1/* 2 * Adaptec U320 device driver firmware for Linux and FreeBSD. 3 * 4 * Copyright (c) 1994-2001 Justin T. Gibbs. 5 * Copyright (c) 2000-2002 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 * 40 * $FreeBSD$ 41 */ 42 43VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#107 $" 44PATCH_ARG_LIST = "struct ahd_softc *ahd" 45PREFIX = "ahd_" 46 47#include "aic79xx.reg" 48#include "scsi_message.h" 49 50restart: 51if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 52 test SEQINTCODE, 0xFF jz idle_loop; 53 SET_SEQINTCODE(NO_SEQINT) 54} 55 56idle_loop: 57 58 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 59 /* 60 * Convert ERROR status into a sequencer 61 * interrupt to handle the case of an 62 * interrupt collision on the hardware 63 * setting of HWERR. 64 */ 65 test ERROR, 0xFF jz no_error_set; 66 SET_SEQINTCODE(SAW_HWERR) 67no_error_set: 68 } 69 SET_MODE(M_SCSI, M_SCSI) 70 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 71 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus; 72 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 73 /* 74 * ENSELO is cleared by a SELDO, so we must test for SELDO 75 * one last time. 76 */ 77BEGIN_CRITICAL; 78 test SSTAT0, SELDO jnz select_out; 79END_CRITICAL; 80 call start_selection; 81idle_loop_checkbus: 82BEGIN_CRITICAL; 83 test SSTAT0, SELDO jnz select_out; 84END_CRITICAL; 85 test SSTAT0, SELDI jnz select_in; 86 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 87 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 88 call unexpected_nonpkt_phase_find_ctxt; 89idle_loop_check_nonpackreq: 90 test SSTAT2, NONPACKREQ jz . + 2; 91 call unexpected_nonpkt_phase_find_ctxt; 92 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 93 /* 94 * On Rev A. hardware, the busy LED is only 95 * turned on automaically during selections 96 * and re-selections. Make the LED status 97 * more useful by forcing it to be on so 98 * long as one of our data FIFOs is active. 99 */ 100 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 101 cmp A, FIFO0FREE|FIFO1FREE jne . + 3; 102 and SBLKCTL, ~DIAGLEDEN|DIAGLEDON; 103 jmp . + 2; 104 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 105 } 106 call idle_loop_gsfifo_in_scsi_mode; 107 call idle_loop_service_fifos; 108 call idle_loop_cchan; 109 jmp idle_loop; 110 111idle_loop_gsfifo: 112 SET_MODE(M_SCSI, M_SCSI) 113BEGIN_CRITICAL; 114idle_loop_gsfifo_in_scsi_mode: 115 test LQISTAT2, LQIGSAVAIL jz return; 116 /* 117 * We have received good status for this transaction. There may 118 * still be data in our FIFOs draining to the host. Complete 119 * the SCB only if all data has transferred to the host. 120 */ 121good_status_IU_done: 122 bmov SCBPTR, GSFIFO, 2; 123 clr SCB_SCSI_STATUS; 124 /* 125 * If a command completed before an attempted task management 126 * function completed, notify the host after disabling any 127 * pending select-outs. 128 */ 129 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally; 130 test SSTAT0, SELDO|SELINGO jnz . + 2; 131 and SCSISEQ0, ~ENSELO; 132 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 133gsfifo_complete_normally: 134 or SCB_CONTROL, STATUS_RCVD; 135 136 /* 137 * Since this status did not consume a FIFO, we have to 138 * be a bit more dilligent in how we check for FIFOs pertaining 139 * to this transaction. There are two states that a FIFO still 140 * transferring data may be in. 141 * 142 * 1) Configured and draining to the host, with a FIFO handler. 143 * 2) Pending cfg4data, fifo not empty. 144 * 145 * Case 1 can be detected by noticing a non-zero FIFO active 146 * count in the SCB. In this case, we allow the routine servicing 147 * the FIFO to complete the SCB. 148 * 149 * Case 2 implies either a pending or yet to occur save data 150 * pointers for this same context in the other FIFO. So, if 151 * we detect case 1, we will properly defer the post of the SCB 152 * and achieve the desired result. The pending cfg4data will 153 * notice that status has been received and complete the SCB. 154 */ 155 test SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode; 156 call complete; 157END_CRITICAL; 158 jmp idle_loop_gsfifo_in_scsi_mode; 159 160idle_loop_service_fifos: 161 SET_MODE(M_DFF0, M_DFF0) 162BEGIN_CRITICAL; 163 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 164 call longjmp; 165END_CRITICAL; 166idle_loop_next_fifo: 167 SET_MODE(M_DFF1, M_DFF1) 168BEGIN_CRITICAL; 169 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp; 170END_CRITICAL; 171return: 172 ret; 173 174idle_loop_cchan: 175 SET_MODE(M_CCHAN, M_CCHAN) 176 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty; 177 or QOFF_CTLSTA, HS_MAILBOX_ACT; 178 mov LOCAL_HS_MAILBOX, HS_MAILBOX; 179hs_mailbox_empty: 180BEGIN_CRITICAL; 181 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 182 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 183 test CCSCBCTL, CCSCBDONE jz return; 184 /* FALLTHROUGH */ 185scbdma_tohost_done: 186 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 187 /* 188 * An SCB has been succesfully uploaded to the host. 189 * If the SCB was uploaded for some reason other than 190 * bad SCSI status (currently only for underruns), we 191 * queue the SCB for normal completion. Otherwise, we 192 * wait until any select-out activity has halted, and 193 * then queue the completion. 194 */ 195 test SCB_SCSI_STATUS, 0xff jz scbdma_queue_completion; 196 SET_MODE(M_SCSI, M_SCSI) 197 test SCSISEQ0, ENSELO jnz return; 198 test SSTAT0, (SELDO|SELINGO) jnz return; 199 SET_MODE(M_CCHAN, M_CCHAN) 200scbdma_queue_completion: 201 and CCSCBCTL, ~(CCARREN|CCSCBEN); 202 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 203 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 204 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 205fill_qoutfifo_dmadone: 206 and CCSCBCTL, ~(CCARREN|CCSCBEN); 207 call qoutfifo_updated; 208 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 209 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 210 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 211 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; 212 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; 213END_CRITICAL; 214 215qoutfifo_updated: 216 /* 217 * If there are more commands waiting to be dma'ed 218 * to the host, always coalesce. Otherwise honor the 219 * host's wishes. 220 */ 221 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 222 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 223 test LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt; 224 225 /* 226 * If we have relatively few commands outstanding, don't 227 * bother waiting for another command to complete. 228 */ 229 test CMDS_PENDING[1], 0xFF jnz coalesce_by_count; 230 /* Add -1 so that jnc means <= not just < */ 231 add A, -1, INT_COALESCING_MINCMDS; 232 add NONE, A, CMDS_PENDING; 233 jnc issue_cmdcmplt; 234 235 /* 236 * If coalescing, only coalesce up to the limit 237 * provided by the host driver. 238 */ 239coalesce_by_count: 240 mov A, INT_COALESCING_MAXCMDS; 241 add NONE, A, INT_COALESCING_CMDCOUNT; 242 jc issue_cmdcmplt; 243 /* 244 * If the timer is not currently active, 245 * fire it up. 246 */ 247 test INTCTL, SWTMINTMASK jz return; 248 bmov SWTIMER, INT_COALESCING_TIMER, 2; 249 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 250 or INTCTL, SWTMINTEN|SWTIMER_START; 251 and INTCTL, ~SWTMINTMASK ret; 252 253issue_cmdcmplt: 254 mvi INTSTAT, CMDCMPLT; 255 clr INT_COALESCING_CMDCOUNT; 256 or INTCTL, SWTMINTMASK ret; 257 258BEGIN_CRITICAL; 259fetch_new_scb_inprog: 260 test CCSCBCTL, ARRDONE jz return; 261fetch_new_scb_done: 262 and CCSCBCTL, ~(CCARREN|CCSCBEN); 263 bmov REG0, SCBPTR, 2; 264 clr A; 265 add CMDS_PENDING, 1; 266 adc CMDS_PENDING[1], A; 267 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { 268 /* 269 * "Short Luns" are not placed into outgoing LQ 270 * packets in the correct byte order. Use a full 271 * sized lun field instead and fill it with the 272 * one byte of lun information we support. 273 */ 274 mov SCB_PKT_LUN[6], SCB_LUN; 275 } 276 /* 277 * The FIFO use count field is shared with the 278 * tag set by the host so that our SCB dma engine 279 * knows the correct location to store the SCB. 280 * Set it to zero before processing the SCB. 281 */ 282 clr SCB_FIFO_USE_COUNT; 283 /* Update the next SCB address to download. */ 284 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 285 mvi SCB_NEXT[1], SCB_LIST_NULL; 286 mvi SCB_NEXT2[1], SCB_LIST_NULL; 287 /* Increment our position in the QINFIFO. */ 288 mov NONE, SNSCB_QOFF; 289 /* 290 * SCBs that want to send messages are always 291 * queued independently. This ensures that they 292 * are at the head of the SCB list to select out 293 * to a target and we will see the MK_MESSAGE flag. 294 */ 295 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb; 296 shr SINDEX, 3, SCB_SCSIID; 297 and SINDEX, ~0x1; 298 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 299 bmov DINDEX, SINDEX, 2; 300 bmov SCBPTR, SINDIR, 2; 301 bmov DINDIR, REG0, 2; 302 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 303 bmov SCB_NEXT, REG0, 2 ret; 304first_new_target_scb: 305 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 306 bmov SCBPTR, WAITING_TID_TAIL, 2; 307 bmov SCB_NEXT2, REG0, 2; 308 bmov WAITING_TID_TAIL, REG0, 2 ret; 309first_new_scb: 310 bmov WAITING_TID_HEAD, REG0, 2; 311 bmov WAITING_TID_TAIL, REG0, 2 ret; 312END_CRITICAL; 313 314scbdma_idle: 315 /* 316 * Give precedence to downloading new SCBs to execute 317 * unless select-outs are currently frozen. 318 */ 319 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2; 320BEGIN_CRITICAL; 321 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 322 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 323 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 324 /* FALLTHROUGH */ 325fill_qoutfifo: 326 /* 327 * Keep track of the SCBs we are dmaing just 328 * in case the DMA fails or is aborted. 329 */ 330 mov A, QOUTFIFO_ENTRY_VALID_TAG; 331 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 332 mvi CCSCBCTL, CCSCBRESET; 333 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 334 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 335fill_qoutfifo_loop: 336 mov CCSCBRAM, SCBPTR; 337 or CCSCBRAM, A, SCBPTR[1]; 338 mov NONE, SDSCB_QOFF; 339 inc INT_COALESCING_CMDCOUNT; 340 add CMDS_PENDING, -1; 341 adc CMDS_PENDING[1], -1; 342 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 343 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 344 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done; 345 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 346 jmp fill_qoutfifo_loop; 347fill_qoutfifo_done: 348 mov SCBHCNT, CCSCBADDR; 349 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 350 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 351 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 352 353fetch_new_scb: 354 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 355 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 356dma_complete_scb: 357 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 358 bmov SCBHADDR, SCB_BUSADDR, 4; 359 mvi CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb; 360END_CRITICAL; 361 362/* 363 * Either post or fetch an SCB from host memory. The caller 364 * is responsible for polling for transfer completion. 365 * 366 * Prerequisits: Mode == M_CCHAN 367 * SINDEX contains CCSCBCTL flags 368 * SCBHADDR set to Host SCB address 369 * SCBPTR set to SCB src location on "push" operations 370 */ 371SET_SRC_MODE M_CCHAN; 372SET_DST_MODE M_CCHAN; 373dma_scb: 374 mvi SCBHCNT, SCB_TRANSFER_SIZE; 375 mov CCSCBCTL, SINDEX ret; 376 377BEGIN_CRITICAL; 378setjmp: 379 bmov LONGJMP_ADDR, STACK, 2 ret; 380setjmp_inline: 381 bmov LONGJMP_ADDR, STACK, 2; 382longjmp: 383 bmov STACK, LONGJMP_ADDR, 2 ret; 384END_CRITICAL; 385 386/*************************** Chip Bug Work Arounds ****************************/ 387/* 388 * Must disable interrupts when setting the mode pointer 389 * register as an interrupt occurring mid update will 390 * fail to store the new mode value for restoration on 391 * an iret. 392 */ 393if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 394set_mode_work_around: 395 mvi SEQINTCTL, INTVEC1DSL; 396 mov MODE_PTR, SINDEX; 397 clr SEQINTCTL ret; 398 399toggle_dff_mode_work_around: 400 mvi SEQINTCTL, INTVEC1DSL; 401 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 402 clr SEQINTCTL ret; 403} 404 405 406if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 407set_seqint_work_around: 408 mov SEQINTCODE, SINDEX; 409 mvi SEQINTCODE, NO_SEQINT ret; 410} 411 412/************************ Packetized LongJmp Routines *************************/ 413SET_SRC_MODE M_SCSI; 414SET_DST_MODE M_SCSI; 415start_selection: 416BEGIN_CRITICAL; 417 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 418 /* 419 * Razor #494 420 * Rev A hardware fails to update LAST/CURR/NEXTSCB 421 * correctly after a packetized selection in several 422 * situations: 423 * 424 * 1) If only one command existed in the queue, the 425 * LAST/CURR/NEXTSCB are unchanged. 426 * 427 * 2) In a non QAS, protocol allowed phase change, 428 * the queue is shifted 1 too far. LASTSCB is 429 * the last SCB that was correctly processed. 430 * 431 * 3) In the QAS case, if the full list of commands 432 * was successfully sent, NEXTSCB is NULL and neither 433 * CURRSCB nor LASTSCB can be trusted. We must 434 * manually walk the list counting MAXCMDCNT elements 435 * to find the last SCB that was sent correctly. 436 * 437 * To simplify the workaround for this bug in SELDO 438 * handling, we initialize LASTSCB prior to enabling 439 * selection so we can rely on it even for case #1 above. 440 */ 441 bmov LASTSCB, WAITING_TID_HEAD, 2; 442 } 443 bmov CURRSCB, WAITING_TID_HEAD, 2; 444 bmov SCBPTR, WAITING_TID_HEAD, 2; 445 shr SELOID, 4, SCB_SCSIID; 446 /* 447 * If we want to send a message to the device, ensure 448 * we are selecting with atn irregardless of our packetized 449 * agreement. Since SPI4 only allows target reset or PPR 450 * messages if this is a packetized connection, the change 451 * to our negotiation table entry for this selection will 452 * be cleared when the message is acted on. 453 */ 454 test SCB_CONTROL, MK_MESSAGE jz . + 3; 455 mov NEGOADDR, SELOID; 456 or NEGCONOPTS, ENAUTOATNO; 457 or SCSISEQ0, ENSELO ret; 458END_CRITICAL; 459 460/* 461 * Allocate a FIFO for a non-packetized transaction. 462 * In RevA hardware, both FIFOs must be free before we 463 * can allocate a FIFO for a non-packetized transaction. 464 */ 465allocate_fifo_loop: 466 /* 467 * Do whatever work is required to free a FIFO. 468 */ 469 call idle_loop_service_fifos; 470 SET_MODE(M_SCSI, M_SCSI) 471allocate_fifo: 472 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) { 473 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 474 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 475 } else { 476 test DFFSTAT, FIFO1FREE jnz allocate_fifo1; 477 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop; 478 mvi DFFSTAT, B_CURRFIFO_0; 479 SET_MODE(M_DFF0, M_DFF0) 480 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 481 } 482SET_SRC_MODE M_SCSI; 483SET_DST_MODE M_SCSI; 484allocate_fifo1: 485 mvi DFFSTAT, CURRFIFO_1; 486 SET_MODE(M_DFF1, M_DFF1) 487 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 488 489/* 490 * We have been reselected as an initiator 491 * or selected as a target. 492 */ 493SET_SRC_MODE M_SCSI; 494SET_DST_MODE M_SCSI; 495select_in: 496 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 497 /* 498 * On Rev A. hardware, the busy LED is only 499 * turned on automaically during selections 500 * and re-selections. Make the LED status 501 * more useful by forcing it to be on from 502 * the point of selection until our idle 503 * loop determines that neither of our FIFOs 504 * are busy. This handles the non-packetized 505 * case nicely as we will not return to the 506 * idle loop until the busfree at the end of 507 * each transaction. 508 */ 509 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 510 } 511 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 512 /* 513 * Test to ensure that the bus has not 514 * already gone free prior to clearing 515 * any stale busfree status. This avoids 516 * a window whereby a busfree just after 517 * a selection could be missed. 518 */ 519 test SCSISIGI, BSYI jz . + 2; 520 mvi CLRSINT1,CLRBUSFREE; 521 or SIMODE1, ENBUSFREE; 522 } 523 or SXFRCTL0, SPIOEN; 524 and SAVED_SCSIID, SELID_MASK, SELID; 525 and A, OID, IOWNID; 526 or SAVED_SCSIID, A; 527 mvi CLRSINT0, CLRSELDI; 528 jmp ITloop; 529 530/* 531 * We have successfully selected out. 532 * 533 * Clear SELDO. 534 * Dequeue all SCBs sent from the waiting queue 535 * Requeue all SCBs *not* sent to the tail of the waiting queue 536 * Take Razor #494 into account for above. 537 * 538 * In Packetized Mode: 539 * Return to the idle loop. Our interrupt handler will take 540 * care of any incoming L_Qs. 541 * 542 * In Non-Packetize Mode: 543 * Continue to our normal state machine. 544 */ 545SET_SRC_MODE M_SCSI; 546SET_DST_MODE M_SCSI; 547select_out: 548BEGIN_CRITICAL; 549 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 550 /* 551 * On Rev A. hardware, the busy LED is only 552 * turned on automaically during selections 553 * and re-selections. Make the LED status 554 * more useful by forcing it to be on from 555 * the point of re-selection until our idle 556 * loop determines that neither of our FIFOs 557 * are busy. This handles the non-packetized 558 * case nicely as we will not return to the 559 * idle loop until the busfree at the end of 560 * each transaction. 561 */ 562 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 563 } 564 /* Clear out all SCBs that have been successfully sent. */ 565 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 566 /* 567 * For packetized, the LQO manager clears ENSELO on 568 * the assertion of SELDO. If we are non-packetized, 569 * LASTSCB and CURRSCB are accurate. 570 */ 571 test SCSISEQ0, ENSELO jnz use_lastscb; 572 573 /* 574 * The update is correct for LQOSTAT1 errors. All 575 * but LQOBUSFREE are handled by kernel interrupts. 576 * If we see LQOBUSFREE, return to the idle loop. 577 * Once we are out of the select_out critical section, 578 * the kernel will cleanup the LQOBUSFREE and we will 579 * eventually restart the selection if appropriate. 580 */ 581 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 582 583 /* 584 * On a phase change oustside of packet boundaries, 585 * LASTSCB points to the currently active SCB context 586 * on the bus. 587 */ 588 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 589 590 /* 591 * If the hardware has traversed the whole list, NEXTSCB 592 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 593 * but MAXCMDCNT is accurate. If we stop part way through 594 * the list or only had one command to issue, NEXTSCB[1] is 595 * not NULL and LASTSCB is the last command to go out. 596 */ 597 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 598 599 /* 600 * Brute force walk. 601 */ 602 bmov SCBPTR, WAITING_TID_HEAD, 2; 603 mvi SEQINTCTL, INTVEC1DSL; 604 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 605 mov A, MAXCMDCNT; 606 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 607 clr SEQINTCTL; 608find_lastscb_loop: 609 dec A; 610 test A, 0xFF jz found_last_sent_scb; 611 bmov SCBPTR, SCB_NEXT, 2; 612 jmp find_lastscb_loop; 613use_lastscb: 614 bmov SCBPTR, LASTSCB, 2; 615found_last_sent_scb: 616 bmov CURRSCB, SCBPTR, 2; 617curscb_ww_done: 618 } else { 619 bmov SCBPTR, CURRSCB, 2; 620 } 621 622 /* 623 * Requeue any SCBs not sent, to the tail of the waiting Q. 624 */ 625 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done; 626 627 /* 628 * We know that neither the per-TID list nor the list of 629 * TIDs is empty. Use this knowledge to our advantage. 630 */ 631 bmov REG0, SCB_NEXT, 2; 632 bmov SCBPTR, WAITING_TID_TAIL, 2; 633 bmov SCB_NEXT2, REG0, 2; 634 bmov WAITING_TID_TAIL, REG0, 2; 635 jmp select_out_inc_tid_q; 636 637select_out_list_done: 638 /* 639 * The whole list made it. Just clear our TID's tail pointer 640 * unless we were queued independently due to our need to 641 * send a message. 642 */ 643 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q; 644 shr DINDEX, 3, SCB_SCSIID; 645 or DINDEX, 1; /* Want only the second byte */ 646 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 647 mvi DINDIR, SCB_LIST_NULL; 648select_out_inc_tid_q: 649 bmov SCBPTR, WAITING_TID_HEAD, 2; 650 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 651 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 652 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 653 bmov SCBPTR, CURRSCB, 2; 654 mvi CLRSINT0, CLRSELDO; 655 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase; 656 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase; 657 658 /* 659 * If this is a packetized connection, return to our 660 * idle_loop and let our interrupt handler deal with 661 * any connection setup/teardown issues. The only 662 * exceptions are the case of MK_MESSAGE and task management 663 * SCBs. 664 */ 665 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 666 /* 667 * In the A, the LQO manager transitions to LQOSTOP0 even if 668 * we have selected out with ATN asserted and the target 669 * REQs in a non-packet phase. 670 */ 671 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 672 test SCSISIGO, ATNO jnz select_out_non_packetized; 673select_out_no_message: 674 } 675 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized; 676 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop; 677 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE) 678 jmp idle_loop; 679 680select_out_non_packetized: 681 /* Non packetized request. */ 682 and SCSISEQ0, ~ENSELO; 683 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 684 /* 685 * Test to ensure that the bus has not 686 * already gone free prior to clearing 687 * any stale busfree status. This avoids 688 * a window whereby a busfree just after 689 * a selection could be missed. 690 */ 691 test SCSISIGI, BSYI jz . + 2; 692 mvi CLRSINT1,CLRBUSFREE; 693 or SIMODE1, ENBUSFREE; 694 } 695 mov SAVED_SCSIID, SCB_SCSIID; 696 mov SAVED_LUN, SCB_LUN; 697 mvi SEQ_FLAGS, NO_CDB_SENT; 698END_CRITICAL; 699 or SXFRCTL0, SPIOEN; 700 701 /* 702 * As soon as we get a successful selection, the target 703 * should go into the message out phase since we have ATN 704 * asserted. 705 */ 706 mvi MSG_OUT, MSG_IDENTIFYFLAG; 707 708 /* 709 * Main loop for information transfer phases. Wait for the 710 * target to assert REQ before checking MSG, C/D and I/O for 711 * the bus phase. 712 */ 713mesgin_phasemis: 714ITloop: 715 call phase_lock; 716 717 mov A, LASTPHASE; 718 719 test A, ~P_DATAIN_DT jz p_data; 720 cmp A,P_COMMAND je p_command; 721 cmp A,P_MESGOUT je p_mesgout; 722 cmp A,P_STATUS je p_status; 723 cmp A,P_MESGIN je p_mesgin; 724 725 SET_SEQINTCODE(BAD_PHASE) 726 jmp ITloop; /* Try reading the bus again. */ 727 728/* 729 * Command phase. Set up the DMA registers and let 'er rip. 730 */ 731p_command: 732 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay; 733 SET_SEQINTCODE(PROTO_VIOLATION) 734p_command_okay: 735 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 736 jnz p_command_allocate_fifo; 737 /* 738 * Command retry. Free our current FIFO and 739 * re-allocate a FIFO so transfer state is 740 * reset. 741 */ 742SET_SRC_MODE M_DFF1; 743SET_DST_MODE M_DFF1; 744 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 745 SET_MODE(M_SCSI, M_SCSI) 746p_command_allocate_fifo: 747 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 748 call allocate_fifo; 749SET_SRC_MODE M_DFF1; 750SET_DST_MODE M_DFF1; 751 add NONE, -17, SCB_CDB_LEN; 752 jnc p_command_embedded; 753p_command_from_host: 754 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 755 mvi SG_CACHE_PRE, LAST_SEG; 756 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 757 jmp p_command_xfer; 758p_command_embedded: 759 bmov SHCNT[0], SCB_CDB_LEN, 1; 760 bmov DFDAT, SCB_CDB_STORE, 16; 761 mvi DFCNTRL, SCSIEN; 762p_command_xfer: 763 and SEQ_FLAGS, ~NO_CDB_SENT; 764 if ((ahd->features & AHD_FAST_CDB_DELIVERY) != 0) { 765 /* 766 * To speed up CDB delivery in Rev B, all CDB acks 767 * are "released" to the output sync as soon as the 768 * command phase starts. There is only one problem 769 * with this approach. If the target changes phase 770 * before all data are sent, we have left over acks 771 * that can go out on the bus in a data phase. Due 772 * to other chip contraints, this only happens if 773 * the target goes to data-in, but if the acks go 774 * out before we can test SDONE, we'll think that 775 * the transfer has completed successfully. Work 776 * around this by taking advantage of the 400ns or 777 * 800ns dead time between command phase and the REQ 778 * of the new phase. If the transfer has completed 779 * successfully, SCSIEN should fall *long* before we 780 * see a phase change. We thus treat any phasemiss 781 * that occurs before SCSIEN falls as an incomplete 782 * transfer. 783 */ 784 test SSTAT1, PHASEMIS jnz p_command_xfer_failed; 785 test DFCNTRL, SCSIEN jnz . - 1; 786 } else { 787 test DFCNTRL, SCSIEN jnz .; 788 } 789 /* 790 * DMA Channel automatically disabled. 791 * Don't allow a data phase if the command 792 * was not fully transferred. 793 */ 794 test SSTAT2, SDONE jnz ITloop; 795p_command_xfer_failed: 796 or SEQ_FLAGS, NO_CDB_SENT; 797 jmp ITloop; 798 799 800/* 801 * Status phase. Wait for the data byte to appear, then read it 802 * and store it into the SCB. 803 */ 804SET_SRC_MODE M_SCSI; 805SET_DST_MODE M_SCSI; 806p_status: 807 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation; 808p_status_okay: 809 mov SCB_SCSI_STATUS, SCSIDAT; 810 or SCB_CONTROL, STATUS_RCVD; 811 jmp ITloop; 812 813/* 814 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 815 * indentify message sequence and send it to the target. The host may 816 * override this behavior by setting the MK_MESSAGE bit in the SCB 817 * control byte. This will cause us to interrupt the host and allow 818 * it to handle the message phase completely on its own. If the bit 819 * associated with this target is set, we will also interrupt the host, 820 * thereby allowing it to send a message on the next selection regardless 821 * of the transaction being sent. 822 * 823 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 824 * This is done to allow the host to send messages outside of an identify 825 * sequence while protecting the seqencer from testing the MK_MESSAGE bit 826 * on an SCB that might not be for the current nexus. (For example, a 827 * BDR message in responce to a bad reselection would leave us pointed to 828 * an SCB that doesn't have anything to do with the current target). 829 * 830 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 831 * bus device reset). 832 * 833 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 834 * in case the target decides to put us in this phase for some strange 835 * reason. 836 */ 837p_mesgout_retry: 838 /* Turn on ATN for the retry */ 839 mvi SCSISIGO, ATNO; 840p_mesgout: 841 mov SINDEX, MSG_OUT; 842 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 843 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 844p_mesgout_identify: 845 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 846 test SCB_CONTROL, DISCENB jnz . + 2; 847 and SINDEX, ~DISCENB; 848/* 849 * Send a tag message if TAG_ENB is set in the SCB control block. 850 * Use SCB_NONPACKET_TAG as the tag value. 851 */ 852p_mesgout_tag: 853 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 854 mov SCSIDAT, SINDEX; /* Send the identify message */ 855 call phase_lock; 856 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 857 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 858 call phase_lock; 859 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 860 mov SCBPTR jmp p_mesgout_onebyte; 861/* 862 * Interrupt the driver, and allow it to handle this message 863 * phase and any required retries. 864 */ 865p_mesgout_from_host: 866 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 867 jmp host_message_loop; 868 869p_mesgout_onebyte: 870 mvi CLRSINT1, CLRATNO; 871 mov SCSIDAT, SINDEX; 872 873/* 874 * If the next bus phase after ATN drops is message out, it means 875 * that the target is requesting that the last message(s) be resent. 876 */ 877 call phase_lock; 878 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 879 880p_mesgout_done: 881 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 882 mov LAST_MSG, MSG_OUT; 883 mvi MSG_OUT, MSG_NOOP; /* No message left */ 884 jmp ITloop; 885 886/* 887 * Message in phase. Bytes are read using Automatic PIO mode. 888 */ 889p_mesgin: 890 /* read the 1st message byte */ 891 mvi ACCUM call inb_first; 892 893 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 894 cmp A,MSG_DISCONNECT je mesgin_disconnect; 895 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 896 cmp ALLZEROS,A je mesgin_complete; 897 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 898 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 899 cmp A,MSG_NOOP je mesgin_done; 900 901/* 902 * Pushed message loop to allow the kernel to 903 * run it's own message state engine. To avoid an 904 * extra nop instruction after signaling the kernel, 905 * we perform the phase_lock before checking to see 906 * if we should exit the loop and skip the phase_lock 907 * in the ITloop. Performing back to back phase_locks 908 * shouldn't hurt, but why do it twice... 909 */ 910host_message_loop: 911 call phase_lock; /* Benign the first time through. */ 912 SET_SEQINTCODE(HOST_MSG_LOOP) 913 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 914 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 915 mov SCSIDAT, RETURN_2; 916 jmp host_message_loop; 917 /* Must be CONT_MSG_LOOP_READ */ 918 mov NONE, SCSIDAT; /* ACK Byte */ 919 jmp host_message_loop; 920 921mesgin_ign_wide_residue: 922 mov SAVED_MODE, MODE_PTR; 923 SET_MODE(M_SCSI, M_SCSI) 924 shr NEGOADDR, 4, SAVED_SCSIID; 925 mov A, NEGCONOPTS; 926 RESTORE_MODE(SAVED_MODE) 927 test A, WIDEXFER jz mesgin_reject; 928 /* Pull the residue byte */ 929 mvi REG0 call inb_next; 930 cmp REG0, 0x01 jne mesgin_reject; 931 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 932 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done; 933 SET_SEQINTCODE(IGN_WIDE_RES) 934 jmp mesgin_done; 935 936mesgin_proto_violation: 937 SET_SEQINTCODE(PROTO_VIOLATION) 938 jmp mesgin_done; 939mesgin_reject: 940 mvi MSG_MESSAGE_REJECT call mk_mesg; 941mesgin_done: 942 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 943 jmp ITloop; 944 945#define INDEX_DISC_LIST(scsiid, lun) \ 946 and A, 0xC0, scsiid; \ 947 or SCBPTR, A, lun; \ 948 clr SCBPTR[1]; \ 949 and SINDEX, 0x30, scsiid; \ 950 shr SINDEX, 3; /* Multiply by 2 */ \ 951 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 952 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 953 954mesgin_identify: 955 /* 956 * Determine whether a target is using tagged or non-tagged 957 * transactions by first looking at the transaction stored in 958 * the per-device, disconnected array. If there is no untagged 959 * transaction for this target, this must be a tagged transaction. 960 */ 961 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 962 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 963 bmov DINDEX, SINDEX, 2; 964 bmov REG0, SINDIR, 2; 965 cmp REG0[1], SCB_LIST_NULL je snoop_tag; 966 /* Untagged. Clear the busy table entry and setup the SCB. */ 967 bmov DINDIR, ALLONES, 2; 968 bmov SCBPTR, REG0, 2; 969 jmp setup_SCB; 970 971/* 972 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 973 * If we get one, we use the tag returned to find the proper 974 * SCB. After receiving the tag, look for the SCB at SCB locations tag and 975 * tag + 256. 976 */ 977snoop_tag: 978 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 979 or SEQ_FLAGS, 0x80; 980 } 981 mov NONE, SCSIDAT; /* ACK Identify MSG */ 982 call phase_lock; 983 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 984 or SEQ_FLAGS, 0x1; 985 } 986 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 987 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 988 or SEQ_FLAGS, 0x2; 989 } 990 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 991get_tag: 992 clr SCBPTR[1]; 993 mvi SCBPTR call inb_next; /* tag value */ 994verify_scb: 995 test SCB_CONTROL,DISCONNECTED jz verify_other_scb; 996 mov A, SAVED_SCSIID; 997 cmp SCB_SCSIID, A jne verify_other_scb; 998 mov A, SAVED_LUN; 999 cmp SCB_LUN, A je setup_SCB_disconnected; 1000verify_other_scb: 1001 xor SCBPTR[1], 1; 1002 test SCBPTR[1], 0xFF jnz verify_scb; 1003 jmp not_found; 1004 1005/* 1006 * Ensure that the SCB the tag points to is for 1007 * an SCB transaction to the reconnecting target. 1008 */ 1009setup_SCB: 1010 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1011 or SEQ_FLAGS, 0x10; 1012 } 1013 test SCB_CONTROL,DISCONNECTED jz not_found; 1014setup_SCB_disconnected: 1015 and SCB_CONTROL,~DISCONNECTED; 1016 clr SEQ_FLAGS; /* make note of IDENTIFY */ 1017 test SCB_SGPTR, SG_LIST_NULL jnz . + 3; 1018 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 1019 call allocate_fifo; 1020 /* See if the host wants to send a message upon reconnection */ 1021 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 1022 mvi HOST_MSG call mk_mesg; 1023 jmp mesgin_done; 1024 1025not_found: 1026 SET_SEQINTCODE(NO_MATCH) 1027 jmp mesgin_done; 1028 1029not_found_ITloop: 1030 SET_SEQINTCODE(NO_MATCH) 1031 jmp ITloop; 1032 1033/* 1034 * We received a "command complete" message. Put the SCB on the complete 1035 * queue and trigger a completion interrupt via the idle loop. Before doing 1036 * so, check to see if there 1037 * is a residual or the status byte is something other than STATUS_GOOD (0). 1038 * In either of these conditions, we upload the SCB back to the host so it can 1039 * process this information. In the case of a non zero status byte, we 1040 * additionally interrupt the kernel driver synchronously, allowing it to 1041 * decide if sense should be retrieved. If the kernel driver wishes to request 1042 * sense, it will fill the kernel SCB with a request sense command, requeue 1043 * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting 1044 * RETURN_1 to SEND_SENSE. 1045 */ 1046mesgin_complete: 1047 1048 /* 1049 * If ATN is raised, we still want to give the target a message. 1050 * Perhaps there was a parity error on this last message byte. 1051 * Either way, the target should take us to message out phase 1052 * and then attempt to complete the command again. We should use a 1053 * critical section here to guard against a timeout triggering 1054 * for this command and setting ATN while we are still processing 1055 * the completion. 1056 test SCSISIGI, ATNI jnz mesgin_done; 1057 */ 1058 1059 /* 1060 * If we are identified and have successfully sent the CDB, 1061 * any status will do. Optimize this fast path. 1062 */ 1063 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation; 1064 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted; 1065 1066 /* 1067 * If the target never sent an identify message but instead went 1068 * to mesgin to give an invalid message, let the host abort us. 1069 */ 1070 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation; 1071 1072 /* 1073 * If we recevied good status but never successfully sent the 1074 * cdb, abort the command. 1075 */ 1076 test SCB_SCSI_STATUS,0xff jnz complete_accepted; 1077 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation; 1078complete_accepted: 1079 1080 /* 1081 * See if we attempted to deliver a message but the target ingnored us. 1082 */ 1083 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg; 1084 SET_SEQINTCODE(MKMSG_FAILED) 1085complete_nomsg: 1086 call queue_scb_completion; 1087 jmp await_busfree; 1088 1089freeze_queue: 1090 /* Cancel any pending select-out. */ 1091 test SSTAT0, SELDO|SELINGO jnz . + 2; 1092 and SCSISEQ0, ~ENSELO; 1093 mov ACCUM_SAVE, A; 1094 clr A; 1095 add QFREEZE_COUNT, 1; 1096 adc QFREEZE_COUNT[1], A; 1097 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 1098 mov A, ACCUM_SAVE ret; 1099 1100/* 1101 * Complete the current FIFO's SCB if data for this same 1102 * SCB is not transferring in the other FIFO. 1103 */ 1104SET_SRC_MODE M_DFF1; 1105SET_DST_MODE M_DFF1; 1106pkt_complete_scb_if_fifos_idle: 1107 bmov ARG_1, SCBPTR, 2; 1108 mvi DFFSXFRCTL, CLRCHN; 1109 SET_MODE(M_SCSI, M_SCSI) 1110 bmov SCBPTR, ARG_1, 2; 1111 test SCB_FIFO_USE_COUNT, 0xFF jnz return; 1112queue_scb_completion: 1113 test SCB_SCSI_STATUS,0xff jnz bad_status; 1114 /* 1115 * Check for residuals 1116 */ 1117 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 1118 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 1119 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 1120complete: 1121BEGIN_CRITICAL; 1122 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 1123 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 1124END_CRITICAL; 1125bad_status: 1126 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 1127 call freeze_queue; 1128upload_scb: 1129 /* 1130 * Restore SCB TAG since we reuse this field 1131 * in the sequencer. We don't want to corrupt 1132 * it on the host. 1133 */ 1134 bmov SCB_TAG, SCBPTR, 2; 1135BEGIN_CRITICAL; 1136 bmov SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2; 1137 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 1138 or SCB_SGPTR, SG_STATUS_VALID ret; 1139END_CRITICAL; 1140 1141/* 1142 * Is it a disconnect message? Set a flag in the SCB to remind us 1143 * and await the bus going free. If this is an untagged transaction 1144 * store the SCB id for it in our untagged target table for lookup on 1145 * a reselction. 1146 */ 1147mesgin_disconnect: 1148 /* 1149 * If ATN is raised, we still want to give the target a message. 1150 * Perhaps there was a parity error on this last message byte 1151 * or we want to abort this command. Either way, the target 1152 * should take us to message out phase and then attempt to 1153 * disconnect again. 1154 * XXX - Wait for more testing. 1155 test SCSISIGI, ATNI jnz mesgin_done; 1156 */ 1157 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT 1158 jnz mesgin_proto_violation; 1159 or SCB_CONTROL,DISCONNECTED; 1160 test SCB_CONTROL, TAG_ENB jnz await_busfree; 1161queue_disc_scb: 1162 bmov REG0, SCBPTR, 2; 1163 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1164 bmov DINDEX, SINDEX, 2; 1165 bmov DINDIR, REG0, 2; 1166 bmov SCBPTR, REG0, 2; 1167 /* FALLTHROUGH */ 1168await_busfree: 1169 and SIMODE1, ~ENBUSFREE; 1170 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) { 1171 /* 1172 * In the BUSFREEREV_BUG case, the 1173 * busfree status was cleared at the 1174 * beginning of the connection. 1175 */ 1176 mvi CLRSINT1,CLRBUSFREE; 1177 } 1178 mov NONE, SCSIDAT; /* Ack the last byte */ 1179 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1180 jnz await_busfree_not_m_dff; 1181SET_SRC_MODE M_DFF1; 1182SET_DST_MODE M_DFF1; 1183await_busfree_clrchn: 1184 mvi DFFSXFRCTL, CLRCHN; 1185await_busfree_not_m_dff: 1186 /* clear target specific flags */ 1187 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT; 1188 test SSTAT1,REQINIT|BUSFREE jz .; 1189 /* 1190 * We only set BUSFREE status once either a new 1191 * phase has been detected or we are really 1192 * BUSFREE. This allows the driver to know 1193 * that we are active on the bus even though 1194 * no identified transaction exists should a 1195 * timeout occur while awaiting busfree. 1196 */ 1197 mvi LASTPHASE, P_BUSFREE; 1198 test SSTAT1, BUSFREE jnz idle_loop; 1199 SET_SEQINTCODE(MISSED_BUSFREE) 1200 1201 1202/* 1203 * Save data pointers message: 1204 * Copying RAM values back to SCB, for Save Data Pointers message, but 1205 * only if we've actually been into a data phase to change them. This 1206 * protects against bogus data in scratch ram and the residual counts 1207 * since they are only initialized when we go into data_in or data_out. 1208 * Ack the message as soon as possible. 1209 */ 1210SET_SRC_MODE M_DFF1; 1211SET_DST_MODE M_DFF1; 1212mesgin_sdptrs: 1213 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1214 test SEQ_FLAGS, DPHASE jz ITloop; 1215 call save_pointers; 1216 jmp ITloop; 1217 1218save_pointers: 1219 /* 1220 * If we are asked to save our position at the end of the 1221 * transfer, just mark us at the end rather than perform a 1222 * full save. 1223 */ 1224 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1225 or SCB_SGPTR, SG_LIST_NULL ret; 1226 1227save_pointers_full: 1228 /* 1229 * The SCB_DATAPTR becomes the current SHADDR. 1230 * All other information comes directly from our residual 1231 * state. 1232 */ 1233 bmov SCB_DATAPTR, SHADDR, 8; 1234 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1235 1236/* 1237 * Restore pointers message? Data pointers are recopied from the 1238 * SCB anytime we enter a data phase for the first time, so all 1239 * we need to do is clear the DPHASE flag and let the data phase 1240 * code do the rest. We also reset/reallocate the FIFO to make 1241 * sure we have a clean start for the next data or command phase. 1242 */ 1243mesgin_rdptrs: 1244 and SEQ_FLAGS, ~DPHASE; 1245 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1246 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1247 SET_MODE(M_SCSI, M_SCSI) 1248msgin_rdptrs_get_fifo: 1249 call allocate_fifo; 1250 jmp mesgin_done; 1251 1252phase_lock: 1253 if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) { 1254 /* 1255 * Don't ignore persistent REQ assertions just because 1256 * they were asserted within the bus settle delay window. 1257 * This allows us to tolerate devices like the GEM318 1258 * that violate the SCSI spec. We are careful not to 1259 * count REQ while we are waiting for it to fall during 1260 * an async phase due to our asserted ACK. Each 1261 * sequencer instruction takes ~25ns, so the REQ must 1262 * last at least 100ns in order to be counted as a true 1263 * REQ. 1264 */ 1265 test SCSIPHASE, 0xFF jnz phase_locked; 1266 test SCSISIGI, ACKI jnz phase_lock; 1267 test SCSISIGI, REQI jz phase_lock; 1268 test SCSIPHASE, 0xFF jnz phase_locked; 1269 test SCSISIGI, ACKI jnz phase_lock; 1270 test SCSISIGI, REQI jz phase_lock; 1271phase_locked: 1272 } else { 1273 test SCSIPHASE, 0xFF jz .; 1274 } 1275 test SSTAT1, SCSIPERR jnz phase_lock; 1276phase_lock_latch_phase: 1277 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1278 1279/* 1280 * Functions to read data in Automatic PIO mode. 1281 * 1282 * An ACK is not sent on input from the target until SCSIDATL is read from. 1283 * So we wait until SCSIDATL is latched (the usual way), then read the data 1284 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1285 * line, or we just want to acknowledge the byte, then we do a dummy read 1286 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1287 * data byte on the bus until we send our ACK. 1288 * 1289 * The assumption here is that these are called in a particular sequence, 1290 * and that REQ is already set when inb_first is called. inb_{first,next} 1291 * use the same calling convention as inb. 1292 */ 1293inb_next: 1294 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1295inb_next_wait: 1296 /* 1297 * If there is a parity error, wait for the kernel to 1298 * see the interrupt and prepare our message response 1299 * before continuing. 1300 */ 1301 test SCSIPHASE, 0xFF jz .; 1302 test SSTAT1, SCSIPERR jnz inb_next_wait; 1303inb_next_check_phase: 1304 and LASTPHASE, PHASE_MASK, SCSISIGI; 1305 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1306inb_first: 1307 clr DINDEX[1]; 1308 mov DINDEX,SINDEX; 1309 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1310inb_last: 1311 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1312 1313mk_mesg: 1314 mvi SCSISIGO, ATNO; 1315 mov MSG_OUT,SINDEX ret; 1316 1317SET_SRC_MODE M_DFF1; 1318SET_DST_MODE M_DFF1; 1319disable_ccsgen: 1320 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; 1321 clr CCSGCTL; 1322disable_ccsgen_fetch_done: 1323 clr SG_STATE ret; 1324 1325service_fifo: 1326 /* 1327 * Do we have any prefetch left??? 1328 */ 1329 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1330 1331 /* 1332 * Can this FIFO have access to the S/G cache yet? 1333 */ 1334 test CCSGCTL, SG_CACHE_AVAIL jz return; 1335 1336 /* Did we just finish fetching segs? */ 1337 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete; 1338 1339 /* Are we actively fetching segments? */ 1340 test CCSGCTL, CCSGENACK jnz return; 1341 1342 /* 1343 * We fetch a "cacheline aligned" and sized amount of data 1344 * so we don't end up referencing a non-existant page. 1345 * Cacheline aligned is in quotes because the kernel will 1346 * set the prefetch amount to a reasonable level if the 1347 * cacheline size is unknown. 1348 */ 1349 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4; 1350 mvi SGHCNT, SG_PREFETCH_CNT; 1351 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) { 1352 /* 1353 * Need two instruction between "touches" of SGHADDR. 1354 */ 1355 nop; 1356 } 1357 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1358 mvi CCSGCTL, CCSGEN|CCSGRESET; 1359 or SG_STATE, FETCH_INPROG ret; 1360idle_sgfetch_complete: 1361 /* 1362 * Guard against SG_CACHE_AVAIL activating during sg fetch 1363 * request in the other FIFO. 1364 */ 1365 test SG_STATE, FETCH_INPROG jz return; 1366 clr CCSGCTL; 1367 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1368 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1369idle_sg_avail: 1370 /* Does the hardware have space for another SG entry? */ 1371 test DFSTATUS, PRELOAD_AVAIL jz return; 1372 /* 1373 * On the A, preloading a segment before HDMAENACK 1374 * comes true can clobber the shaddow address of the 1375 * first segment in the S/G FIFO. Wait until it is 1376 * safe to proceed. 1377 */ 1378 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) { 1379 test DFCNTRL, HDMAENACK jz return; 1380 } 1381 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1382 bmov HADDR, CCSGRAM, 8; 1383 } else { 1384 bmov HADDR, CCSGRAM, 4; 1385 } 1386 bmov HCNT, CCSGRAM, 3; 1387 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1388 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1389 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1390 } 1391 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1392 /* Skip 4 bytes of pad. */ 1393 add CCSGADDR, 4; 1394 } 1395sg_advance: 1396 clr A; /* add sizeof(struct scatter) */ 1397 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1398 adc SCB_RESIDUAL_SGPTR[1],A; 1399 adc SCB_RESIDUAL_SGPTR[2],A; 1400 adc SCB_RESIDUAL_SGPTR[3],A; 1401 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1402 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1403 or SINDEX, LAST_SEG; 1404 clr SG_STATE; 1405 mov SG_CACHE_PRE, SINDEX; 1406 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { 1407 /* 1408 * Use SCSIENWRDIS so that SCSIEN is never 1409 * modified by this operation. 1410 */ 1411 or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS; 1412 } else { 1413 or DFCNTRL, PRELOADEN|HDMAEN; 1414 } 1415 /* 1416 * Do we have another segment in the cache? 1417 */ 1418 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1419 jnc return; 1420 and SG_STATE, ~SEGS_AVAIL ret; 1421 1422/* 1423 * Initialize the DMA address and counter from the SCB. 1424 */ 1425load_first_seg: 1426 bmov HADDR, SCB_DATAPTR, 11; 1427 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0]; 1428 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1429 or REG_ISR, LAST_SEG; 1430 mov SG_CACHE_PRE, REG_ISR; 1431 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1432 /* 1433 * Since we've are entering a data phase, we will 1434 * rely on the SCB_RESID* fields. Initialize the 1435 * residual and clear the full residual flag. 1436 */ 1437 and SCB_SGPTR[0], ~SG_FULL_RESID; 1438 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1439 /* If we need more S/G elements, tell the idle loop */ 1440 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1441 mvi SG_STATE, LOADING_NEEDED ret; 1442 clr SG_STATE ret; 1443 1444p_data_handle_xfer: 1445 call setjmp; 1446 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1447p_data_clear_handler: 1448 or LONGJMP_ADDR[1], INVALID_ADDR ret; 1449 1450p_data: 1451 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1452 SET_SEQINTCODE(PROTO_VIOLATION) 1453p_data_allowed: 1454 1455 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1456 1457 /* 1458 * If we re-enter the data phase after going through another 1459 * phase, our transfer location has almost certainly been 1460 * corrupted by the interveining, non-data, transfers. Ask 1461 * the host driver to fix us up based on the transfer residual 1462 * unless we already know that we should be bitbucketing. 1463 */ 1464 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1465 SET_SEQINTCODE(PDATA_REINIT) 1466 jmp data_phase_inbounds; 1467 1468p_data_bitbucket: 1469 /* 1470 * Turn on `Bit Bucket' mode, wait until the target takes 1471 * us to another phase, and then notify the host. 1472 */ 1473 mov SAVED_MODE, MODE_PTR; 1474 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1475 jnz bitbucket_not_m_dff; 1476 /* 1477 * Ensure that any FIFO contents are cleared out and the 1478 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1479 * doesn't discard data already in the FIFO. 1480 */ 1481 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1482 SET_MODE(M_SCSI, M_SCSI) 1483bitbucket_not_m_dff: 1484 or SXFRCTL1,BITBUCKET; 1485 /* Wait for non-data phase. */ 1486 test SCSIPHASE, ~DATA_PHASE_MASK jz .; 1487 and SXFRCTL1, ~BITBUCKET; 1488 RESTORE_MODE(SAVED_MODE) 1489SET_SRC_MODE M_DFF1; 1490SET_DST_MODE M_DFF1; 1491 SET_SEQINTCODE(DATA_OVERRUN) 1492 jmp ITloop; 1493 1494data_phase_initialize: 1495 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1496 call load_first_seg; 1497data_phase_inbounds: 1498 /* We have seen a data phase at least once. */ 1499 or SEQ_FLAGS, DPHASE; 1500 mov SAVED_MODE, MODE_PTR; 1501 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop; 1502 call p_data_handle_xfer; 1503data_group_dma_loop: 1504 /* 1505 * The transfer is complete if either the last segment 1506 * completes or the target changes phase. Both conditions 1507 * will clear SCSIEN. 1508 */ 1509 call idle_loop_service_fifos; 1510 call idle_loop_cchan; 1511 call idle_loop_gsfifo; 1512 RESTORE_MODE(SAVED_MODE) 1513 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1514 1515data_group_dmafinish: 1516 /* 1517 * The transfer has terminated either due to a phase 1518 * change, and/or the completion of the last segment. 1519 * We have two goals here. Do as much other work 1520 * as possible while the data fifo drains on a read 1521 * and respond as quickly as possible to the standard 1522 * messages (save data pointers/disconnect and command 1523 * complete) that usually follow a data phase. 1524 */ 1525 call calc_residual; 1526 1527 /* 1528 * Go ahead and shut down the DMA engine now. 1529 */ 1530 test DFCNTRL, DIRECTION jnz data_phase_finish; 1531data_group_fifoflush: 1532 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1533 or DFCNTRL, FIFOFLUSH; 1534 } 1535 /* 1536 * We have enabled the auto-ack feature. This means 1537 * that the controller may have already transferred 1538 * some overrun bytes into the data FIFO and acked them 1539 * on the bus. The only way to detect this situation is 1540 * to wait for LAST_SEG_DONE to come true on a completed 1541 * transfer and then test to see if the data FIFO is 1542 * non-empty. We know there is more data yet to transfer 1543 * if SG_LIST_NULL is not yet set, thus there cannot be 1544 * an overrun. 1545 */ 1546 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1547 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1548 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1549 /* Overrun */ 1550 jmp p_data; 1551data_phase_finish: 1552 /* 1553 * If the target has left us in data phase, loop through 1554 * the dma code again. We will only loop if there is a 1555 * data overrun. 1556 */ 1557 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1558 test SSTAT0, TARGET jnz data_phase_done; 1559 } 1560 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1561 test SSTAT1, REQINIT jz .; 1562 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1563 } 1564 1565data_phase_done: 1566 /* Kill off any pending prefetch */ 1567 call disable_ccsgen; 1568 or LONGJMP_ADDR[1], INVALID_ADDR; 1569 1570 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1571 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1572 /* 1573 and SEQ_FLAGS, ~DPHASE_PENDING; 1574 * For data-in phases, wait for any pending acks from the 1575 * initiator before changing phase. We only need to 1576 * send Ignore Wide Residue messages for data-in phases. 1577 test DFCNTRL, DIRECTION jz target_ITloop; 1578 test SSTAT1, REQINIT jnz .; 1579 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop; 1580 SET_MODE(M_SCSI, M_SCSI) 1581 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1582 */ 1583 /* 1584 * Issue an Ignore Wide Residue Message. 1585 mvi P_MESGIN|BSYO call change_phase; 1586 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1587 mvi 1 call target_outb; 1588 jmp target_ITloop; 1589 */ 1590 } else { 1591 jmp ITloop; 1592 } 1593 1594/* 1595 * We assume that, even though data may still be 1596 * transferring to the host, that the SCSI side of 1597 * the DMA engine is now in a static state. This 1598 * allows us to update our notion of where we are 1599 * in this transfer. 1600 * 1601 * If, by chance, we stopped before being able 1602 * to fetch additional segments for this transfer, 1603 * yet the last S/G was completely exhausted, 1604 * call our idle loop until it is able to load 1605 * another segment. This will allow us to immediately 1606 * pickup on the next segment on the next data phase. 1607 * 1608 * If we happened to stop on the last segment, then 1609 * our residual information is still correct from 1610 * the idle loop and there is no need to perform 1611 * any fixups. 1612 */ 1613residual_before_last_seg: 1614 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1615 /* 1616 * Can never happen from an interrupt as the packetized 1617 * hardware will only interrupt us once SHVALID or 1618 * LAST_SEG_DONE. 1619 */ 1620 call idle_loop_service_fifos; 1621 RESTORE_MODE(SAVED_MODE) 1622 /* FALLTHROUGH */ 1623calc_residual: 1624 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1625 /* Record if we've consumed all S/G entries */ 1626 test MDFFSTAT, SHVALID jz . + 2; 1627 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1628 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1629 1630sgptr_fixup: 1631 /* 1632 * Fixup the residual next S/G pointer. The S/G preload 1633 * feature of the chip allows us to load two elements 1634 * in addition to the currently active element. We 1635 * store the bottom byte of the next S/G pointer in 1636 * the SG_CACHE_PTR register so we can restore the 1637 * correct value when the DMA completes. If the next 1638 * sg ptr value has advanced to the point where higher 1639 * bytes in the address have been affected, fix them 1640 * too. 1641 */ 1642 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1643 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1644 add SCB_RESIDUAL_SGPTR[1], -1; 1645 adc SCB_RESIDUAL_SGPTR[2], -1; 1646 adc SCB_RESIDUAL_SGPTR[3], -1; 1647sgptr_fixup_done: 1648 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1649 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1650 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1651 1652export timer_isr: 1653 call issue_cmdcmplt; 1654 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 1655 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 1656 /* 1657 * In H2A4, the mode pointer is not saved 1658 * for intvec2, but is restored on iret. 1659 * This can lead to the restoration of a 1660 * bogus mode ptr. Manually clear the 1661 * intmask bits and do a normal return 1662 * to compensate. 1663 */ 1664 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret; 1665 } else { 1666 or SEQINTCTL, IRET ret; 1667 } 1668 1669export seq_isr: 1670 if ((ahd->features & AHD_RTI) == 0) { 1671 /* 1672 * On RevA Silicon, if the target returns us to data-out 1673 * after we have already trained for data-out, it is 1674 * possible for us to transition the free running clock to 1675 * data-valid before the required 100ns P1 setup time (8 P1 1676 * assertions in fast-160 mode). This will only happen if 1677 * this L-Q is a continuation of a data transfer for which 1678 * we have already prefetched data into our FIFO (LQ/Data 1679 * followed by LQ/Data for the same write transaction). 1680 * This can cause some target implementations to miss the 1681 * first few data transfers on the bus. We detect this 1682 * situation by noticing that this is the first data transfer 1683 * after an LQ (LQIWORKONLQ true), that the data transfer is 1684 * a continuation of a transfer already setup in our FIFO 1685 * (SAVEPTRS interrupt), and that the transaction is a write 1686 * (DIRECTION set in DFCNTRL). The delay is performed by 1687 * disabling SCSIEN until we see the first REQ from the 1688 * target. 1689 * 1690 * First instruction in an ISR cannot be a branch on 1691 * Rev A. Snapshot LQISTAT2 so the status is not missed 1692 * and deffer the test by one instruction. 1693 */ 1694 mov REG_ISR, LQISTAT2; 1695 test REG_ISR, LQIWORKONLQ jz main_isr; 1696 test SEQINTSRC, SAVEPTRS jz main_isr; 1697 test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo; 1698 /* 1699 * Switch to the active FIFO after clearing the snapshot 1700 * savepointer in the current FIFO. We do this so that 1701 * a pending CTXTDONE or SAVEPTR is visible in the active 1702 * FIFO. This status is the only way we can detect if we 1703 * have lost the race (e.g. host paused us) and our attempts 1704 * to disable the channel occurred after all REQs were 1705 * already seen and acked (REQINIT never comes true). 1706 */ 1707 mvi DFFSXFRCTL, CLRCHN; 1708 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1709 test DFCNTRL, DIRECTION jz interrupt_return; 1710 and DFCNTRL, ~SCSIEN; 1711snapshot_wait_data_valid: 1712 test SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz interrupt_return; 1713 test SSTAT1, REQINIT jz snapshot_wait_data_valid; 1714snapshot_data_valid: 1715 or DFCNTRL, SCSIEN; 1716 or SEQINTCTL, IRET ret; 1717snapshot_saveptr: 1718 mvi DFFSXFRCTL, CLRCHN; 1719 or SEQINTCTL, IRET ret; 1720main_isr: 1721 } 1722 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1723 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1724 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1725 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1726 SET_SEQINTCODE(INVALID_SEQINT) 1727 1728/* 1729 * There are two types of save pointers interrupts: 1730 * The first is a snapshot save pointers where the current FIFO is not 1731 * active and contains a snapshot of the current poniter information. 1732 * This happens between packets in a stream for a single L_Q. Since we 1733 * are not performing a pointer save, we can safely clear the channel 1734 * so it can be used for other transactions. On RTI capable controllers, 1735 * where snapshots can, and are, disabled, the code to handle this type 1736 * of snapshot is not active. 1737 * 1738 * The second case is a save pointers on an active FIFO which occurs 1739 * if the target changes to a new L_Q or busfrees/QASes and the transfer 1740 * has a residual. This should occur coincident with a ctxtdone. We 1741 * disable the interrupt and allow our active routine to handle the 1742 * save. 1743 */ 1744saveptr_intr: 1745 if ((ahd->features & AHD_RTI) == 0) { 1746 test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr; 1747 } 1748saveptr_active_fifo: 1749 and SEQIMODE, ~ENSAVEPTRS; 1750 or SEQINTCTL, IRET ret; 1751 1752cfg4data_intr: 1753 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count; 1754 call load_first_seg; 1755 call pkt_handle_xfer; 1756 inc SCB_FIFO_USE_COUNT; 1757interrupt_return: 1758 or SEQINTCTL, IRET ret; 1759 1760cfg4istat_intr: 1761 call freeze_queue; 1762 add NONE, -13, SCB_CDB_LEN; 1763 jnc cfg4istat_have_sense_addr; 1764 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1765 /* 1766 * Host sets up address/count and enables transfer. 1767 */ 1768 SET_SEQINTCODE(CFG4ISTAT_INTR) 1769 jmp cfg4istat_setup_handler; 1770cfg4istat_have_sense_addr: 1771 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1772 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1773 mvi SG_CACHE_PRE, LAST_SEG; 1774 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1775cfg4istat_setup_handler: 1776 /* 1777 * Status pkt is transferring to host. 1778 * Wait in idle loop for transfer to complete. 1779 * If a command completed before an attempted 1780 * task management function completed, notify the host. 1781 */ 1782 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func; 1783 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 1784cfg4istat_no_taskmgmt_func: 1785 call pkt_handle_status; 1786 or SEQINTCTL, IRET ret; 1787 1788cfg4icmd_intr: 1789 /* 1790 * In the case of DMAing a CDB from the host, the normal 1791 * CDB buffer is formatted with an 8 byte address followed 1792 * by a 1 byte count. 1793 */ 1794 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 1795 mvi SG_CACHE_PRE, LAST_SEG; 1796 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1797 call pkt_handle_cdb; 1798 or SEQINTCTL, IRET ret; 1799 1800/* 1801 * See if the target has gone on in this context creating an 1802 * overrun condition. For the write case, the hardware cannot 1803 * ack bytes until data are provided. So, if the target begins 1804 * another packet without changing contexts, implying we are 1805 * not sitting on a packet boundary, we are in an overrun 1806 * situation. For the read case, the hardware will continue to 1807 * ack bytes into the FIFO, and may even ack the last overrun packet 1808 * into the FIFO. If the FIFO should become non-empty, we are in 1809 * a read overrun case. 1810 */ 1811#define check_overrun \ 1812 /* Not on a packet boundary. */ \ 1813 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1814 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1815 1816pkt_handle_xfer: 1817 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1818 call setjmp; 1819 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1820 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1821 test SCSISIGO, ATNO jnz . + 2; 1822 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 1823 /* 1824 * Defer handling of this NONPACKREQ until we 1825 * can be sure it pertains to this FIFO. SAVEPTRS 1826 * will not be asserted if the NONPACKREQ is for us, 1827 * so we must simulate it if shaddow is valid. If 1828 * shaddow is not valid, keep running this FIFO until we 1829 * have satisfied the transfer by loading segments and 1830 * waiting for either shaddow valid or last_seg_done. 1831 */ 1832 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 1833pkt_service_fifo: 1834 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1835pkt_last_seg: 1836 call setjmp; 1837 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1838 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done; 1839 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1840 test SCSISIGO, ATNO jnz . + 2; 1841 test SSTAT2, NONPACKREQ jz return; 1842 test MDFFSTAT, SHVALID jz return; 1843 /* FALLTHROUGH */ 1844 1845/* 1846 * Either a SAVEPTRS interrupt condition is pending for this FIFO 1847 * or we have a pending NONPACKREQ for this FIFO. We differentiate 1848 * between the two by capturing the state of the SAVEPTRS interrupt 1849 * prior to clearing this status and executing the common code for 1850 * these two cases. 1851 */ 1852pkt_saveptrs: 1853BEGIN_CRITICAL; 1854 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1855 or DFCNTRL, FIFOFLUSH; 1856 } 1857 mov REG0, SEQINTSRC; 1858 call calc_residual; 1859 call save_pointers; 1860 mvi CLRSEQINTSRC, CLRSAVEPTRS; 1861 call disable_ccsgen; 1862 or SEQIMODE, ENSAVEPTRS; 1863 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status; 1864 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status; 1865 /* 1866 * Keep a handler around for this FIFO until it drains 1867 * to the host to guarantee that we don't complete the 1868 * command to the host before the data arrives. 1869 */ 1870pkt_saveptrs_wait_fifoemp: 1871 call setjmp; 1872 test DFSTATUS, FIFOEMP jz return; 1873pkt_saveptrs_check_status: 1874 or LONGJMP_ADDR[1], INVALID_ADDR; 1875 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 1876 dec SCB_FIFO_USE_COUNT; 1877 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 1878 mvi DFFSXFRCTL, CLRCHN ret; 1879 1880/* 1881 * LAST_SEG_DONE status has been seen in the current FIFO. 1882 * This indicates that all of the allowed data for this 1883 * command has transferred across the SCSI and host buses. 1884 * Check for overrun and see if we can complete this command. 1885 */ 1886pkt_last_seg_done: 1887 /* 1888 * Mark transfer as completed. 1889 */ 1890 or SCB_SGPTR, SG_LIST_NULL; 1891 1892 /* 1893 * Wait for the current context to finish to verify that 1894 * no overrun condition has occurred. 1895 */ 1896 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 1897 call setjmp; 1898pkt_wait_ctxt_done_loop: 1899 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 1900 /* 1901 * A sufficiently large overrun or a NONPACKREQ may 1902 * prevent CTXTDONE from ever asserting, so we must 1903 * poll for these statuses too. 1904 */ 1905 check_overrun; 1906 test SSTAT2, NONPACKREQ jz return; 1907 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1908 /* FALLTHROUGH */ 1909 1910pkt_ctxt_done: 1911 check_overrun; 1912 or LONGJMP_ADDR[1], INVALID_ADDR; 1913 /* 1914 * If status has been received, it is safe to skip 1915 * the check to see if another FIFO is active because 1916 * LAST_SEG_DONE has been observed. However, we check 1917 * the FIFO anyway since it costs us only one extra 1918 * instruction to leverage common code to perform the 1919 * SCB completion. 1920 */ 1921 dec SCB_FIFO_USE_COUNT; 1922 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 1923 mvi DFFSXFRCTL, CLRCHN ret; 1924END_CRITICAL; 1925 1926/* 1927 * Must wait until CDB xfer is over before issuing the 1928 * clear channel. 1929 */ 1930pkt_handle_cdb: 1931 call setjmp; 1932 test SG_CACHE_SHADOW, LAST_SEG_DONE jz return; 1933 or LONGJMP_ADDR[1], INVALID_ADDR; 1934 mvi DFFSXFRCTL, CLRCHN ret; 1935 1936/* 1937 * Watch over the status transfer. Our host sense buffer is 1938 * large enough to take the maximum allowed status packet. 1939 * None-the-less, we must still catch and report overruns to 1940 * the host. Additionally, properly catch unexpected non-packet 1941 * phases that are typically caused by CRC errors in status packet 1942 * transmission. 1943 */ 1944pkt_handle_status: 1945 call setjmp; 1946 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 1947 test SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq; 1948 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 1949pkt_status_IU_done: 1950 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1951 or DFCNTRL, FIFOFLUSH; 1952 } 1953 test DFSTATUS, FIFOEMP jz return; 1954BEGIN_CRITICAL; 1955 or LONGJMP_ADDR[1], INVALID_ADDR; 1956 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 1957 or SCB_CONTROL, STATUS_RCVD; 1958 jmp pkt_complete_scb_if_fifos_idle; 1959END_CRITICAL; 1960pkt_status_check_overrun: 1961 /* 1962 * Status PKT overruns are uncerimoniously recovered with a 1963 * bus reset. If we've overrun, let the host know so that 1964 * recovery can be performed. 1965 * 1966 * LAST_SEG_DONE has been observed. If either CTXTDONE or 1967 * a NONPACKREQ phase change have occurred and the FIFO is 1968 * empty, there is no overrun. 1969 */ 1970 test DFSTATUS, FIFOEMP jz pkt_status_report_overrun; 1971 test SEQINTSRC, CTXTDONE jz . + 2; 1972 test DFSTATUS, FIFOEMP jnz pkt_status_IU_done; 1973 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 1974 test DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq; 1975pkt_status_report_overrun: 1976 SET_SEQINTCODE(STATUS_OVERRUN) 1977 /* SEQUENCER RESTARTED */ 1978pkt_status_check_nonpackreq: 1979 /* 1980 * CTXTDONE may be held off if a NONPACKREQ is associated with 1981 * the current context. If a NONPACKREQ is observed, decide 1982 * if it is for the current context. If it is for the current 1983 * context, we must defer NONPACKREQ processing until all data 1984 * has transferred to the host. 1985 */ 1986 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 1987 test SCSISIGO, ATNO jnz . + 2; 1988 test SSTAT2, NONPACKREQ jz return; 1989 test SEQINTSRC, CTXTDONE jnz pkt_status_IU_done; 1990 test DFSTATUS, FIFOEMP jz return; 1991 /* 1992 * The unexpected nonpkt phase handler assumes that any 1993 * data channel use will have a FIFO reference count. It 1994 * turns out that the status handler doesn't need a refernce 1995 * count since the status received flag, and thus completion 1996 * processing, cannot be set until the handler is finished. 1997 * We increment the count here to make the nonpkt handler 1998 * happy. 1999 */ 2000 inc SCB_FIFO_USE_COUNT; 2001 /* FALLTHROUGH */ 2002 2003/* 2004 * Nonpackreq is a polled status. It can come true in three situations: 2005 * we have received an L_Q, we have sent one or more L_Qs, or there is no 2006 * L_Q context associated with this REQ (REQ occurs immediately after a 2007 * (re)selection). Routines that know that the context responsible for this 2008 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 2009 * top level idle loop, we exhaust all active contexts prior to determining that 2010 * we simply do not have the full I_T_L_Q for this phase. 2011 */ 2012unexpected_nonpkt_phase_find_ctxt: 2013 /* 2014 * This nonpackreq is most likely associated with one of the tags 2015 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 2016 * nonpackreq if we've cleared out the FIFOs and handled any 2017 * pending SELDO. 2018 */ 2019SET_SRC_MODE M_SCSI; 2020SET_DST_MODE M_SCSI; 2021 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 2022 cmp A, FIFO1FREE|FIFO0FREE jne return; 2023 test SSTAT0, SELDO jnz return; 2024 mvi SCBPTR[1], SCB_LIST_NULL; 2025unexpected_nonpkt_phase: 2026 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 2027 jnz unexpected_nonpkt_mode_cleared; 2028SET_SRC_MODE M_DFF0; 2029SET_DST_MODE M_DFF0; 2030 or LONGJMP_ADDR[1], INVALID_ADDR; 2031 dec SCB_FIFO_USE_COUNT; 2032 mvi DFFSXFRCTL, CLRCHN; 2033unexpected_nonpkt_mode_cleared: 2034 mvi CLRSINT2, CLRNONPACKREQ; 2035 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 2036 SET_SEQINTCODE(ENTERING_NONPACK) 2037 jmp ITloop; 2038 2039illegal_phase: 2040 SET_SEQINTCODE(ILLEGAL_PHASE) 2041 jmp ITloop; 2042 2043/* 2044 * We have entered an overrun situation. If we have working 2045 * BITBUCKET, flip that on and let the hardware eat any overrun 2046 * data. Otherwise use an overrun buffer in the host to simulate 2047 * BITBUCKET. 2048 */ 2049pkt_handle_overrun_inc_use_count: 2050 inc SCB_FIFO_USE_COUNT; 2051pkt_handle_overrun: 2052 SET_SEQINTCODE(CFG4OVERRUN) 2053 call freeze_queue; 2054 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 2055 or DFFSXFRCTL, DFFBITBUCKET; 2056SET_SRC_MODE M_DFF1; 2057SET_DST_MODE M_DFF1; 2058 } else { 2059 call load_overrun_buf; 2060 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 2061 } 2062 call setjmp; 2063 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2064 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done; 2065 call load_overrun_buf; 2066 or DFCNTRL, PRELOADEN; 2067overrun_load_done: 2068 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 2069 } else { 2070 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end; 2071 } 2072 test SSTAT2, NONPACKREQ jz return; 2073pkt_overrun_end: 2074 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 2075 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 2076 dec SCB_FIFO_USE_COUNT; 2077 or LONGJMP_ADDR[1], INVALID_ADDR; 2078 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2079 mvi DFFSXFRCTL, CLRCHN ret; 2080 2081if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2082load_overrun_buf: 2083 /* 2084 * Load a dummy segment if preload space is available. 2085 */ 2086 mov HADDR[0], SHARED_DATA_ADDR; 2087 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 2088 mov ACCUM_SAVE, A; 2089 clr A; 2090 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 2091 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 2092 mov A, ACCUM_SAVE; 2093 bmov HADDR[4], ALLZEROS, 4; 2094 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 2095 clr HCNT[0]; 2096 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 2097 clr HCNT[2] ret; 2098} 2099