1/*- 2 * Adaptec U320 device driver firmware for Linux and FreeBSD. 3 * 4 * Copyright (c) 1994-2001, 2004 Justin T. Gibbs. 5 * Copyright (c) 2000-2002 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 */ 40 41VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#119 $" 42PATCH_ARG_LIST = "struct ahd_softc *ahd" 43PREFIX = "ahd_" 44 45#include "aic79xx.reg" 46#include "scsi_message.h" 47 48restart: 49if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 50 test SEQINTCODE, 0xFF jz idle_loop; 51 SET_SEQINTCODE(NO_SEQINT) 52} 53 54idle_loop: 55 56 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 57 /* 58 * Convert ERROR status into a sequencer 59 * interrupt to handle the case of an 60 * interrupt collision on the hardware 61 * setting of HWERR. 62 */ 63 test ERROR, 0xFF jz no_error_set; 64 SET_SEQINTCODE(SAW_HWERR) 65no_error_set: 66 } 67 SET_MODE(M_SCSI, M_SCSI) 68 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 69 test SEQ_FLAGS2, SELECTOUT_QFROZEN jz check_waiting_list; 70 /* 71 * If the kernel has caught up with us, thaw the queue. 72 */ 73 mov A, KERNEL_QFREEZE_COUNT; 74 cmp QFREEZE_COUNT, A jne check_frozen_completions; 75 mov A, KERNEL_QFREEZE_COUNT[1]; 76 cmp QFREEZE_COUNT[1], A jne check_frozen_completions; 77 and SEQ_FLAGS2, ~SELECTOUT_QFROZEN; 78 jmp check_waiting_list; 79check_frozen_completions: 80 test SSTAT0, SELDO|SELINGO jnz idle_loop_checkbus; 81BEGIN_CRITICAL; 82 /* 83 * If we have completions stalled waiting for the qfreeze 84 * to take effect, move them over to the complete_scb list 85 * now that no selections are pending. 86 */ 87 cmp COMPLETE_ON_QFREEZE_HEAD[1],SCB_LIST_NULL je idle_loop_checkbus; 88 /* 89 * Find the end of the qfreeze list. The first element has 90 * to be treated specially. 91 */ 92 bmov SCBPTR, COMPLETE_ON_QFREEZE_HEAD, 2; 93 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je join_lists; 94 /* 95 * Now the normal loop. 96 */ 97 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 98 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . - 1; 99join_lists: 100 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 101 bmov COMPLETE_SCB_HEAD, COMPLETE_ON_QFREEZE_HEAD, 2; 102 mvi COMPLETE_ON_QFREEZE_HEAD[1], SCB_LIST_NULL; 103 jmp idle_loop_checkbus; 104check_waiting_list: 105 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 106 /* 107 * ENSELO is cleared by a SELDO, so we must test for SELDO 108 * one last time. 109 */ 110 test SSTAT0, SELDO jnz select_out; 111 call start_selection; 112idle_loop_checkbus: 113 test SSTAT0, SELDO jnz select_out; 114END_CRITICAL; 115 test SSTAT0, SELDI jnz select_in; 116 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 117 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 118 call unexpected_nonpkt_phase_find_ctxt; 119idle_loop_check_nonpackreq: 120 test SSTAT2, NONPACKREQ jz . + 2; 121 call unexpected_nonpkt_phase_find_ctxt; 122 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 123 /* 124 * On Rev A. hardware, the busy LED is only 125 * turned on automaically during selections 126 * and re-selections. Make the LED status 127 * more useful by forcing it to be on so 128 * long as one of our data FIFOs is active. 129 */ 130 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 131 cmp A, FIFO0FREE|FIFO1FREE jne . + 3; 132 and SBLKCTL, ~DIAGLEDEN|DIAGLEDON; 133 jmp . + 2; 134 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 135 } 136 call idle_loop_gsfifo_in_scsi_mode; 137 call idle_loop_service_fifos; 138 call idle_loop_cchan; 139 jmp idle_loop; 140 141idle_loop_gsfifo: 142 SET_MODE(M_SCSI, M_SCSI) 143BEGIN_CRITICAL; 144idle_loop_gsfifo_in_scsi_mode: 145 test LQISTAT2, LQIGSAVAIL jz return; 146 /* 147 * We have received good status for this transaction. There may 148 * still be data in our FIFOs draining to the host. Complete 149 * the SCB only if all data has transferred to the host. 150 */ 151good_status_IU_done: 152 bmov SCBPTR, GSFIFO, 2; 153 clr SCB_SCSI_STATUS; 154 /* 155 * If a command completed before an attempted task management 156 * function completed, notify the host after disabling any 157 * pending select-outs. 158 */ 159 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally; 160 test SSTAT0, SELDO|SELINGO jnz . + 2; 161 and SCSISEQ0, ~ENSELO; 162 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 163gsfifo_complete_normally: 164 or SCB_CONTROL, STATUS_RCVD; 165 166 /* 167 * Since this status did not consume a FIFO, we have to 168 * be a bit more dilligent in how we check for FIFOs pertaining 169 * to this transaction. There are two states that a FIFO still 170 * transferring data may be in. 171 * 172 * 1) Configured and draining to the host, with a FIFO handler. 173 * 2) Pending cfg4data, fifo not empty. 174 * 175 * Case 1 can be detected by noticing a non-zero FIFO active 176 * count in the SCB. In this case, we allow the routine servicing 177 * the FIFO to complete the SCB. 178 * 179 * Case 2 implies either a pending or yet to occur save data 180 * pointers for this same context in the other FIFO. So, if 181 * we detect case 1, we will properly defer the post of the SCB 182 * and achieve the desired result. The pending cfg4data will 183 * notice that status has been received and complete the SCB. 184 */ 185 test SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode; 186 call complete; 187END_CRITICAL; 188 jmp idle_loop_gsfifo_in_scsi_mode; 189 190idle_loop_service_fifos: 191 SET_MODE(M_DFF0, M_DFF0) 192BEGIN_CRITICAL; 193 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 194 call longjmp; 195END_CRITICAL; 196idle_loop_next_fifo: 197 SET_MODE(M_DFF1, M_DFF1) 198BEGIN_CRITICAL; 199 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp; 200END_CRITICAL; 201return: 202 ret; 203 204idle_loop_cchan: 205 SET_MODE(M_CCHAN, M_CCHAN) 206 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty; 207 or QOFF_CTLSTA, HS_MAILBOX_ACT; 208 mov LOCAL_HS_MAILBOX, HS_MAILBOX; 209hs_mailbox_empty: 210BEGIN_CRITICAL; 211 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 212 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 213 test CCSCBCTL, CCSCBDONE jz return; 214 /* FALLTHROUGH */ 215scbdma_tohost_done: 216 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 217 /* 218 * An SCB has been successfully uploaded to the host. 219 * If the SCB was uploaded for some reason other than 220 * bad SCSI status (currently only for underruns), we 221 * queue the SCB for normal completion. Otherwise, we 222 * wait until any select-out activity has halted, and 223 * then queue the completion. 224 */ 225 and CCSCBCTL, ~(CCARREN|CCSCBEN); 226 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 227 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . + 2; 228 mvi COMPLETE_DMA_SCB_TAIL[1], SCB_LIST_NULL; 229 test SCB_SCSI_STATUS, 0xff jz scbdma_queue_completion; 230 bmov SCB_NEXT_COMPLETE, COMPLETE_ON_QFREEZE_HEAD, 2; 231 bmov COMPLETE_ON_QFREEZE_HEAD, SCBPTR, 2 ret; 232scbdma_queue_completion: 233 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 234 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 235fill_qoutfifo_dmadone: 236 and CCSCBCTL, ~(CCARREN|CCSCBEN); 237 call qoutfifo_updated; 238 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 239 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 240 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 241 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; 242 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; 243END_CRITICAL; 244 245qoutfifo_updated: 246 /* 247 * If there are more commands waiting to be dma'ed 248 * to the host, always coalesce. Otherwise honor the 249 * host's wishes. 250 */ 251 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 252 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 253 test LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt; 254 255 /* 256 * If we have relatively few commands outstanding, don't 257 * bother waiting for another command to complete. 258 */ 259 test CMDS_PENDING[1], 0xFF jnz coalesce_by_count; 260 /* Add -1 so that jnc means <= not just < */ 261 add A, -1, INT_COALESCING_MINCMDS; 262 add NONE, A, CMDS_PENDING; 263 jnc issue_cmdcmplt; 264 265 /* 266 * If coalescing, only coalesce up to the limit 267 * provided by the host driver. 268 */ 269coalesce_by_count: 270 mov A, INT_COALESCING_MAXCMDS; 271 add NONE, A, INT_COALESCING_CMDCOUNT; 272 jc issue_cmdcmplt; 273 /* 274 * If the timer is not currently active, 275 * fire it up. 276 */ 277 test INTCTL, SWTMINTMASK jz return; 278 bmov SWTIMER, INT_COALESCING_TIMER, 2; 279 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 280 or INTCTL, SWTMINTEN|SWTIMER_START; 281 and INTCTL, ~SWTMINTMASK ret; 282 283issue_cmdcmplt: 284 mvi INTSTAT, CMDCMPLT; 285 clr INT_COALESCING_CMDCOUNT; 286 or INTCTL, SWTMINTMASK ret; 287 288BEGIN_CRITICAL; 289fetch_new_scb_inprog: 290 test CCSCBCTL, ARRDONE jz return; 291fetch_new_scb_done: 292 and CCSCBCTL, ~(CCARREN|CCSCBEN); 293 clr A; 294 add CMDS_PENDING, 1; 295 adc CMDS_PENDING[1], A; 296 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { 297 /* 298 * "Short Luns" are not placed into outgoing LQ 299 * packets in the correct byte order. Use a full 300 * sized lun field instead and fill it with the 301 * one byte of lun information we support. 302 */ 303 mov SCB_PKT_LUN[6], SCB_LUN; 304 } 305 /* 306 * The FIFO use count field is shared with the 307 * tag set by the host so that our SCB dma engine 308 * knows the correct location to store the SCB. 309 * Set it to zero before processing the SCB. 310 */ 311 clr SCB_FIFO_USE_COUNT; 312 /* Update the next SCB address to download. */ 313 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 314 /* 315 * NULL out the SCB links since these fields 316 * occupy the same location as SCB_NEXT_SCB_BUSADDR. 317 */ 318 mvi SCB_NEXT[1], SCB_LIST_NULL; 319 mvi SCB_NEXT2[1], SCB_LIST_NULL; 320 /* Increment our position in the QINFIFO. */ 321 mov NONE, SNSCB_QOFF; 322 323 /* 324 * Save SCBID of this SCB in REG0 since 325 * SCBPTR will be clobbered during target 326 * list updates. We also record the SCB's 327 * flags so that we can refer to them even 328 * after SCBPTR has been changed. 329 */ 330 bmov REG0, SCBPTR, 2; 331 mov A, SCB_CONTROL; 332 333 /* 334 * Find the tail SCB of the execution queue 335 * for this target. 336 */ 337 shr SINDEX, 3, SCB_SCSIID; 338 and SINDEX, ~0x1; 339 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 340 bmov DINDEX, SINDEX, 2; 341 bmov SCBPTR, SINDIR, 2; 342 343 /* 344 * Update the tail to point to the new SCB. 345 */ 346 bmov DINDIR, REG0, 2; 347 348 /* 349 * If the queue was empty, queue this SCB as 350 * the first for this target. 351 */ 352 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 353 354 /* 355 * SCBs that want to send messages must always be 356 * at the head of their per-target queue so that 357 * ATN can be asserted even if the current 358 * negotiation agreement is packetized. If the 359 * target queue is empty, the SCB can be queued 360 * immediately. If the queue is not empty, we must 361 * wait for it to empty before entering this SCB 362 * into the waiting for selection queue. Otherwise 363 * our batching and round-robin selection scheme 364 * could allow commands to be queued out of order. 365 * To simplify the implementation, we stop pulling 366 * new commands from the host until the MK_MESSAGE 367 * SCB can be queued to the waiting for selection 368 * list. 369 */ 370 test A, MK_MESSAGE jz batch_scb; 371 372 /* 373 * If the last SCB is also a MK_MESSAGE SCB, then 374 * order is preserved even if we batch. 375 */ 376 test SCB_CONTROL, MK_MESSAGE jz batch_scb; 377 378 /* 379 * Defer this SCB and stop fetching new SCBs until 380 * it can be queued. Since the SCB_SCSIID of the 381 * tail SCB must be the same as that of the newly 382 * queued SCB, there is no need to restore the SCBID 383 * here. 384 */ 385 or SEQ_FLAGS2, PENDING_MK_MESSAGE; 386 bmov MK_MESSAGE_SCB, REG0, 2; 387 mov MK_MESSAGE_SCSIID, SCB_SCSIID ret; 388 389batch_scb: 390 /* 391 * Otherwise just update the previous tail SCB to 392 * point to the new tail. 393 */ 394 bmov SCB_NEXT, REG0, 2 ret; 395 396first_new_target_scb: 397 /* 398 * Append SCB to the tail of the waiting for 399 * selection list. 400 */ 401 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 402 bmov SCBPTR, WAITING_TID_TAIL, 2; 403 bmov SCB_NEXT2, REG0, 2; 404 bmov WAITING_TID_TAIL, REG0, 2 ret; 405first_new_scb: 406 /* 407 * Whole list is empty, so the head of 408 * the list must be initialized too. 409 */ 410 bmov WAITING_TID_HEAD, REG0, 2; 411 bmov WAITING_TID_TAIL, REG0, 2 ret; 412END_CRITICAL; 413 414scbdma_idle: 415 /* 416 * Don't bother downloading new SCBs to execute 417 * if select-outs are currently frozen or we have 418 * a MK_MESSAGE SCB waiting to enter the queue. 419 */ 420 test SEQ_FLAGS2, SELECTOUT_QFROZEN|PENDING_MK_MESSAGE 421 jnz scbdma_no_new_scbs; 422BEGIN_CRITICAL; 423 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 424scbdma_no_new_scbs: 425 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 426 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 427 /* FALLTHROUGH */ 428fill_qoutfifo: 429 /* 430 * Keep track of the SCBs we are dmaing just 431 * in case the DMA fails or is aborted. 432 */ 433 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 434 mvi CCSCBCTL, CCSCBRESET; 435 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 436 mov A, QOUTFIFO_NEXT_ADDR; 437 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 438fill_qoutfifo_loop: 439 bmov CCSCBRAM, SCBPTR, 2; 440 mov CCSCBRAM, SCB_SGPTR[0]; 441 mov CCSCBRAM, QOUTFIFO_ENTRY_VALID_TAG; 442 mov NONE, SDSCB_QOFF; 443 inc INT_COALESCING_CMDCOUNT; 444 add CMDS_PENDING, -1; 445 adc CMDS_PENDING[1], -1; 446 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 447 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 448 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done; 449 /* 450 * Don't cross an ADB or Cachline boundary when DMA'ing 451 * completion entries. In PCI mode, at least in 32/33 452 * configurations, the SCB DMA engine may lose its place 453 * in the data-stream should the target force a retry on 454 * something other than an 8byte aligned boundary. In 455 * PCI-X mode, we do this to avoid split transactions since 456 * many chipsets seem to be unable to format proper split 457 * completions to continue the data transfer. 458 */ 459 add SINDEX, A, CCSCBADDR; 460 test SINDEX, CACHELINE_MASK jz fill_qoutfifo_done; 461 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 462 jmp fill_qoutfifo_loop; 463fill_qoutfifo_done: 464 mov SCBHCNT, CCSCBADDR; 465 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 466 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 467 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 468 469fetch_new_scb: 470 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 471 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 472dma_complete_scb: 473 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 474 bmov SCBHADDR, SCB_BUSADDR, 4; 475 mvi CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb; 476 477/* 478 * Either post or fetch an SCB from host memory. The caller 479 * is responsible for polling for transfer completion. 480 * 481 * Prerequisits: Mode == M_CCHAN 482 * SINDEX contains CCSCBCTL flags 483 * SCBHADDR set to Host SCB address 484 * SCBPTR set to SCB src location on "push" operations 485 */ 486SET_SRC_MODE M_CCHAN; 487SET_DST_MODE M_CCHAN; 488dma_scb: 489 mvi SCBHCNT, SCB_TRANSFER_SIZE; 490 mov CCSCBCTL, SINDEX ret; 491 492setjmp: 493 /* 494 * At least on the A, a return in the same 495 * instruction as the bmov results in a return 496 * to the caller, not to the new address at the 497 * top of the stack. Since we want the latter 498 * (we use setjmp to register a handler from an 499 * interrupt context but not invoke that handler 500 * until we return to our idle loop), use a 501 * separate ret instruction. 502 */ 503 bmov LONGJMP_ADDR, STACK, 2; 504 ret; 505setjmp_inline: 506 bmov LONGJMP_ADDR, STACK, 2; 507longjmp: 508 bmov STACK, LONGJMP_ADDR, 2 ret; 509END_CRITICAL; 510 511/*************************** Chip Bug Work Arounds ****************************/ 512/* 513 * Must disable interrupts when setting the mode pointer 514 * register as an interrupt occurring mid update will 515 * fail to store the new mode value for restoration on 516 * an iret. 517 */ 518if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 519set_mode_work_around: 520 mvi SEQINTCTL, INTVEC1DSL; 521 mov MODE_PTR, SINDEX; 522 clr SEQINTCTL ret; 523} 524 525 526if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 527set_seqint_work_around: 528 mov SEQINTCODE, SINDEX; 529 mvi SEQINTCODE, NO_SEQINT ret; 530} 531 532/************************ Packetized LongJmp Routines *************************/ 533SET_SRC_MODE M_SCSI; 534SET_DST_MODE M_SCSI; 535start_selection: 536BEGIN_CRITICAL; 537 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 538 /* 539 * Razor #494 540 * Rev A hardware fails to update LAST/CURR/NEXTSCB 541 * correctly after a packetized selection in several 542 * situations: 543 * 544 * 1) If only one command existed in the queue, the 545 * LAST/CURR/NEXTSCB are unchanged. 546 * 547 * 2) In a non QAS, protocol allowed phase change, 548 * the queue is shifted 1 too far. LASTSCB is 549 * the last SCB that was correctly processed. 550 * 551 * 3) In the QAS case, if the full list of commands 552 * was successfully sent, NEXTSCB is NULL and neither 553 * CURRSCB nor LASTSCB can be trusted. We must 554 * manually walk the list counting MAXCMDCNT elements 555 * to find the last SCB that was sent correctly. 556 * 557 * To simplify the workaround for this bug in SELDO 558 * handling, we initialize LASTSCB prior to enabling 559 * selection so we can rely on it even for case #1 above. 560 */ 561 bmov LASTSCB, WAITING_TID_HEAD, 2; 562 } 563 bmov CURRSCB, WAITING_TID_HEAD, 2; 564 bmov SCBPTR, WAITING_TID_HEAD, 2; 565 shr SELOID, 4, SCB_SCSIID; 566 /* 567 * If we want to send a message to the device, ensure 568 * we are selecting with atn irregardless of our packetized 569 * agreement. Since SPI4 only allows target reset or PPR 570 * messages if this is a packetized connection, the change 571 * to our negotiation table entry for this selection will 572 * be cleared when the message is acted on. 573 */ 574 test SCB_CONTROL, MK_MESSAGE jz . + 3; 575 mov NEGOADDR, SELOID; 576 or NEGCONOPTS, ENAUTOATNO; 577 or SCSISEQ0, ENSELO ret; 578END_CRITICAL; 579 580/* 581 * Allocate a FIFO for a non-packetized transaction. 582 * In RevA hardware, both FIFOs must be free before we 583 * can allocate a FIFO for a non-packetized transaction. 584 */ 585allocate_fifo_loop: 586 /* 587 * Do whatever work is required to free a FIFO. 588 */ 589 call idle_loop_service_fifos; 590 SET_MODE(M_SCSI, M_SCSI) 591allocate_fifo: 592 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) { 593 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 594 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 595 } else { 596 test DFFSTAT, FIFO1FREE jnz allocate_fifo1; 597 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop; 598 mvi DFFSTAT, B_CURRFIFO_0; 599 SET_MODE(M_DFF0, M_DFF0) 600 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 601 } 602SET_SRC_MODE M_SCSI; 603SET_DST_MODE M_SCSI; 604allocate_fifo1: 605 mvi DFFSTAT, CURRFIFO_1; 606 SET_MODE(M_DFF1, M_DFF1) 607 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 608 609/* 610 * We have been reselected as an initiator 611 * or selected as a target. 612 */ 613SET_SRC_MODE M_SCSI; 614SET_DST_MODE M_SCSI; 615select_in: 616 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 617 /* 618 * On Rev A. hardware, the busy LED is only 619 * turned on automaically during selections 620 * and re-selections. Make the LED status 621 * more useful by forcing it to be on from 622 * the point of selection until our idle 623 * loop determines that neither of our FIFOs 624 * are busy. This handles the non-packetized 625 * case nicely as we will not return to the 626 * idle loop until the busfree at the end of 627 * each transaction. 628 */ 629 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 630 } 631 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 632 /* 633 * Test to ensure that the bus has not 634 * already gone free prior to clearing 635 * any stale busfree status. This avoids 636 * a window whereby a busfree just after 637 * a selection could be missed. 638 */ 639 test SCSISIGI, BSYI jz . + 2; 640 mvi CLRSINT1,CLRBUSFREE; 641 or SIMODE1, ENBUSFREE; 642 } 643 or SXFRCTL0, SPIOEN; 644 and SAVED_SCSIID, SELID_MASK, SELID; 645 and A, OID, IOWNID; 646 or SAVED_SCSIID, A; 647 mvi CLRSINT0, CLRSELDI; 648 jmp ITloop; 649 650/* 651 * We have successfully selected out. 652 * 653 * Clear SELDO. 654 * Dequeue all SCBs sent from the waiting queue 655 * Requeue all SCBs *not* sent to the tail of the waiting queue 656 * Take Razor #494 into account for above. 657 * 658 * In Packetized Mode: 659 * Return to the idle loop. Our interrupt handler will take 660 * care of any incoming L_Qs. 661 * 662 * In Non-Packetize Mode: 663 * Continue to our normal state machine. 664 */ 665SET_SRC_MODE M_SCSI; 666SET_DST_MODE M_SCSI; 667select_out: 668BEGIN_CRITICAL; 669 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 670 /* 671 * On Rev A. hardware, the busy LED is only 672 * turned on automaically during selections 673 * and re-selections. Make the LED status 674 * more useful by forcing it to be on from 675 * the point of re-selection until our idle 676 * loop determines that neither of our FIFOs 677 * are busy. This handles the non-packetized 678 * case nicely as we will not return to the 679 * idle loop until the busfree at the end of 680 * each transaction. 681 */ 682 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 683 } 684 /* Clear out all SCBs that have been successfully sent. */ 685 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 686 /* 687 * For packetized, the LQO manager clears ENSELO on 688 * the assertion of SELDO. If we are non-packetized, 689 * LASTSCB and CURRSCB are accurate. 690 */ 691 test SCSISEQ0, ENSELO jnz use_lastscb; 692 693 /* 694 * The update is correct for LQOSTAT1 errors. All 695 * but LQOBUSFREE are handled by kernel interrupts. 696 * If we see LQOBUSFREE, return to the idle loop. 697 * Once we are out of the select_out critical section, 698 * the kernel will cleanup the LQOBUSFREE and we will 699 * eventually restart the selection if appropriate. 700 */ 701 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 702 703 /* 704 * On a phase change oustside of packet boundaries, 705 * LASTSCB points to the currently active SCB context 706 * on the bus. 707 */ 708 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 709 710 /* 711 * If the hardware has traversed the whole list, NEXTSCB 712 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 713 * but MAXCMDCNT is accurate. If we stop part way through 714 * the list or only had one command to issue, NEXTSCB[1] is 715 * not NULL and LASTSCB is the last command to go out. 716 */ 717 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 718 719 /* 720 * Brute force walk. 721 */ 722 bmov SCBPTR, WAITING_TID_HEAD, 2; 723 mvi SEQINTCTL, INTVEC1DSL; 724 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 725 mov A, MAXCMDCNT; 726 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 727 clr SEQINTCTL; 728find_lastscb_loop: 729 dec A; 730 test A, 0xFF jz found_last_sent_scb; 731 bmov SCBPTR, SCB_NEXT, 2; 732 jmp find_lastscb_loop; 733use_lastscb: 734 bmov SCBPTR, LASTSCB, 2; 735found_last_sent_scb: 736 bmov CURRSCB, SCBPTR, 2; 737curscb_ww_done: 738 } else { 739 bmov SCBPTR, CURRSCB, 2; 740 } 741 742 /* 743 * The whole list made it. Clear our tail pointer to indicate 744 * that the per-target selection queue is now empty. 745 */ 746 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_clear_tail; 747 748 /* 749 * Requeue any SCBs not sent, to the tail of the waiting Q. 750 * We know that neither the per-TID list nor the list of 751 * TIDs is empty. Use this knowledge to our advantage and 752 * queue the remainder to the tail of the global execution 753 * queue. 754 */ 755 bmov REG0, SCB_NEXT, 2; 756select_out_queue_remainder: 757 bmov SCBPTR, WAITING_TID_TAIL, 2; 758 bmov SCB_NEXT2, REG0, 2; 759 bmov WAITING_TID_TAIL, REG0, 2; 760 jmp select_out_inc_tid_q; 761 762select_out_clear_tail: 763 /* 764 * Queue any pending MK_MESSAGE SCB for this target now 765 * that the queue is empty. 766 */ 767 test SEQ_FLAGS2, PENDING_MK_MESSAGE jz select_out_no_mk_message_scb; 768 mov A, MK_MESSAGE_SCSIID; 769 cmp SCB_SCSIID, A jne select_out_no_mk_message_scb; 770 and SEQ_FLAGS2, ~PENDING_MK_MESSAGE; 771 bmov REG0, MK_MESSAGE_SCB, 2; 772 jmp select_out_queue_remainder; 773 774select_out_no_mk_message_scb: 775 /* 776 * Clear this target's execution tail and increment the queue. 777 */ 778 shr DINDEX, 3, SCB_SCSIID; 779 or DINDEX, 1; /* Want only the second byte */ 780 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 781 mvi DINDIR, SCB_LIST_NULL; 782select_out_inc_tid_q: 783 bmov SCBPTR, WAITING_TID_HEAD, 2; 784 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 785 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 786 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 787 bmov SCBPTR, CURRSCB, 2; 788 mvi CLRSINT0, CLRSELDO; 789 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_mode_cleared; 790 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_mode_cleared; 791 792 /* 793 * If this is a packetized connection, return to our 794 * idle_loop and let our interrupt handler deal with 795 * any connection setup/teardown issues. The only 796 * exceptions are the case of MK_MESSAGE and task management 797 * SCBs. 798 */ 799 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 800 /* 801 * In the A, the LQO manager transitions to LQOSTOP0 even if 802 * we have selected out with ATN asserted and the target 803 * REQs in a non-packet phase. 804 */ 805 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 806 test SCSISIGO, ATNO jnz select_out_non_packetized; 807select_out_no_message: 808 } 809 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized; 810 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop; 811 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE) 812 jmp idle_loop; 813 814select_out_non_packetized: 815 /* Non packetized request. */ 816 and SCSISEQ0, ~ENSELO; 817 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 818 /* 819 * Test to ensure that the bus has not 820 * already gone free prior to clearing 821 * any stale busfree status. This avoids 822 * a window whereby a busfree just after 823 * a selection could be missed. 824 */ 825 test SCSISIGI, BSYI jz . + 2; 826 mvi CLRSINT1,CLRBUSFREE; 827 or SIMODE1, ENBUSFREE; 828 } 829 mov SAVED_SCSIID, SCB_SCSIID; 830 mov SAVED_LUN, SCB_LUN; 831 mvi SEQ_FLAGS, NO_CDB_SENT; 832END_CRITICAL; 833 or SXFRCTL0, SPIOEN; 834 835 /* 836 * As soon as we get a successful selection, the target 837 * should go into the message out phase since we have ATN 838 * asserted. 839 */ 840 mvi MSG_OUT, MSG_IDENTIFYFLAG; 841 842 /* 843 * Main loop for information transfer phases. Wait for the 844 * target to assert REQ before checking MSG, C/D and I/O for 845 * the bus phase. 846 */ 847mesgin_phasemis: 848ITloop: 849 call phase_lock; 850 851 mov A, LASTPHASE; 852 853 test A, ~P_DATAIN_DT jz p_data; 854 cmp A,P_COMMAND je p_command; 855 cmp A,P_MESGOUT je p_mesgout; 856 cmp A,P_STATUS je p_status; 857 cmp A,P_MESGIN je p_mesgin; 858 859 SET_SEQINTCODE(BAD_PHASE) 860 jmp ITloop; /* Try reading the bus again. */ 861 862/* 863 * Command phase. Set up the DMA registers and let 'er rip. 864 */ 865p_command: 866 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay; 867 SET_SEQINTCODE(PROTO_VIOLATION) 868p_command_okay: 869 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 870 jnz p_command_allocate_fifo; 871 /* 872 * Command retry. Free our current FIFO and 873 * re-allocate a FIFO so transfer state is 874 * reset. 875 */ 876SET_SRC_MODE M_DFF1; 877SET_DST_MODE M_DFF1; 878 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 879 SET_MODE(M_SCSI, M_SCSI) 880p_command_allocate_fifo: 881 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 882 call allocate_fifo; 883SET_SRC_MODE M_DFF1; 884SET_DST_MODE M_DFF1; 885 add NONE, -17, SCB_CDB_LEN; 886 jnc p_command_embedded; 887p_command_from_host: 888 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 889 mvi SG_CACHE_PRE, LAST_SEG; 890 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 891 jmp p_command_xfer; 892p_command_embedded: 893 bmov SHCNT[0], SCB_CDB_LEN, 1; 894 bmov DFDAT, SCB_CDB_STORE, 16; 895 mvi DFCNTRL, SCSIEN; 896p_command_xfer: 897 and SEQ_FLAGS, ~NO_CDB_SENT; 898 if ((ahd->features & AHD_FAST_CDB_DELIVERY) != 0) { 899 /* 900 * To speed up CDB delivery in Rev B, all CDB acks 901 * are "released" to the output sync as soon as the 902 * command phase starts. There is only one problem 903 * with this approach. If the target changes phase 904 * before all data are sent, we have left over acks 905 * that can go out on the bus in a data phase. Due 906 * to other chip contraints, this only happens if 907 * the target goes to data-in, but if the acks go 908 * out before we can test SDONE, we'll think that 909 * the transfer has completed successfully. Work 910 * around this by taking advantage of the 400ns or 911 * 800ns dead time between command phase and the REQ 912 * of the new phase. If the transfer has completed 913 * successfully, SCSIEN should fall *long* before we 914 * see a phase change. We thus treat any phasemiss 915 * that occurs before SCSIEN falls as an incomplete 916 * transfer. 917 */ 918 test SSTAT1, PHASEMIS jnz p_command_xfer_failed; 919 test DFCNTRL, SCSIEN jnz . - 1; 920 } else { 921 test DFCNTRL, SCSIEN jnz .; 922 } 923 /* 924 * DMA Channel automatically disabled. 925 * Don't allow a data phase if the command 926 * was not fully transferred. 927 */ 928 test SSTAT2, SDONE jnz ITloop; 929p_command_xfer_failed: 930 or SEQ_FLAGS, NO_CDB_SENT; 931 jmp ITloop; 932 933 934/* 935 * Status phase. Wait for the data byte to appear, then read it 936 * and store it into the SCB. 937 */ 938SET_SRC_MODE M_SCSI; 939SET_DST_MODE M_SCSI; 940p_status: 941 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation; 942p_status_okay: 943 mov SCB_SCSI_STATUS, SCSIDAT; 944 or SCB_CONTROL, STATUS_RCVD; 945 jmp ITloop; 946 947/* 948 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 949 * indentify message sequence and send it to the target. The host may 950 * override this behavior by setting the MK_MESSAGE bit in the SCB 951 * control byte. This will cause us to interrupt the host and allow 952 * it to handle the message phase completely on its own. If the bit 953 * associated with this target is set, we will also interrupt the host, 954 * thereby allowing it to send a message on the next selection regardless 955 * of the transaction being sent. 956 * 957 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 958 * This is done to allow the host to send messages outside of an identify 959 * sequence while protecting the seqencer from testing the MK_MESSAGE bit 960 * on an SCB that might not be for the current nexus. (For example, a 961 * BDR message in response to a bad reselection would leave us pointed to 962 * an SCB that doesn't have anything to do with the current target). 963 * 964 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 965 * bus device reset). 966 * 967 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 968 * in case the target decides to put us in this phase for some strange 969 * reason. 970 */ 971p_mesgout_retry: 972 /* Turn on ATN for the retry */ 973 mvi SCSISIGO, ATNO; 974p_mesgout: 975 mov SINDEX, MSG_OUT; 976 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 977 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 978p_mesgout_identify: 979 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 980 test SCB_CONTROL, DISCENB jnz . + 2; 981 and SINDEX, ~DISCENB; 982/* 983 * Send a tag message if TAG_ENB is set in the SCB control block. 984 * Use SCB_NONPACKET_TAG as the tag value. 985 */ 986p_mesgout_tag: 987 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 988 mov SCSIDAT, SINDEX; /* Send the identify message */ 989 call phase_lock; 990 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 991 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 992 call phase_lock; 993 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 994 mov SCBPTR jmp p_mesgout_onebyte; 995/* 996 * Interrupt the driver, and allow it to handle this message 997 * phase and any required retries. 998 */ 999p_mesgout_from_host: 1000 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 1001 jmp host_message_loop; 1002 1003p_mesgout_onebyte: 1004 mvi CLRSINT1, CLRATNO; 1005 mov SCSIDAT, SINDEX; 1006 1007/* 1008 * If the next bus phase after ATN drops is message out, it means 1009 * that the target is requesting that the last message(s) be resent. 1010 */ 1011 call phase_lock; 1012 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 1013 1014p_mesgout_done: 1015 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 1016 mov LAST_MSG, MSG_OUT; 1017 mvi MSG_OUT, MSG_NOOP; /* No message left */ 1018 jmp ITloop; 1019 1020/* 1021 * Message in phase. Bytes are read using Automatic PIO mode. 1022 */ 1023p_mesgin: 1024 /* read the 1st message byte */ 1025 mvi ACCUM call inb_first; 1026 1027 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 1028 cmp A,MSG_DISCONNECT je mesgin_disconnect; 1029 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 1030 cmp ALLZEROS,A je mesgin_complete; 1031 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 1032 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 1033 cmp A,MSG_NOOP je mesgin_done; 1034 1035/* 1036 * Pushed message loop to allow the kernel to 1037 * run it's own message state engine. To avoid an 1038 * extra nop instruction after signaling the kernel, 1039 * we perform the phase_lock before checking to see 1040 * if we should exit the loop and skip the phase_lock 1041 * in the ITloop. Performing back to back phase_locks 1042 * shouldn't hurt, but why do it twice... 1043 */ 1044host_message_loop: 1045 call phase_lock; /* Benign the first time through. */ 1046 SET_SEQINTCODE(HOST_MSG_LOOP) 1047 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 1048 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 1049 mov SCSIDAT, RETURN_2; 1050 jmp host_message_loop; 1051 /* Must be CONT_MSG_LOOP_READ */ 1052 mov NONE, SCSIDAT; /* ACK Byte */ 1053 jmp host_message_loop; 1054 1055mesgin_ign_wide_residue: 1056 mov SAVED_MODE, MODE_PTR; 1057 SET_MODE(M_SCSI, M_SCSI) 1058 shr NEGOADDR, 4, SAVED_SCSIID; 1059 mov A, NEGCONOPTS; 1060 RESTORE_MODE(SAVED_MODE) 1061 test A, WIDEXFER jz mesgin_reject; 1062 /* Pull the residue byte */ 1063 mvi REG0 call inb_next; 1064 cmp REG0, 0x01 jne mesgin_reject; 1065 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 1066 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done; 1067 SET_SEQINTCODE(IGN_WIDE_RES) 1068 jmp mesgin_done; 1069 1070mesgin_proto_violation: 1071 SET_SEQINTCODE(PROTO_VIOLATION) 1072 jmp mesgin_done; 1073mesgin_reject: 1074 mvi MSG_MESSAGE_REJECT call mk_mesg; 1075mesgin_done: 1076 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1077 jmp ITloop; 1078 1079#define INDEX_DISC_LIST(scsiid, lun) \ 1080 and A, 0xC0, scsiid; \ 1081 or SCBPTR, A, lun; \ 1082 clr SCBPTR[1]; \ 1083 and SINDEX, 0x30, scsiid; \ 1084 shr SINDEX, 3; /* Multiply by 2 */ \ 1085 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 1086 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 1087 1088mesgin_identify: 1089 /* 1090 * Determine whether a target is using tagged or non-tagged 1091 * transactions by first looking at the transaction stored in 1092 * the per-device, disconnected array. If there is no untagged 1093 * transaction for this target, this must be a tagged transaction. 1094 */ 1095 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 1096 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1097 bmov DINDEX, SINDEX, 2; 1098 bmov REG0, SINDIR, 2; 1099 cmp REG0[1], SCB_LIST_NULL je snoop_tag; 1100 /* Untagged. Clear the busy table entry and setup the SCB. */ 1101 bmov DINDIR, ALLONES, 2; 1102 bmov SCBPTR, REG0, 2; 1103 jmp setup_SCB; 1104 1105/* 1106 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 1107 * If we get one, we use the tag returned to find the proper 1108 * SCB. After receiving the tag, look for the SCB at SCB locations tag and 1109 * tag + 256. 1110 */ 1111snoop_tag: 1112 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1113 or SEQ_FLAGS, 0x80; 1114 } 1115 mov NONE, SCSIDAT; /* ACK Identify MSG */ 1116 call phase_lock; 1117 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1118 or SEQ_FLAGS, 0x1; 1119 } 1120 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 1121 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1122 or SEQ_FLAGS, 0x2; 1123 } 1124 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 1125get_tag: 1126 clr SCBPTR[1]; 1127 mvi SCBPTR call inb_next; /* tag value */ 1128verify_scb: 1129 test SCB_CONTROL,DISCONNECTED jz verify_other_scb; 1130 mov A, SAVED_SCSIID; 1131 cmp SCB_SCSIID, A jne verify_other_scb; 1132 mov A, SAVED_LUN; 1133 cmp SCB_LUN, A je setup_SCB_disconnected; 1134verify_other_scb: 1135 xor SCBPTR[1], 1; 1136 test SCBPTR[1], 0xFF jnz verify_scb; 1137 jmp not_found; 1138 1139/* 1140 * Ensure that the SCB the tag points to is for 1141 * an SCB transaction to the reconnecting target. 1142 */ 1143setup_SCB: 1144 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1145 or SEQ_FLAGS, 0x10; 1146 } 1147 test SCB_CONTROL,DISCONNECTED jz not_found; 1148setup_SCB_disconnected: 1149 and SCB_CONTROL,~DISCONNECTED; 1150 clr SEQ_FLAGS; /* make note of IDENTIFY */ 1151 test SCB_SGPTR, SG_LIST_NULL jnz . + 3; 1152 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 1153 call allocate_fifo; 1154 /* See if the host wants to send a message upon reconnection */ 1155 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 1156 mvi HOST_MSG call mk_mesg; 1157 jmp mesgin_done; 1158 1159not_found: 1160 SET_SEQINTCODE(NO_MATCH) 1161 jmp mesgin_done; 1162 1163not_found_ITloop: 1164 SET_SEQINTCODE(NO_MATCH) 1165 jmp ITloop; 1166 1167/* 1168 * We received a "command complete" message. Put the SCB on the complete 1169 * queue and trigger a completion interrupt via the idle loop. Before doing 1170 * so, check to see if there is a residual or the status byte is something 1171 * other than STATUS_GOOD (0). In either of these conditions, we upload the 1172 * SCB back to the host so it can process this information. 1173 */ 1174mesgin_complete: 1175 1176 /* 1177 * If ATN is raised, we still want to give the target a message. 1178 * Perhaps there was a parity error on this last message byte. 1179 * Either way, the target should take us to message out phase 1180 * and then attempt to complete the command again. We should use a 1181 * critical section here to guard against a timeout triggering 1182 * for this command and setting ATN while we are still processing 1183 * the completion. 1184 test SCSISIGI, ATNI jnz mesgin_done; 1185 */ 1186 1187 /* 1188 * If we are identified and have successfully sent the CDB, 1189 * any status will do. Optimize this fast path. 1190 */ 1191 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation; 1192 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted; 1193 1194 /* 1195 * If the target never sent an identify message but instead went 1196 * to mesgin to give an invalid message, let the host abort us. 1197 */ 1198 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation; 1199 1200 /* 1201 * If we recevied good status but never successfully sent the 1202 * cdb, abort the command. 1203 */ 1204 test SCB_SCSI_STATUS,0xff jnz complete_accepted; 1205 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation; 1206complete_accepted: 1207 1208 /* 1209 * See if we attempted to deliver a message but the target ignored us. 1210 */ 1211 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg; 1212 SET_SEQINTCODE(MKMSG_FAILED) 1213complete_nomsg: 1214 call queue_scb_completion; 1215 jmp await_busfree; 1216 1217BEGIN_CRITICAL; 1218freeze_queue: 1219 /* Cancel any pending select-out. */ 1220 test SSTAT0, SELDO|SELINGO jnz . + 2; 1221 and SCSISEQ0, ~ENSELO; 1222 mov ACCUM_SAVE, A; 1223 clr A; 1224 add QFREEZE_COUNT, 1; 1225 adc QFREEZE_COUNT[1], A; 1226 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 1227 mov A, ACCUM_SAVE ret; 1228END_CRITICAL; 1229 1230/* 1231 * Complete the current FIFO's SCB if data for this same 1232 * SCB is not transferring in the other FIFO. 1233 */ 1234SET_SRC_MODE M_DFF1; 1235SET_DST_MODE M_DFF1; 1236pkt_complete_scb_if_fifos_idle: 1237 bmov ARG_1, SCBPTR, 2; 1238 mvi DFFSXFRCTL, CLRCHN; 1239 SET_MODE(M_SCSI, M_SCSI) 1240 bmov SCBPTR, ARG_1, 2; 1241 test SCB_FIFO_USE_COUNT, 0xFF jnz return; 1242queue_scb_completion: 1243 test SCB_SCSI_STATUS,0xff jnz bad_status; 1244 /* 1245 * Check for residuals 1246 */ 1247 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 1248 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 1249 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 1250complete: 1251BEGIN_CRITICAL; 1252 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 1253 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 1254END_CRITICAL; 1255bad_status: 1256 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 1257 call freeze_queue; 1258upload_scb: 1259 /* 1260 * Restore SCB TAG since we reuse this field 1261 * in the sequencer. We don't want to corrupt 1262 * it on the host. 1263 */ 1264 bmov SCB_TAG, SCBPTR, 2; 1265BEGIN_CRITICAL; 1266 or SCB_SGPTR, SG_STATUS_VALID; 1267 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL; 1268 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne add_dma_scb_tail; 1269 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 1270 bmov COMPLETE_DMA_SCB_TAIL, SCBPTR, 2 ret; 1271add_dma_scb_tail: 1272 bmov REG0, SCBPTR, 2; 1273 bmov SCBPTR, COMPLETE_DMA_SCB_TAIL, 2; 1274 bmov SCB_NEXT_COMPLETE, REG0, 2; 1275 bmov COMPLETE_DMA_SCB_TAIL, REG0, 2 ret; 1276END_CRITICAL; 1277 1278/* 1279 * Is it a disconnect message? Set a flag in the SCB to remind us 1280 * and await the bus going free. If this is an untagged transaction 1281 * store the SCB id for it in our untagged target table for lookup on 1282 * a reselction. 1283 */ 1284mesgin_disconnect: 1285 /* 1286 * If ATN is raised, we still want to give the target a message. 1287 * Perhaps there was a parity error on this last message byte 1288 * or we want to abort this command. Either way, the target 1289 * should take us to message out phase and then attempt to 1290 * disconnect again. 1291 * XXX - Wait for more testing. 1292 test SCSISIGI, ATNI jnz mesgin_done; 1293 */ 1294 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT 1295 jnz mesgin_proto_violation; 1296 or SCB_CONTROL,DISCONNECTED; 1297 test SCB_CONTROL, TAG_ENB jnz await_busfree; 1298queue_disc_scb: 1299 bmov REG0, SCBPTR, 2; 1300 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1301 bmov DINDEX, SINDEX, 2; 1302 bmov DINDIR, REG0, 2; 1303 bmov SCBPTR, REG0, 2; 1304 /* FALLTHROUGH */ 1305await_busfree: 1306 and SIMODE1, ~ENBUSFREE; 1307 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) { 1308 /* 1309 * In the BUSFREEREV_BUG case, the 1310 * busfree status was cleared at the 1311 * beginning of the connection. 1312 */ 1313 mvi CLRSINT1,CLRBUSFREE; 1314 } 1315 mov NONE, SCSIDAT; /* Ack the last byte */ 1316 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1317 jnz await_busfree_not_m_dff; 1318SET_SRC_MODE M_DFF1; 1319SET_DST_MODE M_DFF1; 1320await_busfree_clrchn: 1321 mvi DFFSXFRCTL, CLRCHN; 1322await_busfree_not_m_dff: 1323 /* clear target specific flags */ 1324 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT; 1325 test SSTAT1,REQINIT|BUSFREE jz .; 1326 /* 1327 * We only set BUSFREE status once either a new 1328 * phase has been detected or we are really 1329 * BUSFREE. This allows the driver to know 1330 * that we are active on the bus even though 1331 * no identified transaction exists should a 1332 * timeout occur while awaiting busfree. 1333 */ 1334 mvi LASTPHASE, P_BUSFREE; 1335 test SSTAT1, BUSFREE jnz idle_loop; 1336 SET_SEQINTCODE(MISSED_BUSFREE) 1337 1338 1339/* 1340 * Save data pointers message: 1341 * Copying RAM values back to SCB, for Save Data Pointers message, but 1342 * only if we've actually been into a data phase to change them. This 1343 * protects against bogus data in scratch ram and the residual counts 1344 * since they are only initialized when we go into data_in or data_out. 1345 * Ack the message as soon as possible. 1346 */ 1347SET_SRC_MODE M_DFF1; 1348SET_DST_MODE M_DFF1; 1349mesgin_sdptrs: 1350 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1351 test SEQ_FLAGS, DPHASE jz ITloop; 1352 call save_pointers; 1353 jmp ITloop; 1354 1355save_pointers: 1356 /* 1357 * If we are asked to save our position at the end of the 1358 * transfer, just mark us at the end rather than perform a 1359 * full save. 1360 */ 1361 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1362 or SCB_SGPTR, SG_LIST_NULL ret; 1363 1364save_pointers_full: 1365 /* 1366 * The SCB_DATAPTR becomes the current SHADDR. 1367 * All other information comes directly from our residual 1368 * state. 1369 */ 1370 bmov SCB_DATAPTR, SHADDR, 8; 1371 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1372 1373/* 1374 * Restore pointers message? Data pointers are recopied from the 1375 * SCB anytime we enter a data phase for the first time, so all 1376 * we need to do is clear the DPHASE flag and let the data phase 1377 * code do the rest. We also reset/reallocate the FIFO to make 1378 * sure we have a clean start for the next data or command phase. 1379 */ 1380mesgin_rdptrs: 1381 and SEQ_FLAGS, ~DPHASE; 1382 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1383 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1384 SET_MODE(M_SCSI, M_SCSI) 1385msgin_rdptrs_get_fifo: 1386 call allocate_fifo; 1387 jmp mesgin_done; 1388 1389phase_lock: 1390 if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) { 1391 /* 1392 * Don't ignore persistent REQ assertions just because 1393 * they were asserted within the bus settle delay window. 1394 * This allows us to tolerate devices like the GEM318 1395 * that violate the SCSI spec. We are careful not to 1396 * count REQ while we are waiting for it to fall during 1397 * an async phase due to our asserted ACK. Each 1398 * sequencer instruction takes ~25ns, so the REQ must 1399 * last at least 100ns in order to be counted as a true 1400 * REQ. 1401 */ 1402 test SCSIPHASE, 0xFF jnz phase_locked; 1403 test SCSISIGI, ACKI jnz phase_lock; 1404 test SCSISIGI, REQI jz phase_lock; 1405 test SCSIPHASE, 0xFF jnz phase_locked; 1406 test SCSISIGI, ACKI jnz phase_lock; 1407 test SCSISIGI, REQI jz phase_lock; 1408phase_locked: 1409 } else { 1410 test SCSIPHASE, 0xFF jz .; 1411 } 1412 test SSTAT1, SCSIPERR jnz phase_lock; 1413phase_lock_latch_phase: 1414 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1415 1416/* 1417 * Functions to read data in Automatic PIO mode. 1418 * 1419 * An ACK is not sent on input from the target until SCSIDATL is read from. 1420 * So we wait until SCSIDATL is latched (the usual way), then read the data 1421 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1422 * line, or we just want to acknowledge the byte, then we do a dummy read 1423 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1424 * data byte on the bus until we send our ACK. 1425 * 1426 * The assumption here is that these are called in a particular sequence, 1427 * and that REQ is already set when inb_first is called. inb_{first,next} 1428 * use the same calling convention as inb. 1429 */ 1430inb_next: 1431 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1432inb_next_wait: 1433 /* 1434 * If there is a parity error, wait for the kernel to 1435 * see the interrupt and prepare our message response 1436 * before continuing. 1437 */ 1438 test SCSIPHASE, 0xFF jz .; 1439 test SSTAT1, SCSIPERR jnz inb_next_wait; 1440inb_next_check_phase: 1441 and LASTPHASE, PHASE_MASK, SCSISIGI; 1442 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1443inb_first: 1444 clr DINDEX[1]; 1445 mov DINDEX,SINDEX; 1446 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1447inb_last: 1448 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1449 1450mk_mesg: 1451 mvi SCSISIGO, ATNO; 1452 mov MSG_OUT,SINDEX ret; 1453 1454SET_SRC_MODE M_DFF1; 1455SET_DST_MODE M_DFF1; 1456disable_ccsgen: 1457 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; 1458 clr CCSGCTL; 1459disable_ccsgen_fetch_done: 1460 clr SG_STATE ret; 1461 1462service_fifo: 1463 /* 1464 * Do we have any prefetch left??? 1465 */ 1466 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1467 1468 /* 1469 * Can this FIFO have access to the S/G cache yet? 1470 */ 1471 test CCSGCTL, SG_CACHE_AVAIL jz return; 1472 1473 /* Did we just finish fetching segs? */ 1474 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete; 1475 1476 /* Are we actively fetching segments? */ 1477 test CCSGCTL, CCSGENACK jnz return; 1478 1479 /* 1480 * Should the other FIFO get the S/G cache first? If 1481 * both FIFOs have been allocated since we last checked 1482 * any FIFO, it is important that we service a FIFO 1483 * that is not actively on the bus first. This guarantees 1484 * that a FIFO will be freed to handle snapshot requests for 1485 * any FIFO that is still on the bus. Chips with RTI do not 1486 * perform snapshots, so don't bother with this test there. 1487 */ 1488 if ((ahd->features & AHD_RTI) == 0) { 1489 /* 1490 * If we're not still receiving SCSI data, 1491 * it is safe to allocate the S/G cache to 1492 * this FIFO. 1493 */ 1494 test DFCNTRL, SCSIEN jz idle_sgfetch_start; 1495 1496 /* 1497 * Switch to the other FIFO. Non-RTI chips 1498 * also have the "set mode" bug, so we must 1499 * disable interrupts during the switch. 1500 */ 1501 mvi SEQINTCTL, INTVEC1DSL; 1502 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1503 1504 /* 1505 * If the other FIFO needs loading, then it 1506 * must not have claimed the S/G cache yet 1507 * (SG_CACHE_AVAIL would have been cleared in 1508 * the original FIFO mode and we test this above). 1509 * Return to the idle loop so we can process the 1510 * FIFO not currently on the bus first. 1511 */ 1512 test SG_STATE, LOADING_NEEDED jz idle_sgfetch_okay; 1513 clr SEQINTCTL ret; 1514idle_sgfetch_okay: 1515 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1516 clr SEQINTCTL; 1517 } 1518 1519idle_sgfetch_start: 1520 /* 1521 * We fetch a "cacheline aligned" and sized amount of data 1522 * so we don't end up referencing a non-existant page. 1523 * Cacheline aligned is in quotes because the kernel will 1524 * set the prefetch amount to a reasonable level if the 1525 * cacheline size is unknown. 1526 */ 1527 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4; 1528 mvi SGHCNT, SG_PREFETCH_CNT; 1529 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) { 1530 /* 1531 * Need two instructions between "touches" of SGHADDR. 1532 */ 1533 nop; 1534 } 1535 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1536 mvi CCSGCTL, CCSGEN|CCSGRESET; 1537 or SG_STATE, FETCH_INPROG ret; 1538idle_sgfetch_complete: 1539 /* 1540 * Guard against SG_CACHE_AVAIL activating during sg fetch 1541 * request in the other FIFO. 1542 */ 1543 test SG_STATE, FETCH_INPROG jz return; 1544 clr CCSGCTL; 1545 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1546 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1547idle_sg_avail: 1548 /* Does the hardware have space for another SG entry? */ 1549 test DFSTATUS, PRELOAD_AVAIL jz return; 1550 /* 1551 * On the A, preloading a segment before HDMAENACK 1552 * comes true can clobber the shadow address of the 1553 * first segment in the S/G FIFO. Wait until it is 1554 * safe to proceed. 1555 */ 1556 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) { 1557 test DFCNTRL, HDMAENACK jz return; 1558 } 1559 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1560 bmov HADDR, CCSGRAM, 8; 1561 } else { 1562 bmov HADDR, CCSGRAM, 4; 1563 } 1564 bmov HCNT, CCSGRAM, 3; 1565 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1566 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1567 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1568 } 1569 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1570 /* Skip 4 bytes of pad. */ 1571 add CCSGADDR, 4; 1572 } 1573sg_advance: 1574 clr A; /* add sizeof(struct scatter) */ 1575 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1576 adc SCB_RESIDUAL_SGPTR[1],A; 1577 adc SCB_RESIDUAL_SGPTR[2],A; 1578 adc SCB_RESIDUAL_SGPTR[3],A; 1579 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1580 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1581 or SINDEX, LAST_SEG; 1582 clr SG_STATE; 1583 mov SG_CACHE_PRE, SINDEX; 1584 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { 1585 /* 1586 * Use SCSIENWRDIS so that SCSIEN is never 1587 * modified by this operation. 1588 */ 1589 or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS; 1590 } else { 1591 or DFCNTRL, PRELOADEN|HDMAEN; 1592 } 1593 /* 1594 * Do we have another segment in the cache? 1595 */ 1596 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1597 jnc return; 1598 and SG_STATE, ~SEGS_AVAIL ret; 1599 1600/* 1601 * Initialize the DMA address and counter from the SCB. 1602 */ 1603load_first_seg: 1604 bmov HADDR, SCB_DATAPTR, 11; 1605 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0]; 1606 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1607 or REG_ISR, LAST_SEG; 1608 mov SG_CACHE_PRE, REG_ISR; 1609 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1610 /* 1611 * Since we've are entering a data phase, we will 1612 * rely on the SCB_RESID* fields. Initialize the 1613 * residual and clear the full residual flag. 1614 */ 1615 and SCB_SGPTR[0], ~SG_FULL_RESID; 1616 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1617 /* If we need more S/G elements, tell the idle loop */ 1618 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1619 mvi SG_STATE, LOADING_NEEDED ret; 1620 clr SG_STATE ret; 1621 1622p_data_handle_xfer: 1623 call setjmp; 1624 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1625p_data_clear_handler: 1626 or LONGJMP_ADDR[1], INVALID_ADDR ret; 1627 1628p_data: 1629 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1630 SET_SEQINTCODE(PROTO_VIOLATION) 1631p_data_allowed: 1632 1633 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1634 1635 /* 1636 * If we re-enter the data phase after going through another 1637 * phase, our transfer location has almost certainly been 1638 * corrupted by the interveining, non-data, transfers. Ask 1639 * the host driver to fix us up based on the transfer residual 1640 * unless we already know that we should be bitbucketing. 1641 */ 1642 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1643 SET_SEQINTCODE(PDATA_REINIT) 1644 jmp data_phase_inbounds; 1645 1646p_data_bitbucket: 1647 /* 1648 * Turn on `Bit Bucket' mode, wait until the target takes 1649 * us to another phase, and then notify the host. 1650 */ 1651 mov SAVED_MODE, MODE_PTR; 1652 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1653 jnz bitbucket_not_m_dff; 1654 /* 1655 * Ensure that any FIFO contents are cleared out and the 1656 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1657 * doesn't discard data already in the FIFO. 1658 */ 1659 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1660 SET_MODE(M_SCSI, M_SCSI) 1661bitbucket_not_m_dff: 1662 or SXFRCTL1,BITBUCKET; 1663 /* Wait for non-data phase. */ 1664 test SCSIPHASE, ~DATA_PHASE_MASK jz .; 1665 and SXFRCTL1, ~BITBUCKET; 1666 RESTORE_MODE(SAVED_MODE) 1667SET_SRC_MODE M_DFF1; 1668SET_DST_MODE M_DFF1; 1669 SET_SEQINTCODE(DATA_OVERRUN) 1670 jmp ITloop; 1671 1672data_phase_initialize: 1673 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1674 call load_first_seg; 1675data_phase_inbounds: 1676 /* We have seen a data phase at least once. */ 1677 or SEQ_FLAGS, DPHASE; 1678 mov SAVED_MODE, MODE_PTR; 1679 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop; 1680 call p_data_handle_xfer; 1681data_group_dma_loop: 1682 /* 1683 * The transfer is complete if either the last segment 1684 * completes or the target changes phase. Both conditions 1685 * will clear SCSIEN. 1686 */ 1687 call idle_loop_service_fifos; 1688 call idle_loop_cchan; 1689 call idle_loop_gsfifo; 1690 RESTORE_MODE(SAVED_MODE) 1691 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1692 1693data_group_dmafinish: 1694 /* 1695 * The transfer has terminated either due to a phase 1696 * change, and/or the completion of the last segment. 1697 * We have two goals here. Do as much other work 1698 * as possible while the data fifo drains on a read 1699 * and respond as quickly as possible to the standard 1700 * messages (save data pointers/disconnect and command 1701 * complete) that usually follow a data phase. 1702 */ 1703 call calc_residual; 1704 1705 /* 1706 * Go ahead and shut down the DMA engine now. 1707 */ 1708 test DFCNTRL, DIRECTION jnz data_phase_finish; 1709data_group_fifoflush: 1710 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1711 or DFCNTRL, FIFOFLUSH; 1712 } 1713 /* 1714 * We have enabled the auto-ack feature. This means 1715 * that the controller may have already transferred 1716 * some overrun bytes into the data FIFO and acked them 1717 * on the bus. The only way to detect this situation is 1718 * to wait for LAST_SEG_DONE to come true on a completed 1719 * transfer and then test to see if the data FIFO is 1720 * non-empty. We know there is more data yet to transfer 1721 * if SG_LIST_NULL is not yet set, thus there cannot be 1722 * an overrun. 1723 */ 1724 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1725 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1726 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1727 /* Overrun */ 1728 jmp p_data; 1729data_phase_finish: 1730 /* 1731 * If the target has left us in data phase, loop through 1732 * the dma code again. We will only loop if there is a 1733 * data overrun. 1734 */ 1735 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1736 test SSTAT0, TARGET jnz data_phase_done; 1737 } 1738 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1739 test SSTAT1, REQINIT jz .; 1740 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1741 } 1742 1743data_phase_done: 1744 /* Kill off any pending prefetch */ 1745 call disable_ccsgen; 1746 or LONGJMP_ADDR[1], INVALID_ADDR; 1747 1748 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1749 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1750 /* 1751 and SEQ_FLAGS, ~DPHASE_PENDING; 1752 * For data-in phases, wait for any pending acks from the 1753 * initiator before changing phase. We only need to 1754 * send Ignore Wide Residue messages for data-in phases. 1755 test DFCNTRL, DIRECTION jz target_ITloop; 1756 test SSTAT1, REQINIT jnz .; 1757 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop; 1758 SET_MODE(M_SCSI, M_SCSI) 1759 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1760 */ 1761 /* 1762 * Issue an Ignore Wide Residue Message. 1763 mvi P_MESGIN|BSYO call change_phase; 1764 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1765 mvi 1 call target_outb; 1766 jmp target_ITloop; 1767 */ 1768 } else { 1769 jmp ITloop; 1770 } 1771 1772/* 1773 * We assume that, even though data may still be 1774 * transferring to the host, that the SCSI side of 1775 * the DMA engine is now in a static state. This 1776 * allows us to update our notion of where we are 1777 * in this transfer. 1778 * 1779 * If, by chance, we stopped before being able 1780 * to fetch additional segments for this transfer, 1781 * yet the last S/G was completely exhausted, 1782 * call our idle loop until it is able to load 1783 * another segment. This will allow us to immediately 1784 * pickup on the next segment on the next data phase. 1785 * 1786 * If we happened to stop on the last segment, then 1787 * our residual information is still correct from 1788 * the idle loop and there is no need to perform 1789 * any fixups. 1790 */ 1791residual_before_last_seg: 1792 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1793 /* 1794 * Can never happen from an interrupt as the packetized 1795 * hardware will only interrupt us once SHVALID or 1796 * LAST_SEG_DONE. 1797 */ 1798 call idle_loop_service_fifos; 1799 RESTORE_MODE(SAVED_MODE) 1800 /* FALLTHROUGH */ 1801calc_residual: 1802 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1803 /* Record if we've consumed all S/G entries */ 1804 test MDFFSTAT, SHVALID jz . + 2; 1805 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1806 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1807 1808sgptr_fixup: 1809 /* 1810 * Fixup the residual next S/G pointer. The S/G preload 1811 * feature of the chip allows us to load two elements 1812 * in addition to the currently active element. We 1813 * store the bottom byte of the next S/G pointer in 1814 * the SG_CACHE_PTR register so we can restore the 1815 * correct value when the DMA completes. If the next 1816 * sg ptr value has advanced to the point where higher 1817 * bytes in the address have been affected, fix them 1818 * too. 1819 */ 1820 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1821 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1822 add SCB_RESIDUAL_SGPTR[1], -1; 1823 adc SCB_RESIDUAL_SGPTR[2], -1; 1824 adc SCB_RESIDUAL_SGPTR[3], -1; 1825sgptr_fixup_done: 1826 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1827 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1828 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1829 1830export timer_isr: 1831 call issue_cmdcmplt; 1832 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 1833 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 1834 /* 1835 * In H2A4, the mode pointer is not saved 1836 * for intvec2, but is restored on iret. 1837 * This can lead to the restoration of a 1838 * bogus mode ptr. Manually clear the 1839 * intmask bits and do a normal return 1840 * to compensate. 1841 */ 1842 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret; 1843 } else { 1844 or SEQINTCTL, IRET ret; 1845 } 1846 1847export seq_isr: 1848 if ((ahd->features & AHD_RTI) == 0) { 1849 /* 1850 * On RevA Silicon, if the target returns us to data-out 1851 * after we have already trained for data-out, it is 1852 * possible for us to transition the free running clock to 1853 * data-valid before the required 100ns P1 setup time (8 P1 1854 * assertions in fast-160 mode). This will only happen if 1855 * this L-Q is a continuation of a data transfer for which 1856 * we have already prefetched data into our FIFO (LQ/Data 1857 * followed by LQ/Data for the same write transaction). 1858 * This can cause some target implementations to miss the 1859 * first few data transfers on the bus. We detect this 1860 * situation by noticing that this is the first data transfer 1861 * after an LQ (LQIWORKONLQ true), that the data transfer is 1862 * a continuation of a transfer already setup in our FIFO 1863 * (SAVEPTRS interrupt), and that the transaction is a write 1864 * (DIRECTION set in DFCNTRL). The delay is performed by 1865 * disabling SCSIEN until we see the first REQ from the 1866 * target. 1867 * 1868 * First instruction in an ISR cannot be a branch on 1869 * Rev A. Snapshot LQISTAT2 so the status is not missed 1870 * and deffer the test by one instruction. 1871 */ 1872 mov REG_ISR, LQISTAT2; 1873 test REG_ISR, LQIWORKONLQ jz main_isr; 1874 test SEQINTSRC, SAVEPTRS jz main_isr; 1875 test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo; 1876 /* 1877 * Switch to the active FIFO after clearing the snapshot 1878 * savepointer in the current FIFO. We do this so that 1879 * a pending CTXTDONE or SAVEPTR is visible in the active 1880 * FIFO. This status is the only way we can detect if we 1881 * have lost the race (e.g. host paused us) and our attempts 1882 * to disable the channel occurred after all REQs were 1883 * already seen and acked (REQINIT never comes true). 1884 */ 1885 mvi DFFSXFRCTL, CLRCHN; 1886 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1887 test DFCNTRL, DIRECTION jz interrupt_return; 1888 and DFCNTRL, ~SCSIEN; 1889snapshot_wait_data_valid: 1890 test SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz interrupt_return; 1891 test SSTAT1, REQINIT jz snapshot_wait_data_valid; 1892snapshot_data_valid: 1893 or DFCNTRL, SCSIEN; 1894 or SEQINTCTL, IRET ret; 1895snapshot_saveptr: 1896 mvi DFFSXFRCTL, CLRCHN; 1897 or SEQINTCTL, IRET ret; 1898main_isr: 1899 } 1900 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1901 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1902 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1903 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1904 SET_SEQINTCODE(INVALID_SEQINT) 1905 1906/* 1907 * There are two types of save pointers interrupts: 1908 * The first is a snapshot save pointers where the current FIFO is not 1909 * active and contains a snapshot of the current poniter information. 1910 * This happens between packets in a stream for a single L_Q. Since we 1911 * are not performing a pointer save, we can safely clear the channel 1912 * so it can be used for other transactions. On RTI capable controllers, 1913 * where snapshots can, and are, disabled, the code to handle this type 1914 * of snapshot is not active. 1915 * 1916 * The second case is a save pointers on an active FIFO which occurs 1917 * if the target changes to a new L_Q or busfrees/QASes and the transfer 1918 * has a residual. This should occur coincident with a ctxtdone. We 1919 * disable the interrupt and allow our active routine to handle the 1920 * save. 1921 */ 1922saveptr_intr: 1923 if ((ahd->features & AHD_RTI) == 0) { 1924 test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr; 1925 } 1926saveptr_active_fifo: 1927 and SEQIMODE, ~ENSAVEPTRS; 1928 or SEQINTCTL, IRET ret; 1929 1930cfg4data_intr: 1931 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count; 1932 call load_first_seg; 1933 call pkt_handle_xfer; 1934 inc SCB_FIFO_USE_COUNT; 1935interrupt_return: 1936 or SEQINTCTL, IRET ret; 1937 1938cfg4istat_intr: 1939 call freeze_queue; 1940 add NONE, -13, SCB_CDB_LEN; 1941 jnc cfg4istat_have_sense_addr; 1942 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1943 /* 1944 * Host sets up address/count and enables transfer. 1945 */ 1946 SET_SEQINTCODE(CFG4ISTAT_INTR) 1947 jmp cfg4istat_setup_handler; 1948cfg4istat_have_sense_addr: 1949 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1950 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1951 mvi SG_CACHE_PRE, LAST_SEG; 1952 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1953cfg4istat_setup_handler: 1954 /* 1955 * Status pkt is transferring to host. 1956 * Wait in idle loop for transfer to complete. 1957 * If a command completed before an attempted 1958 * task management function completed, notify the host. 1959 */ 1960 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func; 1961 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 1962cfg4istat_no_taskmgmt_func: 1963 call pkt_handle_status; 1964 or SEQINTCTL, IRET ret; 1965 1966cfg4icmd_intr: 1967 /* 1968 * In the case of DMAing a CDB from the host, the normal 1969 * CDB buffer is formatted with an 8 byte address followed 1970 * by a 1 byte count. 1971 */ 1972 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 1973 mvi SG_CACHE_PRE, LAST_SEG; 1974 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1975 call pkt_handle_cdb; 1976 or SEQINTCTL, IRET ret; 1977 1978/* 1979 * See if the target has gone on in this context creating an 1980 * overrun condition. For the write case, the hardware cannot 1981 * ack bytes until data are provided. So, if the target begins 1982 * another packet without changing contexts, implying we are 1983 * not sitting on a packet boundary, we are in an overrun 1984 * situation. For the read case, the hardware will continue to 1985 * ack bytes into the FIFO, and may even ack the last overrun packet 1986 * into the FIFO. If the FIFO should become non-empty, we are in 1987 * a read overrun case. 1988 */ 1989#define check_overrun \ 1990 /* Not on a packet boundary. */ \ 1991 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1992 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1993 1994pkt_handle_xfer: 1995 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1996 call setjmp; 1997 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1998 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1999 test SCSISIGO, ATNO jnz . + 2; 2000 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 2001 /* 2002 * Defer handling of this NONPACKREQ until we 2003 * can be sure it pertains to this FIFO. SAVEPTRS 2004 * will not be asserted if the NONPACKREQ is for us, 2005 * so we must simulate it if shadow is valid. If 2006 * shadow is not valid, keep running this FIFO until we 2007 * have satisfied the transfer by loading segments and 2008 * waiting for either shadow valid or last_seg_done. 2009 */ 2010 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 2011pkt_service_fifo: 2012 test SG_STATE, LOADING_NEEDED jnz service_fifo; 2013pkt_last_seg: 2014 call setjmp; 2015 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 2016 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done; 2017 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 2018 test SCSISIGO, ATNO jnz . + 2; 2019 test SSTAT2, NONPACKREQ jz return; 2020 test MDFFSTAT, SHVALID jz return; 2021 /* FALLTHROUGH */ 2022 2023/* 2024 * Either a SAVEPTRS interrupt condition is pending for this FIFO 2025 * or we have a pending NONPACKREQ for this FIFO. We differentiate 2026 * between the two by capturing the state of the SAVEPTRS interrupt 2027 * prior to clearing this status and executing the common code for 2028 * these two cases. 2029 */ 2030pkt_saveptrs: 2031BEGIN_CRITICAL; 2032 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 2033 or DFCNTRL, FIFOFLUSH; 2034 } 2035 mov REG0, SEQINTSRC; 2036 call calc_residual; 2037 call save_pointers; 2038 mvi CLRSEQINTSRC, CLRSAVEPTRS; 2039 call disable_ccsgen; 2040 or SEQIMODE, ENSAVEPTRS; 2041 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status; 2042 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status; 2043 /* 2044 * Keep a handler around for this FIFO until it drains 2045 * to the host to guarantee that we don't complete the 2046 * command to the host before the data arrives. 2047 */ 2048pkt_saveptrs_wait_fifoemp: 2049 call setjmp; 2050 test DFSTATUS, FIFOEMP jz return; 2051pkt_saveptrs_check_status: 2052 or LONGJMP_ADDR[1], INVALID_ADDR; 2053 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 2054 dec SCB_FIFO_USE_COUNT; 2055 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2056 mvi DFFSXFRCTL, CLRCHN ret; 2057 2058/* 2059 * LAST_SEG_DONE status has been seen in the current FIFO. 2060 * This indicates that all of the allowed data for this 2061 * command has transferred across the SCSI and host buses. 2062 * Check for overrun and see if we can complete this command. 2063 */ 2064pkt_last_seg_done: 2065 /* 2066 * Mark transfer as completed. 2067 */ 2068 or SCB_SGPTR, SG_LIST_NULL; 2069 2070 /* 2071 * Wait for the current context to finish to verify that 2072 * no overrun condition has occurred. 2073 */ 2074 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 2075 call setjmp; 2076pkt_wait_ctxt_done_loop: 2077 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 2078 /* 2079 * A sufficiently large overrun or a NONPACKREQ may 2080 * prevent CTXTDONE from ever asserting, so we must 2081 * poll for these statuses too. 2082 */ 2083 check_overrun; 2084 test SSTAT2, NONPACKREQ jz return; 2085 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 2086 /* FALLTHROUGH */ 2087 2088pkt_ctxt_done: 2089 check_overrun; 2090 or LONGJMP_ADDR[1], INVALID_ADDR; 2091 /* 2092 * If status has been received, it is safe to skip 2093 * the check to see if another FIFO is active because 2094 * LAST_SEG_DONE has been observed. However, we check 2095 * the FIFO anyway since it costs us only one extra 2096 * instruction to leverage common code to perform the 2097 * SCB completion. 2098 */ 2099 dec SCB_FIFO_USE_COUNT; 2100 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2101 mvi DFFSXFRCTL, CLRCHN ret; 2102END_CRITICAL; 2103 2104/* 2105 * Must wait until CDB xfer is over before issuing the 2106 * clear channel. 2107 */ 2108pkt_handle_cdb: 2109 call setjmp; 2110 test SG_CACHE_SHADOW, LAST_SEG_DONE jz return; 2111 or LONGJMP_ADDR[1], INVALID_ADDR; 2112 mvi DFFSXFRCTL, CLRCHN ret; 2113 2114/* 2115 * Watch over the status transfer. Our host sense buffer is 2116 * large enough to take the maximum allowed status packet. 2117 * None-the-less, we must still catch and report overruns to 2118 * the host. Additionally, properly catch unexpected non-packet 2119 * phases that are typically caused by CRC errors in status packet 2120 * transmission. 2121 */ 2122pkt_handle_status: 2123 call setjmp; 2124 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 2125 test SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq; 2126 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 2127pkt_status_IU_done: 2128 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 2129 or DFCNTRL, FIFOFLUSH; 2130 } 2131 test DFSTATUS, FIFOEMP jz return; 2132BEGIN_CRITICAL; 2133 or LONGJMP_ADDR[1], INVALID_ADDR; 2134 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 2135 or SCB_CONTROL, STATUS_RCVD; 2136 jmp pkt_complete_scb_if_fifos_idle; 2137END_CRITICAL; 2138pkt_status_check_overrun: 2139 /* 2140 * Status PKT overruns are unceremoniously recovered with a 2141 * bus reset. If we've overrun, let the host know so that 2142 * recovery can be performed. 2143 * 2144 * LAST_SEG_DONE has been observed. If either CTXTDONE or 2145 * a NONPACKREQ phase change have occurred and the FIFO is 2146 * empty, there is no overrun. 2147 */ 2148 test DFSTATUS, FIFOEMP jz pkt_status_report_overrun; 2149 test SEQINTSRC, CTXTDONE jz . + 2; 2150 test DFSTATUS, FIFOEMP jnz pkt_status_IU_done; 2151 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 2152 test DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq; 2153pkt_status_report_overrun: 2154 SET_SEQINTCODE(STATUS_OVERRUN) 2155 /* SEQUENCER RESTARTED */ 2156pkt_status_check_nonpackreq: 2157 /* 2158 * CTXTDONE may be held off if a NONPACKREQ is associated with 2159 * the current context. If a NONPACKREQ is observed, decide 2160 * if it is for the current context. If it is for the current 2161 * context, we must defer NONPACKREQ processing until all data 2162 * has transferred to the host. 2163 */ 2164 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 2165 test SCSISIGO, ATNO jnz . + 2; 2166 test SSTAT2, NONPACKREQ jz return; 2167 test SEQINTSRC, CTXTDONE jnz pkt_status_IU_done; 2168 test DFSTATUS, FIFOEMP jz return; 2169 /* 2170 * The unexpected nonpkt phase handler assumes that any 2171 * data channel use will have a FIFO reference count. It 2172 * turns out that the status handler doesn't need a references 2173 * count since the status received flag, and thus completion 2174 * processing, cannot be set until the handler is finished. 2175 * We increment the count here to make the nonpkt handler 2176 * happy. 2177 */ 2178 inc SCB_FIFO_USE_COUNT; 2179 /* FALLTHROUGH */ 2180 2181/* 2182 * Nonpackreq is a polled status. It can come true in three situations: 2183 * we have received an L_Q, we have sent one or more L_Qs, or there is no 2184 * L_Q context associated with this REQ (REQ occurs immediately after a 2185 * (re)selection). Routines that know that the context responsible for this 2186 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 2187 * top level idle loop, we exhaust all active contexts prior to determining that 2188 * we simply do not have the full I_T_L_Q for this phase. 2189 */ 2190unexpected_nonpkt_phase_find_ctxt: 2191 /* 2192 * This nonpackreq is most likely associated with one of the tags 2193 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 2194 * nonpackreq if we've cleared out the FIFOs and handled any 2195 * pending SELDO. 2196 */ 2197SET_SRC_MODE M_SCSI; 2198SET_DST_MODE M_SCSI; 2199 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 2200 cmp A, FIFO1FREE|FIFO0FREE jne return; 2201 test SSTAT0, SELDO jnz return; 2202 mvi SCBPTR[1], SCB_LIST_NULL; 2203unexpected_nonpkt_phase: 2204 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 2205 jnz unexpected_nonpkt_mode_cleared; 2206SET_SRC_MODE M_DFF0; 2207SET_DST_MODE M_DFF0; 2208 or LONGJMP_ADDR[1], INVALID_ADDR; 2209 dec SCB_FIFO_USE_COUNT; 2210 mvi DFFSXFRCTL, CLRCHN; 2211unexpected_nonpkt_mode_cleared: 2212 mvi CLRSINT2, CLRNONPACKREQ; 2213 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 2214 /* 2215 * Test to ensure that the bus has not 2216 * already gone free prior to clearing 2217 * any stale busfree status. This avoids 2218 * a window whereby a busfree just after 2219 * a selection could be missed. 2220 */ 2221 test SCSISIGI, BSYI jz . + 2; 2222 mvi CLRSINT1,CLRBUSFREE; 2223 or SIMODE1, ENBUSFREE; 2224 } 2225 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 2226 SET_SEQINTCODE(ENTERING_NONPACK) 2227 jmp ITloop; 2228 2229illegal_phase: 2230 SET_SEQINTCODE(ILLEGAL_PHASE) 2231 jmp ITloop; 2232 2233/* 2234 * We have entered an overrun situation. If we have working 2235 * BITBUCKET, flip that on and let the hardware eat any overrun 2236 * data. Otherwise use an overrun buffer in the host to simulate 2237 * BITBUCKET. 2238 */ 2239pkt_handle_overrun_inc_use_count: 2240 inc SCB_FIFO_USE_COUNT; 2241pkt_handle_overrun: 2242 SET_SEQINTCODE(CFG4OVERRUN) 2243 call freeze_queue; 2244 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 2245 or DFFSXFRCTL, DFFBITBUCKET; 2246SET_SRC_MODE M_DFF1; 2247SET_DST_MODE M_DFF1; 2248 } else { 2249 call load_overrun_buf; 2250 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 2251 } 2252 call setjmp; 2253 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2254 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done; 2255 call load_overrun_buf; 2256 or DFCNTRL, PRELOADEN; 2257overrun_load_done: 2258 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 2259 } else { 2260 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end; 2261 } 2262 test SSTAT2, NONPACKREQ jz return; 2263pkt_overrun_end: 2264 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 2265 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 2266 dec SCB_FIFO_USE_COUNT; 2267 or LONGJMP_ADDR[1], INVALID_ADDR; 2268 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2269 mvi DFFSXFRCTL, CLRCHN ret; 2270 2271if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2272load_overrun_buf: 2273 /* 2274 * Load a dummy segment if preload space is available. 2275 */ 2276 mov HADDR[0], SHARED_DATA_ADDR; 2277 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 2278 mov ACCUM_SAVE, A; 2279 clr A; 2280 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 2281 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 2282 mov A, ACCUM_SAVE; 2283 bmov HADDR[4], ALLZEROS, 4; 2284 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 2285 clr HCNT[0]; 2286 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 2287 clr HCNT[2] ret; 2288} 2289