
980queue_disc_scb:
981	bmov	REG0, SCBPTR, 2;
982	INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
983	bmov	DINDEX, SINDEX, 2;
984	bmov	DINDIR, REG0, 2;
985	bmov	SCBPTR, REG0, 2;
986	/* FALLTHROUGH */
987await_busfree:
988	and	SIMODE1, ~ENBUSFREE;
989	if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) {
990		/*
991		 * In the BUSFREEREV_BUG case, the
992		 * busfree status was cleared at the
993		 * beginning of the connection.
994		 */
995		mvi	CLRSINT1,CLRBUSFREE;
996	}
997	mov	NONE, SCSIDAT;		/* Ack the last byte */
998	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
999		jnz await_busfree_not_m_dff;
1000SET_SRC_MODE	M_DFF1;
1001SET_DST_MODE	M_DFF1;
1002await_busfree_clrchn:
1003	mvi	DFFSXFRCTL, CLRCHN;
1004await_busfree_not_m_dff:
1005	call	clear_target_state;
1006	test	SSTAT1,REQINIT|BUSFREE	jz .;
1007	test	SSTAT1, BUSFREE jnz idle_loop;
1008	mvi	SEQINTCODE, MISSED_BUSFREE;
1009
1010
1011/*
1012 * Save data pointers message:
1013 * Copying RAM values back to SCB, for Save Data Pointers message, but
1014 * only if we've actually been into a data phase to change them.  This
1015 * protects against bogus data in scratch ram and the residual counts
1016 * since they are only initialized when we go into data_in or data_out.
1017 * Ack the message as soon as possible.
1018 */
1019SET_SRC_MODE	M_DFF1;
1020SET_DST_MODE	M_DFF1;
1021mesgin_sdptrs:
1022	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
1023	test	SEQ_FLAGS, DPHASE	jz ITloop;
1024	call	save_pointers;
1025	jmp	ITloop;
1026
1027save_pointers:
1028	/*
1029	 * If we are asked to save our position at the end of the
1030	 * transfer, just mark us at the end rather than perform a
1031	 * full save.
1032	 */
1033	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full;
1034	or	SCB_SGPTR, SG_LIST_NULL ret;
1035
1036save_pointers_full:
1037	/*
1038	 * The SCB_DATAPTR becomes the current SHADDR.
1039	 * All other information comes directly from our residual
1040	 * state.
1041	 */
1042	bmov	SCB_DATAPTR, SHADDR, 8;
1043	bmov	SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret;
1044
1045/*
1046 * Restore pointers message?  Data pointers are recopied from the
1047 * SCB anytime we enter a data phase for the first time, so all
1048 * we need to do is clear the DPHASE flag and let the data phase
1049 * code do the rest.  We also reset/reallocate the FIFO to make
1050 * sure we have a clean start for the next data phase.
1051 */
1052mesgin_rdptrs:
1053	and	SEQ_FLAGS, ~DPHASE;
1054	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo;
1055	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
1056msgin_rdptrs_get_fifo:
1057	call	allocate_fifo;
1058	jmp	mesgin_done;
1059
1060clear_target_state:
1061	mvi	LASTPHASE, P_BUSFREE;
1062	/* clear target specific flags */
1063	mvi	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret;
1064
1065phase_lock:
1066	test	SCSIPHASE, 0xFF jz .;
1067phase_lock_latch_phase:
1068	and	LASTPHASE, PHASE_MASK, SCSISIGI ret;
1069
1070/*
1071 * Functions to read data in Automatic PIO mode.
1072 *
1073 * An ACK is not sent on input from the target until SCSIDATL is read from.
1074 * So we wait until SCSIDATL is latched (the usual way), then read the data
1075 * byte directly off the bus using SCSIBUSL.  When we have pulled the ATN
1076 * line, or we just want to acknowledge the byte, then we do a dummy read
1077 * from SCISDATL.  The SCSI spec guarantees that the target will hold the
1078 * data byte on the bus until we send our ACK.
1079 *
1080 * The assumption here is that these are called in a particular sequence,
1081 * and that REQ is already set when inb_first is called.  inb_{first,next}
1082 * use the same calling convention as inb.
1083 */
1084inb_next:
1085	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
1086inb_next_wait:
1087	/*
1088	 * If there is a parity error, wait for the kernel to
1089	 * see the interrupt and prepare our message response
1090	 * before continuing.
1091	 */
1092	test	SCSIPHASE, 0xFF jz .;
1093inb_next_check_phase:
1094	and	LASTPHASE, PHASE_MASK, SCSISIGI;
1095	cmp	LASTPHASE, P_MESGIN jne mesgin_phasemis;
1096inb_first:
1097	clr	DINDEX[1];
1098	mov	DINDEX,SINDEX;
1099	mov	DINDIR,SCSIBUS	ret;		/*read byte directly from bus*/
1100inb_last:
1101	mov	NONE,SCSIDAT ret;		/*dummy read from latch to ACK*/
1102
1103mk_mesg:
1104	mvi	SCSISIGO, ATNO;
1105	mov	MSG_OUT,SINDEX ret;
1106
1107SET_SRC_MODE	M_DFF1;
1108SET_DST_MODE	M_DFF1;
1109disable_ccsgen:
1110	test	SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done;
1111	clr	CCSGCTL;
1112disable_ccsgen_fetch_done:
1113	clr	SG_STATE ret;
1114
1115data_group_idle_loop:
1116	mov	SAVED_MODE, MODE_PTR;
1117	test	SG_STATE, LOADING_NEEDED jz . + 2;
1118	call	service_fifo;
1119	TOGGLE_DFF_MODE
1120	test	SG_STATE, LOADING_NEEDED jz . + 2;
1121	call	service_fifo;
1122	call	idle_loop_cchan;
1123	if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
1124		mov	SAVED_MODE jmp set_mode_work_around;
1125	} else {
1126		mov	MODE_PTR, SAVED_MODE ret;
1127	}
1128
1129service_fifo:
1130	/*
1131	 * Do we have any prefetch left???
1132	 */
1133	test	SG_STATE, SEGS_AVAIL jnz idle_sg_avail;
1134
1135	/*
1136	 * Can this FIFO have access to the S/G cache yet?
1137	 */
1138	test	CCSGCTL, SG_CACHE_AVAIL jz return;
1139
1140	/* Did we just finish fetching segs? */
1141	cmp	CCSGCTL, CCSGEN|SG_CACHE_AVAIL|CCSGDONE
1142		je idle_sgfetch_complete;
1143
1144	/* Are we actively fetching segments? */
1145	test	CCSGCTL, CCSGEN jnz return;
1146
1147	/*
1148	 * We fetch a "cacheline aligned" and sized amount of data
1149	 * so we don't end up referencing a non-existant page.
1150	 * Cacheline aligned is in quotes because the kernel will
1151	 * set the prefetch amount to a reasonable level if the
1152	 * cacheline size is unknown.
1153	 */
1154	and	SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR;
1155	mvi	SGHCNT, SG_PREFETCH_CNT;
1156	if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) {
1157		/*
1158		 * Need two instruction between "touches" of SGHADDR.
1159		 * Note the setting of SGHCNT counts as one of
1160		 * these two instructions.
1161		 */
1162		nop;
1163	}
1164	bmov	SGHADDR[1], SCB_RESIDUAL_SGPTR[1], 3;
1165	mvi	CCSGCTL, CCSGEN|SG_CACHE_AVAIL|CCSGRESET;
1166	or	SG_STATE, FETCH_INPROG ret;
1167idle_sgfetch_complete:
1168	/*
1169	 * Guard against SG_CACHE_AVAIL activating during sg fetch
1170	 * request in the other FIFO.
1171	 */
1172	test	SG_STATE, FETCH_INPROG jz return;
1173	clr	CCSGCTL;
1174	and	CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR;
1175	mvi	SG_STATE, SEGS_AVAIL|LOADING_NEEDED;
1176idle_sg_avail:
1177	/* Does the hardware have space for another SG entry? */
1178	test	DFSTATUS, PRELOAD_AVAIL jz return;
1179	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1180		bmov	HADDR, CCSGRAM, 8;
1181	} else {
1182		bmov 	HADDR, CCSGRAM, 4;
1183	}
1184	bmov	HCNT, CCSGRAM, 3;
1185	test	HCNT[0], 0x1 jz . + 2;
1186	xor	DATA_COUNT_ODD, 0x1;
1187	bmov	SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1;
1188	if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
1189		and	HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3];
1190	}
1191	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1192		/* Skip 4 bytes of pad. */
1193		add	CCSGADDR, 4;
1194	}
1195sg_advance:
1196	clr	A;			/* add sizeof(struct scatter) */
1197	add	SCB_RESIDUAL_SGPTR[0],SG_SIZEOF;
1198	adc	SCB_RESIDUAL_SGPTR[1],A;
1199	adc	SCB_RESIDUAL_SGPTR[2],A;
1200	adc	SCB_RESIDUAL_SGPTR[3],A;
1201	mov	SINDEX, SCB_RESIDUAL_SGPTR[0];
1202	test	DATA_COUNT_ODD, 0x1 jz . + 2;
1203	or	SINDEX, ODD_SEG;
1204	test	SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3;
1205	or	SINDEX, LAST_SEG;
1206	clr	SG_STATE;
1207	mov	SG_CACHE_PRE, SINDEX;
1208	/*
1209	 * Load the segment.  Or in HDMAEN here too
1210	 * just in case HDMAENACK has not come true
1211	 * by the time this segment is loaded.  If
1212	 * HDMAENACK is not true, this or will disable
1213	 * HDMAEN mid-transfer.  We do not want to simply
1214	 * mvi our original settings as SCSIEN automatically
1215	 * de-asserts and we don't want to accidentally
1216	 * re-enable it.
1217	 */
1218	or	DFCNTRL, PRELOADEN|HDMAEN;
1219	/*
1220	 * Do we have another segment in the cache?
1221	 */
1222	add	NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR;
1223	jnc	return;
1224	and	SG_STATE, ~SEGS_AVAIL ret;
1225
1226/*
1227 * Initialize the DMA address and counter from the SCB.
1228 */
1229load_first_seg:
1230	bmov	HADDR, SCB_DATAPTR, 11;
1231	and	DATA_COUNT_ODD, 0x1, SCB_DATACNT[0];
1232	and	REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0];
1233	test	SCB_DATACNT[3], SG_LAST_SEG jz . + 2;
1234	or	REG_ISR, LAST_SEG;
1235	test	DATA_COUNT_ODD, 0x1 jz . + 2;
1236	or	REG_ISR, ODD_SEG;
1237	mov	SG_CACHE_PRE, REG_ISR;
1238	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
1239	/*
1240	 * Since we've are entering a data phase, we will
1241	 * rely on the SCB_RESID* fields.  Initialize the
1242	 * residual and clear the full residual flag.
1243	 */
1244	and	SCB_SGPTR[0], ~SG_FULL_RESID;
1245	bmov	SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5;
1246	/* If we need more S/G elements, tell the idle loop */
1247	test	SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2;
1248	mvi	SG_STATE, LOADING_NEEDED ret;
1249	clr	SG_STATE ret;
1250
1251p_data:
1252	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT	jz p_data_allowed;
1253	mvi	SEQINTCODE, PROTO_VIOLATION;
1254p_data_allowed:
1255
1256	test	SEQ_FLAGS, DPHASE	jz data_phase_initialize;
1257
1258	/*
1259	 * If we re-enter the data phase after going through another
1260	 * phase, our transfer location has almost certainly been
1261	 * corrupted by the interveining, non-data, transfers.  Ask
1262	 * the host driver to fix us up based on the transfer residual
1263	 * unless we already know that we should be bitbucketing.
1264	 */
1265	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1266	mvi	SEQINTCODE, PDATA_REINIT;
1267	jmp	data_group_dma_loop;
1268
1269p_data_bitbucket:
1270	/*
1271	 * Turn on `Bit Bucket' mode, wait until the target takes
1272	 * us to another phase, and then notify the host.
1273	 */
1274	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1275		jnz bitbucket_not_m_dff;
1276	/*
1277	 * Ensure that any FIFO contents are cleared out and the
1278	 * FIFO free'd prior to starting the BITBUCKET.  BITBUCKET
1279	 * doesn't discard data already in the FIFO.
1280	 */
1281	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
1282	SET_MODE(M_SCSI, M_SCSI)
1283bitbucket_not_m_dff:
1284	or	SXFRCTL1,BITBUCKET;
1285	/* Wait for non-data phase. */
1286	test	SCSIPHASE, ~DATA_PHASE_MASK jz .;
1287	and	SXFRCTL1, ~BITBUCKET;
1288	SET_MODE(M_DFF1, M_DFF1)
1289	mvi	SEQINTCODE, DATA_OVERRUN;
1290	jmp	ITloop;
1291
1292data_phase_initialize:
1293	test	SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1294	call	load_first_seg;
1295data_phase_inbounds:
1296	/* We have seen a data phase at least once. */
1297	or	SEQ_FLAGS, DPHASE;
1298data_group_dma_loop:
1299	/*
1300	 * The transfer is complete if either the last segment
1301	 * completes or the target changes phase.  Both conditions
1302	 * will clear SCSIEN.
1303	 */
1304	call	data_group_idle_loop;
1305	test	DFCNTRL, SCSIEN jnz data_group_dma_loop;
1306
1307data_group_dmafinish:
1308	/*
1309	 * The transfer has terminated either due to a phase
1310	 * change, and/or the completion of the last segment.
1311	 * We have two goals here.  Do as much other work
1312	 * as possible while the data fifo drains on a read
1313	 * and respond as quickly as possible to the standard
1314	 * messages (save data pointers/disconnect and command
1315	 * complete) that usually follow a data phase.
1316	 */
1317	call	calc_residual;
1318
1319	/*
1320	 * Go ahead and shut down the DMA engine now.
1321	 */
1322	test	DFCNTRL, DIRECTION jnz data_phase_finish;
1323data_group_fifoflush:
1324	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1325		or	DFCNTRL, FIFOFLUSH;
1326	}
1327	/*
1328	 * We have enabled the auto-ack feature.  This means
1329	 * that the controller may have already transferred
1330	 * some overrun bytes into the data FIFO and acked them
1331	 * on the bus.  The only way to detect this situation is
1332	 * to wait for LAST_SEG_DONE to come true on a completed
1333	 * transfer and then test to see if the data FIFO is
1334	 * non-empty.  We know there is more data yet to transfer
1335	 * if SG_LIST_NULL is not yet set, thus there cannot be
1336	 * an overrun.
1337	 */
1338	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish;
1339	test	SG_CACHE_SHADOW, LAST_SEG_DONE jz .;
1340	test	DFSTATUS, FIFOEMP jnz data_phase_finish;
1341	/* Overrun */
1342	jmp	p_data;
1343data_phase_finish:
1344	/*
1345	 * If the target has left us in data phase, loop through
1346	 * the dma code again.  We will only loop if there is a
1347	 * data overrun.
1348	 */
1349	if ((ahd->flags & AHD_TARGETROLE) != 0) {
1350		test	SSTAT0, TARGET jnz data_phase_done;
1351	}
1352	if ((ahd->flags & AHD_INITIATORROLE) != 0) {
1353		test	SSTAT1, REQINIT jz .;
1354		test	SCSIPHASE, DATA_PHASE_MASK jnz p_data;
1355	}
1356
1357data_phase_done:
1358	/* Kill off any pending prefetch */
1359	call	disable_ccsgen;
1360
1361	if ((ahd->flags & AHD_TARGETROLE) != 0) {
1362		test	SEQ_FLAGS, DPHASE_PENDING jz ITloop;
1363		/*
1364		and	SEQ_FLAGS, ~DPHASE_PENDING;
1365		 * For data-in phases, wait for any pending acks from the
1366		 * initiator before changing phase.  We only need to
1367		 * send Ignore Wide Residue messages for data-in phases.
1368		test	DFCNTRL, DIRECTION jz target_ITloop;
1369		test	SSTAT1, REQINIT	jnz .;
1370		test	DATA_COUNT_ODD, 0x1 jz target_ITloop;
1371		SET_MODE(M_SCSI, M_SCSI)
1372		test	NEGCONOPTS, WIDEXFER jz target_ITloop;
1373		 */
1374		/*
1375		 * Issue an Ignore Wide Residue Message.
1376		mvi	P_MESGIN|BSYO call change_phase;
1377		mvi	MSG_IGN_WIDE_RESIDUE call target_outb;
1378		mvi	1 call target_outb;
1379		jmp	target_ITloop;
1380		 */
1381	} else {
1382		jmp	ITloop;
1383	}
1384
1385/*
1386 * We assume that, even though data may still be
1387 * transferring to the host, that the SCSI side of
1388 * the DMA engine is now in a static state.  This
1389 * allows us to update our notion of where we are
1390 * in this transfer.
1391 *
1392 * If, by chance, we stopped before being able
1393 * to fetch additional segments for this transfer,
1394 * yet the last S/G was completely exhausted,
1395 * call our idle loop until it is able to load
1396 * another segment.  This will allow us to immediately
1397 * pickup on the next segment on the next data phase.
1398 *
1399 * If we happened to stop on the last segment, then
1400 * our residual information is still correct from
1401 * the idle loop and there is no need to perform
1402 * any fixups.
1403 */
1404calc_residual:
1405	test	SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg;
1406	/* Record if we've consumed all S/G entries */
1407	test	MDFFSTAT, SHVALID	jz . + 2;
1408	bmov	SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1409	or	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret;
1410residual_before_last_seg:
1411	test    MDFFSTAT, SHVALID	jnz sgptr_fixup;
1412	/*
1413	 * Can never happen from an interrupt as the packetized
1414	 * hardware will only interrupt us once SHVALID or
1415	 * LAST_SEG_DONE.
1416	 */
1417	call	data_group_idle_loop;
1418	jmp	calc_residual;
1419
1420sgptr_fixup:
1421	/*
1422	 * Fixup the residual next S/G pointer.  The S/G preload
1423	 * feature of the chip allows us to load two elements
1424	 * in addition to the currently active element.  We
1425	 * store the bottom byte of the next S/G pointer in
1426	 * the SG_CACHE_PTR register so we can restore the
1427	 * correct value when the DMA completes.  If the next
1428	 * sg ptr value has advanced to the point where higher
1429	 * bytes in the address have been affected, fix them
1430	 * too.
1431	 */
1432	test	SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done;
1433	test	SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done;
1434	add	SCB_RESIDUAL_SGPTR[1], -1;
1435	adc	SCB_RESIDUAL_SGPTR[2], -1;
1436	adc	SCB_RESIDUAL_SGPTR[3], -1;
1437sgptr_fixup_done:
1438	and	SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW;
1439	clr	DATA_COUNT_ODD;
1440	test	SG_CACHE_SHADOW, ODD_SEG jz . + 2;
1441	or	DATA_COUNT_ODD, 0x1;
1442	clr	SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */
1443	bmov	SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1444
1445export seq_isr:
1446	nop;	/* Jumps in the first ISR instruction fail on Rev A. */
1447	test	SEQINTSRC, SAVEPTRS	jnz saveptr_intr;
1448	test	SEQINTSRC, CFG4DATA	jnz cfg4data_intr;
1449	test	SEQINTSRC, CFG4ISTAT	jnz cfg4istat_intr;
1450	test	SEQINTSRC, CFG4ICMD	jnz cfg4icmd_intr;
1451	mvi	SEQINTCODE, INVALID_SEQINT;
1452
1453/*
1454 * There are two types of save pointers interrupts:
1455 * The first is a snapshot save pointers where the current FIFO is not
1456 * active and contains a snapshot of the current poniter information.
1457 * This happens between packets in a stream for a single L_Q.  Since we
1458 * are not performing a pointer save, we can safely clear the channel
1459 * so it can be used for other transactions.
1460 *
1461 * The second case is a save pointers on an active FIFO which occurs
1462 * if the target changes to a new L_Q or busfrees/QAS' and the transfer
1463 * has a residual.  This should occur coincident with a ctxtdone.  We
1464 * disable the interrupt and allow our active routine to handle the
1465 * save.
1466 */
1467saveptr_intr:
1468	test	DFCNTRL, HDMAENACK jz snapshot_saveptr;
1469	and	SEQIMODE, ~ENSAVEPTRS;
1470	or	SEQINTCTL, IRET ret;
1471snapshot_saveptr:
1472	mvi	DFFSXFRCTL, CLRCHN;
1473	or	SEQINTCTL, IRET ret;
1474
1475cfg4data_intr:
1476	test	SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun;
1477	call	load_first_seg;
1478	call	pkt_handle_xfer;
1479	or	SEQINTCTL, IRET ret;
1480
1481cfg4istat_intr:
1482	call	freeze_queue;
1483	add	NONE, -13, SCB_CDB_LEN;
1484	jnc	cfg4istat_have_sense_addr;
1485	test	SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr;
1486	/*
1487	 * Host sets up address/count and enables transfer.
1488	 */
1489	mvi	SEQINTCODE, CFG4ISTAT_INTR;
1490	jmp	cfg4istat_setup_handler;
1491cfg4istat_have_sense_addr:
1492	bmov	HADDR, SCB_SENSE_BUSADDR, 4;
1493	mvi	HCNT[1], (AHD_SENSE_BUFSIZE >> 8);
1494	mvi	SG_CACHE_PRE, LAST_SEG;
1495	mvi	DFCNTRL, PRELOADEN|SCSIEN|HDMAEN;
1496cfg4istat_setup_handler:
1497	/*
1498	 * Status pkt is transferring to host.
1499	 * Wait in idle loop for transfer to complete.
1500	 */
1501	call	pkt_handle_status;
1502	or	SEQINTCTL, IRET ret;
1503
1504/*
1505 * See if the target has gone on in this context creating an
1506 * overrun condition.  For the write case, the hardware cannot
1507 * ack bytes until data are provided.  So, if the target begins
1508 * another  packet without changing contexts, implying we are
1509 * not sitting on a packet boundary, we are in an overrun
1510 * situation.  For the read case, the hardware will continue to
1511 * ack bytes into the FIFO, and may even ack the last overrun packet
1512 * into the FIFO.   If the FIFO should become non-empty, we are in
1513 * a read overrun case.
1514 */
1515#define check_overrun							\
1516	/* Not on a packet boundary. */					\
1517	test 	MDFFSTAT, DLZERO jz pkt_handle_overrun;			\
1518	test	DFSTATUS, FIFOEMP jz pkt_handle_overrun
1519
1520pkt_handle_xfer:
1521	bmov	LONGJMP_SCB, SCBPTR, 2;
1522	test	SG_STATE, LOADING_NEEDED jz pkt_last_seg;
1523	call	setjmp;
1524	test	SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
1525	test	SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
1526	test	SCSISIGO, ATNO jnz . + 2;
1527	test	SSTAT2, NONPACKREQ jz pkt_service_fifo;
1528	/*
1529	 * Defer handling of this NONPACKREQ until we
1530	 * can be sure it pertains to this FIFO.  SAVEPTRS
1531	 * will not be asserted if the NONPACKREQ is for us,
1532	 * so we must simulate it if shaddow is valid.  If
1533	 * shaddow is not valid, keep running this FIFO until we
1534	 * have satisfied the transfer by loading segments and
1535	 * waiting for either shaddow valid or last_seg_done.
1536	 */
1537	test	MDFFSTAT, SHVALID jnz pkt_saveptrs;
1538pkt_service_fifo:
1539	test	SG_STATE, LOADING_NEEDED jnz service_fifo;
1540pkt_last_seg:
1541	call	setjmp;
1542	test	SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
1543	test	SG_CACHE_SHADOW, LAST_SEG_DONE jnz last_pkt_done;
1544	test	SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
1545	test	SCSISIGO, ATNO jnz . + 2;
1546	test	SSTAT2, NONPACKREQ jz return;
1547	test	MDFFSTAT, SHVALID jz return;
1548	/* FALLTHROUGH */
1549
1550/*
1551 * Either a SAVEPTRS interrupt condition is pending for this FIFO
1552 * or we have a pending nonpackreq for this FIFO.  We differentiate
1553 * between the two by capturing the state of the SAVEPTRS interrupt
1554 * prior to clearing this status and executing the common code for
1555 * these two cases.
1556 */
1557pkt_saveptrs:
1558BEGIN_CRITICAL;
1559	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1560		or	DFCNTRL, FIFOFLUSH;
1561	}
1562	mov	REG0, SEQINTSRC;
1563	call	calc_residual;
1564	call	save_pointers;
1565	mvi	CLRSEQINTSRC, CLRSAVEPTRS;
1566	call	disable_ccsgen;
1567	or	SEQIMODE, ENSAVEPTRS;
1568	test	DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status;
1569	test	DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status;
1570	/*
1571	 * Keep a handler around for this FIFO until it drains
1572	 * to the host to guarantee that we don't complete the
1573	 * command to the host before the data arrives.
1574	 */
1575pkt_saveptrs_wait_fifoemp:
1576	call	setjmp;
1577	test	DFSTATUS, FIFOEMP jz return;
1578pkt_saveptrs_check_status:
1579	or	LONGJMP_ADDR[1], INVALID_ADDR;
1580	test	REG0, SAVEPTRS jz unexpected_nonpkt_phase;
1581	test	SCB_CONTROL, STATUS_RCVD jz pkt_saveptrs_clrchn;
1582	jmp	last_pkt_complete;
1583pkt_saveptrs_clrchn:
1584	mvi	DFFSXFRCTL, CLRCHN ret;
1585END_CRITICAL;
1586
1587last_pkt_done:
1588BEGIN_CRITICAL;
1589	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1590		or	DFCNTRL, FIFOFLUSH;
1591	}
1592	test	SCB_CONTROL, STATUS_RCVD jz wait_pkt_end;
1593	check_overrun;
1594	or	SCB_SGPTR, SG_LIST_NULL;
1595	/*
1596	 * It is safe to skip the other FIFO check since
1597	 * we defer CLRCHN on SAVEPTRS until all data in
1598	 * the FIFO are seen by the host and a CFG4DATA
1599	 * in this FIFO for the same context is held off
1600	 * by hardware.
1601	 */
1602last_pkt_queue_scb:
1603	or	LONGJMP_ADDR[1], INVALID_ADDR;
1604	bmov	ARG_1, SCBPTR, 2;
1605	mvi	DFFSXFRCTL, CLRCHN;
1606	jmp	queue_arg1_scb_completion;
1607
1608last_pkt_complete:
1609	bmov	ARG_1, SCBPTR, 2;
1610	mvi	DFFSXFRCTL, CLRCHN;
1611check_other_fifo:
1612	clc;
1613	TOGGLE_DFF_MODE
1614	call	check_fifo;
1615	jnc	queue_arg1_scb_completion;
1616return:
1617	ret;
1618
1619wait_pkt_end:
1620	call	setjmp;
1621END_CRITICAL;
1622wait_pkt_end_loop:
1623	test	SEQINTSRC, CTXTDONE jnz pkt_end;
1624	check_overrun;
1625	test	SSTAT2, NONPACKREQ jz return;
1626	test	SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
1627pkt_end:
1628BEGIN_CRITICAL;
1629	check_overrun;
1630	or	LONGJMP_ADDR[1], INVALID_ADDR;
1631	or	SCB_SGPTR, SG_LIST_NULL;
1632	test	SCB_CONTROL, STATUS_RCVD jnz last_pkt_complete;
1633	mvi	DFFSXFRCTL, CLRCHN ret;
1634END_CRITICAL;
1635
1636check_status_overrun:
1637	test	SHCNT[2], 0xFF jz status_IU_done;
1638	mvi	SEQINTCODE, STATUS_OVERRUN;
1639	jmp	status_IU_done;
1640pkt_handle_status:
1641	call	setjmp_setscb;
1642	test	MDFFSTAT, LASTSDONE jnz check_status_overrun;
1643	test	SEQINTSRC, CTXTDONE jz return;
1644status_IU_done:
1645BEGIN_CRITICAL;
1646	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1647		or	DFCNTRL, FIFOFLUSH;
1648	}
1649	or	LONGJMP_ADDR[1], INVALID_ADDR;
1650	mvi	SCB_SCSI_STATUS, STATUS_PKT_SENSE;
1651	or	SCB_CONTROL, STATUS_RCVD;
1652	jmp	last_pkt_complete;
1653END_CRITICAL;
1654
1655SET_SRC_MODE	M_DFF0;
1656SET_DST_MODE	M_DFF0;
1657BEGIN_CRITICAL;
1658check_fifo:
1659	test	LONGJMP_ADDR[1], INVALID_ADDR jnz return;
1660	mov	A, ARG_2;
1661	cmp	LONGJMP_SCB[1], A	jne return;
1662	mov	A, ARG_1;
1663	cmp	LONGJMP_SCB[0], A	jne return;
1664	stc	ret;
1665END_CRITICAL;
1666
1667/*
1668 * Nonpackreq is a polled status.  It can come true in three situations:
1669 * we have received an L_Q, we have sent one or more L_Qs, or there is no
1670 * L_Q context associated with this REQ (REQ occurs immediately after a
1671 * (re)selection).  Routines that know that the context responsible for this
1672 * nonpackreq call directly into unexpected_nonpkt_phase.  In the case of the
1673 * top level idle loop, we exhaust all active contexts prior to determining that
1674 * we simply do not have the full I_T_L_Q for this phase.
1675 */
1676unexpected_nonpkt_phase_find_ctxt:
1677	/*
1678	 * This nonpackreq is most likely associated with one of the tags
1679	 * in a FIFO or an outgoing LQ.  Only treat it as an I_T only
1680	 * nonpackreq if we've cleared out the FIFOs and handled any
1681	 * pending SELDO.
1682	 */
1683SET_SRC_MODE	M_SCSI;
1684SET_DST_MODE	M_SCSI;
1685	and	A, FIFO1FREE|FIFO0FREE, DFFSTAT;
1686	cmp	A, FIFO1FREE|FIFO0FREE jne return;
1687	test	SSTAT0, SELDO jnz return;
1688	mvi	SCBPTR[1], SCB_LIST_NULL;
1689unexpected_nonpkt_phase:
1690	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz . + 3;
1691SET_SRC_MODE	M_DFF0;
1692SET_DST_MODE	M_DFF0;
1693	or	LONGJMP_ADDR[1], INVALID_ADDR;
1694	mvi	DFFSXFRCTL, CLRCHN;
1695	mvi	CLRSINT2, CLRNONPACKREQ;
1696	test	SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase;
1697	mvi	SEQINTCODE, ENTERING_NONPACK;
1698	jmp	ITloop;
1699
1700illegal_phase:
1701	mvi	SEQINTCODE, ILLEGAL_PHASE;
1702	jmp	ITloop;
1703
1704/*
1705 * We have entered an overrun situation.  If we have working
1706 * BITBUCKET, flip that on and let the hardware eat any overrun
1707 * data.  Otherwise use an overrun buffer in the host to simulate
1708 * BITBUCKET.
1709 */
1710pkt_handle_overrun:
1711	mvi	SEQINTCODE, CFG4OVERRUN;
1712	call	freeze_queue;
1713	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) {
1714		SET_MODE(M_SCSI, M_SCSI)
1715		or	SXFRCTL1,BITBUCKET;
1716SET_SRC_MODE	M_DFF1;
1717SET_DST_MODE	M_DFF1;
1718	} else {
1719		call	load_overrun_buf;
1720		mvi	DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN);
1721	}
1722	call	setjmp;
1723	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
1724		test	DFSTATUS, PKT_PRELOAD_AVAIL jz overrun_load_done;
1725		call	load_overrun_buf;
1726		or	DFCNTRL, PRELOADEN;
1727overrun_load_done:
1728	}
1729	test	SEQINTSRC, CTXTDONE jnz pkt_overrun_end;
1730	test	SSTAT2, NONPACKREQ jz return;
1731pkt_overrun_end:
1732	or	SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID;
1733	test	SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
1734	test	SCB_CONTROL, STATUS_RCVD jnz last_pkt_queue_scb;
1735	mvi	DFFSXFRCTL, CLRCHN ret;
1736
1737if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
1738load_overrun_buf:
1739	/*
1740	 * Load a dummy segment if preload space is available.
1741	 */
1742	mov 	HADDR[0], SHARED_DATA_ADDR;
1743	add	HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1];
1744	mov	ACCUM_SAVE, A;
1745	clr	A;
1746	adc	HADDR[2], A, SHARED_DATA_ADDR[2];
1747	adc	HADDR[3], A, SHARED_DATA_ADDR[3];
1748	mov	A, ACCUM_SAVE;
1749	bmov	HADDR[4], ALLZEROS, 4;
1750	/* PKT_OVERRUN_BUFSIZE is a multiple of 256 */
1751	clr	HCNT[0];
1752	mvi	HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF);
1753	clr	HCNT[2];
1754}
1755
1756cfg4icmd_intr:
1757