1/* 2 * Adaptec U320 device driver firmware for Linux and FreeBSD. 3 * 4 * Copyright (c) 1994-2001 Justin T. Gibbs. 5 * Copyright (c) 2000-2002 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 * 40 * $FreeBSD$ 41 */ 42 43VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#96 $" 44PATCH_ARG_LIST = "struct ahd_softc *ahd" 45PREFIX = "ahd_" 46 47#include "aic79xx.reg" 48#include "scsi_message.h" 49 50restart: 51if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 52 test SEQINTCODE, 0xFF jz idle_loop; 53 SET_SEQINTCODE(NO_SEQINT) 54} 55 56idle_loop: 57 58 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 59 /* 60 * Convert ERROR status into a sequencer 61 * interrupt to handle the case of an 62 * interrupt collision on the hardware 63 * setting of HWERR. 64 */ 65 test ERROR, 0xFF jz no_error_set; 66 SET_SEQINTCODE(SAW_HWERR) 67no_error_set: 68 } 69 SET_MODE(M_SCSI, M_SCSI) 70 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 71 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus; 72 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 73 /* 74 * ENSELO is cleared by a SELDO, so we must test for SELDO 75 * one last time. 76 */ 77BEGIN_CRITICAL; 78 test SSTAT0, SELDO jnz select_out; 79END_CRITICAL; 80 call start_selection; 81idle_loop_checkbus: 82BEGIN_CRITICAL; 83 test SSTAT0, SELDO jnz select_out; 84END_CRITICAL; 85 test SSTAT0, SELDI jnz select_in; 86 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 87 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 88 call unexpected_nonpkt_phase_find_ctxt; 89idle_loop_check_nonpackreq: 90 test SSTAT2, NONPACKREQ jz . + 2; 91 call unexpected_nonpkt_phase_find_ctxt; 92 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 93 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 94 cmp A, FIFO0FREE|FIFO1FREE jne . + 3; 95 and SBLKCTL, ~DIAGLEDEN|DIAGLEDON; 96 jmp . + 2; 97 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 98 } 99 call idle_loop_gsfifo_in_scsi_mode; 100 call idle_loop_service_fifos; 101 call idle_loop_cchan; 102 jmp idle_loop; 103 104BEGIN_CRITICAL; 105idle_loop_gsfifo: 106 SET_MODE(M_SCSI, M_SCSI) 107idle_loop_gsfifo_in_scsi_mode: 108 test LQISTAT2, LQIGSAVAIL jz return; 109 /* 110 * We have received good status for this transaction. There may 111 * still be data in our FIFOs draining to the host. Complete 112 * the SCB only if all data has transferred to the host. 113 */ 114good_status_IU_done: 115 bmov SCBPTR, GSFIFO, 2; 116 clr SCB_SCSI_STATUS; 117 /* 118 * If a command completed before an attempted task management 119 * function completed, notify the host after disabling any 120 * pending select-outs. 121 */ 122 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally; 123 test SSTAT0, SELDO|SELINGO jnz . + 2; 124 and SCSISEQ0, ~ENSELO; 125 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 126gsfifo_complete_normally: 127 or SCB_CONTROL, STATUS_RCVD; 128 129 /* 130 * Since this status did not consume a FIFO, we have to 131 * be a bit more dilligent in how we check for FIFOs pertaining 132 * to this transaction. There are two states that a FIFO still 133 * transferring data may be in. 134 * 135 * 1) Configured and draining to the host, with a FIFO handler. 136 * 2) Pending cfg4data, fifo not empty. 137 * 138 * Case 1 can be detected by noticing a non-zero FIFO active 139 * count in the SCB. In this case, we allow the routine servicing 140 * the FIFO to complete the SCB. 141 * 142 * Case 2 implies either a pending or yet to occur save data 143 * pointers for this same context in the other FIFO. So, if 144 * we detect case 1, we will properly defer the post of the SCB 145 * and achieve the desired result. The pending cfg4data will 146 * notice that status has been received and complete the SCB. 147 */ 148 test SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode; 149 call complete; 150END_CRITICAL; 151 jmp idle_loop_gsfifo_in_scsi_mode; 152 153idle_loop_service_fifos: 154 SET_MODE(M_DFF0, M_DFF0) 155 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 156 call longjmp; 157idle_loop_next_fifo: 158 SET_MODE(M_DFF1, M_DFF1) 159 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp; 160return: 161 ret; 162 163idle_loop_cchan: 164 SET_MODE(M_CCHAN, M_CCHAN) 165 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty; 166 mov LOCAL_HS_MAILBOX, HS_MAILBOX; 167 or QOFF_CTLSTA, HS_MAILBOX_ACT; 168hs_mailbox_empty: 169BEGIN_CRITICAL; 170 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 171 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 172 test CCSCBCTL, CCSCBDONE jz return; 173END_CRITICAL; 174 /* FALLTHROUGH */ 175scbdma_tohost_done: 176 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 177 /* 178 * An SCB has been succesfully uploaded to the host. 179 * If the SCB was uploaded for some reason other than 180 * bad SCSI status (currently only for underruns), we 181 * queue the SCB for normal completion. Otherwise, we 182 * wait until any select-out activity has halted, and 183 * then notify the host so that the transaction can be 184 * dealt with. 185 */ 186 test SCB_SCSI_STATUS, 0xff jnz scbdma_notify_host; 187 and CCSCBCTL, ~(CCARREN|CCSCBEN); 188 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 189 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 190 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 191scbdma_notify_host: 192 SET_MODE(M_SCSI, M_SCSI) 193 test SCSISEQ0, ENSELO jnz return; 194 test SSTAT0, (SELDO|SELINGO) jnz return; 195 SET_MODE(M_CCHAN, M_CCHAN) 196 /* 197 * Remove SCB and notify host. 198 */ 199 and CCSCBCTL, ~(CCARREN|CCSCBEN); 200 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 201 SET_SEQINTCODE(BAD_SCB_STATUS) 202 ret; 203fill_qoutfifo_dmadone: 204 and CCSCBCTL, ~(CCARREN|CCSCBEN); 205 call qoutfifo_updated; 206 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 207 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 208 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 209 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; 210 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; 211 212qoutfifo_updated: 213 /* 214 * If there are more commands waiting to be dma'ed 215 * to the host, always coalesce. Otherwise honor the 216 * host's wishes. 217 */ 218 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 219 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 220 test LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt; 221 222 /* 223 * If we have relatively few commands outstanding, don't 224 * bother waiting for another command to complete. 225 */ 226 test CMDS_PENDING[1], 0xFF jnz coalesce_by_count; 227 /* Add -1 so that jnc means <= not just < */ 228 add A, -1, INT_COALESCING_MINCMDS; 229 add NONE, A, CMDS_PENDING; 230 jnc issue_cmdcmplt; 231 232 /* 233 * If coalescing, only coalesce up to the limit 234 * provided by the host driver. 235 */ 236coalesce_by_count: 237 mov A, INT_COALESCING_MAXCMDS; 238 add NONE, A, INT_COALESCING_CMDCOUNT; 239 jc issue_cmdcmplt; 240 /* 241 * If the timer is not currently active, 242 * fire it up. 243 */ 244 test INTCTL, SWTMINTMASK jz return; 245 bmov SWTIMER, INT_COALESCING_TIMER, 2; 246 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 247 or INTCTL, SWTMINTEN|SWTIMER_START; 248 and INTCTL, ~SWTMINTMASK ret; 249 250issue_cmdcmplt: 251 mvi INTSTAT, CMDCMPLT; 252 clr INT_COALESCING_CMDCOUNT; 253 or INTCTL, SWTMINTMASK ret; 254 255BEGIN_CRITICAL; 256fetch_new_scb_inprog: 257 test CCSCBCTL, ARRDONE jz return; 258fetch_new_scb_done: 259 and CCSCBCTL, ~(CCARREN|CCSCBEN); 260 bmov REG0, SCBPTR, 2; 261 clr A; 262 add CMDS_PENDING, 1; 263 adc CMDS_PENDING[1], A; 264 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { 265 /* 266 * "Short Luns" are not placed into outgoing LQ 267 * packets in the correct byte order. Use a full 268 * sized lun field instead and fill it with the 269 * one byte of lun information we support. 270 */ 271 mov SCB_PKT_LUN[6], SCB_LUN; 272 } 273 /* 274 * The FIFO use count field is shared with the 275 * tag set by the host so that our SCB dma engine 276 * knows the correct location to store the SCB. 277 * Set it to zero before processing the SCB. 278 */ 279 clr SCB_FIFO_USE_COUNT; 280 /* Update the next SCB address to download. */ 281 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 282 mvi SCB_NEXT[1], SCB_LIST_NULL; 283 mvi SCB_NEXT2[1], SCB_LIST_NULL; 284 /* Increment our position in the QINFIFO. */ 285 mov NONE, SNSCB_QOFF; 286 /* 287 * SCBs that want to send messages are always 288 * queued independently. This ensures that they 289 * are at the head of the SCB list to select out 290 * to a target and we will see the MK_MESSAGE flag. 291 */ 292 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb; 293 shr SINDEX, 3, SCB_SCSIID; 294 and SINDEX, ~0x1; 295 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 296 bmov DINDEX, SINDEX, 2; 297 bmov SCBPTR, SINDIR, 2; 298 bmov DINDIR, REG0, 2; 299 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 300 bmov SCB_NEXT, REG0, 2 ret; 301first_new_target_scb: 302 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 303 bmov SCBPTR, WAITING_TID_TAIL, 2; 304 bmov SCB_NEXT2, REG0, 2; 305 bmov WAITING_TID_TAIL, REG0, 2 ret; 306first_new_scb: 307 bmov WAITING_TID_HEAD, REG0, 2; 308 bmov WAITING_TID_TAIL, REG0, 2 ret; 309END_CRITICAL; 310 311scbdma_idle: 312 /* 313 * Give precedence to downloading new SCBs to execute 314 * unless select-outs are currently frozen. 315 */ 316 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2; 317BEGIN_CRITICAL; 318 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 319 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 320 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 321 /* FALLTHROUGH */ 322fill_qoutfifo: 323 /* 324 * Keep track of the SCBs we are dmaing just 325 * in case the DMA fails or is aborted. 326 */ 327 mov A, QOUTFIFO_ENTRY_VALID_TAG; 328 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 329 mvi CCSCBCTL, CCSCBRESET; 330 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 331 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 332fill_qoutfifo_loop: 333 mov CCSCBRAM, SCBPTR; 334 or CCSCBRAM, A, SCBPTR[1]; 335 mov NONE, SDSCB_QOFF; 336 inc INT_COALESCING_CMDCOUNT; 337 add CMDS_PENDING, -1; 338 adc CMDS_PENDING[1], -1; 339 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 340 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 341 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done; 342 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 343 jmp fill_qoutfifo_loop; 344fill_qoutfifo_done: 345 mov SCBHCNT, CCSCBADDR; 346 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 347 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 348 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 349 350fetch_new_scb: 351 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 352 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 353dma_complete_scb: 354 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 355 bmov SCBHADDR, SCB_BUSADDR, 4; 356 mvi CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb; 357END_CRITICAL; 358 359/* 360 * Either post or fetch an SCB from host memory. The caller 361 * is responsible for polling for transfer completion. 362 * 363 * Prerequisits: Mode == M_CCHAN 364 * SINDEX contains CCSCBCTL flags 365 * SCBHADDR set to Host SCB address 366 * SCBPTR set to SCB src location on "push" operations 367 */ 368SET_SRC_MODE M_CCHAN; 369SET_DST_MODE M_CCHAN; 370dma_scb: 371 mvi SCBHCNT, SCB_TRANSFER_SIZE; 372 mov CCSCBCTL, SINDEX ret; 373 374BEGIN_CRITICAL; 375setjmp: 376 bmov LONGJMP_ADDR, STACK, 2 ret; 377setjmp_inline: 378 bmov LONGJMP_ADDR, STACK, 2; 379longjmp: 380 bmov STACK, LONGJMP_ADDR, 2 ret; 381END_CRITICAL; 382 383/*************************** Chip Bug Work Arounds ****************************/ 384/* 385 * Must disable interrupts when setting the mode pointer 386 * register as an interrupt occurring mid update will 387 * fail to store the new mode value for restoration on 388 * an iret. 389 */ 390if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 391set_mode_work_around: 392 mvi SEQINTCTL, INTVEC1DSL; 393 mov MODE_PTR, SINDEX; 394 clr SEQINTCTL ret; 395 396toggle_dff_mode_work_around: 397 mvi SEQINTCTL, INTVEC1DSL; 398 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 399 clr SEQINTCTL ret; 400} 401 402 403if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 404set_seqint_work_around: 405 mov SEQINTCODE, SINDEX; 406 mvi SEQINTCODE, NO_SEQINT ret; 407} 408 409/************************ Packetized LongJmp Routines *************************/ 410SET_SRC_MODE M_SCSI; 411SET_DST_MODE M_SCSI; 412start_selection: 413BEGIN_CRITICAL; 414 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 415 /* 416 * Razor #494 417 * Rev A hardware fails to update LAST/CURR/NEXTSCB 418 * correctly after a packetized selection in several 419 * situations: 420 * 421 * 1) If only one command existed in the queue, the 422 * LAST/CURR/NEXTSCB are unchanged. 423 * 424 * 2) In a non QAS, protocol allowed phase change, 425 * the queue is shifted 1 too far. LASTSCB is 426 * the last SCB that was correctly processed. 427 * 428 * 3) In the QAS case, if the full list of commands 429 * was successfully sent, NEXTSCB is NULL and neither 430 * CURRSCB nor LASTSCB can be trusted. We must 431 * manually walk the list counting MAXCMDCNT elements 432 * to find the last SCB that was sent correctly. 433 * 434 * To simplify the workaround for this bug in SELDO 435 * handling, we initialize LASTSCB prior to enabling 436 * selection so we can rely on it even for case #1 above. 437 */ 438 bmov LASTSCB, WAITING_TID_HEAD, 2; 439 } 440 bmov CURRSCB, WAITING_TID_HEAD, 2; 441 bmov SCBPTR, WAITING_TID_HEAD, 2; 442 shr SELOID, 4, SCB_SCSIID; 443 /* 444 * If we want to send a message to the device, ensure 445 * we are selecting with atn irregardless of our packetized 446 * agreement. Since SPI4 only allows target reset or PPR 447 * messages if this is a packetized connection, the change 448 * to our negotiation table entry for this selection will 449 * be cleared when the message is acted on. 450 */ 451 test SCB_CONTROL, MK_MESSAGE jz . + 3; 452 mov NEGOADDR, SELOID; 453 or NEGCONOPTS, ENAUTOATNO; 454 or SCSISEQ0, ENSELO ret; 455END_CRITICAL; 456 457/* 458 * Allocate a FIFO for a non-packetized transaction. 459 * In RevA hardware, both FIFOs must be free before we 460 * can allocate a FIFO for a non-packetized transaction. 461 */ 462allocate_fifo_loop: 463 /* 464 * Do whatever work is required to free a FIFO. 465 */ 466 call idle_loop_service_fifos; 467 SET_MODE(M_SCSI, M_SCSI) 468allocate_fifo: 469 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) { 470 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 471 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 472 } else { 473 test DFFSTAT, FIFO1FREE jnz allocate_fifo1; 474 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop; 475 mvi DFFSTAT, B_CURRFIFO_0; 476 SET_MODE(M_DFF0, M_DFF0) 477 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 478 } 479SET_SRC_MODE M_SCSI; 480SET_DST_MODE M_SCSI; 481allocate_fifo1: 482 mvi DFFSTAT, CURRFIFO_1; 483 SET_MODE(M_DFF1, M_DFF1) 484 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 485 486/* 487 * We have been reselected as an initiator 488 * or selected as a target. 489 */ 490SET_SRC_MODE M_SCSI; 491SET_DST_MODE M_SCSI; 492select_in: 493 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 494 /* 495 * This exposes a window whereby a 496 * busfree just after a selection will 497 * be missed, but there is no other safe 498 * way to enable busfree detection if 499 * the busfreerev function is broken. 500 */ 501 mvi CLRSINT1,CLRBUSFREE; 502 or SIMODE1, ENBUSFREE; 503 } 504 or SXFRCTL0, SPIOEN; 505 and SAVED_SCSIID, SELID_MASK, SELID; 506 and A, OID, IOWNID; 507 or SAVED_SCSIID, A; 508 mvi CLRSINT0, CLRSELDI; 509 jmp ITloop; 510 511/* 512 * We have successfully selected out. 513 * 514 * Clear SELDO. 515 * Dequeue all SCBs sent from the waiting queue 516 * Requeue all SCBs *not* sent to the tail of the waiting queue 517 * Take Razor #494 into account for above. 518 * 519 * In Packetized Mode: 520 * Return to the idle loop. Our interrupt handler will take 521 * care of any incoming L_Qs. 522 * 523 * In Non-Packetize Mode: 524 * Continue to our normal state machine. 525 */ 526SET_SRC_MODE M_SCSI; 527SET_DST_MODE M_SCSI; 528select_out: 529BEGIN_CRITICAL; 530 /* Clear out all SCBs that have been successfully sent. */ 531 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 532 /* 533 * For packetized, the LQO manager clears ENSELO on 534 * the assertion of SELDO. If we are non-packetized, 535 * LASTSCB and CURRSCB are accurate. 536 */ 537 test SCSISEQ0, ENSELO jnz use_lastscb; 538 539 /* 540 * The update is correct for LQOSTAT1 errors. All 541 * but LQOBUSFREE are handled by kernel interrupts. 542 * If we see LQOBUSFREE, return to the idle loop. 543 * Once we are out of the select_out critical section, 544 * the kernel will cleanup the LQOBUSFREE and we will 545 * eventually restart the selection if appropriate. 546 */ 547 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 548 549 /* 550 * On a phase change oustside of packet boundaries, 551 * LASTSCB points to the currently active SCB context 552 * on the bus. 553 */ 554 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 555 556 /* 557 * If the hardware has traversed the whole list, NEXTSCB 558 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 559 * but MAXCMDCNT is accurate. If we stop part way through 560 * the list or only had one command to issue, NEXTSCB[1] is 561 * not NULL and LASTSCB is the last command to go out. 562 */ 563 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 564 565 /* 566 * Brute force walk. 567 */ 568 bmov SCBPTR, WAITING_TID_HEAD, 2; 569 mvi SEQINTCTL, INTVEC1DSL; 570 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 571 mov A, MAXCMDCNT; 572 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 573 clr SEQINTCTL; 574find_lastscb_loop: 575 dec A; 576 test A, 0xFF jz found_last_sent_scb; 577 bmov SCBPTR, SCB_NEXT, 2; 578 jmp find_lastscb_loop; 579use_lastscb: 580 bmov SCBPTR, LASTSCB, 2; 581found_last_sent_scb: 582 bmov CURRSCB, SCBPTR, 2; 583curscb_ww_done: 584 } else { 585 bmov SCBPTR, CURRSCB, 2; 586 } 587 588 /* 589 * Requeue any SCBs not sent, to the tail of the waiting Q. 590 */ 591 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done; 592 593 /* 594 * We know that neither the per-TID list nor the list of 595 * TIDs is empty. Use this knowledge to our advantage. 596 */ 597 bmov REG0, SCB_NEXT, 2; 598 bmov SCBPTR, WAITING_TID_TAIL, 2; 599 bmov SCB_NEXT2, REG0, 2; 600 bmov WAITING_TID_TAIL, REG0, 2; 601 jmp select_out_inc_tid_q; 602 603select_out_list_done: 604 /* 605 * The whole list made it. Just clear our TID's tail pointer 606 * unless we were queued independently due to our need to 607 * send a message. 608 */ 609 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q; 610 shr DINDEX, 3, SCB_SCSIID; 611 or DINDEX, 1; /* Want only the second byte */ 612 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 613 mvi DINDIR, SCB_LIST_NULL; 614select_out_inc_tid_q: 615 bmov SCBPTR, WAITING_TID_HEAD, 2; 616 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 617 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 618 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 619 bmov SCBPTR, CURRSCB, 2; 620 mvi CLRSINT0, CLRSELDO; 621 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase; 622 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase; 623 624 /* 625 * If this is a packetized connection, return to our 626 * idle_loop and let our interrupt handler deal with 627 * any connection setup/teardown issues. The only 628 * exceptions are the case of MK_MESSAGE and task management 629 * SCBs. 630 */ 631 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 632 /* 633 * In the A, the LQO manager transitions to LQOSTOP0 even if 634 * we have selected out with ATN asserted and the target 635 * REQs in a non-packet phase. 636 */ 637 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 638 test SCSISIGO, ATNO jnz select_out_non_packetized; 639select_out_no_message: 640 } 641 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized; 642 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop; 643 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE) 644 jmp idle_loop; 645 646select_out_non_packetized: 647 /* Non packetized request. */ 648 and SCSISEQ0, ~ENSELO; 649 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 650 /* 651 * This exposes a window whereby a 652 * busfree just after a selection will 653 * be missed, but there is no other safe 654 * way to enable busfree detection if 655 * the busfreerev function is broken. 656 */ 657 mvi CLRSINT1,CLRBUSFREE; 658 or SIMODE1, ENBUSFREE; 659 } 660 mov SAVED_SCSIID, SCB_SCSIID; 661 mov SAVED_LUN, SCB_LUN; 662 mvi SEQ_FLAGS, NO_CDB_SENT; 663END_CRITICAL; 664 or SXFRCTL0, SPIOEN; 665 666 /* 667 * As soon as we get a successful selection, the target 668 * should go into the message out phase since we have ATN 669 * asserted. 670 */ 671 mvi MSG_OUT, MSG_IDENTIFYFLAG; 672 673 /* 674 * Main loop for information transfer phases. Wait for the 675 * target to assert REQ before checking MSG, C/D and I/O for 676 * the bus phase. 677 */ 678mesgin_phasemis: 679ITloop: 680 call phase_lock; 681 682 mov A, LASTPHASE; 683 684 test A, ~P_DATAIN_DT jz p_data; 685 cmp A,P_COMMAND je p_command; 686 cmp A,P_MESGOUT je p_mesgout; 687 cmp A,P_STATUS je p_status; 688 cmp A,P_MESGIN je p_mesgin; 689 690 SET_SEQINTCODE(BAD_PHASE) 691 jmp ITloop; /* Try reading the bus again. */ 692 693/* 694 * Command phase. Set up the DMA registers and let 'er rip. 695 */ 696p_command: 697 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay; 698 SET_SEQINTCODE(PROTO_VIOLATION) 699p_command_okay: 700 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 701 jnz p_command_allocate_fifo; 702 /* 703 * Command retry. Free our current FIFO and 704 * re-allocate a FIFO so transfer state is 705 * reset. 706 */ 707SET_SRC_MODE M_DFF1; 708SET_DST_MODE M_DFF1; 709 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 710 SET_MODE(M_SCSI, M_SCSI) 711p_command_allocate_fifo: 712 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 713 call allocate_fifo; 714SET_SRC_MODE M_DFF1; 715SET_DST_MODE M_DFF1; 716 add NONE, -17, SCB_CDB_LEN; 717 jnc p_command_embedded; 718p_command_from_host: 719 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 720 mvi SG_CACHE_PRE, LAST_SEG; 721 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 722 jmp p_command_xfer; 723p_command_embedded: 724 bmov SHCNT[0], SCB_CDB_LEN, 1; 725 bmov DFDAT, SCB_CDB_STORE, 16; 726 mvi DFCNTRL, SCSIEN; 727p_command_xfer: 728 and SEQ_FLAGS, ~NO_CDB_SENT; 729 test DFCNTRL, SCSIEN jnz .; 730 /* 731 * DMA Channel automatically disabled. 732 * Don't allow a data phase if the command 733 * was not fully transferred. 734 */ 735 test SSTAT2, SDONE jnz ITloop; 736 or SEQ_FLAGS, NO_CDB_SENT; 737 jmp ITloop; 738 739 740/* 741 * Status phase. Wait for the data byte to appear, then read it 742 * and store it into the SCB. 743 */ 744SET_SRC_MODE M_SCSI; 745SET_DST_MODE M_SCSI; 746p_status: 747 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation; 748p_status_okay: 749 mov SCB_SCSI_STATUS, SCSIDAT; 750 or SCB_CONTROL, STATUS_RCVD; 751 jmp ITloop; 752 753/* 754 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 755 * indentify message sequence and send it to the target. The host may 756 * override this behavior by setting the MK_MESSAGE bit in the SCB 757 * control byte. This will cause us to interrupt the host and allow 758 * it to handle the message phase completely on its own. If the bit 759 * associated with this target is set, we will also interrupt the host, 760 * thereby allowing it to send a message on the next selection regardless 761 * of the transaction being sent. 762 * 763 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 764 * This is done to allow the host to send messages outside of an identify 765 * sequence while protecting the seqencer from testing the MK_MESSAGE bit 766 * on an SCB that might not be for the current nexus. (For example, a 767 * BDR message in responce to a bad reselection would leave us pointed to 768 * an SCB that doesn't have anything to do with the current target). 769 * 770 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 771 * bus device reset). 772 * 773 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 774 * in case the target decides to put us in this phase for some strange 775 * reason. 776 */ 777p_mesgout_retry: 778 /* Turn on ATN for the retry */ 779 mvi SCSISIGO, ATNO; 780p_mesgout: 781 mov SINDEX, MSG_OUT; 782 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 783 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 784p_mesgout_identify: 785 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 786 test SCB_CONTROL, DISCENB jnz . + 2; 787 and SINDEX, ~DISCENB; 788/* 789 * Send a tag message if TAG_ENB is set in the SCB control block. 790 * Use SCB_NONPACKET_TAG as the tag value. 791 */ 792p_mesgout_tag: 793 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 794 mov SCSIDAT, SINDEX; /* Send the identify message */ 795 call phase_lock; 796 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 797 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 798 call phase_lock; 799 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 800 mov SCBPTR jmp p_mesgout_onebyte; 801/* 802 * Interrupt the driver, and allow it to handle this message 803 * phase and any required retries. 804 */ 805p_mesgout_from_host: 806 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 807 jmp host_message_loop; 808 809p_mesgout_onebyte: 810 mvi CLRSINT1, CLRATNO; 811 mov SCSIDAT, SINDEX; 812 813/* 814 * If the next bus phase after ATN drops is message out, it means 815 * that the target is requesting that the last message(s) be resent. 816 */ 817 call phase_lock; 818 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 819 820p_mesgout_done: 821 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 822 mov LAST_MSG, MSG_OUT; 823 mvi MSG_OUT, MSG_NOOP; /* No message left */ 824 jmp ITloop; 825 826/* 827 * Message in phase. Bytes are read using Automatic PIO mode. 828 */ 829p_mesgin: 830 /* read the 1st message byte */ 831 mvi ACCUM call inb_first; 832 833 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 834 cmp A,MSG_DISCONNECT je mesgin_disconnect; 835 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 836 cmp ALLZEROS,A je mesgin_complete; 837 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 838 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 839 cmp A,MSG_NOOP je mesgin_done; 840 841/* 842 * Pushed message loop to allow the kernel to 843 * run it's own message state engine. To avoid an 844 * extra nop instruction after signaling the kernel, 845 * we perform the phase_lock before checking to see 846 * if we should exit the loop and skip the phase_lock 847 * in the ITloop. Performing back to back phase_locks 848 * shouldn't hurt, but why do it twice... 849 */ 850host_message_loop: 851 call phase_lock; /* Benign the first time through. */ 852 SET_SEQINTCODE(HOST_MSG_LOOP) 853 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 854 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 855 mov SCSIDAT, RETURN_2; 856 jmp host_message_loop; 857 /* Must be CONT_MSG_LOOP_READ */ 858 mov NONE, SCSIDAT; /* ACK Byte */ 859 jmp host_message_loop; 860 861mesgin_ign_wide_residue: 862 mov SAVED_MODE, MODE_PTR; 863 SET_MODE(M_SCSI, M_SCSI) 864 shr NEGOADDR, 4, SAVED_SCSIID; 865 mov A, NEGCONOPTS; 866 RESTORE_MODE(SAVED_MODE) 867 test A, WIDEXFER jz mesgin_reject; 868 /* Pull the residue byte */ 869 mvi REG0 call inb_next; 870 cmp REG0, 0x01 jne mesgin_reject; 871 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 872 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done; 873 SET_SEQINTCODE(IGN_WIDE_RES) 874 jmp mesgin_done; 875 876mesgin_proto_violation: 877 SET_SEQINTCODE(PROTO_VIOLATION) 878 jmp mesgin_done; 879mesgin_reject: 880 mvi MSG_MESSAGE_REJECT call mk_mesg; 881mesgin_done: 882 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 883 jmp ITloop; 884 885#define INDEX_DISC_LIST(scsiid, lun) \ 886 and A, 0xC0, scsiid; \ 887 or SCBPTR, A, lun; \ 888 clr SCBPTR[1]; \ 889 and SINDEX, 0x30, scsiid; \ 890 shr SINDEX, 3; /* Multiply by 2 */ \ 891 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 892 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 893 894mesgin_identify: 895 /* 896 * Determine whether a target is using tagged or non-tagged 897 * transactions by first looking at the transaction stored in 898 * the per-device, disconnected array. If there is no untagged 899 * transaction for this target, this must be a tagged transaction. 900 */ 901 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 902 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 903 bmov DINDEX, SINDEX, 2; 904 bmov REG0, SINDIR, 2; 905 cmp REG0[1], SCB_LIST_NULL je snoop_tag; 906 /* Untagged. Clear the busy table entry and setup the SCB. */ 907 bmov DINDIR, ALLONES, 2; 908 bmov SCBPTR, REG0, 2; 909 jmp setup_SCB; 910 911/* 912 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 913 * If we get one, we use the tag returned to find the proper 914 * SCB. After receiving the tag, look for the SCB at SCB locations tag and 915 * tag + 256. 916 */ 917snoop_tag: 918 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 919 or SEQ_FLAGS, 0x80; 920 } 921 mov NONE, SCSIDAT; /* ACK Identify MSG */ 922 call phase_lock; 923 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 924 or SEQ_FLAGS, 0x1; 925 } 926 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 927 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 928 or SEQ_FLAGS, 0x2; 929 } 930 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 931get_tag: 932 clr SCBPTR[1]; 933 mvi SCBPTR call inb_next; /* tag value */ 934verify_scb: 935 test SCB_CONTROL,DISCONNECTED jz verify_other_scb; 936 mov A, SAVED_SCSIID; 937 cmp SCB_SCSIID, A jne verify_other_scb; 938 mov A, SAVED_LUN; 939 cmp SCB_LUN, A je setup_SCB_disconnected; 940verify_other_scb: 941 xor SCBPTR[1], 1; 942 test SCBPTR[1], 0xFF jnz verify_scb; 943 jmp not_found; 944 945/* 946 * Ensure that the SCB the tag points to is for 947 * an SCB transaction to the reconnecting target. 948 */ 949setup_SCB: 950 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 951 or SEQ_FLAGS, 0x10; 952 } 953 test SCB_CONTROL,DISCONNECTED jz not_found; 954setup_SCB_disconnected: 955 and SCB_CONTROL,~DISCONNECTED; 956 clr SEQ_FLAGS; /* make note of IDENTIFY */ 957 test SCB_SGPTR, SG_LIST_NULL jnz . + 3; 958 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 959 call allocate_fifo; 960 /* See if the host wants to send a message upon reconnection */ 961 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 962 mvi HOST_MSG call mk_mesg; 963 jmp mesgin_done; 964 965not_found: 966 SET_SEQINTCODE(NO_MATCH) 967 jmp mesgin_done; 968 969not_found_ITloop: 970 SET_SEQINTCODE(NO_MATCH) 971 jmp ITloop; 972 973/* 974 * We received a "command complete" message. Put the SCB on the complete 975 * queue and trigger a completion interrupt via the idle loop. Before doing 976 * so, check to see if there 977 * is a residual or the status byte is something other than STATUS_GOOD (0). 978 * In either of these conditions, we upload the SCB back to the host so it can 979 * process this information. In the case of a non zero status byte, we 980 * additionally interrupt the kernel driver synchronously, allowing it to 981 * decide if sense should be retrieved. If the kernel driver wishes to request 982 * sense, it will fill the kernel SCB with a request sense command, requeue 983 * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting 984 * RETURN_1 to SEND_SENSE. 985 */ 986mesgin_complete: 987 988 /* 989 * If ATN is raised, we still want to give the target a message. 990 * Perhaps there was a parity error on this last message byte. 991 * Either way, the target should take us to message out phase 992 * and then attempt to complete the command again. We should use a 993 * critical section here to guard against a timeout triggering 994 * for this command and setting ATN while we are still processing 995 * the completion. 996 test SCSISIGI, ATNI jnz mesgin_done; 997 */ 998 999 /* 1000 * If we are identified and have successfully sent the CDB, 1001 * any status will do. Optimize this fast path. 1002 */ 1003 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation; 1004 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted; 1005 1006 /* 1007 * If the target never sent an identify message but instead went 1008 * to mesgin to give an invalid message, let the host abort us. 1009 */ 1010 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation; 1011 1012 /* 1013 * If we recevied good status but never successfully sent the 1014 * cdb, abort the command. 1015 */ 1016 test SCB_SCSI_STATUS,0xff jnz complete_accepted; 1017 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation; 1018complete_accepted: 1019 1020 /* 1021 * See if we attempted to deliver a message but the target ingnored us. 1022 */ 1023 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg; 1024 SET_SEQINTCODE(MKMSG_FAILED) 1025complete_nomsg: 1026 call queue_scb_completion; 1027 jmp await_busfree; 1028 1029freeze_queue: 1030 /* Cancel any pending select-out. */ 1031 test SSTAT0, SELDO|SELINGO jnz . + 2; 1032 and SCSISEQ0, ~ENSELO; 1033 mov ACCUM_SAVE, A; 1034 clr A; 1035 add QFREEZE_COUNT, 1; 1036 adc QFREEZE_COUNT[1], A; 1037 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 1038 mov A, ACCUM_SAVE ret; 1039 1040/* 1041 * Complete the current FIFO's SCB if data for this same 1042 * SCB is not transferring in the other FIFO. 1043 */ 1044SET_SRC_MODE M_DFF1; 1045SET_DST_MODE M_DFF1; 1046pkt_complete_scb_if_fifos_idle: 1047 bmov ARG_1, SCBPTR, 2; 1048 mvi DFFSXFRCTL, CLRCHN; 1049 SET_MODE(M_SCSI, M_SCSI) 1050 bmov SCBPTR, ARG_1, 2; 1051 test SCB_FIFO_USE_COUNT, 0xFF jnz return; 1052queue_scb_completion: 1053 test SCB_SCSI_STATUS,0xff jnz bad_status; 1054 /* 1055 * Check for residuals 1056 */ 1057 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 1058 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 1059 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 1060complete: 1061 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 1062 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 1063bad_status: 1064 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 1065 call freeze_queue; 1066upload_scb: 1067 /* 1068 * Restore SCB TAG since we reuse this field 1069 * in the sequencer. We don't want to corrupt 1070 * it on the host. 1071 */ 1072 bmov SCB_TAG, SCBPTR, 2; 1073 bmov SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2; 1074 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 1075 or SCB_SGPTR, SG_STATUS_VALID ret; 1076 1077/* 1078 * Is it a disconnect message? Set a flag in the SCB to remind us 1079 * and await the bus going free. If this is an untagged transaction 1080 * store the SCB id for it in our untagged target table for lookup on 1081 * a reselction. 1082 */ 1083mesgin_disconnect: 1084 /* 1085 * If ATN is raised, we still want to give the target a message. 1086 * Perhaps there was a parity error on this last message byte 1087 * or we want to abort this command. Either way, the target 1088 * should take us to message out phase and then attempt to 1089 * disconnect again. 1090 * XXX - Wait for more testing. 1091 test SCSISIGI, ATNI jnz mesgin_done; 1092 */ 1093 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT 1094 jnz mesgin_proto_violation; 1095 or SCB_CONTROL,DISCONNECTED; 1096 test SCB_CONTROL, TAG_ENB jnz await_busfree; 1097queue_disc_scb: 1098 bmov REG0, SCBPTR, 2; 1099 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1100 bmov DINDEX, SINDEX, 2; 1101 bmov DINDIR, REG0, 2; 1102 bmov SCBPTR, REG0, 2; 1103 /* FALLTHROUGH */ 1104await_busfree: 1105 and SIMODE1, ~ENBUSFREE; 1106 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) { 1107 /* 1108 * In the BUSFREEREV_BUG case, the 1109 * busfree status was cleared at the 1110 * beginning of the connection. 1111 */ 1112 mvi CLRSINT1,CLRBUSFREE; 1113 } 1114 mov NONE, SCSIDAT; /* Ack the last byte */ 1115 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1116 jnz await_busfree_not_m_dff; 1117SET_SRC_MODE M_DFF1; 1118SET_DST_MODE M_DFF1; 1119await_busfree_clrchn: 1120 mvi DFFSXFRCTL, CLRCHN; 1121await_busfree_not_m_dff: 1122 call clear_target_state; 1123 test SSTAT1,REQINIT|BUSFREE jz .; 1124 test SSTAT1, BUSFREE jnz idle_loop; 1125 SET_SEQINTCODE(MISSED_BUSFREE) 1126 1127 1128/* 1129 * Save data pointers message: 1130 * Copying RAM values back to SCB, for Save Data Pointers message, but 1131 * only if we've actually been into a data phase to change them. This 1132 * protects against bogus data in scratch ram and the residual counts 1133 * since they are only initialized when we go into data_in or data_out. 1134 * Ack the message as soon as possible. 1135 */ 1136SET_SRC_MODE M_DFF1; 1137SET_DST_MODE M_DFF1; 1138mesgin_sdptrs: 1139 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1140 test SEQ_FLAGS, DPHASE jz ITloop; 1141 call save_pointers; 1142 jmp ITloop; 1143 1144save_pointers: 1145 /* 1146 * If we are asked to save our position at the end of the 1147 * transfer, just mark us at the end rather than perform a 1148 * full save. 1149 */ 1150 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1151 or SCB_SGPTR, SG_LIST_NULL ret; 1152 1153save_pointers_full: 1154 /* 1155 * The SCB_DATAPTR becomes the current SHADDR. 1156 * All other information comes directly from our residual 1157 * state. 1158 */ 1159 bmov SCB_DATAPTR, SHADDR, 8; 1160 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1161 1162/* 1163 * Restore pointers message? Data pointers are recopied from the 1164 * SCB anytime we enter a data phase for the first time, so all 1165 * we need to do is clear the DPHASE flag and let the data phase 1166 * code do the rest. We also reset/reallocate the FIFO to make 1167 * sure we have a clean start for the next data or command phase. 1168 */ 1169mesgin_rdptrs: 1170 and SEQ_FLAGS, ~DPHASE; 1171 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1172 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1173 SET_MODE(M_SCSI, M_SCSI) 1174msgin_rdptrs_get_fifo: 1175 call allocate_fifo; 1176 jmp mesgin_done; 1177 1178clear_target_state: 1179 mvi LASTPHASE, P_BUSFREE; 1180 /* clear target specific flags */ 1181 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret; 1182 1183phase_lock: 1184 if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) { 1185 /* 1186 * Don't ignore persistent REQ assertions just because 1187 * they were asserted within the bus settle delay window. 1188 * This allows us to tolerate devices like the GEM318 1189 * that violate the SCSI spec. We are careful not to 1190 * count REQ while we are waiting for it to fall during 1191 * an async phase due to our asserted ACK. Each 1192 * sequencer instruction takes ~25ns, so the REQ must 1193 * last at least 100ns in order to be counted as a true 1194 * REQ. 1195 */ 1196 test SCSIPHASE, 0xFF jnz phase_locked; 1197 test SCSISIGI, ACKI jnz phase_lock; 1198 test SCSISIGI, REQI jz phase_lock; 1199 test SCSIPHASE, 0xFF jnz phase_locked; 1200 test SCSISIGI, ACKI jnz phase_lock; 1201 test SCSISIGI, REQI jz phase_lock; 1202phase_locked: 1203 } else { 1204 test SCSIPHASE, 0xFF jz .; 1205 } 1206 test SSTAT1, SCSIPERR jnz phase_lock; 1207phase_lock_latch_phase: 1208 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1209 1210/* 1211 * Functions to read data in Automatic PIO mode. 1212 * 1213 * An ACK is not sent on input from the target until SCSIDATL is read from. 1214 * So we wait until SCSIDATL is latched (the usual way), then read the data 1215 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1216 * line, or we just want to acknowledge the byte, then we do a dummy read 1217 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1218 * data byte on the bus until we send our ACK. 1219 * 1220 * The assumption here is that these are called in a particular sequence, 1221 * and that REQ is already set when inb_first is called. inb_{first,next} 1222 * use the same calling convention as inb. 1223 */ 1224inb_next: 1225 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1226inb_next_wait: 1227 /* 1228 * If there is a parity error, wait for the kernel to 1229 * see the interrupt and prepare our message response 1230 * before continuing. 1231 */ 1232 test SCSIPHASE, 0xFF jz .; 1233 test SSTAT1, SCSIPERR jnz inb_next_wait; 1234inb_next_check_phase: 1235 and LASTPHASE, PHASE_MASK, SCSISIGI; 1236 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1237inb_first: 1238 clr DINDEX[1]; 1239 mov DINDEX,SINDEX; 1240 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1241inb_last: 1242 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1243 1244mk_mesg: 1245 mvi SCSISIGO, ATNO; 1246 mov MSG_OUT,SINDEX ret; 1247 1248SET_SRC_MODE M_DFF1; 1249SET_DST_MODE M_DFF1; 1250disable_ccsgen: 1251 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; 1252 clr CCSGCTL; 1253disable_ccsgen_fetch_done: 1254 clr SG_STATE ret; 1255 1256service_fifo: 1257 /* 1258 * Do we have any prefetch left??? 1259 */ 1260 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1261 1262 /* 1263 * Can this FIFO have access to the S/G cache yet? 1264 */ 1265 test CCSGCTL, SG_CACHE_AVAIL jz return; 1266 1267 /* Did we just finish fetching segs? */ 1268 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete; 1269 1270 /* Are we actively fetching segments? */ 1271 test CCSGCTL, CCSGENACK jnz return; 1272 1273 /* 1274 * We fetch a "cacheline aligned" and sized amount of data 1275 * so we don't end up referencing a non-existant page. 1276 * Cacheline aligned is in quotes because the kernel will 1277 * set the prefetch amount to a reasonable level if the 1278 * cacheline size is unknown. 1279 */ 1280 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4; 1281 mvi SGHCNT, SG_PREFETCH_CNT; 1282 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) { 1283 /* 1284 * Need two instruction between "touches" of SGHADDR. 1285 */ 1286 nop; 1287 } 1288 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1289 mvi CCSGCTL, CCSGEN|CCSGRESET; 1290 or SG_STATE, FETCH_INPROG ret; 1291idle_sgfetch_complete: 1292 /* 1293 * Guard against SG_CACHE_AVAIL activating during sg fetch 1294 * request in the other FIFO. 1295 */ 1296 test SG_STATE, FETCH_INPROG jz return; 1297 clr CCSGCTL; 1298 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1299 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1300idle_sg_avail: 1301 /* Does the hardware have space for another SG entry? */ 1302 test DFSTATUS, PRELOAD_AVAIL jz return; 1303 /* 1304 * On the A, preloading a segment before HDMAENACK 1305 * comes true can clobber the shaddow address of the 1306 * first segment in the S/G FIFO. Wait until it is 1307 * safe to proceed. 1308 */ 1309 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) { 1310 test DFCNTRL, HDMAENACK jz return; 1311 } 1312 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1313 bmov HADDR, CCSGRAM, 8; 1314 } else { 1315 bmov HADDR, CCSGRAM, 4; 1316 } 1317 bmov HCNT, CCSGRAM, 3; 1318 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1319 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1320 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1321 } 1322 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1323 /* Skip 4 bytes of pad. */ 1324 add CCSGADDR, 4; 1325 } 1326sg_advance: 1327 clr A; /* add sizeof(struct scatter) */ 1328 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1329 adc SCB_RESIDUAL_SGPTR[1],A; 1330 adc SCB_RESIDUAL_SGPTR[2],A; 1331 adc SCB_RESIDUAL_SGPTR[3],A; 1332 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1333 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1334 or SINDEX, LAST_SEG; 1335 clr SG_STATE; 1336 mov SG_CACHE_PRE, SINDEX; 1337 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { 1338 /* 1339 * Use SCSIENWRDIS so that SCSIEN is never 1340 * modified by this operation. 1341 */ 1342 or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS; 1343 } else { 1344 or DFCNTRL, PRELOADEN|HDMAEN; 1345 } 1346 /* 1347 * Do we have another segment in the cache? 1348 */ 1349 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1350 jnc return; 1351 and SG_STATE, ~SEGS_AVAIL ret; 1352 1353/* 1354 * Initialize the DMA address and counter from the SCB. 1355 */ 1356load_first_seg: 1357 bmov HADDR, SCB_DATAPTR, 11; 1358 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0]; 1359 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1360 or REG_ISR, LAST_SEG; 1361 mov SG_CACHE_PRE, REG_ISR; 1362 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1363 /* 1364 * Since we've are entering a data phase, we will 1365 * rely on the SCB_RESID* fields. Initialize the 1366 * residual and clear the full residual flag. 1367 */ 1368 and SCB_SGPTR[0], ~SG_FULL_RESID; 1369 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1370 /* If we need more S/G elements, tell the idle loop */ 1371 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1372 mvi SG_STATE, LOADING_NEEDED ret; 1373 clr SG_STATE ret; 1374 1375p_data_handle_xfer: 1376 call setjmp; 1377 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1378p_data_clear_handler: 1379 or LONGJMP_ADDR[1], INVALID_ADDR ret; 1380 1381p_data: 1382 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1383 SET_SEQINTCODE(PROTO_VIOLATION) 1384p_data_allowed: 1385 1386 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1387 1388 /* 1389 * If we re-enter the data phase after going through another 1390 * phase, our transfer location has almost certainly been 1391 * corrupted by the interveining, non-data, transfers. Ask 1392 * the host driver to fix us up based on the transfer residual 1393 * unless we already know that we should be bitbucketing. 1394 */ 1395 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1396 SET_SEQINTCODE(PDATA_REINIT) 1397 jmp data_phase_inbounds; 1398 1399p_data_bitbucket: 1400 /* 1401 * Turn on `Bit Bucket' mode, wait until the target takes 1402 * us to another phase, and then notify the host. 1403 */ 1404 mov SAVED_MODE, MODE_PTR; 1405 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1406 jnz bitbucket_not_m_dff; 1407 /* 1408 * Ensure that any FIFO contents are cleared out and the 1409 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1410 * doesn't discard data already in the FIFO. 1411 */ 1412 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1413 SET_MODE(M_SCSI, M_SCSI) 1414bitbucket_not_m_dff: 1415 or SXFRCTL1,BITBUCKET; 1416 /* Wait for non-data phase. */ 1417 test SCSIPHASE, ~DATA_PHASE_MASK jz .; 1418 and SXFRCTL1, ~BITBUCKET; 1419 RESTORE_MODE(SAVED_MODE) 1420SET_SRC_MODE M_DFF1; 1421SET_DST_MODE M_DFF1; 1422 SET_SEQINTCODE(DATA_OVERRUN) 1423 jmp ITloop; 1424 1425data_phase_initialize: 1426 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1427 call load_first_seg; 1428data_phase_inbounds: 1429 /* We have seen a data phase at least once. */ 1430 or SEQ_FLAGS, DPHASE; 1431 mov SAVED_MODE, MODE_PTR; 1432 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop; 1433 call p_data_handle_xfer; 1434data_group_dma_loop: 1435 /* 1436 * The transfer is complete if either the last segment 1437 * completes or the target changes phase. Both conditions 1438 * will clear SCSIEN. 1439 */ 1440 call idle_loop_service_fifos; 1441 call idle_loop_cchan; 1442 call idle_loop_gsfifo; 1443 RESTORE_MODE(SAVED_MODE) 1444 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1445 1446data_group_dmafinish: 1447 /* 1448 * The transfer has terminated either due to a phase 1449 * change, and/or the completion of the last segment. 1450 * We have two goals here. Do as much other work 1451 * as possible while the data fifo drains on a read 1452 * and respond as quickly as possible to the standard 1453 * messages (save data pointers/disconnect and command 1454 * complete) that usually follow a data phase. 1455 */ 1456 call calc_residual; 1457 1458 /* 1459 * Go ahead and shut down the DMA engine now. 1460 */ 1461 test DFCNTRL, DIRECTION jnz data_phase_finish; 1462data_group_fifoflush: 1463 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1464 or DFCNTRL, FIFOFLUSH; 1465 } 1466 /* 1467 * We have enabled the auto-ack feature. This means 1468 * that the controller may have already transferred 1469 * some overrun bytes into the data FIFO and acked them 1470 * on the bus. The only way to detect this situation is 1471 * to wait for LAST_SEG_DONE to come true on a completed 1472 * transfer and then test to see if the data FIFO is 1473 * non-empty. We know there is more data yet to transfer 1474 * if SG_LIST_NULL is not yet set, thus there cannot be 1475 * an overrun. 1476 */ 1477 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1478 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1479 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1480 /* Overrun */ 1481 jmp p_data; 1482data_phase_finish: 1483 /* 1484 * If the target has left us in data phase, loop through 1485 * the dma code again. We will only loop if there is a 1486 * data overrun. 1487 */ 1488 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1489 test SSTAT0, TARGET jnz data_phase_done; 1490 } 1491 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1492 test SSTAT1, REQINIT jz .; 1493 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1494 } 1495 1496data_phase_done: 1497 /* Kill off any pending prefetch */ 1498 call disable_ccsgen; 1499 or LONGJMP_ADDR[1], INVALID_ADDR; 1500 1501 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1502 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1503 /* 1504 and SEQ_FLAGS, ~DPHASE_PENDING; 1505 * For data-in phases, wait for any pending acks from the 1506 * initiator before changing phase. We only need to 1507 * send Ignore Wide Residue messages for data-in phases. 1508 test DFCNTRL, DIRECTION jz target_ITloop; 1509 test SSTAT1, REQINIT jnz .; 1510 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop; 1511 SET_MODE(M_SCSI, M_SCSI) 1512 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1513 */ 1514 /* 1515 * Issue an Ignore Wide Residue Message. 1516 mvi P_MESGIN|BSYO call change_phase; 1517 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1518 mvi 1 call target_outb; 1519 jmp target_ITloop; 1520 */ 1521 } else { 1522 jmp ITloop; 1523 } 1524 1525/* 1526 * We assume that, even though data may still be 1527 * transferring to the host, that the SCSI side of 1528 * the DMA engine is now in a static state. This 1529 * allows us to update our notion of where we are 1530 * in this transfer. 1531 * 1532 * If, by chance, we stopped before being able 1533 * to fetch additional segments for this transfer, 1534 * yet the last S/G was completely exhausted, 1535 * call our idle loop until it is able to load 1536 * another segment. This will allow us to immediately 1537 * pickup on the next segment on the next data phase. 1538 * 1539 * If we happened to stop on the last segment, then 1540 * our residual information is still correct from 1541 * the idle loop and there is no need to perform 1542 * any fixups. 1543 */ 1544residual_before_last_seg: 1545 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1546 /* 1547 * Can never happen from an interrupt as the packetized 1548 * hardware will only interrupt us once SHVALID or 1549 * LAST_SEG_DONE. 1550 */ 1551 call idle_loop_service_fifos; 1552 RESTORE_MODE(SAVED_MODE) 1553 /* FALLTHROUGH */ 1554calc_residual: 1555 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1556 /* Record if we've consumed all S/G entries */ 1557 test MDFFSTAT, SHVALID jz . + 2; 1558 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1559 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1560 1561sgptr_fixup: 1562 /* 1563 * Fixup the residual next S/G pointer. The S/G preload 1564 * feature of the chip allows us to load two elements 1565 * in addition to the currently active element. We 1566 * store the bottom byte of the next S/G pointer in 1567 * the SG_CACHE_PTR register so we can restore the 1568 * correct value when the DMA completes. If the next 1569 * sg ptr value has advanced to the point where higher 1570 * bytes in the address have been affected, fix them 1571 * too. 1572 */ 1573 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1574 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1575 add SCB_RESIDUAL_SGPTR[1], -1; 1576 adc SCB_RESIDUAL_SGPTR[2], -1; 1577 adc SCB_RESIDUAL_SGPTR[3], -1; 1578sgptr_fixup_done: 1579 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1580 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1581 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1582 1583export timer_isr: 1584 call issue_cmdcmplt; 1585 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 1586 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 1587 /* 1588 * In H2A4, the mode pointer is not saved 1589 * for intvec2, but is restored on iret. 1590 * This can lead to the restoration of a 1591 * bogus mode ptr. Manually clear the 1592 * intmask bits and do a normal return 1593 * to compensate. 1594 */ 1595 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret; 1596 } else { 1597 or SEQINTCTL, IRET ret; 1598 } 1599 1600export seq_isr: 1601 if ((ahd->features & AHD_RTI) == 0) { 1602 /* 1603 * On RevA Silicon, if the target returns us to data-out 1604 * after we have already trained for data-out, it is 1605 * possible for us to transition the free running clock to 1606 * data-valid before the required 100ns P1 setup time (8 P1 1607 * assertions in fast-160 mode). This will only happen if 1608 * this L-Q is a continuation of a data transfer for which 1609 * we have already prefetched data into our FIFO (LQ/Data 1610 * followed by LQ/Data for the same write transaction). 1611 * This can cause some target implementations to miss the 1612 * first few data transfers on the bus. We detect this 1613 * situation by noticing that this is the first data transfer 1614 * after an LQ (LQIWORKONLQ true), that the data transfer is 1615 * a continuation of a transfer already setup in our FIFO 1616 * (SAVEPTRS interrupt), and that the transaction is a write 1617 * (DIRECTION set in DFCNTRL). The delay is performed by 1618 * disabling SCSIEN until we see the first REQ from the 1619 * target. 1620 * 1621 * First instruction in an ISR cannot be a branch on 1622 * Rev A. Snapshot LQISTAT2 so the status is not missed 1623 * and deffer the test by one instruction. 1624 */ 1625 mov REG_ISR, LQISTAT2; 1626 test REG_ISR, LQIWORKONLQ jz main_isr; 1627 test SEQINTSRC, SAVEPTRS jz main_isr; 1628 test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo; 1629 /* 1630 * Switch to the active FIFO after clearing the snapshot 1631 * savepointer in the current FIFO. We do this so that 1632 * a pending CTXTDONE or SAVEPTR is visible in the active 1633 * FIFO. This status is the only way we can detect if we 1634 * have lost the race (e.g. host paused us) and our attepts 1635 * to disable the channel occurred after all REQs were 1636 * already seen and acked (REQINIT never comes true). 1637 */ 1638 mvi DFFSXFRCTL, CLRCHN; 1639 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1640 test DFCNTRL, DIRECTION jz interrupt_return; 1641 and DFCNTRL, ~SCSIEN; 1642snapshot_wait_data_valid: 1643 test SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz snapshot_data_valid; 1644 test SSTAT1, REQINIT jz snapshot_wait_data_valid; 1645snapshot_data_valid: 1646 or DFCNTRL, SCSIEN; 1647 or SEQINTCTL, IRET ret; 1648snapshot_saveptr: 1649 mvi DFFSXFRCTL, CLRCHN; 1650 or SEQINTCTL, IRET ret; 1651main_isr: 1652 } 1653 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1654 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1655 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1656 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1657 SET_SEQINTCODE(INVALID_SEQINT) 1658 1659/* 1660 * There are two types of save pointers interrupts: 1661 * The first is a snapshot save pointers where the current FIFO is not 1662 * active and contains a snapshot of the current poniter information. 1663 * This happens between packets in a stream for a single L_Q. Since we 1664 * are not performing a pointer save, we can safely clear the channel 1665 * so it can be used for other transactions. On RTI capable controllers, 1666 * where snapshots can, and are, disabled, the code to handle this type 1667 * of snapshot is not active. 1668 * 1669 * The second case is a save pointers on an active FIFO which occurs 1670 * if the target changes to a new L_Q or busfrees/QASes and the transfer 1671 * has a residual. This should occur coincident with a ctxtdone. We 1672 * disable the interrupt and allow our active routine to handle the 1673 * save. 1674 */ 1675saveptr_intr: 1676 if ((ahd->features & AHD_RTI) == 0) { 1677 test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr; 1678 } 1679saveptr_active_fifo: 1680 and SEQIMODE, ~ENSAVEPTRS; 1681 or SEQINTCTL, IRET ret; 1682 1683cfg4data_intr: 1684 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count; 1685 call load_first_seg; 1686 call pkt_handle_xfer; 1687 inc SCB_FIFO_USE_COUNT; 1688interrupt_return: 1689 or SEQINTCTL, IRET ret; 1690 1691cfg4istat_intr: 1692 call freeze_queue; 1693 add NONE, -13, SCB_CDB_LEN; 1694 jnc cfg4istat_have_sense_addr; 1695 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1696 /* 1697 * Host sets up address/count and enables transfer. 1698 */ 1699 SET_SEQINTCODE(CFG4ISTAT_INTR) 1700 jmp cfg4istat_setup_handler; 1701cfg4istat_have_sense_addr: 1702 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1703 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1704 mvi SG_CACHE_PRE, LAST_SEG; 1705 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1706cfg4istat_setup_handler: 1707 /* 1708 * Status pkt is transferring to host. 1709 * Wait in idle loop for transfer to complete. 1710 * If a command completed before an attempted 1711 * task management function completed, notify the host. 1712 */ 1713 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func; 1714 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 1715cfg4istat_no_taskmgmt_func: 1716 call pkt_handle_status; 1717 or SEQINTCTL, IRET ret; 1718 1719cfg4icmd_intr: 1720 /* 1721 * In the case of DMAing a CDB from the host, the normal 1722 * CDB buffer is formatted with an 8 byte address followed 1723 * by a 1 byte count. 1724 */ 1725 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 1726 mvi SG_CACHE_PRE, LAST_SEG; 1727 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1728 call pkt_handle_cdb; 1729 or SEQINTCTL, IRET ret; 1730 1731/* 1732 * See if the target has gone on in this context creating an 1733 * overrun condition. For the write case, the hardware cannot 1734 * ack bytes until data are provided. So, if the target begins 1735 * another packet without changing contexts, implying we are 1736 * not sitting on a packet boundary, we are in an overrun 1737 * situation. For the read case, the hardware will continue to 1738 * ack bytes into the FIFO, and may even ack the last overrun packet 1739 * into the FIFO. If the FIFO should become non-empty, we are in 1740 * a read overrun case. 1741 */ 1742#define check_overrun \ 1743 /* Not on a packet boundary. */ \ 1744 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1745 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1746 1747pkt_handle_xfer: 1748 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1749 call setjmp; 1750 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1751 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1752 test SCSISIGO, ATNO jnz . + 2; 1753 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 1754 /* 1755 * Defer handling of this NONPACKREQ until we 1756 * can be sure it pertains to this FIFO. SAVEPTRS 1757 * will not be asserted if the NONPACKREQ is for us, 1758 * so we must simulate it if shaddow is valid. If 1759 * shaddow is not valid, keep running this FIFO until we 1760 * have satisfied the transfer by loading segments and 1761 * waiting for either shaddow valid or last_seg_done. 1762 */ 1763 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 1764pkt_service_fifo: 1765 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1766pkt_last_seg: 1767 call setjmp; 1768 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1769 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done; 1770 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1771 test SCSISIGO, ATNO jnz . + 2; 1772 test SSTAT2, NONPACKREQ jz return; 1773 test MDFFSTAT, SHVALID jz return; 1774 /* FALLTHROUGH */ 1775 1776/* 1777 * Either a SAVEPTRS interrupt condition is pending for this FIFO 1778 * or we have a pending NONPACKREQ for this FIFO. We differentiate 1779 * between the two by capturing the state of the SAVEPTRS interrupt 1780 * prior to clearing this status and executing the common code for 1781 * these two cases. 1782 */ 1783pkt_saveptrs: 1784BEGIN_CRITICAL; 1785 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1786 or DFCNTRL, FIFOFLUSH; 1787 } 1788 mov REG0, SEQINTSRC; 1789 call calc_residual; 1790 call save_pointers; 1791 mvi CLRSEQINTSRC, CLRSAVEPTRS; 1792 call disable_ccsgen; 1793 or SEQIMODE, ENSAVEPTRS; 1794 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status; 1795 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status; 1796 /* 1797 * Keep a handler around for this FIFO until it drains 1798 * to the host to guarantee that we don't complete the 1799 * command to the host before the data arrives. 1800 */ 1801pkt_saveptrs_wait_fifoemp: 1802 call setjmp; 1803 test DFSTATUS, FIFOEMP jz return; 1804pkt_saveptrs_check_status: 1805 or LONGJMP_ADDR[1], INVALID_ADDR; 1806 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 1807 dec SCB_FIFO_USE_COUNT; 1808 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 1809 mvi DFFSXFRCTL, CLRCHN ret; 1810END_CRITICAL; 1811 1812/* 1813 * LAST_SEG_DONE status has been seen in the current FIFO. 1814 * This indicates that all of the allowed data for this 1815 * command has transferred across the SCSI and host buses. 1816 * Check for overrun and see if we can complete this command. 1817 */ 1818pkt_last_seg_done: 1819BEGIN_CRITICAL; 1820 /* 1821 * Mark transfer as completed. 1822 */ 1823 or SCB_SGPTR, SG_LIST_NULL; 1824 1825 /* 1826 * Wait for the current context to finish to verify that 1827 * no overrun condition has occurred. 1828 */ 1829 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 1830 call setjmp; 1831pkt_wait_ctxt_done_loop: 1832 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 1833 /* 1834 * A sufficiently large overrun or a NONPACKREQ may 1835 * prevent CTXTDONE from ever asserting, so we must 1836 * poll for these statuses too. 1837 */ 1838 check_overrun; 1839 test SSTAT2, NONPACKREQ jz return; 1840 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1841 /* FALLTHROUGH */ 1842 1843pkt_ctxt_done: 1844 check_overrun; 1845 or LONGJMP_ADDR[1], INVALID_ADDR; 1846 /* 1847 * If status has been received, it is safe to skip 1848 * the check to see if another FIFO is active because 1849 * LAST_SEG_DONE has been observed. However, we check 1850 * the FIFO anyway since it costs us only one extra 1851 * instruction to leverage common code to perform the 1852 * SCB completion. 1853 */ 1854 dec SCB_FIFO_USE_COUNT; 1855 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 1856 mvi DFFSXFRCTL, CLRCHN ret; 1857END_CRITICAL; 1858 1859/* 1860 * Must wait until CDB xfer is over before issuing the 1861 * clear channel. 1862 */ 1863pkt_handle_cdb: 1864 call setjmp; 1865 test SG_CACHE_SHADOW, LAST_SEG_DONE jz return; 1866 or LONGJMP_ADDR[1], INVALID_ADDR; 1867 mvi DFFSXFRCTL, CLRCHN ret; 1868 1869/* 1870 * Watch over the status transfer. Our host sense buffer is 1871 * large enough to take the maximum allowed status packet. 1872 * None-the-less, we must still catch and report overruns to 1873 * the host. Additionally, properly catch unexpected non-packet 1874 * phases that are typically caused by CRC errors in status packet 1875 * transmission. 1876 */ 1877pkt_handle_status: 1878 call setjmp; 1879 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 1880 test SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq; 1881 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 1882pkt_status_IU_done: 1883 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1884 or DFCNTRL, FIFOFLUSH; 1885 } 1886 test DFSTATUS, FIFOEMP jz return; 1887BEGIN_CRITICAL; 1888 or LONGJMP_ADDR[1], INVALID_ADDR; 1889 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 1890 or SCB_CONTROL, STATUS_RCVD; 1891 jmp pkt_complete_scb_if_fifos_idle; 1892END_CRITICAL; 1893pkt_status_check_overrun: 1894 /* 1895 * Status PKT overruns are uncerimoniously recovered with a 1896 * bus reset. If we've overrun, let the host know so that 1897 * recovery can be performed. 1898 * 1899 * LAST_SEG_DONE has been observed. If either CTXTDONE or 1900 * a NONPACKREQ phase change have occurred and the FIFO is 1901 * empty, there is no overrun. 1902 */ 1903 test DFSTATUS, FIFOEMP jz pkt_status_report_overrun; 1904 test SEQINTSRC, CTXTDONE jz . + 2; 1905 test DFSTATUS, FIFOEMP jnz pkt_status_IU_done; 1906 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 1907 test DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq; 1908pkt_status_report_overrun: 1909 SET_SEQINTCODE(STATUS_OVERRUN) 1910 /* SEQUENCER RESTARTED */ 1911pkt_status_check_nonpackreq: 1912 /* 1913 * CTXTDONE may be held off if a NONPACKREQ is associated with 1914 * the current context. If a NONPACKREQ is observed, decide 1915 * if it is for the current context. If it is for the current 1916 * context, we must defer NONPACKREQ processing until all data 1917 * has transferred to the host. 1918 */ 1919 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 1920 test SCSISIGO, ATNO jnz . + 2; 1921 test SSTAT2, NONPACKREQ jz return; 1922 test SEQINTSRC, CTXTDONE jnz pkt_status_IU_done; 1923 test DFSTATUS, FIFOEMP jz return; 1924 /* 1925 * The unexpected nonpkt phase handler assumes that any 1926 * data channel use will have a FIFO reference count. It 1927 * turns out that the status handler doesn't need a refernce 1928 * count since the status received flag, and thus completion 1929 * processing, cannot be set until the handler is finished. 1930 * We increment the count here to make the nonpkt handler 1931 * happy. 1932 */ 1933 inc SCB_FIFO_USE_COUNT; 1934 /* FALLTHROUGH */ 1935 1936/* 1937 * Nonpackreq is a polled status. It can come true in three situations: 1938 * we have received an L_Q, we have sent one or more L_Qs, or there is no 1939 * L_Q context associated with this REQ (REQ occurs immediately after a 1940 * (re)selection). Routines that know that the context responsible for this 1941 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 1942 * top level idle loop, we exhaust all active contexts prior to determining that 1943 * we simply do not have the full I_T_L_Q for this phase. 1944 */ 1945unexpected_nonpkt_phase_find_ctxt: 1946 /* 1947 * This nonpackreq is most likely associated with one of the tags 1948 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 1949 * nonpackreq if we've cleared out the FIFOs and handled any 1950 * pending SELDO. 1951 */ 1952SET_SRC_MODE M_SCSI; 1953SET_DST_MODE M_SCSI; 1954 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 1955 cmp A, FIFO1FREE|FIFO0FREE jne return; 1956 test SSTAT0, SELDO jnz return; 1957 mvi SCBPTR[1], SCB_LIST_NULL; 1958unexpected_nonpkt_phase: 1959 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1960 jnz unexpected_nonpkt_mode_cleared; 1961SET_SRC_MODE M_DFF0; 1962SET_DST_MODE M_DFF0; 1963 or LONGJMP_ADDR[1], INVALID_ADDR; 1964 dec SCB_FIFO_USE_COUNT; 1965 mvi DFFSXFRCTL, CLRCHN; 1966unexpected_nonpkt_mode_cleared: 1967 mvi CLRSINT2, CLRNONPACKREQ; 1968 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 1969 SET_SEQINTCODE(ENTERING_NONPACK) 1970 jmp ITloop; 1971 1972illegal_phase: 1973 SET_SEQINTCODE(ILLEGAL_PHASE) 1974 jmp ITloop; 1975 1976/* 1977 * We have entered an overrun situation. If we have working 1978 * BITBUCKET, flip that on and let the hardware eat any overrun 1979 * data. Otherwise use an overrun buffer in the host to simulate 1980 * BITBUCKET. 1981 */ 1982pkt_handle_overrun_inc_use_count: 1983 inc SCB_FIFO_USE_COUNT; 1984pkt_handle_overrun: 1985 SET_SEQINTCODE(CFG4OVERRUN) 1986 call freeze_queue; 1987 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 1988 or DFFSXFRCTL, DFFBITBUCKET; 1989SET_SRC_MODE M_DFF1; 1990SET_DST_MODE M_DFF1; 1991 } else { 1992 call load_overrun_buf; 1993 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 1994 } 1995 call setjmp; 1996 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1997 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done; 1998 call load_overrun_buf; 1999 or DFCNTRL, PRELOADEN; 2000overrun_load_done: 2001 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 2002 } else { 2003 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end; 2004 } 2005 test SSTAT2, NONPACKREQ jz return; 2006pkt_overrun_end: 2007 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 2008 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 2009 dec SCB_FIFO_USE_COUNT; 2010 or LONGJMP_ADDR[1], INVALID_ADDR; 2011 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2012 mvi DFFSXFRCTL, CLRCHN ret; 2013 2014if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2015load_overrun_buf: 2016 /* 2017 * Load a dummy segment if preload space is available. 2018 */ 2019 mov HADDR[0], SHARED_DATA_ADDR; 2020 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 2021 mov ACCUM_SAVE, A; 2022 clr A; 2023 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 2024 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 2025 mov A, ACCUM_SAVE; 2026 bmov HADDR[4], ALLZEROS, 4; 2027 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 2028 clr HCNT[0]; 2029 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 2030 clr HCNT[2] ret; 2031} 2032