1/* 2 * Adaptec U320 device driver firmware for Linux and FreeBSD. 3 * 4 * Copyright (c) 1994-2001 Justin T. Gibbs. 5 * Copyright (c) 2000-2002 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 * 40 * $FreeBSD$ 41 */ 42 43VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#88 $" 44PATCH_ARG_LIST = "struct ahd_softc *ahd" 45PREFIX = "ahd_" 46 47#include "aic79xx.reg" 48#include "scsi_message.h" 49 50restart: 51if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 52 test SEQINTCODE, 0xFF jz idle_loop; 53 SET_SEQINTCODE(NO_SEQINT) 54} 55 56idle_loop: 57 58 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 59 /* 60 * Convert ERROR status into a sequencer 61 * interrupt to handle the case of an 62 * interrupt collision on the hardware 63 * setting of HWERR. 64 */ 65 test ERROR, 0xFF jz no_error_set; 66 SET_SEQINTCODE(SAW_HWERR) 67no_error_set: 68 } 69 SET_MODE(M_SCSI, M_SCSI) 70 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 71 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus; 72 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 73 /* 74 * ENSELO is cleared by a SELDO, so we must test for SELDO 75 * one last time. 76 */ 77BEGIN_CRITICAL; 78 test SSTAT0, SELDO jnz select_out; 79END_CRITICAL; 80 call start_selection; 81idle_loop_checkbus: 82BEGIN_CRITICAL; 83 test SSTAT0, SELDO jnz select_out; 84END_CRITICAL; 85 test SSTAT0, SELDI jnz select_in; 86 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 87 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 88 call unexpected_nonpkt_phase_find_ctxt; 89idle_loop_check_nonpackreq: 90 test SSTAT2, NONPACKREQ jz . + 2; 91 call unexpected_nonpkt_phase_find_ctxt; 92 call idle_loop_gsfifo_in_scsi_mode; 93 call idle_loop_service_fifos; 94 call idle_loop_cchan; 95 jmp idle_loop; 96 97BEGIN_CRITICAL; 98idle_loop_gsfifo: 99 SET_MODE(M_SCSI, M_SCSI) 100idle_loop_gsfifo_in_scsi_mode: 101 test LQISTAT2, LQIGSAVAIL jz return; 102 /* 103 * We have received good status for this transaction. There may 104 * still be data in our FIFOs draining to the host. Setup 105 * monitoring of the draining process or complete the SCB. 106 */ 107good_status_IU_done: 108 bmov SCBPTR, GSFIFO, 2; 109 clr SCB_SCSI_STATUS; 110 /* 111 * If a command completed before an attempted task management 112 * function completed, notify the host after disabling any 113 * pending select-outs. 114 */ 115 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally; 116 test SSTAT0, SELDO|SELINGO jnz . + 2; 117 and SCSISEQ0, ~ENSELO; 118 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 119gsfifo_complete_normally: 120 or SCB_CONTROL, STATUS_RCVD; 121 122 /* 123 * Since this status did not consume a FIFO, we have to 124 * be a bit more dilligent in how we check for FIFOs pertaining 125 * to this transaction. There are two states that a FIFO still 126 * transferring data may be in. 127 * 128 * 1) Configured and draining to the host, with a FIFO handler. 129 * 2) Pending cfg4data, fifo not empty. 130 * 131 * Case 1 can be detected by noticing that a longjmp is active for 132 * the FIFO and LONGJMP_SCB matches our SCB. In this case, we allow 133 * the routine servicing the FIFO to complete the SCB. 134 * 135 * Case 2 implies either a pending or yet to occur save data 136 * pointers for this same context in the other FIFO. So, if 137 * we detect case 1, we will properly defer the post of the SCB 138 * and achieve the desired result. The pending cfg4data will 139 * notice that status has been received and complete the SCB. 140 * 141 * If the data-transfer has been completed, or no data transfer 142 * was needed for this SCB, it is safe to complete the command. 143 */ 144 test SCB_SGPTR, SG_LIST_NULL jz good_status_check_fifos; 145 /* 146 * All segments have been loaded (or no data transfer), so 147 * it is safe to complete the command. Since this was a 148 * cheap command to check for completion, loop to see if 149 * more entries can be removed from the GSFIFO. 150 */ 151 call complete; 152END_CRITICAL; 153 jmp idle_loop_gsfifo_in_scsi_mode; 154BEGIN_CRITICAL; 155good_status_check_fifos: 156 clc; 157 bmov ARG_1, SCBPTR, 2; 158 SET_MODE(M_DFF0, M_DFF0) 159 call check_fifo; 160 jc return; 161 SET_MODE(M_DFF1, M_DFF1) 162 call check_fifo; 163 jc return; 164 SET_MODE(M_SCSI, M_SCSI) 165 jmp queue_scb_completion; 166END_CRITICAL; 167 168idle_loop_service_fifos: 169 SET_MODE(M_DFF0, M_DFF0) 170 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 171 call longjmp; 172idle_loop_next_fifo: 173 SET_MODE(M_DFF1, M_DFF1) 174 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp; 175 ret; 176 177idle_loop_cchan: 178 SET_MODE(M_CCHAN, M_CCHAN) 179 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty; 180 mov LOCAL_HS_MAILBOX, HS_MAILBOX; 181 or QOFF_CTLSTA, HS_MAILBOX_ACT; 182hs_mailbox_empty: 183BEGIN_CRITICAL; 184 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 185 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 186 test CCSCBCTL, CCSCBDONE jz return; 187END_CRITICAL; 188 /* FALLTHROUGH */ 189scbdma_tohost_done: 190 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 191 /* 192 * A complete SCB upload requires no intervention. 193 * The SCB is already on the COMPLETE_SCB list 194 * and its completion notification will now be 195 * handled just like any other SCB. 196 */ 197 and CCSCBCTL, ~(CCARREN|CCSCBEN) ret; 198fill_qoutfifo_dmadone: 199 and CCSCBCTL, ~(CCARREN|CCSCBEN); 200 call qoutfifo_updated; 201 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 202 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 203 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 204 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; 205 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; 206 207qoutfifo_updated: 208 /* 209 * If there are more commands waiting to be dma'ed 210 * to the host, always coaless. Otherwise honor the 211 * host's wishes. 212 */ 213 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coaless_by_count; 214 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coaless_by_count; 215 test LOCAL_HS_MAILBOX, ENINT_COALESS jz issue_cmdcmplt; 216 217 /* 218 * If we have relatively few commands outstanding, don't 219 * bother waiting for another command to complete. 220 */ 221 test CMDS_PENDING[1], 0xFF jnz coaless_by_count; 222 /* Add -1 so that jnc means <= not just < */ 223 add A, -1, INT_COALESSING_MINCMDS; 224 add NONE, A, CMDS_PENDING; 225 jnc issue_cmdcmplt; 226 227 /* 228 * If coalessing, only coaless up to the limit 229 * provided by the host driver. 230 */ 231coaless_by_count: 232 mov A, INT_COALESSING_MAXCMDS; 233 add NONE, A, INT_COALESSING_CMDCOUNT; 234 jc issue_cmdcmplt; 235 /* 236 * If the timer is not currently active, 237 * fire it up. 238 */ 239 test INTCTL, SWTMINTMASK jz return; 240 bmov SWTIMER, INT_COALESSING_TIMER, 2; 241 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 242 or INTCTL, SWTMINTEN|SWTIMER_START; 243 and INTCTL, ~SWTMINTMASK ret; 244 245issue_cmdcmplt: 246 mvi INTSTAT, CMDCMPLT; 247 clr INT_COALESSING_CMDCOUNT; 248 or INTCTL, SWTMINTMASK ret; 249 250BEGIN_CRITICAL; 251fetch_new_scb_inprog: 252 test CCSCBCTL, ARRDONE jz return; 253fetch_new_scb_done: 254 and CCSCBCTL, ~(CCARREN|CCSCBEN); 255 bmov REG0, SCBPTR, 2; 256 clr A; 257 add CMDS_PENDING, 1; 258 adc CMDS_PENDING[1], A; 259 /* Update the next SCB address to download. */ 260 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 261 mvi SCB_NEXT[1], SCB_LIST_NULL; 262 mvi SCB_NEXT2[1], SCB_LIST_NULL; 263 /* Increment our position in the QINFIFO. */ 264 mov NONE, SNSCB_QOFF; 265 /* 266 * SCBs that want to send messages are always 267 * queued independently. This ensures that they 268 * are at the head of the SCB list to select out 269 * to a target and we will see the MK_MESSAGE flag. 270 */ 271 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb; 272 shr SINDEX, 3, SCB_SCSIID; 273 and SINDEX, ~0x1; 274 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 275 bmov DINDEX, SINDEX, 2; 276 bmov SCBPTR, SINDIR, 2; 277 bmov DINDIR, REG0, 2; 278 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 279 bmov SCB_NEXT, REG0, 2 ret; 280first_new_target_scb: 281 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 282 bmov SCBPTR, WAITING_TID_TAIL, 2; 283 bmov SCB_NEXT2, REG0, 2; 284 bmov WAITING_TID_TAIL, REG0, 2 ret; 285first_new_scb: 286 bmov WAITING_TID_HEAD, REG0, 2; 287 bmov WAITING_TID_TAIL, REG0, 2 ret; 288END_CRITICAL; 289 290scbdma_idle: 291 /* 292 * Give precedence to downloading new SCBs to execute 293 * unless select-outs are currently frozen. 294 */ 295 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2; 296BEGIN_CRITICAL; 297 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 298 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 299 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 300 /* FALLTHROUGH */ 301fill_qoutfifo: 302 /* 303 * Keep track of the SCBs we are dmaing just 304 * in case the DMA fails or is aborted. 305 */ 306 mov A, QOUTFIFO_ENTRY_VALID_TAG; 307 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 308 mvi CCSCBCTL, CCSCBRESET; 309 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 310 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 311fill_qoutfifo_loop: 312 mov CCSCBRAM, SCBPTR; 313 or CCSCBRAM, A, SCBPTR[1]; 314 mov NONE, SDSCB_QOFF; 315 inc INT_COALESSING_CMDCOUNT; 316 add CMDS_PENDING, -1; 317 adc CMDS_PENDING[1], -1; 318 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 319 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 320 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done; 321 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 322 jmp fill_qoutfifo_loop; 323fill_qoutfifo_done: 324 mov SCBHCNT, CCSCBADDR; 325 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 326 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 327 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 328 329fetch_new_scb: 330 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 331 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 332dma_complete_scb: 333 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 334 bmov SCBHADDR, SCB_BUSADDR, 4; 335 mvi CCARREN|CCSCBEN|CCSCBRESET call dma_scb; 336 /* 337 * Now that we've started the DMA, push us onto 338 * the normal completion queue to have our SCBID 339 * posted to the kernel. 340 */ 341 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 342 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 343 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 344END_CRITICAL; 345 346/* 347 * Either post or fetch an SCB from host memory. The caller 348 * is responsible for polling for transfer completion. 349 * 350 * Prerequisits: Mode == M_CCHAN 351 * SINDEX contains CCSCBCTL flags 352 * SCBHADDR set to Host SCB address 353 * SCBPTR set to SCB src location on "push" operations 354 */ 355SET_SRC_MODE M_CCHAN; 356SET_DST_MODE M_CCHAN; 357dma_scb: 358 mvi SCBHCNT, SCB_TRANSFER_SIZE; 359 mov CCSCBCTL, SINDEX ret; 360 361BEGIN_CRITICAL; 362setjmp_setscb: 363 bmov LONGJMP_SCB, SCBPTR, 2; 364setjmp: 365 bmov LONGJMP_ADDR, STACK, 2 ret; 366setjmp_inline: 367 bmov LONGJMP_ADDR, STACK, 2; 368longjmp: 369 bmov STACK, LONGJMP_ADDR, 2 ret; 370END_CRITICAL; 371 372/*************************** Chip Bug Work Arounds ****************************/ 373/* 374 * Must disable interrupts when setting the mode pointer 375 * register as an interrupt occurring mid update will 376 * fail to store the new mode value for restoration on 377 * an iret. 378 */ 379if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 380set_mode_work_around: 381 mvi SEQINTCTL, INTVEC1DSL; 382 mov MODE_PTR, SINDEX; 383 clr SEQINTCTL ret; 384 385toggle_dff_mode_work_around: 386 mvi SEQINTCTL, INTVEC1DSL; 387 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 388 clr SEQINTCTL ret; 389} 390 391 392if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 393set_seqint_work_around: 394 mov SEQINTCODE, SINDEX; 395 mvi SEQINTCODE, NO_SEQINT ret; 396} 397 398/************************ Packetized LongJmp Routines *************************/ 399SET_SRC_MODE M_SCSI; 400SET_DST_MODE M_SCSI; 401start_selection: 402BEGIN_CRITICAL; 403 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 404 /* 405 * Razor #494 406 * Rev A hardware fails to update LAST/CURR/NEXTSCB 407 * correctly after a packetized selection in several 408 * situations: 409 * 410 * 1) If only one command existed in the queue, the 411 * LAST/CURR/NEXTSCB are unchanged. 412 * 413 * 2) In a non QAS, protocol allowed phase change, 414 * the queue is shifted 1 too far. LASTSCB is 415 * the last SCB that was correctly processed. 416 * 417 * 3) In the QAS case, if the full list of commands 418 * was successfully sent, NEXTSCB is NULL and neither 419 * CURRSCB nor LASTSCB can be trusted. We must 420 * manually walk the list counting MAXCMDCNT elements 421 * to find the last SCB that was sent correctly. 422 * 423 * To simplify the workaround for this bug in SELDO 424 * handling, we initialize LASTSCB prior to enabling 425 * selection so we can rely on it even for case #1 above. 426 */ 427 bmov LASTSCB, WAITING_TID_HEAD, 2; 428 } 429 bmov CURRSCB, WAITING_TID_HEAD, 2; 430 bmov SCBPTR, WAITING_TID_HEAD, 2; 431 shr SELOID, 4, SCB_SCSIID; 432 /* 433 * If we want to send a message to the device, ensure 434 * we are selecting with atn irregardless of our packetized 435 * agreement. Since SPI4 only allows target reset or PPR 436 * messages if this is a packetized connection, the change 437 * to our negotiation table entry for this selection will 438 * be cleared when the message is acted on. 439 */ 440 test SCB_CONTROL, MK_MESSAGE jz . + 3; 441 mov NEGOADDR, SELOID; 442 or NEGCONOPTS, ENAUTOATNO; 443 or SCSISEQ0, ENSELO ret; 444END_CRITICAL; 445 446/* 447 * Allocate a FIFO for a non-packetized transaction. 448 * In RevA hardware, both FIFOs must be free before we 449 * can allocate a FIFO for a non-packetized transaction. 450 */ 451allocate_fifo_loop: 452 /* 453 * Do whatever work is required to free a FIFO. 454 */ 455 call idle_loop_service_fifos; 456 SET_MODE(M_SCSI, M_SCSI) 457allocate_fifo: 458 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) { 459 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 460 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 461 } else { 462 test DFFSTAT, FIFO1FREE jnz allocate_fifo1; 463 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop; 464 mvi DFFSTAT, B_CURRFIFO_0; 465 SET_MODE(M_DFF0, M_DFF0) 466 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 467 } 468SET_SRC_MODE M_SCSI; 469SET_DST_MODE M_SCSI; 470allocate_fifo1: 471 mvi DFFSTAT, CURRFIFO_1; 472 SET_MODE(M_DFF1, M_DFF1) 473 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 474 475/* 476 * We have been reselected as an initiator 477 * or selected as a target. 478 */ 479SET_SRC_MODE M_SCSI; 480SET_DST_MODE M_SCSI; 481select_in: 482 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 483 /* 484 * This exposes a window whereby a 485 * busfree just after a selection will 486 * be missed, but there is no other safe 487 * way to enable busfree detection if 488 * the busfreerev function is broken. 489 */ 490 mvi CLRSINT1,CLRBUSFREE; 491 or SIMODE1, ENBUSFREE; 492 } 493 or SXFRCTL0, SPIOEN; 494 and SAVED_SCSIID, SELID_MASK, SELID; 495 and A, OID, IOWNID; 496 or SAVED_SCSIID, A; 497 mvi CLRSINT0, CLRSELDI; 498 jmp ITloop; 499 500/* 501 * We have successfully selected out. 502 * 503 * Clear SELDO. 504 * Dequeue all SCBs sent from the waiting queue 505 * Requeue all SCBs *not* sent to the tail of the waiting queue 506 * Take Razor #494 into account for above. 507 * 508 * In Packetized Mode: 509 * Return to the idle loop. Our interrupt handler will take 510 * care of any incoming L_Qs. 511 * 512 * In Non-Packetize Mode: 513 * Continue to our normal state machine. 514 */ 515SET_SRC_MODE M_SCSI; 516SET_DST_MODE M_SCSI; 517select_out: 518BEGIN_CRITICAL; 519 /* Clear out all SCBs that have been successfully sent. */ 520 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 521 /* 522 * For packetized, the LQO manager clears ENSELO on 523 * the assertion of SELDO. If we are non-packetized, 524 * LASTSCB and CURRSCB are accurate. 525 */ 526 test SCSISEQ0, ENSELO jnz use_lastscb; 527 528 /* 529 * The update is correct for LQOSTAT1 errors. All 530 * but LQOBUSFREE are handled by kernel interrupts. 531 * If we see LQOBUSFREE, return to the idle loop. 532 * Once we are out of the select_out critical section, 533 * the kernel will cleanup the LQOBUSFREE and we will 534 * eventually restart the selection if appropriate. 535 */ 536 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 537 538 /* 539 * On a phase change oustside of packet boundaries, 540 * LASTSCB points to the currently active SCB context 541 * on the bus. 542 */ 543 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 544 545 /* 546 * If the hardware has traversed the whole list, NEXTSCB 547 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 548 * but MAXCMDCNT is accurate. If we stop part way through 549 * the list or only had one command to issue, NEXTSCB[1] is 550 * not NULL and LASTSCB is the last command to go out. 551 */ 552 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 553 554 /* 555 * Brute force walk. 556 */ 557 bmov SCBPTR, WAITING_TID_HEAD, 2; 558 mvi SEQINTCTL, INTVEC1DSL; 559 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 560 mov A, MAXCMDCNT; 561 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 562 clr SEQINTCTL; 563find_lastscb_loop: 564 dec A; 565 test A, 0xFF jz found_last_sent_scb; 566 bmov SCBPTR, SCB_NEXT, 2; 567 jmp find_lastscb_loop; 568use_lastscb: 569 bmov SCBPTR, LASTSCB, 2; 570found_last_sent_scb: 571 bmov CURRSCB, SCBPTR, 2; 572curscb_ww_done: 573 } else { 574 /* 575 * Untested - Verify with Rev B. 576 */ 577 bmov SCBPTR, CURRSCB, 2; 578 } 579 580 /* 581 * Requeue any SCBs not sent, to the tail of the waiting Q. 582 */ 583 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done; 584 585 /* 586 * We know that neither the per-TID list nor the list of 587 * TIDs is empty. Use this knowledge to our advantage. 588 */ 589 bmov REG0, SCB_NEXT, 2; 590 bmov SCBPTR, WAITING_TID_TAIL, 2; 591 bmov SCB_NEXT2, REG0, 2; 592 bmov WAITING_TID_TAIL, REG0, 2; 593 jmp select_out_inc_tid_q; 594 595select_out_list_done: 596 /* 597 * The whole list made it. Just clear our TID's tail pointer 598 * unless we were queued independently due to our need to 599 * send a message. 600 */ 601 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q; 602 shr DINDEX, 3, SCB_SCSIID; 603 or DINDEX, 1; /* Want only the second byte */ 604 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 605 mvi DINDIR, SCB_LIST_NULL; 606select_out_inc_tid_q: 607 bmov SCBPTR, WAITING_TID_HEAD, 2; 608 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 609 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 610 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 611 bmov SCBPTR, CURRSCB, 2; 612 mvi CLRSINT0, CLRSELDO; 613 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase; 614 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase; 615 616 /* 617 * If this is a packetized connection, return to our 618 * idle_loop and let our interrupt handler deal with 619 * any connection setup/teardown issues. The only 620 * exceptions are the case of MK_MESSAGE and task management 621 * SCBs. 622 */ 623 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 624 /* 625 * In the A, the LQO manager transitions to LQOSTOP0 even if 626 * we have selected out with ATN asserted and the target 627 * REQs in a non-packet phase. 628 */ 629 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 630 test SCSISIGO, ATNO jnz select_out_non_packetized; 631select_out_no_message: 632 } 633 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized; 634 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop; 635 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE) 636 jmp idle_loop; 637 638select_out_non_packetized: 639 /* Non packetized request. */ 640 and SCSISEQ0, ~ENSELO; 641 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 642 /* 643 * This exposes a window whereby a 644 * busfree just after a selection will 645 * be missed, but there is no other safe 646 * way to enable busfree detection if 647 * the busfreerev function is broken. 648 */ 649 mvi CLRSINT1,CLRBUSFREE; 650 or SIMODE1, ENBUSFREE; 651 } 652 mov SAVED_SCSIID, SCB_SCSIID; 653 mov SAVED_LUN, SCB_LUN; 654 mvi SEQ_FLAGS, NO_CDB_SENT; 655END_CRITICAL; 656 or SXFRCTL0, SPIOEN; 657 658 /* 659 * As soon as we get a successful selection, the target 660 * should go into the message out phase since we have ATN 661 * asserted. 662 */ 663 mvi MSG_OUT, MSG_IDENTIFYFLAG; 664 665 /* 666 * Main loop for information transfer phases. Wait for the 667 * target to assert REQ before checking MSG, C/D and I/O for 668 * the bus phase. 669 */ 670mesgin_phasemis: 671ITloop: 672 call phase_lock; 673 674 mov A, LASTPHASE; 675 676 test A, ~P_DATAIN_DT jz p_data; 677 cmp A,P_COMMAND je p_command; 678 cmp A,P_MESGOUT je p_mesgout; 679 cmp A,P_STATUS je p_status; 680 cmp A,P_MESGIN je p_mesgin; 681 682 SET_SEQINTCODE(BAD_PHASE) 683 jmp ITloop; /* Try reading the bus again. */ 684 685/* 686 * Command phase. Set up the DMA registers and let 'er rip. 687 */ 688p_command: 689 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay; 690 SET_SEQINTCODE(PROTO_VIOLATION) 691p_command_okay: 692 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 693 jnz p_command_allocate_fifo; 694 /* 695 * Command retry. Free our current FIFO and 696 * re-allocate a FIFO so transfer state is 697 * reset. 698 */ 699SET_SRC_MODE M_DFF1; 700SET_DST_MODE M_DFF1; 701 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 702 SET_MODE(M_SCSI, M_SCSI) 703p_command_allocate_fifo: 704 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 705 call allocate_fifo; 706SET_SRC_MODE M_DFF1; 707SET_DST_MODE M_DFF1; 708 add NONE, -17, SCB_CDB_LEN; 709 jnc p_command_embedded; 710p_command_from_host: 711 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 712 mvi SG_CACHE_PRE, LAST_SEG; 713 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 714 jmp p_command_xfer; 715p_command_embedded: 716 bmov SHCNT[0], SCB_CDB_LEN, 1; 717 bmov DFDAT, SCB_CDB_STORE, 16; 718 mvi DFCNTRL, SCSIEN; 719p_command_xfer: 720 and SEQ_FLAGS, ~NO_CDB_SENT; 721 test DFCNTRL, SCSIEN jnz .; 722 /* 723 * DMA Channel automatically disabled. 724 * Don't allow a data phase if the command 725 * was not fully transferred. 726 */ 727 test SSTAT2, SDONE jnz ITloop; 728 or SEQ_FLAGS, NO_CDB_SENT; 729 jmp ITloop; 730 731 732/* 733 * Status phase. Wait for the data byte to appear, then read it 734 * and store it into the SCB. 735 */ 736SET_SRC_MODE M_SCSI; 737SET_DST_MODE M_SCSI; 738p_status: 739 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation; 740p_status_okay: 741 mov SCB_SCSI_STATUS, SCSIDAT; 742 or SCB_CONTROL, STATUS_RCVD; 743 jmp ITloop; 744 745/* 746 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 747 * indentify message sequence and send it to the target. The host may 748 * override this behavior by setting the MK_MESSAGE bit in the SCB 749 * control byte. This will cause us to interrupt the host and allow 750 * it to handle the message phase completely on its own. If the bit 751 * associated with this target is set, we will also interrupt the host, 752 * thereby allowing it to send a message on the next selection regardless 753 * of the transaction being sent. 754 * 755 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 756 * This is done to allow the host to send messages outside of an identify 757 * sequence while protecting the seqencer from testing the MK_MESSAGE bit 758 * on an SCB that might not be for the current nexus. (For example, a 759 * BDR message in responce to a bad reselection would leave us pointed to 760 * an SCB that doesn't have anything to do with the current target). 761 * 762 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 763 * bus device reset). 764 * 765 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 766 * in case the target decides to put us in this phase for some strange 767 * reason. 768 */ 769p_mesgout_retry: 770 /* Turn on ATN for the retry */ 771 mvi SCSISIGO, ATNO; 772p_mesgout: 773 mov SINDEX, MSG_OUT; 774 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 775 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 776p_mesgout_identify: 777 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 778 test SCB_CONTROL, DISCENB jnz . + 2; 779 and SINDEX, ~DISCENB; 780/* 781 * Send a tag message if TAG_ENB is set in the SCB control block. 782 * Use SCB_NONPACKET_TAG as the tag value. 783 */ 784p_mesgout_tag: 785 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 786 mov SCSIDAT, SINDEX; /* Send the identify message */ 787 call phase_lock; 788 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 789 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 790 call phase_lock; 791 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 792 mov SCBPTR jmp p_mesgout_onebyte; 793/* 794 * Interrupt the driver, and allow it to handle this message 795 * phase and any required retries. 796 */ 797p_mesgout_from_host: 798 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 799 jmp host_message_loop; 800 801p_mesgout_onebyte: 802 mvi CLRSINT1, CLRATNO; 803 mov SCSIDAT, SINDEX; 804 805/* 806 * If the next bus phase after ATN drops is message out, it means 807 * that the target is requesting that the last message(s) be resent. 808 */ 809 call phase_lock; 810 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 811 812p_mesgout_done: 813 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 814 mov LAST_MSG, MSG_OUT; 815 mvi MSG_OUT, MSG_NOOP; /* No message left */ 816 jmp ITloop; 817 818/* 819 * Message in phase. Bytes are read using Automatic PIO mode. 820 */ 821p_mesgin: 822 /* read the 1st message byte */ 823 mvi ACCUM call inb_first; 824 825 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 826 cmp A,MSG_DISCONNECT je mesgin_disconnect; 827 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 828 cmp ALLZEROS,A je mesgin_complete; 829 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 830 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 831 cmp A,MSG_NOOP je mesgin_done; 832 833/* 834 * Pushed message loop to allow the kernel to 835 * run it's own message state engine. To avoid an 836 * extra nop instruction after signaling the kernel, 837 * we perform the phase_lock before checking to see 838 * if we should exit the loop and skip the phase_lock 839 * in the ITloop. Performing back to back phase_locks 840 * shouldn't hurt, but why do it twice... 841 */ 842host_message_loop: 843 call phase_lock; /* Benign the first time through. */ 844 SET_SEQINTCODE(HOST_MSG_LOOP) 845 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 846 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 847 mov SCSIDAT, RETURN_2; 848 jmp host_message_loop; 849 /* Must be CONT_MSG_LOOP_READ */ 850 mov NONE, SCSIDAT; /* ACK Byte */ 851 jmp host_message_loop; 852 853mesgin_ign_wide_residue: 854 mov SAVED_MODE, MODE_PTR; 855 SET_MODE(M_SCSI, M_SCSI) 856 shr NEGOADDR, 4, SAVED_SCSIID; 857 mov A, NEGCONOPTS; 858 RESTORE_MODE(SAVED_MODE) 859 test A, WIDEXFER jz mesgin_reject; 860 /* Pull the residue byte */ 861 mvi REG0 call inb_next; 862 cmp REG0, 0x01 jne mesgin_reject; 863 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 864 test DATA_COUNT_ODD, 0x1 jz mesgin_done; 865 jmp mesgin_done; 866 867mesgin_proto_violation: 868 SET_SEQINTCODE(PROTO_VIOLATION) 869 jmp mesgin_done; 870mesgin_reject: 871 mvi MSG_MESSAGE_REJECT call mk_mesg; 872mesgin_done: 873 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 874 jmp ITloop; 875 876#define INDEX_DISC_LIST(scsiid, lun) \ 877 and A, 0xC0, scsiid; \ 878 or SCBPTR, A, lun; \ 879 clr SCBPTR[1]; \ 880 and SINDEX, 0x30, scsiid; \ 881 shr SINDEX, 3; /* Multiply by 2 */ \ 882 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 883 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 884 885mesgin_identify: 886 /* 887 * Determine whether a target is using tagged or non-tagged 888 * transactions by first looking at the transaction stored in 889 * the per-device, disconnected array. If there is no untagged 890 * transaction for this target, this must be a tagged transaction. 891 */ 892 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 893 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 894 bmov DINDEX, SINDEX, 2; 895 bmov REG0, SINDIR, 2; 896 cmp REG0[1], SCB_LIST_NULL je snoop_tag; 897 /* Untagged. Clear the busy table entry and setup the SCB. */ 898 bmov DINDIR, ALLONES, 2; 899 bmov SCBPTR, REG0, 2; 900 jmp setup_SCB; 901 902/* 903 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 904 * If we get one, we use the tag returned to find the proper 905 * SCB. After receiving the tag, look for the SCB at SCB locations tag and 906 * tag + 256. 907 */ 908snoop_tag: 909 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 910 or SEQ_FLAGS, 0x80; 911 } 912 mov NONE, SCSIDAT; /* ACK Identify MSG */ 913 call phase_lock; 914 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 915 or SEQ_FLAGS, 0x1; 916 } 917 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 918 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 919 or SEQ_FLAGS, 0x2; 920 } 921 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 922get_tag: 923 clr SCBPTR[1]; 924 mvi SCBPTR call inb_next; /* tag value */ 925verify_scb: 926 test SCB_CONTROL,DISCONNECTED jz verify_other_scb; 927 mov A, SAVED_SCSIID; 928 cmp SCB_SCSIID, A jne verify_other_scb; 929 mov A, SAVED_LUN; 930 cmp SCB_LUN, A je setup_SCB_disconnected; 931verify_other_scb: 932 xor SCBPTR[1], 1; 933 test SCBPTR[1], 0xFF jnz verify_scb; 934 jmp not_found; 935 936/* 937 * Ensure that the SCB the tag points to is for 938 * an SCB transaction to the reconnecting target. 939 */ 940setup_SCB: 941 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 942 or SEQ_FLAGS, 0x10; 943 } 944 test SCB_CONTROL,DISCONNECTED jz not_found; 945setup_SCB_disconnected: 946 and SCB_CONTROL,~DISCONNECTED; 947 clr SEQ_FLAGS; /* make note of IDENTIFY */ 948 test SCB_SGPTR, SG_LIST_NULL jnz . + 3; 949 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 950 call allocate_fifo; 951 /* See if the host wants to send a message upon reconnection */ 952 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 953 mvi HOST_MSG call mk_mesg; 954 jmp mesgin_done; 955 956not_found: 957 SET_SEQINTCODE(NO_MATCH) 958 jmp mesgin_done; 959 960not_found_ITloop: 961 SET_SEQINTCODE(NO_MATCH) 962 jmp ITloop; 963 964/* 965 * We received a "command complete" message. Put the SCB on the complete 966 * queue and trigger a completion interrupt via the idle loop. Before doing 967 * so, check to see if there 968 * is a residual or the status byte is something other than STATUS_GOOD (0). 969 * In either of these conditions, we upload the SCB back to the host so it can 970 * process this information. In the case of a non zero status byte, we 971 * additionally interrupt the kernel driver synchronously, allowing it to 972 * decide if sense should be retrieved. If the kernel driver wishes to request 973 * sense, it will fill the kernel SCB with a request sense command, requeue 974 * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting 975 * RETURN_1 to SEND_SENSE. 976 */ 977mesgin_complete: 978 979 /* 980 * If ATN is raised, we still want to give the target a message. 981 * Perhaps there was a parity error on this last message byte. 982 * Either way, the target should take us to message out phase 983 * and then attempt to complete the command again. We should use a 984 * critical section here to guard against a timeout triggering 985 * for this command and setting ATN while we are still processing 986 * the completion. 987 test SCSISIGI, ATNI jnz mesgin_done; 988 */ 989 990 /* 991 * If we are identified and have successfully sent the CDB, 992 * any status will do. Optimize this fast path. 993 */ 994 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation; 995 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted; 996 997 /* 998 * If the target never sent an identify message but instead went 999 * to mesgin to give an invalid message, let the host abort us. 1000 */ 1001 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation; 1002 1003 /* 1004 * If we recevied good status but never successfully sent the 1005 * cdb, abort the command. 1006 */ 1007 test SCB_SCSI_STATUS,0xff jnz complete_accepted; 1008 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation; 1009complete_accepted: 1010 1011 /* 1012 * See if we attempted to deliver a message but the target ingnored us. 1013 */ 1014 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg; 1015 SET_SEQINTCODE(MKMSG_FAILED) 1016complete_nomsg: 1017 call queue_scb_completion; 1018 jmp await_busfree; 1019 1020freeze_queue: 1021 /* Cancel any pending select-out. */ 1022 test SSTAT0, SELDO|SELINGO jnz . + 2; 1023 and SCSISEQ0, ~ENSELO; 1024 mov ACCUM_SAVE, A; 1025 clr A; 1026 add QFREEZE_COUNT, 1; 1027 adc QFREEZE_COUNT[1], A; 1028 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 1029 mov A, ACCUM_SAVE ret; 1030 1031queue_arg1_scb_completion: 1032 SET_MODE(M_SCSI, M_SCSI) 1033 bmov SCBPTR, ARG_1, 2; 1034queue_scb_completion: 1035 test SCB_SCSI_STATUS,0xff jnz bad_status; 1036 /* 1037 * Check for residuals 1038 */ 1039 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 1040 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 1041 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 1042complete: 1043 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 1044 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 1045bad_status: 1046 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 1047 call freeze_queue; 1048upload_scb: 1049 bmov SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2; 1050 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 1051 or SCB_SGPTR, SG_STATUS_VALID ret; 1052 1053/* 1054 * Is it a disconnect message? Set a flag in the SCB to remind us 1055 * and await the bus going free. If this is an untagged transaction 1056 * store the SCB id for it in our untagged target table for lookup on 1057 * a reselction. 1058 */ 1059mesgin_disconnect: 1060 /* 1061 * If ATN is raised, we still want to give the target a message. 1062 * Perhaps there was a parity error on this last message byte 1063 * or we want to abort this command. Either way, the target 1064 * should take us to message out phase and then attempt to 1065 * disconnect again. 1066 * XXX - Wait for more testing. 1067 test SCSISIGI, ATNI jnz mesgin_done; 1068 */ 1069 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT 1070 jnz mesgin_proto_violation; 1071 or SCB_CONTROL,DISCONNECTED; 1072 test SCB_CONTROL, TAG_ENB jnz await_busfree; 1073queue_disc_scb: 1074 bmov REG0, SCBPTR, 2; 1075 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1076 bmov DINDEX, SINDEX, 2; 1077 bmov DINDIR, REG0, 2; 1078 bmov SCBPTR, REG0, 2; 1079 /* FALLTHROUGH */ 1080await_busfree: 1081 and SIMODE1, ~ENBUSFREE; 1082 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) { 1083 /* 1084 * In the BUSFREEREV_BUG case, the 1085 * busfree status was cleared at the 1086 * beginning of the connection. 1087 */ 1088 mvi CLRSINT1,CLRBUSFREE; 1089 } 1090 mov NONE, SCSIDAT; /* Ack the last byte */ 1091 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1092 jnz await_busfree_not_m_dff; 1093SET_SRC_MODE M_DFF1; 1094SET_DST_MODE M_DFF1; 1095await_busfree_clrchn: 1096 mvi DFFSXFRCTL, CLRCHN; 1097await_busfree_not_m_dff: 1098 call clear_target_state; 1099 test SSTAT1,REQINIT|BUSFREE jz .; 1100 test SSTAT1, BUSFREE jnz idle_loop; 1101 SET_SEQINTCODE(MISSED_BUSFREE) 1102 1103 1104/* 1105 * Save data pointers message: 1106 * Copying RAM values back to SCB, for Save Data Pointers message, but 1107 * only if we've actually been into a data phase to change them. This 1108 * protects against bogus data in scratch ram and the residual counts 1109 * since they are only initialized when we go into data_in or data_out. 1110 * Ack the message as soon as possible. 1111 */ 1112SET_SRC_MODE M_DFF1; 1113SET_DST_MODE M_DFF1; 1114mesgin_sdptrs: 1115 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1116 test SEQ_FLAGS, DPHASE jz ITloop; 1117 call save_pointers; 1118 jmp ITloop; 1119 1120save_pointers: 1121 /* 1122 * If we are asked to save our position at the end of the 1123 * transfer, just mark us at the end rather than perform a 1124 * full save. 1125 */ 1126 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1127 or SCB_SGPTR, SG_LIST_NULL ret; 1128 1129save_pointers_full: 1130 /* 1131 * The SCB_DATAPTR becomes the current SHADDR. 1132 * All other information comes directly from our residual 1133 * state. 1134 */ 1135 bmov SCB_DATAPTR, SHADDR, 8; 1136 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1137 1138/* 1139 * Restore pointers message? Data pointers are recopied from the 1140 * SCB anytime we enter a data phase for the first time, so all 1141 * we need to do is clear the DPHASE flag and let the data phase 1142 * code do the rest. We also reset/reallocate the FIFO to make 1143 * sure we have a clean start for the next data or command phase. 1144 */ 1145mesgin_rdptrs: 1146 and SEQ_FLAGS, ~DPHASE; 1147 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1148 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1149 SET_MODE(M_SCSI, M_SCSI) 1150msgin_rdptrs_get_fifo: 1151 call allocate_fifo; 1152 jmp mesgin_done; 1153 1154clear_target_state: 1155 mvi LASTPHASE, P_BUSFREE; 1156 /* clear target specific flags */ 1157 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret; 1158 1159phase_lock: 1160 if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) { 1161 /* 1162 * Don't ignore persistent REQ assertions just because 1163 * they were asserted within the bus settle delay window. 1164 * This allows us to tolerate devices like the GEM318 1165 * that violate the SCSI spec. We are careful not to 1166 * count REQ while we are waiting for it to fall during 1167 * an async phase due to our asserted ACK. Each 1168 * sequencer instruction takes ~25ns, so the REQ must 1169 * last at least 100ns in order to be counted as a true 1170 * REQ. 1171 */ 1172 test SCSIPHASE, 0xFF jnz phase_locked; 1173 test SCSISIGI, ACKI jnz phase_lock; 1174 test SCSISIGI, REQI jz phase_lock; 1175 test SCSIPHASE, 0xFF jnz phase_locked; 1176 test SCSISIGI, ACKI jnz phase_lock; 1177 test SCSISIGI, REQI jz phase_lock; 1178phase_locked: 1179 } else { 1180 test SCSIPHASE, 0xFF jz .; 1181 } 1182 test SSTAT1, SCSIPERR jnz phase_lock; 1183phase_lock_latch_phase: 1184 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1185 1186/* 1187 * Functions to read data in Automatic PIO mode. 1188 * 1189 * An ACK is not sent on input from the target until SCSIDATL is read from. 1190 * So we wait until SCSIDATL is latched (the usual way), then read the data 1191 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1192 * line, or we just want to acknowledge the byte, then we do a dummy read 1193 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1194 * data byte on the bus until we send our ACK. 1195 * 1196 * The assumption here is that these are called in a particular sequence, 1197 * and that REQ is already set when inb_first is called. inb_{first,next} 1198 * use the same calling convention as inb. 1199 */ 1200inb_next: 1201 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1202inb_next_wait: 1203 /* 1204 * If there is a parity error, wait for the kernel to 1205 * see the interrupt and prepare our message response 1206 * before continuing. 1207 */ 1208 test SCSIPHASE, 0xFF jz .; 1209 test SSTAT1, SCSIPERR jnz inb_next_wait; 1210inb_next_check_phase: 1211 and LASTPHASE, PHASE_MASK, SCSISIGI; 1212 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1213inb_first: 1214 clr DINDEX[1]; 1215 mov DINDEX,SINDEX; 1216 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1217inb_last: 1218 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1219 1220mk_mesg: 1221 mvi SCSISIGO, ATNO; 1222 mov MSG_OUT,SINDEX ret; 1223 1224SET_SRC_MODE M_DFF1; 1225SET_DST_MODE M_DFF1; 1226disable_ccsgen: 1227 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; 1228 clr CCSGCTL; 1229disable_ccsgen_fetch_done: 1230 clr SG_STATE ret; 1231 1232service_fifo: 1233 /* 1234 * Do we have any prefetch left??? 1235 */ 1236 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1237 1238 /* 1239 * Can this FIFO have access to the S/G cache yet? 1240 */ 1241 test CCSGCTL, SG_CACHE_AVAIL jz return; 1242 1243 /* Did we just finish fetching segs? */ 1244 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete; 1245 1246 /* Are we actively fetching segments? */ 1247 test CCSGCTL, CCSGENACK jnz return; 1248 1249 /* 1250 * We fetch a "cacheline aligned" and sized amount of data 1251 * so we don't end up referencing a non-existant page. 1252 * Cacheline aligned is in quotes because the kernel will 1253 * set the prefetch amount to a reasonable level if the 1254 * cacheline size is unknown. 1255 */ 1256 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4; 1257 mvi SGHCNT, SG_PREFETCH_CNT; 1258 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) { 1259 /* 1260 * Need two instruction between "touches" of SGHADDR. 1261 */ 1262 nop; 1263 } 1264 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1265 mvi CCSGCTL, CCSGEN|CCSGRESET; 1266 or SG_STATE, FETCH_INPROG ret; 1267idle_sgfetch_complete: 1268 /* 1269 * Guard against SG_CACHE_AVAIL activating during sg fetch 1270 * request in the other FIFO. 1271 */ 1272 test SG_STATE, FETCH_INPROG jz return; 1273 clr CCSGCTL; 1274 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1275 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1276idle_sg_avail: 1277 /* Does the hardware have space for another SG entry? */ 1278 test DFSTATUS, PRELOAD_AVAIL jz return; 1279 /* 1280 * On the A, preloading a segment before HDMAENACK 1281 * comes true can clobber the shaddow address of the 1282 * first segment in the S/G FIFO. Wait until it is 1283 * safe to proceed. 1284 */ 1285 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) { 1286 test DFCNTRL, HDMAENACK jz return; 1287 } 1288 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1289 bmov HADDR, CCSGRAM, 8; 1290 } else { 1291 bmov HADDR, CCSGRAM, 4; 1292 } 1293 bmov HCNT, CCSGRAM, 3; 1294 test HCNT[0], 0x1 jz . + 2; 1295 xor DATA_COUNT_ODD, 0x1; 1296 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1297 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1298 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1299 } 1300 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1301 /* Skip 4 bytes of pad. */ 1302 add CCSGADDR, 4; 1303 } 1304sg_advance: 1305 clr A; /* add sizeof(struct scatter) */ 1306 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1307 adc SCB_RESIDUAL_SGPTR[1],A; 1308 adc SCB_RESIDUAL_SGPTR[2],A; 1309 adc SCB_RESIDUAL_SGPTR[3],A; 1310 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1311 test DATA_COUNT_ODD, 0x1 jz . + 2; 1312 or SINDEX, ODD_SEG; 1313 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1314 or SINDEX, LAST_SEG; 1315 clr SG_STATE; 1316 mov SG_CACHE_PRE, SINDEX; 1317 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { 1318 /* 1319 * Use SCSIENWRDIS so that SCSIEN is never 1320 * modified by this operation. 1321 */ 1322 or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS; 1323 } else { 1324 or DFCNTRL, PRELOADEN|HDMAEN; 1325 } 1326 /* 1327 * Do we have another segment in the cache? 1328 */ 1329 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1330 jnc return; 1331 and SG_STATE, ~SEGS_AVAIL ret; 1332 1333/* 1334 * Initialize the DMA address and counter from the SCB. 1335 */ 1336load_first_seg: 1337 bmov HADDR, SCB_DATAPTR, 11; 1338 and DATA_COUNT_ODD, 0x1, SCB_DATACNT[0]; 1339 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0]; 1340 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1341 or REG_ISR, LAST_SEG; 1342 test DATA_COUNT_ODD, 0x1 jz . + 2; 1343 or REG_ISR, ODD_SEG; 1344 mov SG_CACHE_PRE, REG_ISR; 1345 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1346 /* 1347 * Since we've are entering a data phase, we will 1348 * rely on the SCB_RESID* fields. Initialize the 1349 * residual and clear the full residual flag. 1350 */ 1351 and SCB_SGPTR[0], ~SG_FULL_RESID; 1352 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1353 /* If we need more S/G elements, tell the idle loop */ 1354 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1355 mvi SG_STATE, LOADING_NEEDED ret; 1356 clr SG_STATE ret; 1357 1358p_data_handle_xfer: 1359 call setjmp_setscb; 1360 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1361p_data_clear_handler: 1362 or LONGJMP_ADDR[1], INVALID_ADDR ret; 1363 1364p_data: 1365 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1366 SET_SEQINTCODE(PROTO_VIOLATION) 1367p_data_allowed: 1368 1369 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1370 1371 /* 1372 * If we re-enter the data phase after going through another 1373 * phase, our transfer location has almost certainly been 1374 * corrupted by the interveining, non-data, transfers. Ask 1375 * the host driver to fix us up based on the transfer residual 1376 * unless we already know that we should be bitbucketing. 1377 */ 1378 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1379 SET_SEQINTCODE(PDATA_REINIT) 1380 jmp data_phase_inbounds; 1381 1382p_data_bitbucket: 1383 /* 1384 * Turn on `Bit Bucket' mode, wait until the target takes 1385 * us to another phase, and then notify the host. 1386 */ 1387 mov SAVED_MODE, MODE_PTR; 1388 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1389 jnz bitbucket_not_m_dff; 1390 /* 1391 * Ensure that any FIFO contents are cleared out and the 1392 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1393 * doesn't discard data already in the FIFO. 1394 */ 1395 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1396 SET_MODE(M_SCSI, M_SCSI) 1397bitbucket_not_m_dff: 1398 or SXFRCTL1,BITBUCKET; 1399 /* Wait for non-data phase. */ 1400 test SCSIPHASE, ~DATA_PHASE_MASK jz .; 1401 and SXFRCTL1, ~BITBUCKET; 1402 RESTORE_MODE(SAVED_MODE) 1403SET_SRC_MODE M_DFF1; 1404SET_DST_MODE M_DFF1; 1405 SET_SEQINTCODE(DATA_OVERRUN) 1406 jmp ITloop; 1407 1408data_phase_initialize: 1409 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1410 call load_first_seg; 1411data_phase_inbounds: 1412 /* We have seen a data phase at least once. */ 1413 or SEQ_FLAGS, DPHASE; 1414 mov SAVED_MODE, MODE_PTR; 1415 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop; 1416 call p_data_handle_xfer; 1417data_group_dma_loop: 1418 /* 1419 * The transfer is complete if either the last segment 1420 * completes or the target changes phase. Both conditions 1421 * will clear SCSIEN. 1422 */ 1423 call idle_loop_service_fifos; 1424 call idle_loop_cchan; 1425 call idle_loop_gsfifo; 1426 RESTORE_MODE(SAVED_MODE) 1427 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1428 1429data_group_dmafinish: 1430 /* 1431 * The transfer has terminated either due to a phase 1432 * change, and/or the completion of the last segment. 1433 * We have two goals here. Do as much other work 1434 * as possible while the data fifo drains on a read 1435 * and respond as quickly as possible to the standard 1436 * messages (save data pointers/disconnect and command 1437 * complete) that usually follow a data phase. 1438 */ 1439 call calc_residual; 1440 1441 /* 1442 * Go ahead and shut down the DMA engine now. 1443 */ 1444 test DFCNTRL, DIRECTION jnz data_phase_finish; 1445data_group_fifoflush: 1446 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1447 or DFCNTRL, FIFOFLUSH; 1448 } 1449 /* 1450 * We have enabled the auto-ack feature. This means 1451 * that the controller may have already transferred 1452 * some overrun bytes into the data FIFO and acked them 1453 * on the bus. The only way to detect this situation is 1454 * to wait for LAST_SEG_DONE to come true on a completed 1455 * transfer and then test to see if the data FIFO is 1456 * non-empty. We know there is more data yet to transfer 1457 * if SG_LIST_NULL is not yet set, thus there cannot be 1458 * an overrun. 1459 */ 1460 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1461 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1462 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1463 /* Overrun */ 1464 jmp p_data; 1465data_phase_finish: 1466 /* 1467 * If the target has left us in data phase, loop through 1468 * the dma code again. We will only loop if there is a 1469 * data overrun. 1470 */ 1471 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1472 test SSTAT0, TARGET jnz data_phase_done; 1473 } 1474 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1475 test SSTAT1, REQINIT jz .; 1476 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1477 } 1478 1479data_phase_done: 1480 /* Kill off any pending prefetch */ 1481 call disable_ccsgen; 1482 or LONGJMP_ADDR[1], INVALID_ADDR; 1483 1484 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1485 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1486 /* 1487 and SEQ_FLAGS, ~DPHASE_PENDING; 1488 * For data-in phases, wait for any pending acks from the 1489 * initiator before changing phase. We only need to 1490 * send Ignore Wide Residue messages for data-in phases. 1491 test DFCNTRL, DIRECTION jz target_ITloop; 1492 test SSTAT1, REQINIT jnz .; 1493 test DATA_COUNT_ODD, 0x1 jz target_ITloop; 1494 SET_MODE(M_SCSI, M_SCSI) 1495 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1496 */ 1497 /* 1498 * Issue an Ignore Wide Residue Message. 1499 mvi P_MESGIN|BSYO call change_phase; 1500 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1501 mvi 1 call target_outb; 1502 jmp target_ITloop; 1503 */ 1504 } else { 1505 jmp ITloop; 1506 } 1507 1508/* 1509 * We assume that, even though data may still be 1510 * transferring to the host, that the SCSI side of 1511 * the DMA engine is now in a static state. This 1512 * allows us to update our notion of where we are 1513 * in this transfer. 1514 * 1515 * If, by chance, we stopped before being able 1516 * to fetch additional segments for this transfer, 1517 * yet the last S/G was completely exhausted, 1518 * call our idle loop until it is able to load 1519 * another segment. This will allow us to immediately 1520 * pickup on the next segment on the next data phase. 1521 * 1522 * If we happened to stop on the last segment, then 1523 * our residual information is still correct from 1524 * the idle loop and there is no need to perform 1525 * any fixups. 1526 */ 1527residual_before_last_seg: 1528 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1529 /* 1530 * Can never happen from an interrupt as the packetized 1531 * hardware will only interrupt us once SHVALID or 1532 * LAST_SEG_DONE. 1533 */ 1534 call idle_loop_service_fifos; 1535 RESTORE_MODE(SAVED_MODE) 1536 /* FALLTHROUGH */ 1537calc_residual: 1538 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1539 /* Record if we've consumed all S/G entries */ 1540 test MDFFSTAT, SHVALID jz . + 2; 1541 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1542 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1543 1544sgptr_fixup: 1545 /* 1546 * Fixup the residual next S/G pointer. The S/G preload 1547 * feature of the chip allows us to load two elements 1548 * in addition to the currently active element. We 1549 * store the bottom byte of the next S/G pointer in 1550 * the SG_CACHE_PTR register so we can restore the 1551 * correct value when the DMA completes. If the next 1552 * sg ptr value has advanced to the point where higher 1553 * bytes in the address have been affected, fix them 1554 * too. 1555 */ 1556 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1557 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1558 add SCB_RESIDUAL_SGPTR[1], -1; 1559 adc SCB_RESIDUAL_SGPTR[2], -1; 1560 adc SCB_RESIDUAL_SGPTR[3], -1; 1561sgptr_fixup_done: 1562 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1563 clr DATA_COUNT_ODD; 1564 test SG_CACHE_SHADOW, ODD_SEG jz . + 2; 1565 or DATA_COUNT_ODD, 0x1; 1566 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1567 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1568 1569export timer_isr: 1570 call issue_cmdcmplt; 1571 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 1572 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 1573 /* 1574 * In H2A4, the mode pointer is not saved 1575 * for intvec2, but is restored on iret. 1576 * This can lead to the restoration of a 1577 * bogus mode ptr. Manually clear the 1578 * intmask bits and do a normal return 1579 * to compensate. 1580 */ 1581 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret; 1582 } else { 1583 or SEQINTCTL, IRET ret; 1584 } 1585 1586export seq_isr: 1587 if ((ahd->features & AHD_RTI) == 0) { 1588 /* 1589 * On RevA Silicon, if the target returns us to data-out 1590 * after we have already trained for data-out, it is 1591 * possible for us to transition the free running clock to 1592 * data-valid before the required 100ns P1 setup time (8 P1 1593 * assertions in fast-160 mode). This will only happen if 1594 * this L-Q is a continuation of a data transfer for which 1595 * we have already prefetched data into our FIFO (LQ/Data 1596 * followed by LQ/Data for the same write transaction). 1597 * This can cause some target implementations to miss the 1598 * first few data transfers on the bus. We detect this 1599 * situation by noticing that this is the first data transfer 1600 * after an LQ (LQIWORKONLQ true), that the data transfer is 1601 * a continuation of a transfer already setup in our FIFO 1602 * (SAVEPTRS interrupt), and that the transaction is a write 1603 * (DIRECTION set in DFCNTRL). The delay is performed by 1604 * disabling SCSIEN until we see the first REQ from the 1605 * target. 1606 * 1607 * First instruction in an ISR cannot be a branch on 1608 * Rev A. Snapshot LQISTAT2 so the status is not missed 1609 * and deffer the test by one instruction. 1610 */ 1611 mov REG_ISR, LQISTAT2; 1612 test REG_ISR, LQIWORKONLQ jz data_valid; 1613 test SEQINTSRC, SAVEPTRS jz data_valid; 1614 test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo; 1615 /* 1616 * Switch to the active FIFO. 1617 */ 1618 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1619 test DFCNTRL, DIRECTION jz snapshot_other_fifo; 1620 and DFCNTRL, ~SCSIEN; 1621 test SSTAT1, REQINIT jz .; 1622 or DFCNTRL, SCSIEN; 1623 /* FALLTHROUGH */ 1624snapshot_other_fifo: 1625 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1626 /* FALLTHROUGH */ 1627snapshot_saveptr: 1628 mvi DFFSXFRCTL, CLRCHN; 1629 or SEQINTCTL, IRET ret; 1630data_valid: 1631 } 1632 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1633 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1634 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1635 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1636 SET_SEQINTCODE(INVALID_SEQINT) 1637 1638/* 1639 * There are two types of save pointers interrupts: 1640 * The first is a snapshot save pointers where the current FIFO is not 1641 * active and contains a snapshot of the current poniter information. 1642 * This happens between packets in a stream for a single L_Q. Since we 1643 * are not performing a pointer save, we can safely clear the channel 1644 * so it can be used for other transactions. On RTI capable controllers, 1645 * where snapshots can, and are, disabled, the code to handle this type 1646 * of snapshot is not active. 1647 * 1648 * The second case is a save pointers on an active FIFO which occurs 1649 * if the target changes to a new L_Q or busfrees/QASes and the transfer 1650 * has a residual. This should occur coincident with a ctxtdone. We 1651 * disable the interrupt and allow our active routine to handle the 1652 * save. 1653 */ 1654saveptr_intr: 1655 if ((ahd->features & AHD_RTI) == 0) { 1656 test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr; 1657 } 1658saveptr_active_fifo: 1659 and SEQIMODE, ~ENSAVEPTRS; 1660 or SEQINTCTL, IRET ret; 1661 1662cfg4data_intr: 1663 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun; 1664 call load_first_seg; 1665 call pkt_handle_xfer; 1666 or SEQINTCTL, IRET ret; 1667 1668cfg4istat_intr: 1669 call freeze_queue; 1670 add NONE, -13, SCB_CDB_LEN; 1671 jnc cfg4istat_have_sense_addr; 1672 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1673 /* 1674 * Host sets up address/count and enables transfer. 1675 */ 1676 SET_SEQINTCODE(CFG4ISTAT_INTR) 1677 jmp cfg4istat_setup_handler; 1678cfg4istat_have_sense_addr: 1679 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1680 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1681 mvi SG_CACHE_PRE, LAST_SEG; 1682 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1683cfg4istat_setup_handler: 1684 /* 1685 * Status pkt is transferring to host. 1686 * Wait in idle loop for transfer to complete. 1687 * If a command completed before an attempted 1688 * task management function completed, notify the host. 1689 */ 1690 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func; 1691 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 1692cfg4istat_no_taskmgmt_func: 1693 call pkt_handle_status; 1694 or SEQINTCTL, IRET ret; 1695 1696cfg4icmd_intr: 1697 /* 1698 * In the case of DMAing a CDB from the host, the normal 1699 * CDB buffer is formatted with an 8 byte address followed 1700 * by a 1 byte count. 1701 */ 1702 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 1703 mvi SG_CACHE_PRE, LAST_SEG; 1704 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1705 call pkt_handle_cdb; 1706 or SEQINTCTL, IRET ret; 1707 1708/* 1709 * See if the target has gone on in this context creating an 1710 * overrun condition. For the write case, the hardware cannot 1711 * ack bytes until data are provided. So, if the target begins 1712 * another packet without changing contexts, implying we are 1713 * not sitting on a packet boundary, we are in an overrun 1714 * situation. For the read case, the hardware will continue to 1715 * ack bytes into the FIFO, and may even ack the last overrun packet 1716 * into the FIFO. If the FIFO should become non-empty, we are in 1717 * a read overrun case. 1718 */ 1719#define check_overrun \ 1720 /* Not on a packet boundary. */ \ 1721 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1722 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1723 1724pkt_handle_xfer: 1725 bmov LONGJMP_SCB, SCBPTR, 2; 1726 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1727 call setjmp; 1728 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1729 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1730 test SCSISIGO, ATNO jnz . + 2; 1731 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 1732 /* 1733 * Defer handling of this NONPACKREQ until we 1734 * can be sure it pertains to this FIFO. SAVEPTRS 1735 * will not be asserted if the NONPACKREQ is for us, 1736 * so we must simulate it if shaddow is valid. If 1737 * shaddow is not valid, keep running this FIFO until we 1738 * have satisfied the transfer by loading segments and 1739 * waiting for either shaddow valid or last_seg_done. 1740 */ 1741 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 1742pkt_service_fifo: 1743 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1744pkt_last_seg: 1745 call setjmp; 1746 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1747 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz last_pkt_xfer_done; 1748 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1749 test SCSISIGO, ATNO jnz . + 2; 1750 test SSTAT2, NONPACKREQ jz return; 1751 test MDFFSTAT, SHVALID jz return; 1752 /* FALLTHROUGH */ 1753 1754/* 1755 * Either a SAVEPTRS interrupt condition is pending for this FIFO 1756 * or we have a pending nonpackreq for this FIFO. We differentiate 1757 * between the two by capturing the state of the SAVEPTRS interrupt 1758 * prior to clearing this status and executing the common code for 1759 * these two cases. 1760 */ 1761pkt_saveptrs: 1762BEGIN_CRITICAL; 1763 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1764 or DFCNTRL, FIFOFLUSH; 1765 } 1766 mov REG0, SEQINTSRC; 1767 call calc_residual; 1768 call save_pointers; 1769 mvi CLRSEQINTSRC, CLRSAVEPTRS; 1770 call disable_ccsgen; 1771 or SEQIMODE, ENSAVEPTRS; 1772 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status; 1773 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status; 1774 /* 1775 * Keep a handler around for this FIFO until it drains 1776 * to the host to guarantee that we don't complete the 1777 * command to the host before the data arrives. 1778 */ 1779pkt_saveptrs_wait_fifoemp: 1780 call setjmp; 1781 test DFSTATUS, FIFOEMP jz return; 1782pkt_saveptrs_check_status: 1783 or LONGJMP_ADDR[1], INVALID_ADDR; 1784 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 1785 test SCB_CONTROL, STATUS_RCVD jz pkt_saveptrs_clrchn; 1786 jmp last_pkt_complete; 1787pkt_saveptrs_clrchn: 1788 mvi DFFSXFRCTL, CLRCHN ret; 1789END_CRITICAL; 1790 1791last_pkt_xfer_done: 1792BEGIN_CRITICAL; 1793 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1794 or DFCNTRL, FIFOFLUSH; 1795 } 1796 test SCB_CONTROL, STATUS_RCVD jz wait_pkt_end; 1797 check_overrun; 1798 or SCB_SGPTR, SG_LIST_NULL; 1799 /* 1800 * It is safe to skip the other FIFO check since 1801 * we defer CLRCHN on SAVEPTRS until all data in 1802 * the FIFO are seen by the host and a CFG4DATA 1803 * in this FIFO for the same context is held off 1804 * by hardware. 1805 */ 1806last_pkt_queue_scb: 1807 or LONGJMP_ADDR[1], INVALID_ADDR; 1808 bmov ARG_1, SCBPTR, 2; 1809 mvi DFFSXFRCTL, CLRCHN; 1810 jmp queue_arg1_scb_completion; 1811 1812last_pkt_complete: 1813 bmov ARG_1, SCBPTR, 2; 1814 mvi DFFSXFRCTL, CLRCHN; 1815check_other_fifo: 1816 clc; 1817 TOGGLE_DFF_MODE 1818 call check_fifo; 1819 jnc queue_arg1_scb_completion; 1820return: 1821 ret; 1822 1823wait_pkt_end: 1824 call setjmp; 1825END_CRITICAL; 1826wait_pkt_end_loop: 1827 test SEQINTSRC, CTXTDONE jnz pkt_end; 1828 check_overrun; 1829 test SSTAT2, NONPACKREQ jz return; 1830 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1831pkt_end: 1832BEGIN_CRITICAL; 1833 check_overrun; 1834 or LONGJMP_ADDR[1], INVALID_ADDR; 1835 or SCB_SGPTR, SG_LIST_NULL; 1836 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_complete; 1837 mvi DFFSXFRCTL, CLRCHN ret; 1838END_CRITICAL; 1839 1840/* 1841 * Watch over the status transfer. Our host sense buffer is 1842 * large enough to take the maximum allowed status packet. 1843 * None-the-less, we must still catch and report overruns to 1844 * the host. 1845 */ 1846pkt_handle_status: 1847 call setjmp_setscb; 1848 test SG_CACHE_SHADOW, LAST_SEG_DONE jz check_status_overrun; 1849 test SEQINTSRC, CTXTDONE jz return; 1850status_IU_done: 1851BEGIN_CRITICAL; 1852 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1853 or DFCNTRL, FIFOFLUSH; 1854 } 1855 or LONGJMP_ADDR[1], INVALID_ADDR; 1856 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 1857 or SCB_CONTROL, STATUS_RCVD; 1858 jmp last_pkt_complete; 1859END_CRITICAL; 1860check_status_overrun: 1861 /* 1862 * We've filled the entire sense buffer. 1863 * Wait for either context done or a negative 1864 * shaddow count. If the context completes without 1865 * causing the shaddow count to go negative, then 1866 * this was a successful transfer up to the status 1867 * limit. Otherwise we report the error. 1868 */ 1869 test SHCNT[2], 0xFF jnz report_status_overrun; 1870 test SEQINTSRC, CTXTDONE jz return; 1871 test SHCNT[2], 0xFF jz status_IU_done; 1872report_status_overrun: 1873 SET_SEQINTCODE(STATUS_OVERRUN) 1874 jmp status_IU_done; 1875 1876SET_SRC_MODE M_DFF0; 1877SET_DST_MODE M_DFF0; 1878BEGIN_CRITICAL; 1879check_fifo: 1880 test LONGJMP_ADDR[1], INVALID_ADDR jnz return; 1881 mov A, ARG_2; 1882 cmp LONGJMP_SCB[1], A jne return; 1883 mov A, ARG_1; 1884 cmp LONGJMP_SCB[0], A jne return; 1885 stc ret; 1886END_CRITICAL; 1887 1888/* 1889 * Must wait until CDB xfer is over before issuing the 1890 * clear channel. 1891 */ 1892pkt_handle_cdb: 1893 call setjmp_setscb; 1894 test SG_CACHE_SHADOW, LAST_SEG_DONE jz return; 1895 or LONGJMP_ADDR[1], INVALID_ADDR; 1896 mvi DFFSXFRCTL, CLRCHN ret; 1897 1898/* 1899 * Nonpackreq is a polled status. It can come true in three situations: 1900 * we have received an L_Q, we have sent one or more L_Qs, or there is no 1901 * L_Q context associated with this REQ (REQ occurs immediately after a 1902 * (re)selection). Routines that know that the context responsible for this 1903 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 1904 * top level idle loop, we exhaust all active contexts prior to determining that 1905 * we simply do not have the full I_T_L_Q for this phase. 1906 */ 1907unexpected_nonpkt_phase_find_ctxt: 1908 /* 1909 * This nonpackreq is most likely associated with one of the tags 1910 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 1911 * nonpackreq if we've cleared out the FIFOs and handled any 1912 * pending SELDO. 1913 */ 1914SET_SRC_MODE M_SCSI; 1915SET_DST_MODE M_SCSI; 1916 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 1917 cmp A, FIFO1FREE|FIFO0FREE jne return; 1918 test SSTAT0, SELDO jnz return; 1919 mvi SCBPTR[1], SCB_LIST_NULL; 1920unexpected_nonpkt_phase: 1921 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz . + 3; 1922SET_SRC_MODE M_DFF0; 1923SET_DST_MODE M_DFF0; 1924 or LONGJMP_ADDR[1], INVALID_ADDR; 1925 mvi DFFSXFRCTL, CLRCHN; 1926 mvi CLRSINT2, CLRNONPACKREQ; 1927 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 1928 SET_SEQINTCODE(ENTERING_NONPACK) 1929 jmp ITloop; 1930 1931illegal_phase: 1932 SET_SEQINTCODE(ILLEGAL_PHASE) 1933 jmp ITloop; 1934 1935/* 1936 * We have entered an overrun situation. If we have working 1937 * BITBUCKET, flip that on and let the hardware eat any overrun 1938 * data. Otherwise use an overrun buffer in the host to simulate 1939 * BITBUCKET. 1940 */ 1941pkt_handle_overrun: 1942 SET_SEQINTCODE(CFG4OVERRUN) 1943 call freeze_queue; 1944 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 1945 or DFFSXFRCTL, DFFBITBUCKET; 1946SET_SRC_MODE M_DFF1; 1947SET_DST_MODE M_DFF1; 1948 } else { 1949 call load_overrun_buf; 1950 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 1951 } 1952 call setjmp; 1953 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1954 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done; 1955 call load_overrun_buf; 1956 or DFCNTRL, PRELOADEN; 1957overrun_load_done: 1958 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 1959 } else { 1960 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end; 1961 } 1962 test SSTAT2, NONPACKREQ jz return; 1963pkt_overrun_end: 1964 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 1965 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1966 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_queue_scb; 1967 or LONGJMP_ADDR[1], INVALID_ADDR; 1968 mvi DFFSXFRCTL, CLRCHN ret; 1969 1970if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1971load_overrun_buf: 1972 /* 1973 * Load a dummy segment if preload space is available. 1974 */ 1975 mov HADDR[0], SHARED_DATA_ADDR; 1976 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 1977 mov ACCUM_SAVE, A; 1978 clr A; 1979 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 1980 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 1981 mov A, ACCUM_SAVE; 1982 bmov HADDR[4], ALLZEROS, 4; 1983 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 1984 clr HCNT[0]; 1985 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 1986 clr HCNT[2] ret; 1987} 1988