1/* 2 * Adaptec U320 device driver firmware for Linux and FreeBSD. 3 * 4 * Copyright (c) 1994-2001 Justin T. Gibbs. 5 * Copyright (c) 2000-2002 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 * 40 * $FreeBSD$ 41 */ 42 43VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#60 $" 44PATCH_ARG_LIST = "struct ahd_softc *ahd" 45PREFIX = "ahd_" 46 47#include "aic79xx.reg" 48#include "scsi_message.h" 49 50idle_loop: 51 SET_MODE(M_SCSI, M_SCSI) 52 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 53 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus; 54 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 55 /* 56 * ENSELO is cleared by a SELDO, so we must test for SELDO 57 * one last time. 58 */ 59BEGIN_CRITICAL; 60 test SSTAT0, SELDO jnz select_out; 61END_CRITICAL; 62 call start_selection; 63idle_loop_checkbus: 64BEGIN_CRITICAL; 65 test SSTAT0, SELDO jnz select_out; 66END_CRITICAL; 67 test SSTAT0, SELDI jnz select_in; 68 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 69 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 70 call unexpected_nonpkt_phase_find_ctxt; 71idle_loop_check_nonpackreq: 72 test SSTAT2, NONPACKREQ jz idle_loop_scsi; 73 call unexpected_nonpkt_phase_find_ctxt; 74idle_loop_scsi: 75BEGIN_CRITICAL; 76 test LQISTAT2, LQIGSAVAIL jz idle_loop_service_fifos; 77 /* 78 * We have received good status for this transaction. There may 79 * still be data in our FIFOs draining to the host. Setup 80 * monitoring of the draining process or complete the SCB. 81 */ 82good_status_IU_done: 83 bmov SCBPTR, GSFIFO, 2; 84 clr SCB_SCSI_STATUS; 85 or SCB_CONTROL, STATUS_RCVD; 86 87 /* 88 * Since this status did not consume a FIFO, we have to 89 * be a bit more dilligent in how we check for FIFOs pertaining 90 * to this transaction. There are three states that a FIFO still 91 * transferring data may be in. 92 * 93 * 1) Configured and draining to the host, with a pending CLRCHN. 94 * 2) Configured and draining to the host, no pending CLRCHN. 95 * 3) Pending cfg4data, fifo not empty. 96 * 97 * Cases 1 and 2 can be detected by noticing that a longjmp is 98 * active for the FIFO and LONGJMP_SCB matches our SCB. In this 99 * case, we allow the routine servicing the FIFO to complete the SCB. 100 * 101 * Case 3 implies either a pending or yet to occur save data 102 * pointers for this same context in the other FIFO. So, if 103 * we detect case 2, we will properly defer the post of the SCB 104 * and achieve the desired result. The pending cfg4data will 105 * notice that status has been received and complete the SCB. 106 */ 107 test SCB_SGPTR, SG_LIST_NULL jz good_status_check_fifos; 108 /* 109 * All segments have been loaded (or no data transfer), so 110 * it is safe to complete the command. Since this was a 111 * cheap command to check for completion, loop to see if 112 * more entries can be removed from the GSFIFO. 113 */ 114 call complete; 115END_CRITICAL; 116 jmp idle_loop_scsi; 117BEGIN_CRITICAL; 118good_status_check_fifos: 119 clc; 120 bmov ARG_1, SCBPTR, 2; 121 SET_MODE(M_DFF0, M_DFF0) 122 call check_fifo; 123 jc idle_loop_service_fifos; 124 SET_MODE(M_DFF1, M_DFF1) 125 call check_fifo; 126 jc idle_loop_service_fifos; 127 SET_MODE(M_SCSI, M_SCSI) 128 call queue_scb_completion; 129END_CRITICAL; 130idle_loop_service_fifos: 131 SET_MODE(M_DFF0, M_DFF0) 132 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 133 call longjmp; 134idle_loop_next_fifo: 135 SET_MODE(M_DFF1, M_DFF1) 136 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_last_fifo_done; 137 call longjmp; 138idle_loop_last_fifo_done: 139 call idle_loop_cchan; 140 jmp idle_loop; 141 142idle_loop_cchan: 143 SET_MODE(M_CCHAN, M_CCHAN) 144BEGIN_CRITICAL; 145 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 146 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 147 test CCSCBCTL, CCSCBDONE jz return; 148END_CRITICAL; 149 /* FALLTHROUGH */ 150scbdma_tohost_done: 151 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 152 /* 153 * A complete SCB upload requires no intervention. 154 * The SCB is already on the COMPLETE_SCB list 155 * and its completion notification will now be 156 * handled just like any other SCB. 157 */ 158 and CCSCBCTL, ~(CCARREN|CCSCBEN) ret; 159fill_qoutfifo_dmadone: 160 and CCSCBCTL, ~(CCARREN|CCSCBEN); 161 mvi INTSTAT, CMDCMPLT; 162 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 163 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 164 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 165 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; 166 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; 167 168BEGIN_CRITICAL; 169fetch_new_scb_inprog: 170 test CCSCBCTL, ARRDONE jz return; 171fetch_new_scb_done: 172 and CCSCBCTL, ~(CCARREN|CCSCBEN); 173 bmov REG0, SCBPTR, 2; 174 /* Update the next SCB address to download. */ 175 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 176 mvi SCB_NEXT[1], SCB_LIST_NULL; 177 mvi SCB_NEXT2[1], SCB_LIST_NULL; 178 /* 179 * SCBs that want to send messages are always 180 * queued independently. This ensures that they 181 * are at the head of the SCB list to select out 182 * to a target and we will see the MK_MESSAGE flag. 183 */ 184 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb; 185 shr SINDEX, 3, SCB_SCSIID; 186 and SINDEX, ~0x1; 187 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 188 bmov DINDEX, SINDEX, 2; 189 bmov SCBPTR, SINDIR, 2; 190 bmov DINDIR, REG0, 2; 191 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 192 bmov SCB_NEXT, REG0, 2; 193fetch_new_scb_fini: 194 /* Increment our position in the QINFIFO. */ 195 mov NONE, SNSCB_QOFF ret; 196first_new_target_scb: 197 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 198 bmov SCBPTR, WAITING_TID_TAIL, 2; 199 bmov SCB_NEXT2, REG0, 2; 200 bmov WAITING_TID_TAIL, REG0, 2; 201 /* Increment our position in the QINFIFO. */ 202 mov NONE, SNSCB_QOFF ret; 203first_new_scb: 204 bmov WAITING_TID_HEAD, REG0, 2; 205 bmov WAITING_TID_TAIL, REG0, 2; 206 /* Increment our position in the QINFIFO. */ 207 mov NONE, SNSCB_QOFF ret; 208END_CRITICAL; 209 210scbdma_idle: 211 /* 212 * Give precedence to downloading new SCBs to execute 213 * unless select-outs are currently frozen. 214 * XXX Use a timer to prevent completion starvation. 215 */ 216 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2; 217BEGIN_CRITICAL; 218 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 219 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 220 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 221 /* FALLTHROUGH */ 222fill_qoutfifo: 223 /* 224 * Keep track of the SCBs we are dmaing just 225 * in case the DMA fails or is aborted. 226 */ 227 mov A, QOUTFIFO_ENTRY_VALID_TAG; 228 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 229 mvi CCSCBCTL, CCSCBRESET; 230 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 231 mov CCSCBRAM, COMPLETE_SCB_HEAD; 232 or CCSCBRAM, A, COMPLETE_SCB_HEAD[1]; 233 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 234 jmp fill_qoutfifo_first_entry; 235fill_qoutfifo_loop: 236 mov CCSCBRAM, SCB_NEXT_COMPLETE; 237 or CCSCBRAM, A, SCB_NEXT_COMPLETE[1]; 238 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 239fill_qoutfifo_first_entry: 240 mov NONE, SDSCB_QOFF; 241 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 242 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 243 test QOFF_CTLSTA, SDSCB_ROLLOVR jz fill_qoutfifo_loop; 244fill_qoutfifo_done: 245 mov SCBHCNT, CCSCBADDR; 246 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 247 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 248 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 249 250fetch_new_scb: 251 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 252 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 253dma_complete_scb: 254 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 255 bmov SCBHADDR, SCB_BUSADDR, 4; 256 mvi CCARREN|CCSCBEN|CCSCBRESET call dma_scb; 257 /* 258 * Now that we've started the DMA, push us onto 259 * the normal completion queue to have our SCBID 260 * posted to the kernel. 261 */ 262 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 263 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 264 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 265END_CRITICAL; 266 267/* 268 * Either post or fetch an SCB from host memory. The caller 269 * is responsible for polling for transfer completion. 270 * 271 * Prerequisits: Mode == M_CCHAN 272 * SINDEX contains CCSCBCTL flags 273 * SCBHADDR set to Host SCB address 274 * SCBPTR set to SCB src location on "push" operations 275 */ 276SET_SRC_MODE M_CCHAN; 277SET_DST_MODE M_CCHAN; 278dma_scb: 279 mvi SCBHCNT, SCB_TRANSFER_SIZE; 280 mov CCSCBCTL, SINDEX ret; 281 282BEGIN_CRITICAL; 283setjmp_setscb: 284 bmov LONGJMP_SCB, SCBPTR, 2; 285setjmp: 286 bmov LONGJMP_ADDR, STACK, 2 ret; 287setjmp_inline: 288 bmov LONGJMP_ADDR, STACK, 2; 289longjmp: 290 bmov STACK, LONGJMP_ADDR, 2 ret; 291END_CRITICAL; 292 293/************************ Packetized LongJmp Routines *************************/ 294/* 295 * Must disable interrupts when setting the mode pointer 296 * register as an interrupt occurring mid update will 297 * fail to store the new mode value for restoration on 298 * an iret. 299 */ 300if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 301set_mode_work_around: 302 mvi SEQINTCTL, INTVEC1DSL; 303 mov MODE_PTR, SINDEX; 304 clr SEQINTCTL ret; 305 306toggle_dff_mode_work_around: 307 mvi SEQINTCTL, INTVEC1DSL; 308 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 309 clr SEQINTCTL ret; 310} 311 312SET_SRC_MODE M_SCSI; 313SET_DST_MODE M_SCSI; 314start_selection: 315BEGIN_CRITICAL; 316 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 317 /* 318 * Razor #494 319 * Rev A hardware fails to update LAST/CURR/NEXTSCB 320 * correctly after a packetized selection in several 321 * situations: 322 * 323 * 1) If only one command existed in the queue, the 324 * LAST/CURR/NEXTSCB are unchanged. 325 * 326 * 2) In a non QAS, protocol allowed phase change, 327 * the queue is shifted 1 too far. LASTSCB is 328 * the last SCB that was correctly processed. 329 * 330 * 3) In the QAS case, if the full list of commands 331 * was successfully sent, NEXTSCB is NULL and neither 332 * CURRSCB nor LASTSCB can be trusted. We must 333 * manually walk the list counting MAXCMDCNT elements 334 * to find the last SCB that was sent correctly. 335 * 336 * To simplify the workaround for this bug in SELDO 337 * handling, we initialize LASTSCB prior to enabling 338 * selection so we can rely on it even for case #1 above. 339 */ 340 bmov LASTSCB, WAITING_TID_HEAD, 2; 341 } 342 bmov CURRSCB, WAITING_TID_HEAD, 2; 343 bmov SCBPTR, WAITING_TID_HEAD, 2; 344 shr SELOID, 4, SCB_SCSIID; 345 /* 346 * If we want to send a message to the device, ensure 347 * we are selecting with atn irregardless of our packetized 348 * agreement. Since SPI4 only allows target reset or PPR 349 * messages if this is a packetized connection, the change 350 * to our negotiation table entry for this selection will 351 * be cleared when the message is acted on. 352 */ 353 test SCB_CONTROL, MK_MESSAGE jz . + 3; 354 mov NEGOADDR, SELOID; 355 or NEGCONOPTS, ENAUTOATNO; 356 or SCSISEQ0, ENSELO ret; 357END_CRITICAL; 358 359/* 360 * Allocate a FIFO for a non-packetized transaction. 361 * For some reason unkown to me, both FIFOs must be free before we 362 * can allocate a FIFO for a non-packetized transaction. This 363 * may be fixed in Rev B. 364 */ 365allocate_fifo_loop: 366 /* 367 * Do whatever work is required to free a FIFO. 368 */ 369 SET_MODE(M_DFF0, M_DFF0) 370 test LONGJMP_ADDR[1], INVALID_ADDR jnz . + 2; 371 call longjmp; 372 SET_MODE(M_DFF1, M_DFF1) 373 test LONGJMP_ADDR[1], INVALID_ADDR jnz . + 2; 374 call longjmp; 375 SET_MODE(M_SCSI, M_SCSI) 376allocate_fifo: 377 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 378 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 379take_fifo: 380 or DFFSTAT, CURRFIFO; 381 SET_MODE(M_DFF1, M_DFF1) 382 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 383 384/* 385 * We have been reselected as an initiator 386 * or selected as a target. 387 */ 388SET_SRC_MODE M_SCSI; 389SET_DST_MODE M_SCSI; 390select_in: 391 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 392 /* 393 * This exposes a window whereby a 394 * busfree just after a selection will 395 * be missed, but there is not other safe 396 * way to enable busfree detection if 397 * the busfreerev function is broken. 398 */ 399 mvi CLRSINT1,CLRBUSFREE; 400 or SIMODE1, ENBUSFREE; 401 } 402 or SXFRCTL0, SPIOEN; 403 and SAVED_SCSIID, SELID_MASK, SELID; 404 and A, OID, IOWNID; 405 or SAVED_SCSIID, A; 406 mvi CLRSINT0, CLRSELDI; 407 jmp ITloop; 408 409/* 410 * We have successfully selected out. 411 * 412 * Clear SELDO. 413 * Dequeue all SCBs sent from the waiting queue 414 * Requeue all SCBs *not* sent to the tail of the waiting queue 415 * Take Razor #494 into account for above. 416 * 417 * In Packetized Mode: 418 * Return to the idle loop. Our interrupt handler will take 419 * care of any incoming L_Qs. 420 * 421 * In Non-Packetize Mode: 422 * Continue to our normal state machine. 423 */ 424SET_SRC_MODE M_SCSI; 425SET_DST_MODE M_SCSI; 426select_out: 427BEGIN_CRITICAL; 428 /* Clear out all SCBs that have been successfully sent. */ 429 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 430 /* 431 * For packetized, the LQO manager clears ENSELO on 432 * the assertion of SELDO. If we are non-packetized, 433 * LASTSCB and CURRSCB are acuate. 434 */ 435 test SCSISEQ0, ENSELO jnz use_lastscb; 436 437 /* 438 * The update is correct for LQOSTAT1 errors. All 439 * but LQOBUSFREE are handled by kernel interrupts. 440 * If we see LQOBUSFREE, return to the idle loop. 441 * Once we are out of the select_out critical section, 442 * the kernel will cleanup the LQOBUSFREE and we will 443 * eventually restart the selection if appropriate. 444 */ 445 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 446 447 /* 448 * On a phase change oustside of packet boundaries, 449 * LASTSCB points to the currently active SCB context 450 * on the bus. 451 */ 452 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 453 454 /* 455 * If the hardware has traversed the whole list, NEXTSCB 456 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 457 * but MAXCMDCNT is accurate. If we stop part way through 458 * the list or only had one command to issue, NEXTSCB[1] is 459 * not NULL and LASTSCB is the last command to go out. 460 */ 461 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 462 463 /* 464 * Brute force walk. 465 */ 466 bmov SCBPTR, WAITING_TID_HEAD, 2; 467 mvi SEQINTCTL, INTVEC1DSL; 468 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 469 mov A, MAXCMDCNT; 470 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 471 clr SEQINTCTL; 472find_lastscb_loop: 473 dec A; 474 test A, 0xFF jz found_last_sent_scb; 475 bmov SCBPTR, SCB_NEXT, 2; 476 jmp find_lastscb_loop; 477use_lastscb: 478 bmov SCBPTR, LASTSCB, 2; 479found_last_sent_scb: 480 bmov CURRSCB, SCBPTR, 2; 481curscb_ww_done: 482 } else { 483 /* 484 * Untested - Verify with Rev B. 485 */ 486 bmov SCBPTR, CURRSCB, 2; 487 } 488 /* 489 * Requeue any SCBs not sent, to the tail of the waiting Q. 490 */ 491 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done; 492 493 /* 494 * We know that neither the per-TID list nor the list of 495 * TIDs is empty. Use this knowledge to our advantage. 496 */ 497 bmov REG0, SCB_NEXT, 2; 498 bmov SCBPTR, WAITING_TID_TAIL, 2; 499 bmov SCB_NEXT2, REG0, 2; 500 bmov WAITING_TID_TAIL, REG0, 2; 501 jmp select_out_inc_tid_q; 502 503select_out_list_done: 504 /* 505 * The whole list made it. Just clear our TID's tail pointer 506 * unless we were queued independently due to our need to 507 * send a message. 508 */ 509 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q; 510 shr DINDEX, 3, SCB_SCSIID; 511 or DINDEX, 1; /* Want only the second byte */ 512 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 513 mvi DINDIR, SCB_LIST_NULL; 514select_out_inc_tid_q: 515 bmov SCBPTR, WAITING_TID_HEAD, 2; 516 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 517 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 518 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 519 bmov SCBPTR, CURRSCB, 2; 520END_CRITICAL; 521 522 mvi CLRSINT0, CLRSELDO; 523 524 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase; 525 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase; 526 527 /* 528 * If this is a packetized connection, return to our 529 * idle_loop and let our interrupt handler deal with 530 * any connection setup/teardown issues. The only 531 * exception is the case of MK_MESSAGE SCBs. In the 532 * A, the LQO manager transitions to LQOSTOP0 even if 533 * we have selected out with ATN asserted and the target 534 * REQs in a non-packet phase. 535 */ 536 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 537 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 538 test SCSISIGO, ATNO jnz select_out_non_packetized; 539select_out_no_message: 540 } 541 test LQOSTAT2, LQOSTOP0 jnz idle_loop; 542 543select_out_non_packetized: 544 /* Non packetized request. */ 545 and SCSISEQ0, ~ENSELO; 546 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 547 /* 548 * This exposes a window whereby a 549 * busfree just after a selection will 550 * be missed, but there is not other safe 551 * way to enable busfree detection if 552 * the busfreerev function is broken. 553 */ 554 mvi CLRSINT1,CLRBUSFREE; 555 or SIMODE1, ENBUSFREE; 556 } 557 mov SAVED_SCSIID, SCB_SCSIID; 558 mov SAVED_LUN, SCB_LUN; 559 or SXFRCTL0, SPIOEN; 560 561 /* 562 * As soon as we get a successful selection, the target 563 * should go into the message out phase since we have ATN 564 * asserted. 565 */ 566 mvi MSG_OUT, MSG_IDENTIFYFLAG; 567 mvi SEQ_FLAGS, NO_CDB_SENT; 568 569 /* 570 * Main loop for information transfer phases. Wait for the 571 * target to assert REQ before checking MSG, C/D and I/O for 572 * the bus phase. 573 */ 574mesgin_phasemis: 575ITloop: 576 call phase_lock; 577 578 mov A, LASTPHASE; 579 580 test A, ~P_DATAIN_DT jz p_data; 581 cmp A,P_COMMAND je p_command; 582 cmp A,P_MESGOUT je p_mesgout; 583 cmp A,P_STATUS je p_status; 584 cmp A,P_MESGIN je p_mesgin; 585 586 mvi SEQINTCODE, BAD_PHASE; 587 jmp ITloop; /* Try reading the bus again. */ 588 589/* 590 * Command phase. Set up the DMA registers and let 'er rip. 591 */ 592p_command: 593SET_SRC_MODE M_DFF1; 594SET_DST_MODE M_DFF1; 595 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 596 jnz p_command_allocate_fifo; 597 /* 598 * Command retry. Free our current FIFO and 599 * re-allocate a FIFO so transfer state is 600 * reset. 601 */ 602 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 603p_command_allocate_fifo: 604 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 605 call allocate_fifo; 606 add NONE, -17, SCB_CDB_LEN; 607 jnc p_command_embedded; 608p_command_from_host: 609 bmov HADDR[0], SCB_CDB_PTR, 11; 610 mvi SG_CACHE_PRE, LAST_SEG; 611 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 612 jmp p_command_loop; 613p_command_embedded: 614 bmov SHCNT[0], SCB_CDB_LEN, 1; 615 bmov SHCNT[1], ALLZEROS, 2; 616 bmov DFDAT, SCB_CDB_STORE, 16; 617 mvi DFCNTRL, SCSIEN; 618p_command_loop: 619 test DFCNTRL, SCSIEN jnz p_command_loop; 620 /* 621 * DMA Channel automatically disabled. 622 * Don't allow a data phase if the command 623 * was not fully transferred. Make sure that 624 * we clear the IDENTIFY SEEN flag if a retry 625 * falls short too. 626 */ 627 and SEQ_FLAGS, ~NO_CDB_SENT; 628 test SSTAT2, SDONE jnz ITloop; 629 or SEQ_FLAGS, NO_CDB_SENT; 630 jmp ITloop; 631 632 633/* 634 * Status phase. Wait for the data byte to appear, then read it 635 * and store it into the SCB. 636 */ 637SET_SRC_MODE M_SCSI; 638SET_DST_MODE M_SCSI; 639p_status: 640 test SEQ_FLAGS,NOT_IDENTIFIED jz p_status_okay; 641 mvi SEQINTCODE, PROTO_VIOLATION; 642 jmp mesgin_done; 643p_status_okay: 644 mov SCB_SCSI_STATUS, SCSIDAT; 645 or SCB_CONTROL, STATUS_RCVD; 646 jmp ITloop; 647 648/* 649 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 650 * indentify message sequence and send it to the target. The host may 651 * override this behavior by setting the MK_MESSAGE bit in the SCB 652 * control byte. This will cause us to interrupt the host and allow 653 * it to handle the message phase completely on its own. If the bit 654 * associated with this target is set, we will also interrupt the host, 655 * thereby allowing it to send a message on the next selection regardless 656 * of the transaction being sent. 657 * 658 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 659 * This is done to allow the host to send messages outside of an identify 660 * sequence while protecting the seqencer from testing the MK_MESSAGE bit 661 * on an SCB that might not be for the current nexus. (For example, a 662 * BDR message in responce to a bad reselection would leave us pointed to 663 * an SCB that doesn't have anything to do with the current target). 664 * 665 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 666 * bus device reset). 667 * 668 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 669 * in case the target decides to put us in this phase for some strange 670 * reason. 671 */ 672p_mesgout_retry: 673 /* Turn on ATN for the retry */ 674 mvi SCSISIGO, ATNO; 675p_mesgout: 676 mov SINDEX, MSG_OUT; 677 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 678 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 679p_mesgout_identify: 680 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 681 test SCB_CONTROL, DISCENB jnz . + 2; 682 and SINDEX, ~DISCENB; 683/* 684 * Send a tag message if TAG_ENB is set in the SCB control block. 685 * Use SCB_NONPACKET_TAG as the tag value. 686 */ 687p_mesgout_tag: 688 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 689 mov SCSIDAT, SINDEX; /* Send the identify message */ 690 call phase_lock; 691 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 692 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 693 call phase_lock; 694 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 695 mov SCBPTR jmp p_mesgout_onebyte; 696/* 697 * Interrupt the driver, and allow it to handle this message 698 * phase and any required retries. 699 */ 700p_mesgout_from_host: 701 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 702 jmp host_message_loop; 703 704p_mesgout_onebyte: 705 mvi CLRSINT1, CLRATNO; 706 mov SCSIDAT, SINDEX; 707 708/* 709 * If the next bus phase after ATN drops is message out, it means 710 * that the target is requesting that the last message(s) be resent. 711 */ 712 call phase_lock; 713 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 714 715p_mesgout_done: 716 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 717 mov LAST_MSG, MSG_OUT; 718 mvi MSG_OUT, MSG_NOOP; /* No message left */ 719 jmp ITloop; 720 721/* 722 * Message in phase. Bytes are read using Automatic PIO mode. 723 */ 724p_mesgin: 725 /* read the 1st message byte */ 726 mvi ACCUM call inb_first; 727 728 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 729 cmp A,MSG_DISCONNECT je mesgin_disconnect; 730 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 731 cmp ALLZEROS,A je mesgin_complete; 732 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 733 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 734 cmp A,MSG_NOOP je mesgin_done; 735 736/* 737 * Pushed message loop to allow the kernel to 738 * run it's own message state engine. To avoid an 739 * extra nop instruction after signaling the kernel, 740 * we perform the phase_lock before checking to see 741 * if we should exit the loop and skip the phase_lock 742 * in the ITloop. Performing back to back phase_locks 743 * shouldn't hurt, but why do it twice... 744 */ 745host_message_loop: 746 call phase_lock; /* Benign the first time through. */ 747 mvi SEQINTCODE, HOST_MSG_LOOP; 748 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 749 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 750 mov SCSIDAT, RETURN_2; 751 jmp host_message_loop; 752 /* Must be CONT_MSG_LOOP_READ */ 753 mov NONE, SCSIDAT; /* ACK Byte */ 754 jmp host_message_loop; 755 756mesgin_ign_wide_residue: 757 shr NEGOADDR, 4, SAVED_SCSIID; 758 test NEGCONOPTS, WIDEXFER jz mesgin_reject; 759 /* Pull the residue byte */ 760 mvi REG0 call inb_next; 761 cmp REG0, 0x01 jne mesgin_reject; 762 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 763 test DATA_COUNT_ODD, 0x1 jz mesgin_done; 764 mvi SEQINTCODE, IGN_WIDE_RES; 765 jmp mesgin_done; 766 767mesgin_reject: 768 mvi MSG_MESSAGE_REJECT call mk_mesg; 769mesgin_done: 770 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 771 jmp ITloop; 772 773#define INDEX_DISC_LIST(scsiid, lun) \ 774 and A, 0xC0, scsiid; \ 775 or SCBPTR, A, lun; \ 776 clr SCBPTR[1]; \ 777 and SINDEX, 0x30, scsiid; \ 778 shr SINDEX, 3; /* Multiply by 2 */ \ 779 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 780 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 781 782mesgin_identify: 783 /* 784 * Determine whether a target is using tagged or non-tagged 785 * transactions by first looking at the transaction stored in 786 * the per-device, disconnected array. If there is no untagged 787 * transaction for this target, this must be a tagged transaction. 788 */ 789 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 790 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 791 bmov DINDEX, SINDEX, 2; 792 bmov REG0, SINDIR, 2; 793 cmp REG0[1], SCB_LIST_NULL je snoop_tag; 794 /* Untagged. Clear the busy table entry and setup the SCB. */ 795 bmov DINDIR, ALLONES, 2; 796 bmov SCBPTR, REG0, 2; 797 jmp setup_SCB; 798 799/* 800 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 801 * If we get one, we use the tag returned to find the proper 802 * SCB. After receiving the tag, look for the SCB at SCB locations tag and 803 * tag + 256. 804 */ 805snoop_tag: 806 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 807 or SEQ_FLAGS, 0x80; 808 } 809 mov NONE, SCSIDAT; /* ACK Identify MSG */ 810 call phase_lock; 811 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 812 or SEQ_FLAGS, 0x1; 813 } 814 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 815 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 816 or SEQ_FLAGS, 0x2; 817 } 818 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 819get_tag: 820 clr SCBPTR[1]; 821 mvi SCBPTR call inb_next; /* tag value */ 822verify_scb: 823 test SCB_CONTROL,DISCONNECTED jz verify_other_scb; 824 mov A, SAVED_SCSIID; 825 cmp SCB_SCSIID, A jne verify_other_scb; 826 mov A, SAVED_LUN; 827 cmp SCB_LUN, A je setup_SCB_disconnected; 828verify_other_scb: 829 xor SCBPTR[1], 1; 830 test SCBPTR[1], 0xFF jnz verify_scb; 831 jmp not_found; 832 833/* 834 * Ensure that the SCB the tag points to is for 835 * an SCB transaction to the reconnecting target. 836 */ 837setup_SCB: 838 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 839 or SEQ_FLAGS, 0x10; 840 } 841 test SCB_CONTROL,DISCONNECTED jz not_found; 842setup_SCB_disconnected: 843 and SCB_CONTROL,~DISCONNECTED; 844 clr SEQ_FLAGS; /* make note of IDENTIFY */ 845 test SCB_SGPTR, SG_LIST_NULL jnz . + 3; 846 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 847 call allocate_fifo; 848 /* See if the host wants to send a message upon reconnection */ 849 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 850 mvi HOST_MSG call mk_mesg; 851 jmp mesgin_done; 852 853not_found: 854 mvi SEQINTCODE, NO_MATCH; 855 jmp mesgin_done; 856 857not_found_ITloop: 858 mvi SEQINTCODE, NO_MATCH; 859 jmp ITloop; 860 861/* 862 * We received a "command complete" message. Put the SCB on the complete 863 * queue and trigger a completion interrupt via the idle loop. Before doing 864 * so, check to see if there 865 * is a residual or the status byte is something other than STATUS_GOOD (0). 866 * In either of these conditions, we upload the SCB back to the host so it can 867 * process this information. In the case of a non zero status byte, we 868 * additionally interrupt the kernel driver synchronously, allowing it to 869 * decide if sense should be retrieved. If the kernel driver wishes to request 870 * sense, it will fill the kernel SCB with a request sense command, requeue 871 * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting 872 * RETURN_1 to SEND_SENSE. 873 */ 874mesgin_complete_proto_violation: 875 mvi SEQINTCODE, PROTO_VIOLATION; 876 jmp mesgin_done; 877mesgin_complete: 878 879 /* 880 * If ATN is raised, we still want to give the target a message. 881 * Perhaps there was a parity error on this last message byte. 882 * Either way, the target should take us to message out phase 883 * and then attempt to complete the command again. We should use a 884 * critical section here to guard against a timeout triggering 885 * for this command and setting ATN while we are still processing 886 * the completion. 887 test SCSISIGI, ATNI jnz mesgin_done; 888 */ 889 890 /* 891 * If we are identified and have successfully sent the CDB, 892 * any status will do. Optimize this fast path. 893 */ 894 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jnz . + 2; 895 test SCB_CONTROL, STATUS_RCVD jnz complete_accepted; 896 897 /* 898 * If the target never sent an identify message but instead went 899 * to mesgin to give an invalid message, let the host abort us. 900 */ 901 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_complete_proto_violation; 902 903 /* 904 * If the target never gave us status information, have 905 * the host abort the command. 906 */ 907 test SCB_CONTROL, STATUS_RCVD jz mesgin_complete_proto_violation; 908 909 /* 910 * If we recevied good status but never successfully sent the 911 * cdb, abort the command. 912 */ 913 test SCB_SCSI_STATUS,0xff jnz complete_accepted; 914 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_complete_proto_violation; 915complete_accepted: 916 917 /* 918 * See if we attempted to deliver a message but the target ingnored us. 919 */ 920 test SCB_CONTROL, MK_MESSAGE jz . + 2; 921 mvi SEQINTCODE, MKMSG_FAILED; 922 call queue_scb_completion; 923 jmp await_busfree; 924 925freeze_queue: 926 /* Cancel any pending select-out. */ 927 test SSTAT0, SELDO jnz . + 2; 928 and SCSISEQ0, ~ENSELO; 929 mov ACCUM_SAVE, A; 930 clr A; 931 add QFREEZE_COUNT, 1; 932 adc QFREEZE_COUNT[1], A; 933 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 934 mov A, ACCUM_SAVE ret; 935 936queue_arg1_scb_completion: 937 SET_MODE(M_SCSI, M_SCSI) 938 bmov SCBPTR, ARG_1, 2; 939queue_scb_completion: 940 test SCB_SCSI_STATUS,0xff jnz bad_status; 941 /* 942 * Check for residuals 943 */ 944 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 945 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 946 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 947complete: 948 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 949 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 950bad_status: 951 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 952 call freeze_queue; 953upload_scb: 954 bmov SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2; 955 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 956 or SCB_SGPTR, SG_STATUS_VALID ret; 957 958/* 959 * Is it a disconnect message? Set a flag in the SCB to remind us 960 * and await the bus going free. If this is an untagged transaction 961 * store the SCB id for it in our untagged target table for lookup on 962 * a reselction. 963 */ 964mesgin_disconnect: 965 /* 966 * If ATN is raised, we still want to give the target a message. 967 * Perhaps there was a parity error on this last message byte 968 * or we want to abort this command. Either way, the target 969 * should take us to message out phase and then attempt to 970 * disconnect again. 971 * XXX - Wait for more testing. 972 test SCSISIGI, ATNI jnz mesgin_done; 973 */ 974 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz disconnect_allowed; 975 mvi SEQINTCODE, PROTO_VIOLATION; 976 jmp mesgin_done; 977disconnect_allowed: 978 or SCB_CONTROL,DISCONNECTED; 979 test SCB_CONTROL, TAG_ENB jnz await_busfree; 980queue_disc_scb: 981 bmov REG0, SCBPTR, 2; 982 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 983 bmov DINDEX, SINDEX, 2; 984 bmov DINDIR, REG0, 2; 985 bmov SCBPTR, REG0, 2; 986 /* FALLTHROUGH */ 987await_busfree: 988 and SIMODE1, ~ENBUSFREE; 989 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) { 990 /* 991 * In the BUSFREEREV_BUG case, the 992 * busfree status was cleared at the 993 * beginning of the connection. 994 */ 995 mvi CLRSINT1,CLRBUSFREE; 996 } 997 mov NONE, SCSIDAT; /* Ack the last byte */ 998 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 999 jnz await_busfree_not_m_dff; 1000SET_SRC_MODE M_DFF1; 1001SET_DST_MODE M_DFF1; 1002await_busfree_clrchn: 1003 mvi DFFSXFRCTL, CLRCHN; 1004await_busfree_not_m_dff: 1005 call clear_target_state; 1006 test SSTAT1,REQINIT|BUSFREE jz .; 1007 test SSTAT1, BUSFREE jnz idle_loop; 1008 mvi SEQINTCODE, MISSED_BUSFREE; 1009 1010 1011/* 1012 * Save data pointers message: 1013 * Copying RAM values back to SCB, for Save Data Pointers message, but 1014 * only if we've actually been into a data phase to change them. This 1015 * protects against bogus data in scratch ram and the residual counts 1016 * since they are only initialized when we go into data_in or data_out. 1017 * Ack the message as soon as possible. 1018 */ 1019SET_SRC_MODE M_DFF1; 1020SET_DST_MODE M_DFF1; 1021mesgin_sdptrs: 1022 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1023 test SEQ_FLAGS, DPHASE jz ITloop; 1024 call save_pointers; 1025 jmp ITloop; 1026 1027save_pointers: 1028 /* 1029 * If we are asked to save our position at the end of the 1030 * transfer, just mark us at the end rather than perform a 1031 * full save. 1032 */ 1033 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1034 or SCB_SGPTR, SG_LIST_NULL ret; 1035 1036save_pointers_full: 1037 /* 1038 * The SCB_DATAPTR becomes the current SHADDR. 1039 * All other information comes directly from our residual 1040 * state. 1041 */ 1042 bmov SCB_DATAPTR, SHADDR, 8; 1043 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1044 1045/* 1046 * Restore pointers message? Data pointers are recopied from the 1047 * SCB anytime we enter a data phase for the first time, so all 1048 * we need to do is clear the DPHASE flag and let the data phase 1049 * code do the rest. We also reset/reallocate the FIFO to make 1050 * sure we have a clean start for the next data phase. 1051 */ 1052mesgin_rdptrs: 1053 and SEQ_FLAGS, ~DPHASE; 1054 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1055 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1056msgin_rdptrs_get_fifo: 1057 call allocate_fifo; 1058 jmp mesgin_done; 1059 1060clear_target_state: 1061 mvi LASTPHASE, P_BUSFREE; 1062 /* clear target specific flags */ 1063 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret; 1064 1065phase_lock: 1066 test SCSIPHASE, 0xFF jz .; 1067phase_lock_latch_phase: 1068 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1069 1070/* 1071 * Functions to read data in Automatic PIO mode. 1072 * 1073 * An ACK is not sent on input from the target until SCSIDATL is read from. 1074 * So we wait until SCSIDATL is latched (the usual way), then read the data 1075 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1076 * line, or we just want to acknowledge the byte, then we do a dummy read 1077 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1078 * data byte on the bus until we send our ACK. 1079 * 1080 * The assumption here is that these are called in a particular sequence, 1081 * and that REQ is already set when inb_first is called. inb_{first,next} 1082 * use the same calling convention as inb. 1083 */ 1084inb_next: 1085 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1086inb_next_wait: 1087 /* 1088 * If there is a parity error, wait for the kernel to 1089 * see the interrupt and prepare our message response 1090 * before continuing. 1091 */ 1092 test SCSIPHASE, 0xFF jz .; 1093inb_next_check_phase: 1094 and LASTPHASE, PHASE_MASK, SCSISIGI; 1095 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1096inb_first: 1097 clr DINDEX[1]; 1098 mov DINDEX,SINDEX; 1099 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1100inb_last: 1101 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1102 1103mk_mesg: 1104 mvi SCSISIGO, ATNO; 1105 mov MSG_OUT,SINDEX ret; 1106 1107SET_SRC_MODE M_DFF1; 1108SET_DST_MODE M_DFF1; 1109disable_ccsgen: 1110 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; 1111 clr CCSGCTL; 1112disable_ccsgen_fetch_done: 1113 clr SG_STATE ret; 1114 1115data_group_idle_loop: 1116 mov SAVED_MODE, MODE_PTR; 1117 test SG_STATE, LOADING_NEEDED jz . + 2; 1118 call service_fifo; 1119 TOGGLE_DFF_MODE 1120 test SG_STATE, LOADING_NEEDED jz . + 2; 1121 call service_fifo; 1122 call idle_loop_cchan; 1123 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 1124 mov SAVED_MODE jmp set_mode_work_around; 1125 } else { 1126 mov MODE_PTR, SAVED_MODE ret; 1127 } 1128 1129service_fifo: 1130 /* 1131 * Do we have any prefetch left??? 1132 */ 1133 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1134 1135 /* 1136 * Can this FIFO have access to the S/G cache yet? 1137 */ 1138 test CCSGCTL, SG_CACHE_AVAIL jz return; 1139 1140 /* Did we just finish fetching segs? */ 1141 cmp CCSGCTL, CCSGEN|SG_CACHE_AVAIL|CCSGDONE 1142 je idle_sgfetch_complete; 1143 1144 /* Are we actively fetching segments? */ 1145 test CCSGCTL, CCSGEN jnz return; 1146 1147 /* 1148 * We fetch a "cacheline aligned" and sized amount of data 1149 * so we don't end up referencing a non-existant page. 1150 * Cacheline aligned is in quotes because the kernel will 1151 * set the prefetch amount to a reasonable level if the 1152 * cacheline size is unknown. 1153 */ 1154 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1155 mvi SGHCNT, SG_PREFETCH_CNT; 1156 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) { 1157 /* 1158 * Need two instruction between "touches" of SGHADDR. 1159 * Note the setting of SGHCNT counts as one of 1160 * these two instructions. 1161 */ 1162 nop; 1163 } 1164 bmov SGHADDR[1], SCB_RESIDUAL_SGPTR[1], 3; 1165 mvi CCSGCTL, CCSGEN|SG_CACHE_AVAIL|CCSGRESET; 1166 or SG_STATE, FETCH_INPROG ret; 1167idle_sgfetch_complete: 1168 /* 1169 * Guard against SG_CACHE_AVAIL activating during sg fetch 1170 * request in the other FIFO. 1171 */ 1172 test SG_STATE, FETCH_INPROG jz return; 1173 clr CCSGCTL; 1174 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1175 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1176idle_sg_avail: 1177 /* Does the hardware have space for another SG entry? */ 1178 test DFSTATUS, PRELOAD_AVAIL jz return; 1179 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1180 bmov HADDR, CCSGRAM, 8; 1181 } else { 1182 bmov HADDR, CCSGRAM, 4; 1183 } 1184 bmov HCNT, CCSGRAM, 3; 1185 test HCNT[0], 0x1 jz . + 2; 1186 xor DATA_COUNT_ODD, 0x1; 1187 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1188 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1189 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1190 } 1191 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1192 /* Skip 4 bytes of pad. */ 1193 add CCSGADDR, 4; 1194 } 1195sg_advance: 1196 clr A; /* add sizeof(struct scatter) */ 1197 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1198 adc SCB_RESIDUAL_SGPTR[1],A; 1199 adc SCB_RESIDUAL_SGPTR[2],A; 1200 adc SCB_RESIDUAL_SGPTR[3],A; 1201 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1202 test DATA_COUNT_ODD, 0x1 jz . + 2; 1203 or SINDEX, ODD_SEG; 1204 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1205 or SINDEX, LAST_SEG; 1206 clr SG_STATE; 1207 mov SG_CACHE_PRE, SINDEX; 1208 /* 1209 * Load the segment. Or in HDMAEN here too 1210 * just in case HDMAENACK has not come true 1211 * by the time this segment is loaded. If 1212 * HDMAENACK is not true, this or will disable 1213 * HDMAEN mid-transfer. We do not want to simply 1214 * mvi our original settings as SCSIEN automatically 1215 * de-asserts and we don't want to accidentally 1216 * re-enable it. 1217 */ 1218 or DFCNTRL, PRELOADEN|HDMAEN; 1219 /* 1220 * Do we have another segment in the cache? 1221 */ 1222 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1223 jnc return; 1224 and SG_STATE, ~SEGS_AVAIL ret; 1225 1226/* 1227 * Initialize the DMA address and counter from the SCB. 1228 */ 1229load_first_seg: 1230 bmov HADDR, SCB_DATAPTR, 11; 1231 and DATA_COUNT_ODD, 0x1, SCB_DATACNT[0]; 1232 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0]; 1233 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1234 or REG_ISR, LAST_SEG; 1235 test DATA_COUNT_ODD, 0x1 jz . + 2; 1236 or REG_ISR, ODD_SEG; 1237 mov SG_CACHE_PRE, REG_ISR; 1238 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1239 /* 1240 * Since we've are entering a data phase, we will 1241 * rely on the SCB_RESID* fields. Initialize the 1242 * residual and clear the full residual flag. 1243 */ 1244 and SCB_SGPTR[0], ~SG_FULL_RESID; 1245 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1246 /* If we need more S/G elements, tell the idle loop */ 1247 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1248 mvi SG_STATE, LOADING_NEEDED ret; 1249 clr SG_STATE ret; 1250 1251p_data: 1252 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1253 mvi SEQINTCODE, PROTO_VIOLATION; 1254p_data_allowed: 1255 1256 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1257 1258 /* 1259 * If we re-enter the data phase after going through another 1260 * phase, our transfer location has almost certainly been 1261 * corrupted by the interveining, non-data, transfers. Ask 1262 * the host driver to fix us up based on the transfer residual 1263 * unless we already know that we should be bitbucketing. 1264 */ 1265 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1266 mvi SEQINTCODE, PDATA_REINIT; 1267 jmp data_group_dma_loop; 1268 1269p_data_bitbucket: 1270 /* 1271 * Turn on `Bit Bucket' mode, wait until the target takes 1272 * us to another phase, and then notify the host. 1273 */ 1274 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1275 jnz bitbucket_not_m_dff; 1276 /* 1277 * Ensure that any FIFO contents are cleared out and the 1278 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1279 * doesn't discard data already in the FIFO. 1280 */ 1281 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1282 SET_MODE(M_SCSI, M_SCSI) 1283bitbucket_not_m_dff: 1284 or SXFRCTL1,BITBUCKET; 1285 /* Wait for non-data phase. */ 1286 test SCSIPHASE, ~DATA_PHASE_MASK jz .; 1287 and SXFRCTL1, ~BITBUCKET; 1288 SET_MODE(M_DFF1, M_DFF1) 1289 mvi SEQINTCODE, DATA_OVERRUN; 1290 jmp ITloop; 1291 1292data_phase_initialize: 1293 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1294 call load_first_seg; 1295data_phase_inbounds: 1296 /* We have seen a data phase at least once. */ 1297 or SEQ_FLAGS, DPHASE; 1298data_group_dma_loop: 1299 /* 1300 * The transfer is complete if either the last segment 1301 * completes or the target changes phase. Both conditions 1302 * will clear SCSIEN. 1303 */ 1304 call data_group_idle_loop; 1305 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1306 1307data_group_dmafinish: 1308 /* 1309 * The transfer has terminated either due to a phase 1310 * change, and/or the completion of the last segment. 1311 * We have two goals here. Do as much other work 1312 * as possible while the data fifo drains on a read 1313 * and respond as quickly as possible to the standard 1314 * messages (save data pointers/disconnect and command 1315 * complete) that usually follow a data phase. 1316 */ 1317 call calc_residual; 1318 1319 /* 1320 * Go ahead and shut down the DMA engine now. 1321 */ 1322 test DFCNTRL, DIRECTION jnz data_phase_finish; 1323data_group_fifoflush: 1324 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1325 or DFCNTRL, FIFOFLUSH; 1326 } 1327 /* 1328 * We have enabled the auto-ack feature. This means 1329 * that the controller may have already transferred 1330 * some overrun bytes into the data FIFO and acked them 1331 * on the bus. The only way to detect this situation is 1332 * to wait for LAST_SEG_DONE to come true on a completed 1333 * transfer and then test to see if the data FIFO is 1334 * non-empty. We know there is more data yet to transfer 1335 * if SG_LIST_NULL is not yet set, thus there cannot be 1336 * an overrun. 1337 */ 1338 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1339 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1340 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1341 /* Overrun */ 1342 jmp p_data; 1343data_phase_finish: 1344 /* 1345 * If the target has left us in data phase, loop through 1346 * the dma code again. We will only loop if there is a 1347 * data overrun. 1348 */ 1349 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1350 test SSTAT0, TARGET jnz data_phase_done; 1351 } 1352 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1353 test SSTAT1, REQINIT jz .; 1354 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1355 } 1356 1357data_phase_done: 1358 /* Kill off any pending prefetch */ 1359 call disable_ccsgen; 1360 1361 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1362 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1363 /* 1364 and SEQ_FLAGS, ~DPHASE_PENDING; 1365 * For data-in phases, wait for any pending acks from the 1366 * initiator before changing phase. We only need to 1367 * send Ignore Wide Residue messages for data-in phases. 1368 test DFCNTRL, DIRECTION jz target_ITloop; 1369 test SSTAT1, REQINIT jnz .; 1370 test DATA_COUNT_ODD, 0x1 jz target_ITloop; 1371 SET_MODE(M_SCSI, M_SCSI) 1372 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1373 */ 1374 /* 1375 * Issue an Ignore Wide Residue Message. 1376 mvi P_MESGIN|BSYO call change_phase; 1377 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1378 mvi 1 call target_outb; 1379 jmp target_ITloop; 1380 */ 1381 } else { 1382 jmp ITloop; 1383 } 1384 1385/* 1386 * We assume that, even though data may still be 1387 * transferring to the host, that the SCSI side of 1388 * the DMA engine is now in a static state. This 1389 * allows us to update our notion of where we are 1390 * in this transfer. 1391 * 1392 * If, by chance, we stopped before being able 1393 * to fetch additional segments for this transfer, 1394 * yet the last S/G was completely exhausted, 1395 * call our idle loop until it is able to load 1396 * another segment. This will allow us to immediately 1397 * pickup on the next segment on the next data phase. 1398 * 1399 * If we happened to stop on the last segment, then 1400 * our residual information is still correct from 1401 * the idle loop and there is no need to perform 1402 * any fixups. 1403 */ 1404calc_residual: 1405 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1406 /* Record if we've consumed all S/G entries */ 1407 test MDFFSTAT, SHVALID jz . + 2; 1408 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1409 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1410residual_before_last_seg: 1411 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1412 /* 1413 * Can never happen from an interrupt as the packetized 1414 * hardware will only interrupt us once SHVALID or 1415 * LAST_SEG_DONE. 1416 */ 1417 call data_group_idle_loop; 1418 jmp calc_residual; 1419 1420sgptr_fixup: 1421 /* 1422 * Fixup the residual next S/G pointer. The S/G preload 1423 * feature of the chip allows us to load two elements 1424 * in addition to the currently active element. We 1425 * store the bottom byte of the next S/G pointer in 1426 * the SG_CACHE_PTR register so we can restore the 1427 * correct value when the DMA completes. If the next 1428 * sg ptr value has advanced to the point where higher 1429 * bytes in the address have been affected, fix them 1430 * too. 1431 */ 1432 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1433 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1434 add SCB_RESIDUAL_SGPTR[1], -1; 1435 adc SCB_RESIDUAL_SGPTR[2], -1; 1436 adc SCB_RESIDUAL_SGPTR[3], -1; 1437sgptr_fixup_done: 1438 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1439 clr DATA_COUNT_ODD; 1440 test SG_CACHE_SHADOW, ODD_SEG jz . + 2; 1441 or DATA_COUNT_ODD, 0x1; 1442 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1443 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1444 1445export seq_isr: 1446 nop; /* Jumps in the first ISR instruction fail on Rev A. */ 1447 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1448 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1449 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1450 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1451 mvi SEQINTCODE, INVALID_SEQINT; 1452 1453/* 1454 * There are two types of save pointers interrupts: 1455 * The first is a snapshot save pointers where the current FIFO is not 1456 * active and contains a snapshot of the current poniter information. 1457 * This happens between packets in a stream for a single L_Q. Since we 1458 * are not performing a pointer save, we can safely clear the channel 1459 * so it can be used for other transactions. 1460 * 1461 * The second case is a save pointers on an active FIFO which occurs 1462 * if the target changes to a new L_Q or busfrees/QAS' and the transfer 1463 * has a residual. This should occur coincident with a ctxtdone. We 1464 * disable the interrupt and allow our active routine to handle the 1465 * save. 1466 */ 1467saveptr_intr: 1468 test DFCNTRL, HDMAENACK jz snapshot_saveptr; 1469 and SEQIMODE, ~ENSAVEPTRS; 1470 or SEQINTCTL, IRET ret; 1471snapshot_saveptr: 1472 mvi DFFSXFRCTL, CLRCHN; 1473 or SEQINTCTL, IRET ret; 1474 1475cfg4data_intr: 1476 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun; 1477 call load_first_seg; 1478 call pkt_handle_xfer; 1479 or SEQINTCTL, IRET ret; 1480 1481cfg4istat_intr: 1482 call freeze_queue; 1483 add NONE, -13, SCB_CDB_LEN; 1484 jnc cfg4istat_have_sense_addr; 1485 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1486 /* 1487 * Host sets up address/count and enables transfer. 1488 */ 1489 mvi SEQINTCODE, CFG4ISTAT_INTR; 1490 jmp cfg4istat_setup_handler; 1491cfg4istat_have_sense_addr: 1492 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1493 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1494 mvi SG_CACHE_PRE, LAST_SEG; 1495 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1496cfg4istat_setup_handler: 1497 /* 1498 * Status pkt is transferring to host. 1499 * Wait in idle loop for transfer to complete. 1500 */ 1501 call pkt_handle_status; 1502 or SEQINTCTL, IRET ret; 1503 1504/* 1505 * See if the target has gone on in this context creating an 1506 * overrun condition. For the write case, the hardware cannot 1507 * ack bytes until data are provided. So, if the target begins 1508 * another packet without changing contexts, implying we are 1509 * not sitting on a packet boundary, we are in an overrun 1510 * situation. For the read case, the hardware will continue to 1511 * ack bytes into the FIFO, and may even ack the last overrun packet 1512 * into the FIFO. If the FIFO should become non-empty, we are in 1513 * a read overrun case. 1514 */ 1515#define check_overrun \ 1516 /* Not on a packet boundary. */ \ 1517 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1518 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1519 1520pkt_handle_xfer: 1521 bmov LONGJMP_SCB, SCBPTR, 2; 1522 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1523 call setjmp; 1524 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1525 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1526 test SCSISIGO, ATNO jnz . + 2; 1527 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 1528 /* 1529 * Defer handling of this NONPACKREQ until we 1530 * can be sure it pertains to this FIFO. SAVEPTRS 1531 * will not be asserted if the NONPACKREQ is for us, 1532 * so we must simulate it if shaddow is valid. If 1533 * shaddow is not valid, keep running this FIFO until we 1534 * have satisfied the transfer by loading segments and 1535 * waiting for either shaddow valid or last_seg_done. 1536 */ 1537 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 1538pkt_service_fifo: 1539 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1540pkt_last_seg: 1541 call setjmp; 1542 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1543 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz last_pkt_done; 1544 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1545 test SCSISIGO, ATNO jnz . + 2; 1546 test SSTAT2, NONPACKREQ jz return; 1547 test MDFFSTAT, SHVALID jz return; 1548 /* FALLTHROUGH */ 1549 1550/* 1551 * Either a SAVEPTRS interrupt condition is pending for this FIFO 1552 * or we have a pending nonpackreq for this FIFO. We differentiate 1553 * between the two by capturing the state of the SAVEPTRS interrupt 1554 * prior to clearing this status and executing the common code for 1555 * these two cases. 1556 */ 1557pkt_saveptrs: 1558BEGIN_CRITICAL; 1559 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1560 or DFCNTRL, FIFOFLUSH; 1561 } 1562 mov REG0, SEQINTSRC; 1563 call calc_residual; 1564 call save_pointers; 1565 mvi CLRSEQINTSRC, CLRSAVEPTRS; 1566 call disable_ccsgen; 1567 or SEQIMODE, ENSAVEPTRS; 1568 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status; 1569 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status; 1570 /* 1571 * Keep a handler around for this FIFO until it drains 1572 * to the host to guarantee that we don't complete the 1573 * command to the host before the data arrives. 1574 */ 1575pkt_saveptrs_wait_fifoemp: 1576 call setjmp; 1577 test DFSTATUS, FIFOEMP jz return; 1578pkt_saveptrs_check_status: 1579 or LONGJMP_ADDR[1], INVALID_ADDR; 1580 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 1581 test SCB_CONTROL, STATUS_RCVD jz pkt_saveptrs_clrchn; 1582 jmp last_pkt_complete; 1583pkt_saveptrs_clrchn: 1584 mvi DFFSXFRCTL, CLRCHN ret; 1585END_CRITICAL; 1586 1587last_pkt_done: 1588BEGIN_CRITICAL; 1589 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1590 or DFCNTRL, FIFOFLUSH; 1591 } 1592 test SCB_CONTROL, STATUS_RCVD jz wait_pkt_end; 1593 check_overrun; 1594 or SCB_SGPTR, SG_LIST_NULL; 1595 /* 1596 * It is safe to skip the other FIFO check since 1597 * we defer CLRCHN on SAVEPTRS until all data in 1598 * the FIFO are seen by the host and a CFG4DATA 1599 * in this FIFO for the same context is held off 1600 * by hardware. 1601 */ 1602last_pkt_queue_scb: 1603 or LONGJMP_ADDR[1], INVALID_ADDR; 1604 bmov ARG_1, SCBPTR, 2; 1605 mvi DFFSXFRCTL, CLRCHN; 1606 jmp queue_arg1_scb_completion; 1607 1608last_pkt_complete: 1609 bmov ARG_1, SCBPTR, 2; 1610 mvi DFFSXFRCTL, CLRCHN; 1611check_other_fifo: 1612 clc; 1613 TOGGLE_DFF_MODE 1614 call check_fifo; 1615 jnc queue_arg1_scb_completion; 1616return: 1617 ret; 1618 1619wait_pkt_end: 1620 call setjmp; 1621END_CRITICAL; 1622wait_pkt_end_loop: 1623 test SEQINTSRC, CTXTDONE jnz pkt_end; 1624 check_overrun; 1625 test SSTAT2, NONPACKREQ jz return; 1626 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1627pkt_end: 1628BEGIN_CRITICAL; 1629 check_overrun; 1630 or LONGJMP_ADDR[1], INVALID_ADDR; 1631 or SCB_SGPTR, SG_LIST_NULL; 1632 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_complete; 1633 mvi DFFSXFRCTL, CLRCHN ret; 1634END_CRITICAL; 1635 1636check_status_overrun: 1637 test SHCNT[2], 0xFF jz status_IU_done; 1638 mvi SEQINTCODE, STATUS_OVERRUN; 1639 jmp status_IU_done; 1640pkt_handle_status: 1641 call setjmp_setscb; 1642 test MDFFSTAT, LASTSDONE jnz check_status_overrun; 1643 test SEQINTSRC, CTXTDONE jz return; 1644status_IU_done: 1645BEGIN_CRITICAL; 1646 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1647 or DFCNTRL, FIFOFLUSH; 1648 } 1649 or LONGJMP_ADDR[1], INVALID_ADDR; 1650 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 1651 or SCB_CONTROL, STATUS_RCVD; 1652 jmp last_pkt_complete; 1653END_CRITICAL; 1654 1655SET_SRC_MODE M_DFF0; 1656SET_DST_MODE M_DFF0; 1657BEGIN_CRITICAL; 1658check_fifo: 1659 test LONGJMP_ADDR[1], INVALID_ADDR jnz return; 1660 mov A, ARG_2; 1661 cmp LONGJMP_SCB[1], A jne return; 1662 mov A, ARG_1; 1663 cmp LONGJMP_SCB[0], A jne return; 1664 stc ret; 1665END_CRITICAL; 1666 1667/* 1668 * Nonpackreq is a polled status. It can come true in three situations: 1669 * we have received an L_Q, we have sent one or more L_Qs, or there is no 1670 * L_Q context associated with this REQ (REQ occurs immediately after a 1671 * (re)selection). Routines that know that the context responsible for this 1672 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 1673 * top level idle loop, we exhaust all active contexts prior to determining that 1674 * we simply do not have the full I_T_L_Q for this phase. 1675 */ 1676unexpected_nonpkt_phase_find_ctxt: 1677 /* 1678 * This nonpackreq is most likely associated with one of the tags 1679 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 1680 * nonpackreq if we've cleared out the FIFOs and handled any 1681 * pending SELDO. 1682 */ 1683SET_SRC_MODE M_SCSI; 1684SET_DST_MODE M_SCSI; 1685 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 1686 cmp A, FIFO1FREE|FIFO0FREE jne return; 1687 test SSTAT0, SELDO jnz return; 1688 mvi SCBPTR[1], SCB_LIST_NULL; 1689unexpected_nonpkt_phase: 1690 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz . + 3; 1691SET_SRC_MODE M_DFF0; 1692SET_DST_MODE M_DFF0; 1693 or LONGJMP_ADDR[1], INVALID_ADDR; 1694 mvi DFFSXFRCTL, CLRCHN; 1695 mvi CLRSINT2, CLRNONPACKREQ; 1696 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 1697 mvi SEQINTCODE, ENTERING_NONPACK; 1698 jmp ITloop; 1699 1700illegal_phase: 1701 mvi SEQINTCODE, ILLEGAL_PHASE; 1702 jmp ITloop; 1703 1704/* 1705 * We have entered an overrun situation. If we have working 1706 * BITBUCKET, flip that on and let the hardware eat any overrun 1707 * data. Otherwise use an overrun buffer in the host to simulate 1708 * BITBUCKET. 1709 */ 1710pkt_handle_overrun: 1711 mvi SEQINTCODE, CFG4OVERRUN; 1712 call freeze_queue; 1713 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 1714 SET_MODE(M_SCSI, M_SCSI) 1715 or SXFRCTL1,BITBUCKET; 1716SET_SRC_MODE M_DFF1; 1717SET_DST_MODE M_DFF1; 1718 } else { 1719 call load_overrun_buf; 1720 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 1721 } 1722 call setjmp; 1723 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1724 test DFSTATUS, PKT_PRELOAD_AVAIL jz overrun_load_done; 1725 call load_overrun_buf; 1726 or DFCNTRL, PRELOADEN; 1727overrun_load_done: 1728 } 1729 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 1730 test SSTAT2, NONPACKREQ jz return; 1731pkt_overrun_end: 1732 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 1733 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1734 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_queue_scb; 1735 mvi DFFSXFRCTL, CLRCHN ret; 1736 1737if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1738load_overrun_buf: 1739 /* 1740 * Load a dummy segment if preload space is available. 1741 */ 1742 mov HADDR[0], SHARED_DATA_ADDR; 1743 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 1744 mov ACCUM_SAVE, A; 1745 clr A; 1746 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 1747 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 1748 mov A, ACCUM_SAVE; 1749 bmov HADDR[4], ALLZEROS, 4; 1750 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 1751 clr HCNT[0]; 1752 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 1753 clr HCNT[2]; 1754} 1755 1756cfg4icmd_intr: 1757