1/* 2 * Adaptec U320 device driver firmware for Linux and FreeBSD. 3 * 4 * Copyright (c) 1994-2001 Justin T. Gibbs. 5 * Copyright (c) 2000-2002 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 * 40 * $FreeBSD$ 41 */ 42 43VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#51 $" 44PATCH_ARG_LIST = "struct ahd_softc *ahd" 45PREFIX = "ahd_" 46 47#include "aic79xx.reg" 48#include "scsi_message.h" 49 50idle_loop: 51 SET_MODE(M_SCSI, M_SCSI); 52 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 53 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus; 54 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 55 /* 56 * ENSELO is cleared by a SELDO, so we must test for SELDO 57 * one last time. 58 */ 59BEGIN_CRITICAL; 60 test SSTAT0, SELDO jnz select_out; 61END_CRITICAL; 62 call start_selection; 63idle_loop_checkbus: 64BEGIN_CRITICAL; 65 test SSTAT0, SELDO jnz select_out; 66END_CRITICAL; 67 test SSTAT0, SELDI jnz select_in; 68 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 69 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 70 call unexpected_nonpkt_phase_find_ctxt; 71idle_loop_check_nonpackreq: 72 test SSTAT2, NONPACKREQ jz idle_loop_scsi; 73 call unexpected_nonpkt_phase_find_ctxt; 74idle_loop_scsi: 75BEGIN_CRITICAL; 76 test LQISTAT2, LQIGSAVAIL jz idle_loop_service_fifos; 77 /* 78 * We have received good status for this transaction. There may 79 * still be data in our FIFOs draining to the host. Setup 80 * monitoring of the draining process or complete the SCB. 81 */ 82good_status_IU_done: 83 bmov SCBPTR, GSFIFO, 2; 84 clr SCB_SCSI_STATUS; 85 or SCB_CONTROL, STATUS_RCVD; 86 87 /* 88 * Since this status did not consume a FIFO, we have to 89 * be a bit more dilligent in how we check for FIFOs pertaining 90 * to this transaction. There are three states that a FIFO still 91 * transferring data may be in. 92 * 93 * 1) Configured and draining to the host, with a pending CLRCHN. 94 * 2) Configured and draining to the host, no pending CLRCHN. 95 * 3) Pending cfg4data, fifo not empty. 96 * 97 * For case 1, we assume that our DMA post of the completed command 98 * will occur after the FIFO finishes draining due to the higher 99 * priority of data FIFO transfers relative to command channel 100 * transfers. 101 * 102 * Case 2 can be detected by noticing that a longjmp is active for the 103 * FIFO and LONGJMP_SCB matches our SCB. In this case, we allow 104 * the routine servicing the FIFO to complete the SCB. 105 * 106 * Case 3 implies either a pending or yet to occur save data 107 * pointers for this same context in the other FIFO. So, if 108 * we detect case 2, we will properly defer the post of the SCB 109 * and achieve the desired result. The pending cfg4data will 110 * notice that status has been received and complete the SCB. 111 */ 112 test SCB_SGPTR, SG_LIST_NULL jz good_status_check_fifos; 113 /* 114 * All segments have been loaded (or no data transfer), so 115 * it is safe to complete the command. Since this was a 116 * cheap command to check for completion, loop to see if 117 * more entries can be removed from the GSFIFO. 118 */ 119 call complete; 120END_CRITICAL; 121 jmp idle_loop_scsi; 122BEGIN_CRITICAL; 123good_status_check_fifos: 124 clc; 125 bmov ARG_1, SCBPTR, 2; 126 SET_MODE(M_DFF0, M_DFF0); 127 call check_fifo; 128 jc idle_loop_service_fifos; 129 SET_MODE(M_DFF1, M_DFF1); 130 call check_fifo; 131 jc idle_loop_service_fifos; 132 SET_MODE(M_SCSI, M_SCSI); 133 call queue_scb_completion; 134END_CRITICAL; 135idle_loop_service_fifos: 136 SET_MODE(M_DFF0, M_DFF0); 137 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 138 call longjmp; 139idle_loop_next_fifo: 140 SET_MODE(M_DFF1, M_DFF1); 141 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_last_fifo_done; 142 call longjmp; 143idle_loop_last_fifo_done: 144 call idle_loop_cchan; 145 jmp idle_loop; 146 147idle_loop_cchan: 148 SET_MODE(M_CCHAN, M_CCHAN); 149 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 150 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 151 test CCSCBCTL, CCSCBDONE jz return; 152 /* FALLTHROUGH */ 153scbdma_tohost_done: 154 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 155 /* 156 * A complete SCB upload requires no intervention. 157 * The SCB is already on the COMPLETE_SCB list 158 * and its completion notification will now be 159 * handled just like any other SCB. 160 */ 161 and CCSCBCTL, ~(CCARREN|CCSCBEN) ret; 162fill_qoutfifo_dmadone: 163 and CCSCBCTL, ~(CCARREN|CCSCBEN); 164 mvi INTSTAT, CMDCMPLT; 165 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 166 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 167 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 168 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; 169 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; 170 171fetch_new_scb_inprog: 172 test CCSCBCTL, ARRDONE jz return; 173fetch_new_scb_done: 174 and CCSCBCTL, ~(CCARREN|CCSCBEN); 175 bmov REG0, SCBPTR, 2; 176 /* Update the next SCB address to download. */ 177 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 178 mvi SCB_NEXT[1], SCB_LIST_NULL; 179 mvi SCB_NEXT2[1], SCB_LIST_NULL; 180 /* 181 * SCBs that want to send messages are always 182 * queued independently. This ensures that they 183 * are at the head of the SCB list to select out 184 * to a target and we will see the MK_MESSAGE flag. 185 */ 186 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb; 187 shr SINDEX, 3, SCB_SCSIID; 188 and SINDEX, ~0x1; 189 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 190 bmov DINDEX, SINDEX, 2; 191 bmov SCBPTR, SINDIR, 2; 192 bmov DINDIR, REG0, 2; 193 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 194 bmov SCB_NEXT, REG0, 2; 195fetch_new_scb_fini: 196 /* Increment our position in the QINFIFO. */ 197 mov NONE, SNSCB_QOFF ret; 198first_new_target_scb: 199 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 200 bmov SCBPTR, WAITING_TID_TAIL, 2; 201 bmov SCB_NEXT2, REG0, 2; 202 bmov WAITING_TID_TAIL, REG0, 2; 203 /* Increment our position in the QINFIFO. */ 204 mov NONE, SNSCB_QOFF ret; 205first_new_scb: 206 bmov WAITING_TID_HEAD, REG0, 2; 207 bmov WAITING_TID_TAIL, REG0, 2; 208 /* Increment our position in the QINFIFO. */ 209 mov NONE, SNSCB_QOFF ret; 210 211scbdma_idle: 212 /* 213 * Give precedence to downloading new SCBs to execute 214 * unless select-outs are currently frozen. 215 * XXX Use a timer to prevent completion starvation. 216 */ 217 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2; 218BEGIN_CRITICAL; 219 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 220 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 221 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 222 /* FALLTHROUGH */ 223fill_qoutfifo: 224 /* 225 * Keep track of the SCBs we are dmaing just 226 * in case the DMA fails or is aborted. 227 */ 228 mov A, QOUTFIFO_ENTRY_VALID_TAG; 229 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 230 mvi CCSCBCTL, CCSCBRESET; 231 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 232 mov CCSCBRAM, COMPLETE_SCB_HEAD; 233 or CCSCBRAM, A, COMPLETE_SCB_HEAD[1]; 234 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 235 jmp fill_qoutfifo_first_entry; 236fill_qoutfifo_loop: 237 mov CCSCBRAM, SCB_NEXT_COMPLETE; 238 or CCSCBRAM, A, SCB_NEXT_COMPLETE[1]; 239 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 240fill_qoutfifo_first_entry: 241 mov NONE, SDSCB_QOFF; 242 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 243 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 244 test QOFF_CTLSTA, SDSCB_ROLLOVR jz fill_qoutfifo_loop; 245fill_qoutfifo_done: 246 mov SCBHCNT, CCSCBADDR; 247 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 248 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 249 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 250 251fetch_new_scb: 252 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 253 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 254dma_complete_scb: 255 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 256 bmov SCBHADDR, SCB_BUSADDR, 4; 257 mvi CCARREN|CCSCBEN|CCSCBRESET call dma_scb; 258 /* 259 * Now that we've started the DMA, push us onto 260 * the normal completion queue to have our SCBID 261 * posted to the kernel. 262 */ 263 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 264 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 265 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 266END_CRITICAL; 267 268/* 269 * Either post or fetch an SCB from host memory. The caller 270 * is responsible for polling for transfer completion. 271 * 272 * Prerequisits: Mode == M_CCHAN 273 * SINDEX contains CCSCBCTL flags 274 * SCBHADDR set to Host SCB address 275 * SCBPTR set to SCB src location on "push" operations 276 */ 277SET_SRC_MODE M_CCHAN; 278SET_DST_MODE M_CCHAN; 279dma_scb: 280 mvi SCBHCNT, SCB_TRANSFER_SIZE; 281 mov CCSCBCTL, SINDEX; 282 or SEQ_FLAGS2, SCB_DMA ret; 283 284BEGIN_CRITICAL; 285setjmp_setscb: 286 bmov LONGJMP_SCB, SCBPTR, 2; 287setjmp: 288 bmov LONGJMP_ADDR, STACK, 2 ret; 289setjmp_inline: 290 bmov LONGJMP_ADDR, STACK, 2; 291longjmp: 292 bmov STACK, LONGJMP_ADDR, 2 ret; 293END_CRITICAL; 294 295/************************ Packetized LongJmp Routines *************************/ 296/* 297 * Must disable interrupts when setting the mode pointer 298 * register as an interrupt occurring mid update will 299 * fail to store the new mode value for restoration on 300 * an iret. 301 */ 302set_mode_work_around: 303 mvi SEQINTCTL, INTVEC1DSL; 304 mov MODE_PTR, SINDEX; 305 clr SEQINTCTL ret; 306 307SET_SRC_MODE M_SCSI; 308SET_DST_MODE M_SCSI; 309start_selection: 310BEGIN_CRITICAL; 311 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 312 /* 313 * Razor #494 314 * Rev A hardware fails to update LAST/CURR/NEXTSCB 315 * correctly after a packetized selection in several 316 * situations: 317 * 318 * 1) If only one command existed in the queue, the 319 * LAST/CURR/NEXTSCB are unchanged. 320 * 321 * 2) In a non QAS, protocol allowed phase change, 322 * the queue is shifted 1 too far. LASTSCB is 323 * the last SCB that was correctly processed. 324 * 325 * 3) In the QAS case, if the full list of commands 326 * was successfully sent, NEXTSCB is NULL and neither 327 * CURRSCB nor LASTSCB can be trusted. We must 328 * manually walk the list counting MAXCMDCNT elements 329 * to find the last SCB that was sent correctly. 330 * 331 * To simplify the workaround for this bug in SELDO 332 * handling, we initialize LASTSCB prior to enabling 333 * selection so we can rely on it even for case #1 above. 334 */ 335 bmov LASTSCB, WAITING_TID_HEAD, 2; 336 } 337 bmov CURRSCB, WAITING_TID_HEAD, 2; 338 bmov SCBPTR, WAITING_TID_HEAD, 2; 339 shr SELOID, 4, SCB_SCSIID; 340 /* 341 * If we want to send a message to the device, ensure 342 * we are selecting with atn irregardless of our packetized 343 * agreement. Since SPI4 only allows target reset or PPR 344 * messages if this is a packetized connection, the change 345 * to our negotiation table entry for this selection will 346 * be cleared when the message is acted on. 347 */ 348 test SCB_CONTROL, MK_MESSAGE jz . + 3; 349 mov NEGOADDR, SELOID; 350 or NEGCONOPTS, ENAUTOATNO; 351 or SCSISEQ0, ENSELO ret; 352END_CRITICAL; 353 354/* 355 * Allocate a FIFO for a non-packetized transaction. 356 * For some reason unkown to me, both FIFOs must be free before we 357 * can allocate a FIFO for a non-packetized transaction. This 358 * may be fixed in Rev B. 359 */ 360allocate_fifo_loop: 361 /* 362 * Do whatever work is required to free a FIFO. 363 */ 364 SET_MODE(M_DFF0, M_DFF0); 365 test LONGJMP_ADDR[1], INVALID_ADDR jnz . + 2; 366 call longjmp; 367 SET_MODE(M_DFF1, M_DFF1); 368 test LONGJMP_ADDR[1], INVALID_ADDR jnz . + 2; 369 call longjmp; 370 SET_MODE(M_SCSI, M_SCSI); 371allocate_fifo: 372 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 373 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 374take_fifo: 375 bmov ARG_1, SCBPTR, 2; 376 or DFFSTAT, CURRFIFO; 377 SET_MODE(M_DFF1, M_DFF1); 378 bmov SCBPTR, ARG_1, 2 ret; 379 380/* 381 * We have been reselected as an initiator 382 * or selected as a target. 383 */ 384SET_SRC_MODE M_SCSI; 385SET_DST_MODE M_SCSI; 386select_in: 387 or SXFRCTL0, SPIOEN; 388 and SAVED_SCSIID, SELID_MASK, SELID; 389 and A, OID, IOWNID; 390 or SAVED_SCSIID, A; 391 mvi CLRSINT0, CLRSELDI; 392 jmp ITloop; 393 394/* 395 * We have successfully selected out. 396 * 397 * Clear SELDO. 398 * Dequeue all SCBs sent from the waiting queue 399 * Requeue all SCBs *not* sent to the tail of the waiting queue 400 * Take Razor #494 into account for above. 401 * 402 * In Packetized Mode: 403 * Return to the idle loop. Our interrupt handler will take 404 * care of any incoming L_Qs. 405 * 406 * In Non-Packetize Mode: 407 * Continue to our normal state machine. 408 */ 409SET_SRC_MODE M_SCSI; 410SET_DST_MODE M_SCSI; 411select_out: 412BEGIN_CRITICAL; 413 /* Clear out all SCBs that have been successfully sent. */ 414 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 415 /* 416 * For packetized, the LQO manager clears ENSELO on 417 * the assertion of SELDO. If we are non-packetized, 418 * LASTSCB and CURRSCB are acuate. 419 */ 420 test SCSISEQ0, ENSELO jnz use_lastscb; 421 422 /* 423 * The update is correct for LQOSTAT1 errors. All 424 * but LQOBUSFREE are handled by kernel interrupts. 425 * If we see LQOBUSFREE, return to the idle loop. 426 * Once we are out of the select_out critical section, 427 * the kernel will cleanup the LQOBUSFREE and we will 428 * eventually restart the selection if appropriate. 429 */ 430 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 431 432 /* 433 * On a phase change oustside of packet boundaries, 434 * LASTSCB points to the currently active SCB context 435 * on the bus. 436 */ 437 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 438 439 /* 440 * If the hardware has traversed the whole list, NEXTSCB 441 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 442 * but MAXCMDCNT is accurate. If we stop part way through 443 * the list or only had one command to issue, NEXTSCB[1] is 444 * not NULL and LASTSCB is the last command to go out. 445 */ 446 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 447 448 /* 449 * Brute force walk. 450 */ 451 bmov SCBPTR, WAITING_TID_HEAD, 2; 452 mvi SEQINTCTL, INTVEC1DSL; 453 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 454 mov A, MAXCMDCNT; 455 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 456 clr SEQINTCTL; 457find_lastscb_loop: 458 dec A; 459 test A, 0xFF jz found_last_sent_scb; 460 bmov SCBPTR, SCB_NEXT, 2; 461 jmp find_lastscb_loop; 462use_lastscb: 463 bmov SCBPTR, LASTSCB, 2; 464found_last_sent_scb: 465 bmov CURRSCB, SCBPTR, 2; 466curscb_ww_done: 467 } else { 468 /* 469 * Untested - Verify with Rev B. 470 */ 471 bmov SCBPTR, CURRSCB, 2; 472 } 473 /* 474 * Requeue any SCBs not sent, to the tail of the waiting Q. 475 */ 476 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done; 477 478 /* 479 * We know that neither the per-TID list nor the list of 480 * TIDs is empty. Use this knowledge to our advantage. 481 */ 482 bmov REG0, SCB_NEXT, 2; 483 bmov SCBPTR, WAITING_TID_TAIL, 2; 484 bmov SCB_NEXT2, REG0, 2; 485 bmov WAITING_TID_TAIL, REG0, 2; 486 jmp select_out_inc_tid_q; 487 488select_out_list_done: 489 /* 490 * The whole list made it. Just clear our TID's tail pointer 491 * unless we were queued independently due to our need to 492 * send a message. 493 */ 494 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q; 495 shr DINDEX, 3, SCB_SCSIID; 496/* XXX When we switch to SCB_SELOID, put +1 in addition below. */ 497 or DINDEX, 1; /* Want only the second byte */ 498 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 499 mvi DINDIR, SCB_LIST_NULL; 500select_out_inc_tid_q: 501 bmov SCBPTR, WAITING_TID_HEAD, 2; 502 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 503 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 504 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 505 bmov SCBPTR, CURRSCB, 2; 506END_CRITICAL; 507 508 mvi CLRSINT0, CLRSELDO; 509 510 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase; 511 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase; 512 513 /* 514 * If this is a packetized connection, return to our 515 * idle_loop and let our interrupt handler deal with 516 * any connection setup/teardown issues. The only 517 * exception is the case of MK_MESSAGE SCBs. In the 518 * A, the LQO manager transitions to LQOSTOP0 even if 519 * we have selected out with ATN asserted and the target 520 * REQs in a non-packet phase. 521 */ 522 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 523 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 524 test SCSISIGO, ATNO jnz select_out_non_packetized; 525select_out_no_message: 526 } 527 test LQOSTAT2, LQOSTOP0 jnz idle_loop; 528 529select_out_non_packetized: 530 /* Non packetized request. */ 531 and SCSISEQ0, ~ENSELO; 532 mov SAVED_SCSIID, SCB_SCSIID; 533 mov SAVED_LUN, SCB_LUN; 534 or SXFRCTL0, SPIOEN; 535 536 /* 537 * As soon as we get a successful selection, the target 538 * should go into the message out phase since we have ATN 539 * asserted. 540 */ 541 mvi MSG_OUT, MSG_IDENTIFYFLAG; 542 mvi SEQ_FLAGS, NO_CDB_SENT; 543 544 /* 545 * Main loop for information transfer phases. Wait for the 546 * target to assert REQ before checking MSG, C/D and I/O for 547 * the bus phase. 548 */ 549mesgin_phasemis: 550ITloop: 551 call phase_lock; 552 553 mov A, LASTPHASE; 554 555 test A, ~P_DATAIN_DT jz p_data; 556 cmp A,P_COMMAND je p_command; 557 cmp A,P_MESGOUT je p_mesgout; 558 cmp A,P_STATUS je p_status; 559 cmp A,P_MESGIN je p_mesgin; 560 561 mvi SEQINTCODE, BAD_PHASE; 562 jmp ITloop; /* Try reading the bus again. */ 563 564/* 565 * Command phase. Set up the DMA registers and let 'er rip. 566 */ 567p_command: 568SET_SRC_MODE M_DFF1; 569SET_DST_MODE M_DFF1; 570 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 571 jnz p_command_allocate_fifo; 572 /* 573 * Command retry. Free our current FIFO and 574 * re-allocate a FIFO so transfer state is 575 * reset. 576 */ 577 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 578p_command_allocate_fifo: 579 call allocate_fifo; 580 add NONE, -17, SCB_CDB_LEN; 581 jnc p_command_embedded; 582p_command_from_host: 583 bmov HADDR[0], SCB_CDB_PTR, 11; 584 mvi SG_CACHE_PRE, LAST_SEG; 585 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 586 jmp p_command_loop; 587p_command_embedded: 588 bmov SHCNT[0], SCB_CDB_LEN, 1; 589 bmov SHCNT[1], ALLZEROS, 2; 590 bmov DFDAT, SCB_CDB_STORE, 16; 591 mvi DFCNTRL, SCSIEN; 592p_command_loop: 593 test DFCNTRL, SCSIEN jnz p_command_loop; 594 /* 595 * DMA Channel automatically disabled. 596 * Don't allow a data phase if the command 597 * was not fully transferred. Make sure that 598 * we clear the IDENTIFY SEEN flag if a retry 599 * falls short too. 600 */ 601 and SEQ_FLAGS, ~NO_CDB_SENT; 602 test SSTAT2, SDONE jnz ITloop; 603 or SEQ_FLAGS, NO_CDB_SENT; 604 jmp ITloop; 605 606 607/* 608 * Status phase. Wait for the data byte to appear, then read it 609 * and store it into the SCB. 610 */ 611SET_SRC_MODE M_SCSI; 612SET_DST_MODE M_SCSI; 613p_status: 614 test SEQ_FLAGS,NOT_IDENTIFIED jz p_status_okay; 615 mvi SEQINTCODE, PROTO_VIOLATION; 616 jmp mesgin_done; 617p_status_okay: 618 mov SCB_SCSI_STATUS, SCSIDAT; 619 or SCB_CONTROL, STATUS_RCVD; 620 jmp ITloop; 621 622/* 623 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 624 * indentify message sequence and send it to the target. The host may 625 * override this behavior by setting the MK_MESSAGE bit in the SCB 626 * control byte. This will cause us to interrupt the host and allow 627 * it to handle the message phase completely on its own. If the bit 628 * associated with this target is set, we will also interrupt the host, 629 * thereby allowing it to send a message on the next selection regardless 630 * of the transaction being sent. 631 * 632 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 633 * This is done to allow the host to send messages outside of an identify 634 * sequence while protecting the seqencer from testing the MK_MESSAGE bit 635 * on an SCB that might not be for the current nexus. (For example, a 636 * BDR message in responce to a bad reselection would leave us pointed to 637 * an SCB that doesn't have anything to do with the current target). 638 * 639 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 640 * bus device reset). 641 * 642 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 643 * in case the target decides to put us in this phase for some strange 644 * reason. 645 */ 646p_mesgout_retry: 647 /* Turn on ATN for the retry */ 648 mvi SCSISIGO, ATNO; 649p_mesgout: 650 mov SINDEX, MSG_OUT; 651 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 652 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 653p_mesgout_identify: 654 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 655 test SCB_CONTROL, DISCENB jnz . + 2; 656 and SINDEX, ~DISCENB; 657/* 658 * Send a tag message if TAG_ENB is set in the SCB control block. 659 * Use SCB_NONPACKET_TAG as the tag value. 660 */ 661p_mesgout_tag: 662 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 663 mov SCSIDAT, SINDEX; /* Send the identify message */ 664 call phase_lock; 665 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 666 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 667 call phase_lock; 668 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 669 mov SCBPTR jmp p_mesgout_onebyte; 670/* 671 * Interrupt the driver, and allow it to handle this message 672 * phase and any required retries. 673 */ 674p_mesgout_from_host: 675 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 676 jmp host_message_loop; 677 678p_mesgout_onebyte: 679 mvi CLRSINT1, CLRATNO; 680 mov SCSIDAT, SINDEX; 681 682/* 683 * If the next bus phase after ATN drops is message out, it means 684 * that the target is requesting that the last message(s) be resent. 685 */ 686 call phase_lock; 687 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 688 689p_mesgout_done: 690 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 691 mov LAST_MSG, MSG_OUT; 692 mvi MSG_OUT, MSG_NOOP; /* No message left */ 693 jmp ITloop; 694 695/* 696 * Message in phase. Bytes are read using Automatic PIO mode. 697 */ 698p_mesgin: 699 /* read the 1st message byte */ 700 mvi ACCUM call inb_first; 701 702 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 703 cmp A,MSG_DISCONNECT je mesgin_disconnect; 704 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 705 cmp ALLZEROS,A je mesgin_complete; 706 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 707 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 708 cmp A,MSG_NOOP je mesgin_done; 709 710/* 711 * Pushed message loop to allow the kernel to 712 * run it's own message state engine. To avoid an 713 * extra nop instruction after signaling the kernel, 714 * we perform the phase_lock before checking to see 715 * if we should exit the loop and skip the phase_lock 716 * in the ITloop. Performing back to back phase_locks 717 * shouldn't hurt, but why do it twice... 718 */ 719host_message_loop: 720 call phase_lock; /* Benign the first time through. */ 721 mvi SEQINTCODE, HOST_MSG_LOOP; 722 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 723 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 724 mov SCSIDAT, RETURN_2; 725 jmp host_message_loop; 726 /* Must be CONT_MSG_LOOP_READ */ 727 mov NONE, SCSIDAT; /* ACK Byte */ 728 jmp host_message_loop; 729 730mesgin_ign_wide_residue: 731 shr NEGOADDR, 4, SAVED_SCSIID; 732 test NEGCONOPTS, WIDEXFER jz mesgin_reject; 733 /* Pull the residue byte */ 734 mvi REG0 call inb_next; 735 cmp REG0, 0x01 jne mesgin_reject; 736 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 737 test DATA_COUNT_ODD, 0x1 jz mesgin_done; 738 mvi SEQINTCODE, IGN_WIDE_RES; 739 jmp mesgin_done; 740 741mesgin_reject: 742 mvi MSG_MESSAGE_REJECT call mk_mesg; 743mesgin_done: 744 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 745 jmp ITloop; 746 747#define INDEX_DISC_LIST_SCB(scsiid, lun) \ 748 and A, 0xC0, scsiid; \ 749 or SCBPTR, A, lun; \ 750 clr SCBPTR[1] 751 752#define INDEX_DISC_LIST(scsiid, lun) \ 753 INDEX_DISC_LIST_SCB(scsiid, lun); \ 754 and SINDEX, 0x30, scsiid; \ 755 shr SINDEX, 3; /* Multiply by 2 */ \ 756 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 757 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 758 759mesgin_identify: 760 /* 761 * Determine whether a target is using tagged or non-tagged 762 * transactions by first looking at the transaction stored in 763 * the per-device, disconnected array. If there is no untagged 764 * transaction for this target, this must be a tagged transaction. 765 */ 766 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 767 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 768 bmov DINDEX, SINDEX, 2; 769 bmov REG0, SINDIR, 2; 770 cmp REG0[1], SCB_LIST_NULL je snoop_tag; 771 /* Untagged. Clear the busy table entry and setup the SCB. */ 772 bmov DINDIR, ALLONES, 2; 773 bmov SCBPTR, REG0, 2; 774 jmp setup_SCB; 775 776/* 777 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 778 * If we get one, we use the tag returned to find the proper 779 * SCB. After receiving the tag, look for the SCB at SCB locations tag and 780 * tag + 256. 781 */ 782snoop_tag: 783 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 784 or SEQ_FLAGS, 0x80; 785 } 786 mov NONE, SCSIDAT; /* ACK Identify MSG */ 787 call phase_lock; 788 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 789 or SEQ_FLAGS, 0x1; 790 } 791 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 792 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 793 or SEQ_FLAGS, 0x2; 794 } 795 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 796get_tag: 797 clr SCBPTR[1]; 798 mvi SCBPTR call inb_next; /* tag value */ 799verify_scb: 800 test SCB_CONTROL,DISCONNECTED jz verify_other_scb; 801 mov A, SAVED_SCSIID; 802 cmp SCB_SCSIID, A jne verify_other_scb; 803 mov A, SAVED_LUN; 804 cmp SCB_LUN, A je setup_SCB_disconnected; 805verify_other_scb: 806 xor SCBPTR[1], 1; 807 test SCBPTR[1], 0xFF jnz verify_scb; 808 jmp not_found; 809 810/* 811 * Ensure that the SCB the tag points to is for 812 * an SCB transaction to the reconnecting target. 813 */ 814setup_SCB: 815 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 816 or SEQ_FLAGS, 0x10; 817 } 818 test SCB_CONTROL,DISCONNECTED jz not_found; 819setup_SCB_disconnected: 820 and SCB_CONTROL,~DISCONNECTED; 821 clr SEQ_FLAGS; /* make note of IDENTIFY */ 822 test SCB_SGPTR, SG_LIST_NULL jnz . + 2; 823 call allocate_fifo; 824 /* See if the host wants to send a message upon reconnection */ 825 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 826 mvi HOST_MSG call mk_mesg; 827 jmp mesgin_done; 828 829not_found: 830 mvi SEQINTCODE, NO_MATCH; 831 jmp mesgin_done; 832 833not_found_ITloop: 834 mvi SEQINTCODE, NO_MATCH; 835 jmp ITloop; 836 837/* 838 * We received a "command complete" message. Put the SCB on the complete 839 * queue and trigger a completion interrupt via the idle loop. Before doing 840 * so, check to see if there 841 * is a residual or the status byte is something other than STATUS_GOOD (0). 842 * In either of these conditions, we upload the SCB back to the host so it can 843 * process this information. In the case of a non zero status byte, we 844 * additionally interrupt the kernel driver synchronously, allowing it to 845 * decide if sense should be retrieved. If the kernel driver wishes to request 846 * sense, it will fill the kernel SCB with a request sense command, requeue 847 * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting 848 * RETURN_1 to SEND_SENSE. 849 */ 850mesgin_complete_proto_violation: 851 mvi SEQINTCODE, PROTO_VIOLATION; 852 jmp mesgin_done; 853mesgin_complete: 854 855 /* 856 * If ATN is raised, we still want to give the target a message. 857 * Perhaps there was a parity error on this last message byte. 858 * Either way, the target should take us to message out phase 859 * and then attempt to complete the command again. We should use a 860 * critical section here to guard against a timeout triggering 861 * for this command and setting ATN while we are still processing 862 * the completion. 863 test SCSISIGI, ATNI jnz mesgin_done; 864 */ 865 866 /* 867 * If we are identified and have successfully sent the CDB, 868 * any status will do. Optimize this fast path. 869 */ 870 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jnz . + 2; 871 test SCB_CONTROL, STATUS_RCVD jnz complete_accepted; 872 873 /* 874 * If the target never sent an identify message but instead went 875 * to mesgin to give an invalid message, let the host abort us. 876 */ 877 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_complete_proto_violation; 878 879 /* 880 * If the target never gave us status information, have 881 * the host abort the command. 882 */ 883 test SCB_CONTROL, STATUS_RCVD jz mesgin_complete_proto_violation; 884 885 /* 886 * If we recevied good status but never successfully sent the 887 * cdb, abort the command. 888 */ 889 test SCB_SCSI_STATUS,0xff jnz complete_accepted; 890 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_complete_proto_violation; 891complete_accepted: 892 893 /* 894 * See if we attempted to deliver a message but the target ingnored us. 895 */ 896 test SCB_CONTROL, MK_MESSAGE jz . + 2; 897 mvi SEQINTCODE, MKMSG_FAILED; 898 call queue_scb_completion; 899 jmp await_busfree; 900 901freeze_queue: 902 /* Cancel any pending select-out. */ 903 test SSTAT0, SELDO jnz . + 2; 904 and SCSISEQ0, ~ENSELO; 905 mov ACCUM_SAVE, A; 906 clr A; 907 add QFREEZE_COUNT, 1; 908 adc QFREEZE_COUNT[1], A; 909 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 910 mov A, ACCUM_SAVE ret; 911 912queue_arg1_scb_completion: 913 SET_MODE(M_SCSI, M_SCSI); 914 bmov SCBPTR, ARG_1, 2; 915queue_scb_completion: 916 test SCB_SCSI_STATUS,0xff jnz bad_status; 917 /* 918 * Check for residuals 919 */ 920 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 921 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 922 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 923complete: 924 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 925 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 926bad_status: 927 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 928 call freeze_queue; 929upload_scb: 930 bmov SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2; 931 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 932 or SCB_SGPTR, SG_STATUS_VALID ret; 933 934/* 935 * Is it a disconnect message? Set a flag in the SCB to remind us 936 * and await the bus going free. If this is an untagged transaction 937 * store the SCB id for it in our untagged target table for lookup on 938 * a reselction. 939 */ 940mesgin_disconnect: 941 /* 942 * If ATN is raised, we still want to give the target a message. 943 * Perhaps there was a parity error on this last message byte 944 * or we want to abort this command. Either way, the target 945 * should take us to message out phase and then attempt to 946 * disconnect again. 947 * XXX - Wait for more testing. 948 test SCSISIGI, ATNI jnz mesgin_done; 949 */ 950 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz disconnect_allowed; 951 mvi SEQINTCODE, PROTO_VIOLATION; 952 jmp mesgin_done; 953disconnect_allowed: 954 or SCB_CONTROL,DISCONNECTED; 955 test SCB_CONTROL, TAG_ENB jnz await_busfree; 956queue_disc_scb: 957 bmov REG0, SCBPTR, 2; 958 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 959 bmov DINDEX, SINDEX, 2; 960 bmov DINDIR, REG0, 2; 961 bmov SCBPTR, REG0, 2; 962 /* FALLTHROUGH */ 963await_busfree: 964 and SIMODE1, ~ENBUSFREE; 965 mov NONE, SCSIDAT; /* Ack the last byte */ 966 call clear_target_state; 967 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 968 jnz await_busfree_not_m_dff; 969SET_SRC_MODE M_DFF1; 970SET_DST_MODE M_DFF1; 971await_busfree_clrchn: 972 mvi DFFSXFRCTL, CLRCHN; 973await_busfree_not_m_dff: 974 test SSTAT1,REQINIT|BUSFREE jz .; 975 test SSTAT1, BUSFREE jnz idle_loop; 976 mvi SEQINTCODE, MISSED_BUSFREE; 977 978 979/* 980 * Save data pointers message: 981 * Copying RAM values back to SCB, for Save Data Pointers message, but 982 * only if we've actually been into a data phase to change them. This 983 * protects against bogus data in scratch ram and the residual counts 984 * since they are only initialized when we go into data_in or data_out. 985 * Ack the message as soon as possible. 986 */ 987SET_SRC_MODE M_DFF1; 988SET_DST_MODE M_DFF1; 989mesgin_sdptrs: 990 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 991 test SEQ_FLAGS, DPHASE jz ITloop; 992 call save_pointers; 993 jmp ITloop; 994 995save_pointers: 996 /* 997 * If we are asked to save our position at the end of the 998 * transfer, just mark us at the end rather than perform a 999 * full save. 1000 */ 1001 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1002 or SCB_SGPTR, SG_LIST_NULL ret; 1003 1004save_pointers_full: 1005 /* 1006 * The SCB_DATAPTR becomes the current SHADDR. 1007 * All other information comes directly from our residual 1008 * state. 1009 */ 1010 bmov SCB_DATAPTR, SHADDR, 8; 1011 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1012 1013/* 1014 * Restore pointers message? Data pointers are recopied from the 1015 * SCB anytime we enter a data phase for the first time, so all 1016 * we need to do is clear the DPHASE flag and let the data phase 1017 * code do the rest. We also reset/reallocate the FIFO to make 1018 * sure we have a clean start for the next data phase. 1019 */ 1020mesgin_rdptrs: 1021 and SEQ_FLAGS, ~DPHASE; 1022 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1023 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1024msgin_rdptrs_get_fifo: 1025 call allocate_fifo; 1026 jmp mesgin_done; 1027 1028clear_target_state: 1029 mvi LASTPHASE, P_BUSFREE; 1030 /* clear target specific flags */ 1031 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret; 1032 1033phase_lock: 1034 test SCSIPHASE, 0xFF jz .; 1035phase_lock_latch_phase: 1036 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1037 1038/* 1039 * Functions to read data in Automatic PIO mode. 1040 * 1041 * An ACK is not sent on input from the target until SCSIDATL is read from. 1042 * So we wait until SCSIDATL is latched (the usual way), then read the data 1043 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1044 * line, or we just want to acknowledge the byte, then we do a dummy read 1045 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1046 * data byte on the bus until we send our ACK. 1047 * 1048 * The assumption here is that these are called in a particular sequence, 1049 * and that REQ is already set when inb_first is called. inb_{first,next} 1050 * use the same calling convention as inb. 1051 */ 1052inb_next: 1053 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1054inb_next_wait: 1055 /* 1056 * If there is a parity error, wait for the kernel to 1057 * see the interrupt and prepare our message response 1058 * before continuing. 1059 */ 1060 test SCSIPHASE, 0xFF jz .; 1061inb_next_check_phase: 1062 and LASTPHASE, PHASE_MASK, SCSISIGI; 1063 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1064inb_first: 1065 clr DINDEX[1]; 1066 mov DINDEX,SINDEX; 1067 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1068inb_last: 1069 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1070 1071mk_mesg: 1072 mvi SCSISIGO, ATNO; 1073 mov MSG_OUT,SINDEX ret; 1074 1075SET_SRC_MODE M_DFF1; 1076SET_DST_MODE M_DFF1; 1077disable_ccsgen: 1078 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; 1079 clr CCSGCTL; 1080disable_ccsgen_fetch_done: 1081 clr SG_STATE ret; 1082 1083toggle_dff_mode: 1084 mvi SEQINTCTL, INTVEC1DSL; 1085 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1086 clr SEQINTCTL ret; 1087 1088data_group_idle_loop: 1089 mov SAVED_MODE, MODE_PTR; 1090 test SG_STATE, LOADING_NEEDED jz . + 2; 1091 call service_fifo; 1092 call toggle_dff_mode; 1093 test SG_STATE, LOADING_NEEDED jz . + 2; 1094 call service_fifo; 1095 call idle_loop_cchan; 1096 mov SAVED_MODE jmp set_mode_work_around; 1097 1098service_fifo: 1099 /* 1100 * Do we have any prefetch left??? 1101 */ 1102 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1103 1104 /* 1105 * Can this FIFO have access to the S/G cache yet? 1106 */ 1107 test CCSGCTL, SG_CACHE_AVAIL jz return; 1108 1109 /* Did we just finish fetching segs? */ 1110 cmp CCSGCTL, CCSGEN|SG_CACHE_AVAIL|CCSGDONE 1111 je idle_sgfetch_complete; 1112 1113 /* Are we actively fetching segments? */ 1114 test CCSGCTL, CCSGEN jnz return; 1115 1116 /* 1117 * We fetch a "cacheline aligned" and sized amount of data 1118 * so we don't end up referencing a non-existant page. 1119 * Cacheline aligned is in quotes because the kernel will 1120 * set the prefetch amount to a reasonable level if the 1121 * cacheline size is unknown. 1122 */ 1123 mvi SGHCNT, SG_PREFETCH_CNT; 1124 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1125 bmov SGHADDR[1], SCB_RESIDUAL_SGPTR[1], 3; 1126 mvi CCSGCTL, CCSGEN|SG_CACHE_AVAIL|CCSGRESET; 1127 or SG_STATE, FETCH_INPROG ret; 1128idle_sgfetch_complete: 1129 /* 1130 * Guard against SG_CACHE_AVAIL activating during sg fetch 1131 * request in the other FIFO. 1132 */ 1133 test SG_STATE, FETCH_INPROG jz return; 1134 clr CCSGCTL; 1135 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1136 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1137idle_sg_avail: 1138 /* Does the hardware have space for another SG entry? */ 1139 test DFSTATUS, PRELOAD_AVAIL jz return; 1140 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1141 bmov HADDR, CCSGRAM, 8; 1142 } else { 1143 bmov HADDR, CCSGRAM, 4; 1144 } 1145 bmov HCNT, CCSGRAM, 3; 1146 test HCNT[0], 0x1 jz . + 2; 1147 xor DATA_COUNT_ODD, 0x1; 1148 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1149 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1150 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1151 } 1152 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1153 /* Skip 4 bytes of pad. */ 1154 add CCSGADDR, 4; 1155 } 1156sg_advance: 1157 clr A; /* add sizeof(struct scatter) */ 1158 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1159 adc SCB_RESIDUAL_SGPTR[1],A; 1160 adc SCB_RESIDUAL_SGPTR[2],A; 1161 adc SCB_RESIDUAL_SGPTR[3],A; 1162 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1163 test DATA_COUNT_ODD, 0x1 jz . + 2; 1164 or SINDEX, ODD_SEG; 1165 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1166 or SINDEX, LAST_SEG; 1167 clr SG_STATE; 1168 mov SG_CACHE_PRE, SINDEX; 1169 /* 1170 * Load the segment. Or in HDMAEN here too 1171 * just in case HDMAENACK has not come true 1172 * by the time this segment is loaded. If 1173 * HDMAENACK is not true, this or will disable 1174 * HDMAEN mid-transfer. We do not want to simply 1175 * mvi our original settings as SCSIEN automatically 1176 * de-asserts and we don't want to accidentally 1177 * re-enable it. 1178 */ 1179 or DFCNTRL, PRELOADEN|HDMAEN; 1180 /* 1181 * Do we have another segment in the cache? 1182 */ 1183 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1184 jnc return; 1185 and SG_STATE, ~SEGS_AVAIL ret; 1186 1187/* 1188 * Initialize the DMA address and counter from the SCB. 1189 */ 1190load_first_seg: 1191 bmov HADDR, SCB_DATAPTR, 11; 1192 and DATA_COUNT_ODD, 0x1, SCB_DATACNT[0]; 1193 and REG0, ~SG_FULL_RESID, SCB_SGPTR[0]; 1194 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1195 or REG0, LAST_SEG; 1196 test DATA_COUNT_ODD, 0x1 jz . + 2; 1197 or REG0, ODD_SEG; 1198 mov SG_CACHE_PRE, REG0; 1199 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1200 /* 1201 * Since we've are entering a data phase, we will 1202 * rely on the SCB_RESID* fields. Initialize the 1203 * residual and clear the full residual flag. 1204 */ 1205 and SCB_SGPTR[0], ~SG_FULL_RESID; 1206 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1207 /* If we need more S/G elements, tell the idle loop */ 1208 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1209 mvi SG_STATE, LOADING_NEEDED ret; 1210 clr SG_STATE ret; 1211 1212p_data: 1213 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1214 mvi SEQINTCODE, PROTO_VIOLATION; 1215p_data_allowed: 1216 1217 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1218 1219 /* 1220 * If we re-enter the data phase after going through another 1221 * phase, our transfer location has almost certainly been 1222 * corrupted by the interveining, non-data, transfers. Ask 1223 * the host driver to fix us up based on the transfer residual 1224 * unless we already know that we should be bitbucketing. 1225 */ 1226 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1227 mvi SEQINTCODE, PDATA_REINIT; 1228 1229p_data_bitbucket: 1230 /* 1231 * Turn on `Bit Bucket' mode, wait until the target takes 1232 * us to another phase, and then notify the host. 1233 */ 1234 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1235 jnz bitbucket_not_m_dff; 1236 /* 1237 * Ensure that any FIFO contents are cleared out and the 1238 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1239 * doesn't discard data already in the FIFO. 1240 */ 1241 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1242 SET_MODE(M_SCSI, M_SCSI); 1243bitbucket_not_m_dff: 1244 or SXFRCTL1,BITBUCKET; 1245 test SCSIPHASE, DATA_PHASE_MASK jnz .; 1246 and SXFRCTL1, ~BITBUCKET; 1247 SET_MODE(M_DFF1, M_DFF1); 1248 mvi SEQINTCODE, DATA_OVERRUN; 1249 jmp ITloop; 1250 1251data_phase_initialize: 1252 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1253 call load_first_seg; 1254data_phase_inbounds: 1255 /* We have seen a data phase at least once. */ 1256 or SEQ_FLAGS, DPHASE; 1257data_group_dma_loop: 1258 /* 1259 * The transfer is complete if either the last segment 1260 * completes or the target changes phase. Both conditions 1261 * will clear SCSIEN. 1262 */ 1263 call data_group_idle_loop; 1264 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1265 1266data_group_dmafinish: 1267 /* 1268 * The transfer has terminated either due to a phase 1269 * change, and/or the completion of the last segment. 1270 * We have two goals here. Do as much other work 1271 * as possible while the data fifo drains on a read 1272 * and respond as quickly as possible to the standard 1273 * messages (save data pointers/disconnect and command 1274 * complete) that usually follow a data phase. 1275 */ 1276 call calc_residual; 1277 1278 /* 1279 * Go ahead and shut down the DMA engine now. 1280 */ 1281 test DFCNTRL, DIRECTION jnz data_phase_finish; 1282data_group_fifoflush: 1283 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1284 or DFCNTRL, FIFOFLUSH; 1285 } 1286 /* 1287 * We have enabled the auto-ack feature. This means 1288 * that the controller may have already transferred 1289 * some overrun bytes into the data FIFO and acked them 1290 * on the bus. The only way to detect this situation is 1291 * to wait for LAST_SEG_DONE to come true on a completed 1292 * transfer and then test to see if the data FIFO is 1293 * non-empty. We know there is more data yet to transfer 1294 * if SG_LIST_NULL is not yet set, thus there cannot be 1295 * an overrun. 1296 */ 1297 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1298 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1299 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1300 /* Overrun */ 1301 jmp p_data; 1302data_phase_finish: 1303 /* 1304 * If the target has left us in data phase, loop through 1305 * the dma code again. We will only loop if there is a 1306 * data overrun. 1307 */ 1308 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1309 test SSTAT0, TARGET jnz data_phase_done; 1310 } 1311 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1312 test SSTAT1, REQINIT jz .; 1313 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1314 } 1315 1316data_phase_done: 1317 /* Kill off any pending prefetch */ 1318 call disable_ccsgen; 1319 1320 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1321 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1322 /* 1323 and SEQ_FLAGS, ~DPHASE_PENDING; 1324 * For data-in phases, wait for any pending acks from the 1325 * initiator before changing phase. We only need to 1326 * send Ignore Wide Residue messages for data-in phases. 1327 test DFCNTRL, DIRECTION jz target_ITloop; 1328 test SSTAT1, REQINIT jnz .; 1329 test DATA_COUNT_ODD, 0x1 jz target_ITloop; 1330 SET_MODE(M_SCSI, M_SCSI); 1331 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1332 */ 1333 /* 1334 * Issue an Ignore Wide Residue Message. 1335 mvi P_MESGIN|BSYO call change_phase; 1336 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1337 mvi 1 call target_outb; 1338 jmp target_ITloop; 1339 */ 1340 } else { 1341 jmp ITloop; 1342 } 1343 1344/* 1345 * We assume that, even though data may still be 1346 * transferring to the host, that the SCSI side of 1347 * the DMA engine is now in a static state. This 1348 * allows us to update our notion of where we are 1349 * in this transfer. 1350 * 1351 * If, by chance, we stopped before being able 1352 * to fetch additional segments for this transfer, 1353 * yet the last S/G was completely exhausted, 1354 * call our idle loop until it is able to load 1355 * another segment. This will allow us to immediately 1356 * pickup on the next segment on the next data phase. 1357 * 1358 * If we happened to stop on the last segment, then 1359 * our residual information is still correct from 1360 * the idle loop and there is no need to perform 1361 * any fixups. 1362 */ 1363calc_residual: 1364 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1365 /* Record if we've consumed all S/G entries */ 1366 test MDFFSTAT, SHVALID jz . + 2; 1367 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1368 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1369residual_before_last_seg: 1370 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1371 /* 1372 * Can never happen from an interrupt as the packetized 1373 * hardware will only interrupt us once SHVALID or 1374 * LAST_SEG_DONE. 1375 */ 1376 call data_group_idle_loop; 1377 jmp calc_residual; 1378 1379sgptr_fixup: 1380 /* 1381 * Fixup the residual next S/G pointer. The S/G preload 1382 * feature of the chip allows us to load two elements 1383 * in addition to the currently active element. We 1384 * store the bottom byte of the next S/G pointer in 1385 * the SG_CACHE_PTR register so we can restore the 1386 * correct value when the DMA completes. If the next 1387 * sg ptr value has advanced to the point where higher 1388 * bytes in the address have been affected, fix them 1389 * too. 1390 */ 1391 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1392 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1393 add SCB_RESIDUAL_SGPTR[1], -1; 1394 adc SCB_RESIDUAL_SGPTR[2], -1; 1395 adc SCB_RESIDUAL_SGPTR[3], -1; 1396sgptr_fixup_done: 1397 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1398 clr DATA_COUNT_ODD; 1399 test SG_CACHE_SHADOW, ODD_SEG jz . + 2; 1400 or DATA_COUNT_ODD, 0x1; 1401 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1402 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1403 1404export seq_isr: 1405 nop; /* Jumps in the first ISR instruction fail on Rev A. */ 1406 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1407 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1408 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1409 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1410 mvi SEQINTCODE, INVALID_SEQINT; 1411 1412/* 1413 * There are two types of save pointers interrupts: 1414 * The first is a snapshot save pointers where the current FIFO is not 1415 * active and contains a snapshot of the current poniter information. 1416 * This happens between packets in a stream for a single L_Q. Since we 1417 * are not performing a pointer save, we can safely clear the channel 1418 * so it can be used for other transactions. 1419 * 1420 * The second case is a save pointers on an active FIFO which occurs 1421 * if the target changes to a new L_Q or busfrees/QAS' and the transfer 1422 * has a residual. This should occur coincident with a ctxtdone. We 1423 * disable the interrupt and allow our active routine to handle the 1424 * save. 1425 */ 1426saveptr_intr: 1427 test DFCNTRL, HDMAENACK jz snapshot_saveptr; 1428 and SEQIMODE, ~ENSAVEPTRS; 1429 or SEQINTCTL, IRET ret; 1430snapshot_saveptr: 1431 mvi DFFSXFRCTL, CLRCHN; 1432 or SEQINTCTL, IRET ret; 1433 1434cfg4data_intr: 1435 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun; 1436 call load_first_seg; 1437 call pkt_handle_xfer; 1438 or SEQINTCTL, IRET ret; 1439 1440cfg4istat_intr: 1441 call freeze_queue; 1442 add NONE, -13, SCB_CDB_LEN; 1443 jnc cfg4istat_have_sense_addr; 1444 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1445 /* 1446 * Host sets up address/count and enables transfer. 1447 */ 1448 mvi SEQINTCODE, CFG4ISTAT_INTR; 1449 jmp cfg4istat_setup_handler; 1450cfg4istat_have_sense_addr: 1451 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1452 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1453 mvi SG_CACHE_PRE, LAST_SEG; 1454 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1455cfg4istat_setup_handler: 1456 /* 1457 * Status pkt is transferring to host. 1458 * Wait in idle loop for transfer to complete. 1459 */ 1460 call pkt_handle_status; 1461 or SEQINTCTL, IRET ret; 1462 1463/* 1464 * See if the target has gone on in this context creating an 1465 * overrun condition. For the write case, the hardware cannot 1466 * ack bytes until data is provided. So, if the target begins 1467 * another packet without changing contexts, implying we are 1468 * not sitting on a packet boundary, we are in an overrun 1469 * situation. For the read case, the hardware will continue to 1470 * ack bytes into the FIFO, and may even ack the last overrun packet 1471 * into the FIFO. If the FIFO should become non-empty, we are in 1472 * a read overrun case. 1473 */ 1474#define check_overrun \ 1475 /* Not on a packet boundary. */ \ 1476 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1477 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1478 1479pkt_handle_xfer: 1480 bmov LONGJMP_SCB, SCBPTR, 2; 1481 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1482 call setjmp; 1483 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1484 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1485 test SCSISIGO, ATNO jnz . + 2; 1486 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 1487 /* 1488 * Defer handling of this NONPACKREQ until we 1489 * can be sure it pertains to this FIFO. SAVEPTRS 1490 * will not be asserted if the NONPACKREQ is for us, 1491 * so we must simulate it if shaddow is valid. If 1492 * shaddow is not valid, keep running this FIFO until we 1493 * have satisfied the transfer by loading segments and 1494 * waiting for either shaddow valid or last_seg_done. 1495 */ 1496 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 1497pkt_service_fifo: 1498 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1499pkt_last_seg: 1500 call setjmp; 1501 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1502 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz last_pkt_done; 1503 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1504 test SCSISIGO, ATNO jnz . + 2; 1505 test SSTAT2, NONPACKREQ jz return; 1506 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 1507 jmp return; 1508last_pkt_done: 1509BEGIN_CRITICAL; 1510 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1511 or DFCNTRL, FIFOFLUSH; 1512 } 1513 test SCB_CONTROL, STATUS_RCVD jz wait_pkt_end; 1514 check_overrun; 1515 or SCB_SGPTR, SG_LIST_NULL; 1516 /* 1517 * I think it is safe to skip the FIFO check. 1518 * in this case as LAST_SEG_DONE implies 1519 * the other FIFO, if ever active for this transfer, 1520 * has completed. 1521 */ 1522last_pkt_queue_scb: 1523 or LONGJMP_ADDR[1], INVALID_ADDR; 1524 bmov ARG_1, SCBPTR, 2; 1525 mvi DFFSXFRCTL, CLRCHN; 1526 jmp queue_arg1_scb_completion; 1527 1528last_pkt_complete: 1529 bmov ARG_1, SCBPTR, 2; 1530 mvi DFFSXFRCTL, CLRCHN; 1531check_other_fifo: 1532 clc; 1533 call toggle_dff_mode; 1534 call check_fifo; 1535 jnc queue_arg1_scb_completion; 1536return: 1537 ret; 1538 1539wait_pkt_end: 1540 call setjmp; 1541END_CRITICAL; 1542wait_pkt_end_loop: 1543 test SEQINTSRC, CTXTDONE jnz pkt_end; 1544 check_overrun; 1545 test SSTAT2, NONPACKREQ jz return; 1546 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1547pkt_end: 1548BEGIN_CRITICAL; 1549 check_overrun; 1550 or LONGJMP_ADDR[1], INVALID_ADDR; 1551 or SCB_SGPTR, SG_LIST_NULL; 1552 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_complete; 1553 mvi DFFSXFRCTL, CLRCHN ret; 1554END_CRITICAL; 1555 1556/* 1557 * Either a SAVEPTRS interrupt condition is pending for this FIFO 1558 * or we have a pending nonpackreq for this FIFO. We differentiate 1559 * between the two by capturing the state of the SAVEPTRS interrupt 1560 * prior to clearing and handling the common code of these two cases. 1561 */ 1562pkt_saveptrs: 1563BEGIN_CRITICAL; 1564 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1565 or DFCNTRL, FIFOFLUSH; 1566 } 1567 mov REG0, SEQINTSRC; 1568 mvi CLRSEQINTSRC, CLRSAVEPTRS; 1569 call calc_residual; 1570 call save_pointers; 1571 call disable_ccsgen; 1572 or SEQIMODE, ENSAVEPTRS; 1573 or LONGJMP_ADDR[1], INVALID_ADDR; 1574pkt_saveptrs_check_status: 1575 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 1576 test SCB_CONTROL, STATUS_RCVD jz pkt_saveptrs_clrchn; 1577 jmp last_pkt_complete; 1578pkt_saveptrs_clrchn: 1579 mvi DFFSXFRCTL, CLRCHN ret; 1580END_CRITICAL; 1581 1582check_status_overrun: 1583 test SHCNT[2], 0xFF jz status_IU_done; 1584 mvi SEQINTCODE, STATUS_OVERRUN; 1585 jmp status_IU_done; 1586pkt_handle_status: 1587 call setjmp_setscb; 1588 test MDFFSTAT, LASTSDONE jnz check_status_overrun; 1589 test SEQINTSRC, CTXTDONE jz return; 1590status_IU_done: 1591BEGIN_CRITICAL; 1592 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1593 or DFCNTRL, FIFOFLUSH; 1594 } 1595 or LONGJMP_ADDR[1], INVALID_ADDR; 1596 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 1597 or SCB_CONTROL, STATUS_RCVD; 1598 jmp last_pkt_complete; 1599END_CRITICAL; 1600 1601SET_SRC_MODE M_DFF0; 1602SET_DST_MODE M_DFF0; 1603BEGIN_CRITICAL; 1604check_fifo: 1605 test LONGJMP_ADDR[1], INVALID_ADDR jnz return; 1606 mov A, ARG_2; 1607 cmp LONGJMP_SCB[1], A jne return; 1608 mov A, ARG_1; 1609 cmp LONGJMP_SCB[0], A jne return; 1610 stc ret; 1611END_CRITICAL; 1612 1613/* 1614 * Nonpackreq is a polled status. It can come true in three situations: 1615 * we have received an L_Q, we have sent one or more L_Qs, or there is no 1616 * L_Q context associated with this REQ (REQ occurs immediately after a 1617 * (re)selection). Routines that know that the context responsible for this 1618 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 1619 * top level idle loop, we exhaust all active contexts prior to determining that 1620 * we simply do not have the full I_T_L_Q for this phase. 1621 */ 1622unexpected_nonpkt_phase_find_ctxt: 1623 /* 1624 * This nonpackreq is most likely associated with one of the tags 1625 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 1626 * nonpackreq if we've cleared out the FIFOs and handled any 1627 * pending SELDO. 1628 */ 1629SET_SRC_MODE M_SCSI; 1630SET_DST_MODE M_SCSI; 1631 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 1632 cmp A, FIFO1FREE|FIFO0FREE jne return; 1633 test SSTAT0, SELDO jnz return; 1634 mvi SCBPTR[1], SCB_LIST_NULL; 1635unexpected_nonpkt_phase: 1636 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz . + 3; 1637SET_SRC_MODE M_DFF0; 1638SET_DST_MODE M_DFF0; 1639 or LONGJMP_ADDR[1], INVALID_ADDR; 1640 mvi DFFSXFRCTL, CLRCHN; 1641 mvi CLRSINT2, CLRNONPACKREQ; 1642 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 1643 mvi SEQINTCODE, ENTERING_NONPACK; 1644 jmp ITloop; 1645 1646illegal_phase: 1647 mvi SEQINTCODE, ILLEGAL_PHASE; 1648 jmp ITloop; 1649 1650/* 1651 * We have entered an overrun situation. If we have working 1652 * BITBUCKET, flip that on and let the hardware eat any overrun 1653 * data. Otherwise use an overrun buffer in the host to simulate 1654 * BITBUCKET. 1655 */ 1656pkt_handle_overrun: 1657 mvi SEQINTCODE, CFG4OVERRUN; 1658 call freeze_queue; 1659 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 1660 SET_MODE(M_SCSI, M_SCSI); 1661 or SXFRCTL1,BITBUCKET; 1662SET_SRC_MODE M_DFF1; 1663SET_DST_MODE M_DFF1; 1664 } else { 1665 call load_overrun_buf; 1666 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 1667 } 1668 call setjmp; 1669 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1670 test DFSTATUS, PKT_PRELOAD_AVAIL jz overrun_load_done; 1671 call load_overrun_buf; 1672 or DFCNTRL, PRELOADEN; 1673overrun_load_done: 1674 } 1675 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 1676 test SSTAT2, NONPACKREQ jz return; 1677pkt_overrun_end: 1678 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 1679 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1680 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_queue_scb; 1681 mvi DFFSXFRCTL, CLRCHN ret; 1682 1683if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1684load_overrun_buf: 1685 /* 1686 * Load a dummy segment if preload space is available. 1687 */ 1688 mov HADDR[0], SHARED_DATA_ADDR; 1689 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 1690 mov ACCUM_SAVE, A; 1691 clr A; 1692 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 1693 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 1694 mov A, ACCUM_SAVE; 1695 bmov HADDR[4], ALLZEROS, 4; 1696 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 1697 clr HCNT[0]; 1698 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 1699 clr HCNT[2]; 1700} 1701 1702cfg4icmd_intr: 1703