1/* 2 * Adaptec U320 device driver firmware for Linux and FreeBSD. 3 * 4 * Copyright (c) 1994-2001 Justin T. Gibbs. 5 * Copyright (c) 2000-2002 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 * 40 * $FreeBSD$ 41 */ 42 43VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#92 $" 44PATCH_ARG_LIST = "struct ahd_softc *ahd" 45PREFIX = "ahd_" 46 47#include "aic79xx.reg" 48#include "scsi_message.h" 49 50restart: 51if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 52 test SEQINTCODE, 0xFF jz idle_loop; 53 SET_SEQINTCODE(NO_SEQINT) 54} 55 56idle_loop: 57 58 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 59 /* 60 * Convert ERROR status into a sequencer 61 * interrupt to handle the case of an 62 * interrupt collision on the hardware 63 * setting of HWERR. 64 */ 65 test ERROR, 0xFF jz no_error_set; 66 SET_SEQINTCODE(SAW_HWERR) 67no_error_set: 68 } 69 SET_MODE(M_SCSI, M_SCSI) 70 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 71 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus; 72 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 73 /* 74 * ENSELO is cleared by a SELDO, so we must test for SELDO 75 * one last time. 76 */ 77BEGIN_CRITICAL; 78 test SSTAT0, SELDO jnz select_out; 79END_CRITICAL; 80 call start_selection; 81idle_loop_checkbus: 82BEGIN_CRITICAL; 83 test SSTAT0, SELDO jnz select_out; 84END_CRITICAL; 85 test SSTAT0, SELDI jnz select_in; 86 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 87 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 88 call unexpected_nonpkt_phase_find_ctxt; 89idle_loop_check_nonpackreq: 90 test SSTAT2, NONPACKREQ jz . + 2; 91 call unexpected_nonpkt_phase_find_ctxt; 92 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 93 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 94 cmp A, FIFO0FREE|FIFO1FREE jne . + 3; 95 and SBLKCTL, ~DIAGLEDEN|DIAGLEDON; 96 jmp . + 2; 97 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 98 } 99 call idle_loop_gsfifo_in_scsi_mode; 100 call idle_loop_service_fifos; 101 call idle_loop_cchan; 102 jmp idle_loop; 103 104BEGIN_CRITICAL; 105idle_loop_gsfifo: 106 SET_MODE(M_SCSI, M_SCSI) 107idle_loop_gsfifo_in_scsi_mode: 108 test LQISTAT2, LQIGSAVAIL jz return; 109 /* 110 * We have received good status for this transaction. There may 111 * still be data in our FIFOs draining to the host. Complete 112 * the SCB only if all data has transferred to the host. 113 */ 114good_status_IU_done: 115 bmov SCBPTR, GSFIFO, 2; 116 clr SCB_SCSI_STATUS; 117 /* 118 * If a command completed before an attempted task management 119 * function completed, notify the host after disabling any 120 * pending select-outs. 121 */ 122 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally; 123 test SSTAT0, SELDO|SELINGO jnz . + 2; 124 and SCSISEQ0, ~ENSELO; 125 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 126gsfifo_complete_normally: 127 or SCB_CONTROL, STATUS_RCVD; 128 129 /* 130 * Since this status did not consume a FIFO, we have to 131 * be a bit more dilligent in how we check for FIFOs pertaining 132 * to this transaction. There are two states that a FIFO still 133 * transferring data may be in. 134 * 135 * 1) Configured and draining to the host, with a FIFO handler. 136 * 2) Pending cfg4data, fifo not empty. 137 * 138 * Case 1 can be detected by noticing a non-zero FIFO active 139 * count in the SCB. In this case, we allow the routine servicing 140 * the FIFO to complete the SCB. 141 * 142 * Case 2 implies either a pending or yet to occur save data 143 * pointers for this same context in the other FIFO. So, if 144 * we detect case 1, we will properly defer the post of the SCB 145 * and achieve the desired result. The pending cfg4data will 146 * notice that status has been received and complete the SCB. 147 */ 148 test SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode; 149 call complete; 150END_CRITICAL; 151 jmp idle_loop_gsfifo_in_scsi_mode; 152 153idle_loop_service_fifos: 154 SET_MODE(M_DFF0, M_DFF0) 155 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 156 call longjmp; 157idle_loop_next_fifo: 158 SET_MODE(M_DFF1, M_DFF1) 159 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp; 160return: 161 ret; 162 163idle_loop_cchan: 164 SET_MODE(M_CCHAN, M_CCHAN) 165 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty; 166 mov LOCAL_HS_MAILBOX, HS_MAILBOX; 167 or QOFF_CTLSTA, HS_MAILBOX_ACT; 168hs_mailbox_empty: 169BEGIN_CRITICAL; 170 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 171 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 172 test CCSCBCTL, CCSCBDONE jz return; 173END_CRITICAL; 174 /* FALLTHROUGH */ 175scbdma_tohost_done: 176 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 177 /* 178 * An SCB has been succesfully uploaded to the host. 179 * If the SCB was uploaded for some reason other than 180 * bad SCSI status (currently only for underruns), we 181 * queue the SCB for normal completion. Otherwise, we 182 * wait until any select-out activity has halted, and 183 * then notify the host so that the transaction can be 184 * dealt with. 185 */ 186 test SCB_SCSI_STATUS, 0xff jnz scbdma_notify_host; 187 and CCSCBCTL, ~(CCARREN|CCSCBEN); 188 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 189 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 190 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 191scbdma_notify_host: 192 SET_MODE(M_SCSI, M_SCSI) 193 test SCSISEQ0, ENSELO jnz return; 194 test SSTAT0, (SELDO|SELINGO) jnz return; 195 SET_MODE(M_CCHAN, M_CCHAN) 196 /* 197 * Remove SCB and notify host. 198 */ 199 and CCSCBCTL, ~(CCARREN|CCSCBEN); 200 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 201 SET_SEQINTCODE(BAD_SCB_STATUS) 202 ret; 203fill_qoutfifo_dmadone: 204 and CCSCBCTL, ~(CCARREN|CCSCBEN); 205 call qoutfifo_updated; 206 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 207 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 208 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 209 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; 210 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; 211 212qoutfifo_updated: 213 /* 214 * If there are more commands waiting to be dma'ed 215 * to the host, always coalesce. Otherwise honor the 216 * host's wishes. 217 */ 218 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 219 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 220 test LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt; 221 222 /* 223 * If we have relatively few commands outstanding, don't 224 * bother waiting for another command to complete. 225 */ 226 test CMDS_PENDING[1], 0xFF jnz coalesce_by_count; 227 /* Add -1 so that jnc means <= not just < */ 228 add A, -1, INT_COALESCING_MINCMDS; 229 add NONE, A, CMDS_PENDING; 230 jnc issue_cmdcmplt; 231 232 /* 233 * If coalescing, only coalesce up to the limit 234 * provided by the host driver. 235 */ 236coalesce_by_count: 237 mov A, INT_COALESCING_MAXCMDS; 238 add NONE, A, INT_COALESCING_CMDCOUNT; 239 jc issue_cmdcmplt; 240 /* 241 * If the timer is not currently active, 242 * fire it up. 243 */ 244 test INTCTL, SWTMINTMASK jz return; 245 bmov SWTIMER, INT_COALESCING_TIMER, 2; 246 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 247 or INTCTL, SWTMINTEN|SWTIMER_START; 248 and INTCTL, ~SWTMINTMASK ret; 249 250issue_cmdcmplt: 251 mvi INTSTAT, CMDCMPLT; 252 clr INT_COALESCING_CMDCOUNT; 253 or INTCTL, SWTMINTMASK ret; 254 255BEGIN_CRITICAL; 256fetch_new_scb_inprog: 257 test CCSCBCTL, ARRDONE jz return; 258fetch_new_scb_done: 259 and CCSCBCTL, ~(CCARREN|CCSCBEN); 260 bmov REG0, SCBPTR, 2; 261 clr A; 262 add CMDS_PENDING, 1; 263 adc CMDS_PENDING[1], A; 264 /* 265 * The FIFO use count field is shared with the 266 * tag set by the host so that our SCB dma engine 267 * knows the correct location to store the SCB. 268 * Set it to zero before processing the SCB. 269 */ 270 mov SCB_FIFO_USE_COUNT, ALLZEROS; 271 /* Update the next SCB address to download. */ 272 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 273 mvi SCB_NEXT[1], SCB_LIST_NULL; 274 mvi SCB_NEXT2[1], SCB_LIST_NULL; 275 /* Increment our position in the QINFIFO. */ 276 mov NONE, SNSCB_QOFF; 277 /* 278 * SCBs that want to send messages are always 279 * queued independently. This ensures that they 280 * are at the head of the SCB list to select out 281 * to a target and we will see the MK_MESSAGE flag. 282 */ 283 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb; 284 shr SINDEX, 3, SCB_SCSIID; 285 and SINDEX, ~0x1; 286 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 287 bmov DINDEX, SINDEX, 2; 288 bmov SCBPTR, SINDIR, 2; 289 bmov DINDIR, REG0, 2; 290 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 291 bmov SCB_NEXT, REG0, 2 ret; 292first_new_target_scb: 293 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 294 bmov SCBPTR, WAITING_TID_TAIL, 2; 295 bmov SCB_NEXT2, REG0, 2; 296 bmov WAITING_TID_TAIL, REG0, 2 ret; 297first_new_scb: 298 bmov WAITING_TID_HEAD, REG0, 2; 299 bmov WAITING_TID_TAIL, REG0, 2 ret; 300END_CRITICAL; 301 302scbdma_idle: 303 /* 304 * Give precedence to downloading new SCBs to execute 305 * unless select-outs are currently frozen. 306 */ 307 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2; 308BEGIN_CRITICAL; 309 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 310 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 311 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 312 /* FALLTHROUGH */ 313fill_qoutfifo: 314 /* 315 * Keep track of the SCBs we are dmaing just 316 * in case the DMA fails or is aborted. 317 */ 318 mov A, QOUTFIFO_ENTRY_VALID_TAG; 319 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 320 mvi CCSCBCTL, CCSCBRESET; 321 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 322 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 323fill_qoutfifo_loop: 324 mov CCSCBRAM, SCBPTR; 325 or CCSCBRAM, A, SCBPTR[1]; 326 mov NONE, SDSCB_QOFF; 327 inc INT_COALESCING_CMDCOUNT; 328 add CMDS_PENDING, -1; 329 adc CMDS_PENDING[1], -1; 330 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 331 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 332 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done; 333 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 334 jmp fill_qoutfifo_loop; 335fill_qoutfifo_done: 336 mov SCBHCNT, CCSCBADDR; 337 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 338 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 339 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 340 341fetch_new_scb: 342 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 343 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 344dma_complete_scb: 345 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 346 bmov SCBHADDR, SCB_BUSADDR, 4; 347 mvi CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb; 348END_CRITICAL; 349 350/* 351 * Either post or fetch an SCB from host memory. The caller 352 * is responsible for polling for transfer completion. 353 * 354 * Prerequisits: Mode == M_CCHAN 355 * SINDEX contains CCSCBCTL flags 356 * SCBHADDR set to Host SCB address 357 * SCBPTR set to SCB src location on "push" operations 358 */ 359SET_SRC_MODE M_CCHAN; 360SET_DST_MODE M_CCHAN; 361dma_scb: 362 mvi SCBHCNT, SCB_TRANSFER_SIZE; 363 mov CCSCBCTL, SINDEX ret; 364 365BEGIN_CRITICAL; 366setjmp: 367 bmov LONGJMP_ADDR, STACK, 2 ret; 368setjmp_inline: 369 bmov LONGJMP_ADDR, STACK, 2; 370longjmp: 371 bmov STACK, LONGJMP_ADDR, 2 ret; 372END_CRITICAL; 373 374/*************************** Chip Bug Work Arounds ****************************/ 375/* 376 * Must disable interrupts when setting the mode pointer 377 * register as an interrupt occurring mid update will 378 * fail to store the new mode value for restoration on 379 * an iret. 380 */ 381if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 382set_mode_work_around: 383 mvi SEQINTCTL, INTVEC1DSL; 384 mov MODE_PTR, SINDEX; 385 clr SEQINTCTL ret; 386 387toggle_dff_mode_work_around: 388 mvi SEQINTCTL, INTVEC1DSL; 389 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 390 clr SEQINTCTL ret; 391} 392 393 394if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 395set_seqint_work_around: 396 mov SEQINTCODE, SINDEX; 397 mvi SEQINTCODE, NO_SEQINT ret; 398} 399 400/************************ Packetized LongJmp Routines *************************/ 401SET_SRC_MODE M_SCSI; 402SET_DST_MODE M_SCSI; 403start_selection: 404BEGIN_CRITICAL; 405 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 406 /* 407 * Razor #494 408 * Rev A hardware fails to update LAST/CURR/NEXTSCB 409 * correctly after a packetized selection in several 410 * situations: 411 * 412 * 1) If only one command existed in the queue, the 413 * LAST/CURR/NEXTSCB are unchanged. 414 * 415 * 2) In a non QAS, protocol allowed phase change, 416 * the queue is shifted 1 too far. LASTSCB is 417 * the last SCB that was correctly processed. 418 * 419 * 3) In the QAS case, if the full list of commands 420 * was successfully sent, NEXTSCB is NULL and neither 421 * CURRSCB nor LASTSCB can be trusted. We must 422 * manually walk the list counting MAXCMDCNT elements 423 * to find the last SCB that was sent correctly. 424 * 425 * To simplify the workaround for this bug in SELDO 426 * handling, we initialize LASTSCB prior to enabling 427 * selection so we can rely on it even for case #1 above. 428 */ 429 bmov LASTSCB, WAITING_TID_HEAD, 2; 430 } 431 bmov CURRSCB, WAITING_TID_HEAD, 2; 432 bmov SCBPTR, WAITING_TID_HEAD, 2; 433 shr SELOID, 4, SCB_SCSIID; 434 /* 435 * If we want to send a message to the device, ensure 436 * we are selecting with atn irregardless of our packetized 437 * agreement. Since SPI4 only allows target reset or PPR 438 * messages if this is a packetized connection, the change 439 * to our negotiation table entry for this selection will 440 * be cleared when the message is acted on. 441 */ 442 test SCB_CONTROL, MK_MESSAGE jz . + 3; 443 mov NEGOADDR, SELOID; 444 or NEGCONOPTS, ENAUTOATNO; 445 or SCSISEQ0, ENSELO ret; 446END_CRITICAL; 447 448/* 449 * Allocate a FIFO for a non-packetized transaction. 450 * In RevA hardware, both FIFOs must be free before we 451 * can allocate a FIFO for a non-packetized transaction. 452 */ 453allocate_fifo_loop: 454 /* 455 * Do whatever work is required to free a FIFO. 456 */ 457 call idle_loop_service_fifos; 458 SET_MODE(M_SCSI, M_SCSI) 459allocate_fifo: 460 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) { 461 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 462 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 463 } else { 464 test DFFSTAT, FIFO1FREE jnz allocate_fifo1; 465 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop; 466 mvi DFFSTAT, B_CURRFIFO_0; 467 SET_MODE(M_DFF0, M_DFF0) 468 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 469 } 470SET_SRC_MODE M_SCSI; 471SET_DST_MODE M_SCSI; 472allocate_fifo1: 473 mvi DFFSTAT, CURRFIFO_1; 474 SET_MODE(M_DFF1, M_DFF1) 475 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 476 477/* 478 * We have been reselected as an initiator 479 * or selected as a target. 480 */ 481SET_SRC_MODE M_SCSI; 482SET_DST_MODE M_SCSI; 483select_in: 484 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 485 /* 486 * This exposes a window whereby a 487 * busfree just after a selection will 488 * be missed, but there is no other safe 489 * way to enable busfree detection if 490 * the busfreerev function is broken. 491 */ 492 mvi CLRSINT1,CLRBUSFREE; 493 or SIMODE1, ENBUSFREE; 494 } 495 or SXFRCTL0, SPIOEN; 496 and SAVED_SCSIID, SELID_MASK, SELID; 497 and A, OID, IOWNID; 498 or SAVED_SCSIID, A; 499 mvi CLRSINT0, CLRSELDI; 500 jmp ITloop; 501 502/* 503 * We have successfully selected out. 504 * 505 * Clear SELDO. 506 * Dequeue all SCBs sent from the waiting queue 507 * Requeue all SCBs *not* sent to the tail of the waiting queue 508 * Take Razor #494 into account for above. 509 * 510 * In Packetized Mode: 511 * Return to the idle loop. Our interrupt handler will take 512 * care of any incoming L_Qs. 513 * 514 * In Non-Packetize Mode: 515 * Continue to our normal state machine. 516 */ 517SET_SRC_MODE M_SCSI; 518SET_DST_MODE M_SCSI; 519select_out: 520BEGIN_CRITICAL; 521 /* Clear out all SCBs that have been successfully sent. */ 522 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 523 /* 524 * For packetized, the LQO manager clears ENSELO on 525 * the assertion of SELDO. If we are non-packetized, 526 * LASTSCB and CURRSCB are accurate. 527 */ 528 test SCSISEQ0, ENSELO jnz use_lastscb; 529 530 /* 531 * The update is correct for LQOSTAT1 errors. All 532 * but LQOBUSFREE are handled by kernel interrupts. 533 * If we see LQOBUSFREE, return to the idle loop. 534 * Once we are out of the select_out critical section, 535 * the kernel will cleanup the LQOBUSFREE and we will 536 * eventually restart the selection if appropriate. 537 */ 538 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 539 540 /* 541 * On a phase change oustside of packet boundaries, 542 * LASTSCB points to the currently active SCB context 543 * on the bus. 544 */ 545 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 546 547 /* 548 * If the hardware has traversed the whole list, NEXTSCB 549 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 550 * but MAXCMDCNT is accurate. If we stop part way through 551 * the list or only had one command to issue, NEXTSCB[1] is 552 * not NULL and LASTSCB is the last command to go out. 553 */ 554 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 555 556 /* 557 * Brute force walk. 558 */ 559 bmov SCBPTR, WAITING_TID_HEAD, 2; 560 mvi SEQINTCTL, INTVEC1DSL; 561 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 562 mov A, MAXCMDCNT; 563 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 564 clr SEQINTCTL; 565find_lastscb_loop: 566 dec A; 567 test A, 0xFF jz found_last_sent_scb; 568 bmov SCBPTR, SCB_NEXT, 2; 569 jmp find_lastscb_loop; 570use_lastscb: 571 bmov SCBPTR, LASTSCB, 2; 572found_last_sent_scb: 573 bmov CURRSCB, SCBPTR, 2; 574curscb_ww_done: 575 } else { 576 /* 577 * Untested - Verify with Rev B. 578 */ 579 bmov SCBPTR, CURRSCB, 2; 580 } 581 582 /* 583 * Requeue any SCBs not sent, to the tail of the waiting Q. 584 */ 585 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done; 586 587 /* 588 * We know that neither the per-TID list nor the list of 589 * TIDs is empty. Use this knowledge to our advantage. 590 */ 591 bmov REG0, SCB_NEXT, 2; 592 bmov SCBPTR, WAITING_TID_TAIL, 2; 593 bmov SCB_NEXT2, REG0, 2; 594 bmov WAITING_TID_TAIL, REG0, 2; 595 jmp select_out_inc_tid_q; 596 597select_out_list_done: 598 /* 599 * The whole list made it. Just clear our TID's tail pointer 600 * unless we were queued independently due to our need to 601 * send a message. 602 */ 603 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q; 604 shr DINDEX, 3, SCB_SCSIID; 605 or DINDEX, 1; /* Want only the second byte */ 606 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 607 mvi DINDIR, SCB_LIST_NULL; 608select_out_inc_tid_q: 609 bmov SCBPTR, WAITING_TID_HEAD, 2; 610 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 611 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 612 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 613 bmov SCBPTR, CURRSCB, 2; 614 mvi CLRSINT0, CLRSELDO; 615 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase; 616 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase; 617 618 /* 619 * If this is a packetized connection, return to our 620 * idle_loop and let our interrupt handler deal with 621 * any connection setup/teardown issues. The only 622 * exceptions are the case of MK_MESSAGE and task management 623 * SCBs. 624 */ 625 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 626 /* 627 * In the A, the LQO manager transitions to LQOSTOP0 even if 628 * we have selected out with ATN asserted and the target 629 * REQs in a non-packet phase. 630 */ 631 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 632 test SCSISIGO, ATNO jnz select_out_non_packetized; 633select_out_no_message: 634 } 635 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized; 636 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop; 637 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE) 638 jmp idle_loop; 639 640select_out_non_packetized: 641 /* Non packetized request. */ 642 and SCSISEQ0, ~ENSELO; 643 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 644 /* 645 * This exposes a window whereby a 646 * busfree just after a selection will 647 * be missed, but there is no other safe 648 * way to enable busfree detection if 649 * the busfreerev function is broken. 650 */ 651 mvi CLRSINT1,CLRBUSFREE; 652 or SIMODE1, ENBUSFREE; 653 } 654 mov SAVED_SCSIID, SCB_SCSIID; 655 mov SAVED_LUN, SCB_LUN; 656 mvi SEQ_FLAGS, NO_CDB_SENT; 657END_CRITICAL; 658 or SXFRCTL0, SPIOEN; 659 660 /* 661 * As soon as we get a successful selection, the target 662 * should go into the message out phase since we have ATN 663 * asserted. 664 */ 665 mvi MSG_OUT, MSG_IDENTIFYFLAG; 666 667 /* 668 * Main loop for information transfer phases. Wait for the 669 * target to assert REQ before checking MSG, C/D and I/O for 670 * the bus phase. 671 */ 672mesgin_phasemis: 673ITloop: 674 call phase_lock; 675 676 mov A, LASTPHASE; 677 678 test A, ~P_DATAIN_DT jz p_data; 679 cmp A,P_COMMAND je p_command; 680 cmp A,P_MESGOUT je p_mesgout; 681 cmp A,P_STATUS je p_status; 682 cmp A,P_MESGIN je p_mesgin; 683 684 SET_SEQINTCODE(BAD_PHASE) 685 jmp ITloop; /* Try reading the bus again. */ 686 687/* 688 * Command phase. Set up the DMA registers and let 'er rip. 689 */ 690p_command: 691 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay; 692 SET_SEQINTCODE(PROTO_VIOLATION) 693p_command_okay: 694 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 695 jnz p_command_allocate_fifo; 696 /* 697 * Command retry. Free our current FIFO and 698 * re-allocate a FIFO so transfer state is 699 * reset. 700 */ 701SET_SRC_MODE M_DFF1; 702SET_DST_MODE M_DFF1; 703 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 704 SET_MODE(M_SCSI, M_SCSI) 705p_command_allocate_fifo: 706 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 707 call allocate_fifo; 708SET_SRC_MODE M_DFF1; 709SET_DST_MODE M_DFF1; 710 add NONE, -17, SCB_CDB_LEN; 711 jnc p_command_embedded; 712p_command_from_host: 713 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 714 mvi SG_CACHE_PRE, LAST_SEG; 715 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 716 jmp p_command_xfer; 717p_command_embedded: 718 bmov SHCNT[0], SCB_CDB_LEN, 1; 719 bmov DFDAT, SCB_CDB_STORE, 16; 720 mvi DFCNTRL, SCSIEN; 721p_command_xfer: 722 and SEQ_FLAGS, ~NO_CDB_SENT; 723 test DFCNTRL, SCSIEN jnz .; 724 /* 725 * DMA Channel automatically disabled. 726 * Don't allow a data phase if the command 727 * was not fully transferred. 728 */ 729 test SSTAT2, SDONE jnz ITloop; 730 or SEQ_FLAGS, NO_CDB_SENT; 731 jmp ITloop; 732 733 734/* 735 * Status phase. Wait for the data byte to appear, then read it 736 * and store it into the SCB. 737 */ 738SET_SRC_MODE M_SCSI; 739SET_DST_MODE M_SCSI; 740p_status: 741 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation; 742p_status_okay: 743 mov SCB_SCSI_STATUS, SCSIDAT; 744 or SCB_CONTROL, STATUS_RCVD; 745 jmp ITloop; 746 747/* 748 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 749 * indentify message sequence and send it to the target. The host may 750 * override this behavior by setting the MK_MESSAGE bit in the SCB 751 * control byte. This will cause us to interrupt the host and allow 752 * it to handle the message phase completely on its own. If the bit 753 * associated with this target is set, we will also interrupt the host, 754 * thereby allowing it to send a message on the next selection regardless 755 * of the transaction being sent. 756 * 757 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 758 * This is done to allow the host to send messages outside of an identify 759 * sequence while protecting the seqencer from testing the MK_MESSAGE bit 760 * on an SCB that might not be for the current nexus. (For example, a 761 * BDR message in responce to a bad reselection would leave us pointed to 762 * an SCB that doesn't have anything to do with the current target). 763 * 764 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 765 * bus device reset). 766 * 767 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 768 * in case the target decides to put us in this phase for some strange 769 * reason. 770 */ 771p_mesgout_retry: 772 /* Turn on ATN for the retry */ 773 mvi SCSISIGO, ATNO; 774p_mesgout: 775 mov SINDEX, MSG_OUT; 776 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 777 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 778p_mesgout_identify: 779 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 780 test SCB_CONTROL, DISCENB jnz . + 2; 781 and SINDEX, ~DISCENB; 782/* 783 * Send a tag message if TAG_ENB is set in the SCB control block. 784 * Use SCB_NONPACKET_TAG as the tag value. 785 */ 786p_mesgout_tag: 787 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 788 mov SCSIDAT, SINDEX; /* Send the identify message */ 789 call phase_lock; 790 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 791 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 792 call phase_lock; 793 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 794 mov SCBPTR jmp p_mesgout_onebyte; 795/* 796 * Interrupt the driver, and allow it to handle this message 797 * phase and any required retries. 798 */ 799p_mesgout_from_host: 800 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 801 jmp host_message_loop; 802 803p_mesgout_onebyte: 804 mvi CLRSINT1, CLRATNO; 805 mov SCSIDAT, SINDEX; 806 807/* 808 * If the next bus phase after ATN drops is message out, it means 809 * that the target is requesting that the last message(s) be resent. 810 */ 811 call phase_lock; 812 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 813 814p_mesgout_done: 815 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 816 mov LAST_MSG, MSG_OUT; 817 mvi MSG_OUT, MSG_NOOP; /* No message left */ 818 jmp ITloop; 819 820/* 821 * Message in phase. Bytes are read using Automatic PIO mode. 822 */ 823p_mesgin: 824 /* read the 1st message byte */ 825 mvi ACCUM call inb_first; 826 827 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 828 cmp A,MSG_DISCONNECT je mesgin_disconnect; 829 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 830 cmp ALLZEROS,A je mesgin_complete; 831 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 832 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 833 cmp A,MSG_NOOP je mesgin_done; 834 835/* 836 * Pushed message loop to allow the kernel to 837 * run it's own message state engine. To avoid an 838 * extra nop instruction after signaling the kernel, 839 * we perform the phase_lock before checking to see 840 * if we should exit the loop and skip the phase_lock 841 * in the ITloop. Performing back to back phase_locks 842 * shouldn't hurt, but why do it twice... 843 */ 844host_message_loop: 845 call phase_lock; /* Benign the first time through. */ 846 SET_SEQINTCODE(HOST_MSG_LOOP) 847 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 848 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 849 mov SCSIDAT, RETURN_2; 850 jmp host_message_loop; 851 /* Must be CONT_MSG_LOOP_READ */ 852 mov NONE, SCSIDAT; /* ACK Byte */ 853 jmp host_message_loop; 854 855mesgin_ign_wide_residue: 856 mov SAVED_MODE, MODE_PTR; 857 SET_MODE(M_SCSI, M_SCSI) 858 shr NEGOADDR, 4, SAVED_SCSIID; 859 mov A, NEGCONOPTS; 860 RESTORE_MODE(SAVED_MODE) 861 test A, WIDEXFER jz mesgin_reject; 862 /* Pull the residue byte */ 863 mvi REG0 call inb_next; 864 cmp REG0, 0x01 jne mesgin_reject; 865 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 866 test DATA_COUNT_ODD, 0x1 jz mesgin_done; 867 jmp mesgin_done; 868 869mesgin_proto_violation: 870 SET_SEQINTCODE(PROTO_VIOLATION) 871 jmp mesgin_done; 872mesgin_reject: 873 mvi MSG_MESSAGE_REJECT call mk_mesg; 874mesgin_done: 875 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 876 jmp ITloop; 877 878#define INDEX_DISC_LIST(scsiid, lun) \ 879 and A, 0xC0, scsiid; \ 880 or SCBPTR, A, lun; \ 881 clr SCBPTR[1]; \ 882 and SINDEX, 0x30, scsiid; \ 883 shr SINDEX, 3; /* Multiply by 2 */ \ 884 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 885 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 886 887mesgin_identify: 888 /* 889 * Determine whether a target is using tagged or non-tagged 890 * transactions by first looking at the transaction stored in 891 * the per-device, disconnected array. If there is no untagged 892 * transaction for this target, this must be a tagged transaction. 893 */ 894 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 895 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 896 bmov DINDEX, SINDEX, 2; 897 bmov REG0, SINDIR, 2; 898 cmp REG0[1], SCB_LIST_NULL je snoop_tag; 899 /* Untagged. Clear the busy table entry and setup the SCB. */ 900 bmov DINDIR, ALLONES, 2; 901 bmov SCBPTR, REG0, 2; 902 jmp setup_SCB; 903 904/* 905 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 906 * If we get one, we use the tag returned to find the proper 907 * SCB. After receiving the tag, look for the SCB at SCB locations tag and 908 * tag + 256. 909 */ 910snoop_tag: 911 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 912 or SEQ_FLAGS, 0x80; 913 } 914 mov NONE, SCSIDAT; /* ACK Identify MSG */ 915 call phase_lock; 916 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 917 or SEQ_FLAGS, 0x1; 918 } 919 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 920 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 921 or SEQ_FLAGS, 0x2; 922 } 923 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 924get_tag: 925 clr SCBPTR[1]; 926 mvi SCBPTR call inb_next; /* tag value */ 927verify_scb: 928 test SCB_CONTROL,DISCONNECTED jz verify_other_scb; 929 mov A, SAVED_SCSIID; 930 cmp SCB_SCSIID, A jne verify_other_scb; 931 mov A, SAVED_LUN; 932 cmp SCB_LUN, A je setup_SCB_disconnected; 933verify_other_scb: 934 xor SCBPTR[1], 1; 935 test SCBPTR[1], 0xFF jnz verify_scb; 936 jmp not_found; 937 938/* 939 * Ensure that the SCB the tag points to is for 940 * an SCB transaction to the reconnecting target. 941 */ 942setup_SCB: 943 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 944 or SEQ_FLAGS, 0x10; 945 } 946 test SCB_CONTROL,DISCONNECTED jz not_found; 947setup_SCB_disconnected: 948 and SCB_CONTROL,~DISCONNECTED; 949 clr SEQ_FLAGS; /* make note of IDENTIFY */ 950 test SCB_SGPTR, SG_LIST_NULL jnz . + 3; 951 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 952 call allocate_fifo; 953 /* See if the host wants to send a message upon reconnection */ 954 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 955 mvi HOST_MSG call mk_mesg; 956 jmp mesgin_done; 957 958not_found: 959 SET_SEQINTCODE(NO_MATCH) 960 jmp mesgin_done; 961 962not_found_ITloop: 963 SET_SEQINTCODE(NO_MATCH) 964 jmp ITloop; 965 966/* 967 * We received a "command complete" message. Put the SCB on the complete 968 * queue and trigger a completion interrupt via the idle loop. Before doing 969 * so, check to see if there 970 * is a residual or the status byte is something other than STATUS_GOOD (0). 971 * In either of these conditions, we upload the SCB back to the host so it can 972 * process this information. In the case of a non zero status byte, we 973 * additionally interrupt the kernel driver synchronously, allowing it to 974 * decide if sense should be retrieved. If the kernel driver wishes to request 975 * sense, it will fill the kernel SCB with a request sense command, requeue 976 * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting 977 * RETURN_1 to SEND_SENSE. 978 */ 979mesgin_complete: 980 981 /* 982 * If ATN is raised, we still want to give the target a message. 983 * Perhaps there was a parity error on this last message byte. 984 * Either way, the target should take us to message out phase 985 * and then attempt to complete the command again. We should use a 986 * critical section here to guard against a timeout triggering 987 * for this command and setting ATN while we are still processing 988 * the completion. 989 test SCSISIGI, ATNI jnz mesgin_done; 990 */ 991 992 /* 993 * If we are identified and have successfully sent the CDB, 994 * any status will do. Optimize this fast path. 995 */ 996 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation; 997 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted; 998 999 /* 1000 * If the target never sent an identify message but instead went 1001 * to mesgin to give an invalid message, let the host abort us. 1002 */ 1003 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation; 1004 1005 /* 1006 * If we recevied good status but never successfully sent the 1007 * cdb, abort the command. 1008 */ 1009 test SCB_SCSI_STATUS,0xff jnz complete_accepted; 1010 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation; 1011complete_accepted: 1012 1013 /* 1014 * See if we attempted to deliver a message but the target ingnored us. 1015 */ 1016 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg; 1017 SET_SEQINTCODE(MKMSG_FAILED) 1018complete_nomsg: 1019 call queue_scb_completion; 1020 jmp await_busfree; 1021 1022freeze_queue: 1023 /* Cancel any pending select-out. */ 1024 test SSTAT0, SELDO|SELINGO jnz . + 2; 1025 and SCSISEQ0, ~ENSELO; 1026 mov ACCUM_SAVE, A; 1027 clr A; 1028 add QFREEZE_COUNT, 1; 1029 adc QFREEZE_COUNT[1], A; 1030 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 1031 mov A, ACCUM_SAVE ret; 1032 1033/* 1034 * Complete the current FIFO's SCB if data for this same 1035 * SCB is not transferring in the other FIFO. 1036 */ 1037SET_SRC_MODE M_DFF1; 1038SET_DST_MODE M_DFF1; 1039pkt_complete_scb_if_fifos_idle: 1040 bmov ARG_1, SCBPTR, 2; 1041 mvi DFFSXFRCTL, CLRCHN; 1042 SET_MODE(M_SCSI, M_SCSI) 1043 bmov SCBPTR, ARG_1, 2; 1044 test SCB_FIFO_USE_COUNT, 0xFF jnz return; 1045queue_scb_completion: 1046 test SCB_SCSI_STATUS,0xff jnz bad_status; 1047 /* 1048 * Check for residuals 1049 */ 1050 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 1051 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 1052 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 1053complete: 1054 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 1055 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 1056bad_status: 1057 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 1058 call freeze_queue; 1059upload_scb: 1060 /* 1061 * Restore SCB TAG since we reuse this field 1062 * in the sequencer. We don't want to corrupt 1063 * it on the host. 1064 */ 1065 bmov SCB_TAG, SCBPTR, 2; 1066 bmov SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2; 1067 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 1068 or SCB_SGPTR, SG_STATUS_VALID ret; 1069 1070/* 1071 * Is it a disconnect message? Set a flag in the SCB to remind us 1072 * and await the bus going free. If this is an untagged transaction 1073 * store the SCB id for it in our untagged target table for lookup on 1074 * a reselction. 1075 */ 1076mesgin_disconnect: 1077 /* 1078 * If ATN is raised, we still want to give the target a message. 1079 * Perhaps there was a parity error on this last message byte 1080 * or we want to abort this command. Either way, the target 1081 * should take us to message out phase and then attempt to 1082 * disconnect again. 1083 * XXX - Wait for more testing. 1084 test SCSISIGI, ATNI jnz mesgin_done; 1085 */ 1086 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT 1087 jnz mesgin_proto_violation; 1088 or SCB_CONTROL,DISCONNECTED; 1089 test SCB_CONTROL, TAG_ENB jnz await_busfree; 1090queue_disc_scb: 1091 bmov REG0, SCBPTR, 2; 1092 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1093 bmov DINDEX, SINDEX, 2; 1094 bmov DINDIR, REG0, 2; 1095 bmov SCBPTR, REG0, 2; 1096 /* FALLTHROUGH */ 1097await_busfree: 1098 and SIMODE1, ~ENBUSFREE; 1099 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) { 1100 /* 1101 * In the BUSFREEREV_BUG case, the 1102 * busfree status was cleared at the 1103 * beginning of the connection. 1104 */ 1105 mvi CLRSINT1,CLRBUSFREE; 1106 } 1107 mov NONE, SCSIDAT; /* Ack the last byte */ 1108 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1109 jnz await_busfree_not_m_dff; 1110SET_SRC_MODE M_DFF1; 1111SET_DST_MODE M_DFF1; 1112await_busfree_clrchn: 1113 mvi DFFSXFRCTL, CLRCHN; 1114await_busfree_not_m_dff: 1115 call clear_target_state; 1116 test SSTAT1,REQINIT|BUSFREE jz .; 1117 test SSTAT1, BUSFREE jnz idle_loop; 1118 SET_SEQINTCODE(MISSED_BUSFREE) 1119 1120 1121/* 1122 * Save data pointers message: 1123 * Copying RAM values back to SCB, for Save Data Pointers message, but 1124 * only if we've actually been into a data phase to change them. This 1125 * protects against bogus data in scratch ram and the residual counts 1126 * since they are only initialized when we go into data_in or data_out. 1127 * Ack the message as soon as possible. 1128 */ 1129SET_SRC_MODE M_DFF1; 1130SET_DST_MODE M_DFF1; 1131mesgin_sdptrs: 1132 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1133 test SEQ_FLAGS, DPHASE jz ITloop; 1134 call save_pointers; 1135 jmp ITloop; 1136 1137save_pointers: 1138 /* 1139 * If we are asked to save our position at the end of the 1140 * transfer, just mark us at the end rather than perform a 1141 * full save. 1142 */ 1143 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1144 or SCB_SGPTR, SG_LIST_NULL ret; 1145 1146save_pointers_full: 1147 /* 1148 * The SCB_DATAPTR becomes the current SHADDR. 1149 * All other information comes directly from our residual 1150 * state. 1151 */ 1152 bmov SCB_DATAPTR, SHADDR, 8; 1153 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1154 1155/* 1156 * Restore pointers message? Data pointers are recopied from the 1157 * SCB anytime we enter a data phase for the first time, so all 1158 * we need to do is clear the DPHASE flag and let the data phase 1159 * code do the rest. We also reset/reallocate the FIFO to make 1160 * sure we have a clean start for the next data or command phase. 1161 */ 1162mesgin_rdptrs: 1163 and SEQ_FLAGS, ~DPHASE; 1164 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1165 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1166 SET_MODE(M_SCSI, M_SCSI) 1167msgin_rdptrs_get_fifo: 1168 call allocate_fifo; 1169 jmp mesgin_done; 1170 1171clear_target_state: 1172 mvi LASTPHASE, P_BUSFREE; 1173 /* clear target specific flags */ 1174 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret; 1175 1176phase_lock: 1177 if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) { 1178 /* 1179 * Don't ignore persistent REQ assertions just because 1180 * they were asserted within the bus settle delay window. 1181 * This allows us to tolerate devices like the GEM318 1182 * that violate the SCSI spec. We are careful not to 1183 * count REQ while we are waiting for it to fall during 1184 * an async phase due to our asserted ACK. Each 1185 * sequencer instruction takes ~25ns, so the REQ must 1186 * last at least 100ns in order to be counted as a true 1187 * REQ. 1188 */ 1189 test SCSIPHASE, 0xFF jnz phase_locked; 1190 test SCSISIGI, ACKI jnz phase_lock; 1191 test SCSISIGI, REQI jz phase_lock; 1192 test SCSIPHASE, 0xFF jnz phase_locked; 1193 test SCSISIGI, ACKI jnz phase_lock; 1194 test SCSISIGI, REQI jz phase_lock; 1195phase_locked: 1196 } else { 1197 test SCSIPHASE, 0xFF jz .; 1198 } 1199 test SSTAT1, SCSIPERR jnz phase_lock; 1200phase_lock_latch_phase: 1201 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1202 1203/* 1204 * Functions to read data in Automatic PIO mode. 1205 * 1206 * An ACK is not sent on input from the target until SCSIDATL is read from. 1207 * So we wait until SCSIDATL is latched (the usual way), then read the data 1208 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1209 * line, or we just want to acknowledge the byte, then we do a dummy read 1210 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1211 * data byte on the bus until we send our ACK. 1212 * 1213 * The assumption here is that these are called in a particular sequence, 1214 * and that REQ is already set when inb_first is called. inb_{first,next} 1215 * use the same calling convention as inb. 1216 */ 1217inb_next: 1218 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1219inb_next_wait: 1220 /* 1221 * If there is a parity error, wait for the kernel to 1222 * see the interrupt and prepare our message response 1223 * before continuing. 1224 */ 1225 test SCSIPHASE, 0xFF jz .; 1226 test SSTAT1, SCSIPERR jnz inb_next_wait; 1227inb_next_check_phase: 1228 and LASTPHASE, PHASE_MASK, SCSISIGI; 1229 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1230inb_first: 1231 clr DINDEX[1]; 1232 mov DINDEX,SINDEX; 1233 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1234inb_last: 1235 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1236 1237mk_mesg: 1238 mvi SCSISIGO, ATNO; 1239 mov MSG_OUT,SINDEX ret; 1240 1241SET_SRC_MODE M_DFF1; 1242SET_DST_MODE M_DFF1; 1243disable_ccsgen: 1244 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; 1245 clr CCSGCTL; 1246disable_ccsgen_fetch_done: 1247 clr SG_STATE ret; 1248 1249service_fifo: 1250 /* 1251 * Do we have any prefetch left??? 1252 */ 1253 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1254 1255 /* 1256 * Can this FIFO have access to the S/G cache yet? 1257 */ 1258 test CCSGCTL, SG_CACHE_AVAIL jz return; 1259 1260 /* Did we just finish fetching segs? */ 1261 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete; 1262 1263 /* Are we actively fetching segments? */ 1264 test CCSGCTL, CCSGENACK jnz return; 1265 1266 /* 1267 * We fetch a "cacheline aligned" and sized amount of data 1268 * so we don't end up referencing a non-existant page. 1269 * Cacheline aligned is in quotes because the kernel will 1270 * set the prefetch amount to a reasonable level if the 1271 * cacheline size is unknown. 1272 */ 1273 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4; 1274 mvi SGHCNT, SG_PREFETCH_CNT; 1275 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) { 1276 /* 1277 * Need two instruction between "touches" of SGHADDR. 1278 */ 1279 nop; 1280 } 1281 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1282 mvi CCSGCTL, CCSGEN|CCSGRESET; 1283 or SG_STATE, FETCH_INPROG ret; 1284idle_sgfetch_complete: 1285 /* 1286 * Guard against SG_CACHE_AVAIL activating during sg fetch 1287 * request in the other FIFO. 1288 */ 1289 test SG_STATE, FETCH_INPROG jz return; 1290 clr CCSGCTL; 1291 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1292 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1293idle_sg_avail: 1294 /* Does the hardware have space for another SG entry? */ 1295 test DFSTATUS, PRELOAD_AVAIL jz return; 1296 /* 1297 * On the A, preloading a segment before HDMAENACK 1298 * comes true can clobber the shaddow address of the 1299 * first segment in the S/G FIFO. Wait until it is 1300 * safe to proceed. 1301 */ 1302 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) { 1303 test DFCNTRL, HDMAENACK jz return; 1304 } 1305 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1306 bmov HADDR, CCSGRAM, 8; 1307 } else { 1308 bmov HADDR, CCSGRAM, 4; 1309 } 1310 bmov HCNT, CCSGRAM, 3; 1311 test HCNT[0], 0x1 jz . + 2; 1312 xor DATA_COUNT_ODD, 0x1; 1313 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1314 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1315 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1316 } 1317 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1318 /* Skip 4 bytes of pad. */ 1319 add CCSGADDR, 4; 1320 } 1321sg_advance: 1322 clr A; /* add sizeof(struct scatter) */ 1323 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1324 adc SCB_RESIDUAL_SGPTR[1],A; 1325 adc SCB_RESIDUAL_SGPTR[2],A; 1326 adc SCB_RESIDUAL_SGPTR[3],A; 1327 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1328 test DATA_COUNT_ODD, 0x1 jz . + 2; 1329 or SINDEX, ODD_SEG; 1330 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1331 or SINDEX, LAST_SEG; 1332 clr SG_STATE; 1333 mov SG_CACHE_PRE, SINDEX; 1334 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { 1335 /* 1336 * Use SCSIENWRDIS so that SCSIEN is never 1337 * modified by this operation. 1338 */ 1339 or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS; 1340 } else { 1341 or DFCNTRL, PRELOADEN|HDMAEN; 1342 } 1343 /* 1344 * Do we have another segment in the cache? 1345 */ 1346 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1347 jnc return; 1348 and SG_STATE, ~SEGS_AVAIL ret; 1349 1350/* 1351 * Initialize the DMA address and counter from the SCB. 1352 */ 1353load_first_seg: 1354 bmov HADDR, SCB_DATAPTR, 11; 1355 and DATA_COUNT_ODD, 0x1, SCB_DATACNT[0]; 1356 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0]; 1357 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1358 or REG_ISR, LAST_SEG; 1359 test DATA_COUNT_ODD, 0x1 jz . + 2; 1360 or REG_ISR, ODD_SEG; 1361 mov SG_CACHE_PRE, REG_ISR; 1362 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1363 /* 1364 * Since we've are entering a data phase, we will 1365 * rely on the SCB_RESID* fields. Initialize the 1366 * residual and clear the full residual flag. 1367 */ 1368 and SCB_SGPTR[0], ~SG_FULL_RESID; 1369 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1370 /* If we need more S/G elements, tell the idle loop */ 1371 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1372 mvi SG_STATE, LOADING_NEEDED ret; 1373 clr SG_STATE ret; 1374 1375p_data_handle_xfer: 1376 call setjmp; 1377 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1378p_data_clear_handler: 1379 or LONGJMP_ADDR[1], INVALID_ADDR ret; 1380 1381p_data: 1382 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1383 SET_SEQINTCODE(PROTO_VIOLATION) 1384p_data_allowed: 1385 1386 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1387 1388 /* 1389 * If we re-enter the data phase after going through another 1390 * phase, our transfer location has almost certainly been 1391 * corrupted by the interveining, non-data, transfers. Ask 1392 * the host driver to fix us up based on the transfer residual 1393 * unless we already know that we should be bitbucketing. 1394 */ 1395 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1396 SET_SEQINTCODE(PDATA_REINIT) 1397 jmp data_phase_inbounds; 1398 1399p_data_bitbucket: 1400 /* 1401 * Turn on `Bit Bucket' mode, wait until the target takes 1402 * us to another phase, and then notify the host. 1403 */ 1404 mov SAVED_MODE, MODE_PTR; 1405 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1406 jnz bitbucket_not_m_dff; 1407 /* 1408 * Ensure that any FIFO contents are cleared out and the 1409 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1410 * doesn't discard data already in the FIFO. 1411 */ 1412 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1413 SET_MODE(M_SCSI, M_SCSI) 1414bitbucket_not_m_dff: 1415 or SXFRCTL1,BITBUCKET; 1416 /* Wait for non-data phase. */ 1417 test SCSIPHASE, ~DATA_PHASE_MASK jz .; 1418 and SXFRCTL1, ~BITBUCKET; 1419 RESTORE_MODE(SAVED_MODE) 1420SET_SRC_MODE M_DFF1; 1421SET_DST_MODE M_DFF1; 1422 SET_SEQINTCODE(DATA_OVERRUN) 1423 jmp ITloop; 1424 1425data_phase_initialize: 1426 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1427 call load_first_seg; 1428data_phase_inbounds: 1429 /* We have seen a data phase at least once. */ 1430 or SEQ_FLAGS, DPHASE; 1431 mov SAVED_MODE, MODE_PTR; 1432 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop; 1433 call p_data_handle_xfer; 1434data_group_dma_loop: 1435 /* 1436 * The transfer is complete if either the last segment 1437 * completes or the target changes phase. Both conditions 1438 * will clear SCSIEN. 1439 */ 1440 call idle_loop_service_fifos; 1441 call idle_loop_cchan; 1442 call idle_loop_gsfifo; 1443 RESTORE_MODE(SAVED_MODE) 1444 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1445 1446data_group_dmafinish: 1447 /* 1448 * The transfer has terminated either due to a phase 1449 * change, and/or the completion of the last segment. 1450 * We have two goals here. Do as much other work 1451 * as possible while the data fifo drains on a read 1452 * and respond as quickly as possible to the standard 1453 * messages (save data pointers/disconnect and command 1454 * complete) that usually follow a data phase. 1455 */ 1456 call calc_residual; 1457 1458 /* 1459 * Go ahead and shut down the DMA engine now. 1460 */ 1461 test DFCNTRL, DIRECTION jnz data_phase_finish; 1462data_group_fifoflush: 1463 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1464 or DFCNTRL, FIFOFLUSH; 1465 } 1466 /* 1467 * We have enabled the auto-ack feature. This means 1468 * that the controller may have already transferred 1469 * some overrun bytes into the data FIFO and acked them 1470 * on the bus. The only way to detect this situation is 1471 * to wait for LAST_SEG_DONE to come true on a completed 1472 * transfer and then test to see if the data FIFO is 1473 * non-empty. We know there is more data yet to transfer 1474 * if SG_LIST_NULL is not yet set, thus there cannot be 1475 * an overrun. 1476 */ 1477 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1478 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1479 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1480 /* Overrun */ 1481 jmp p_data; 1482data_phase_finish: 1483 /* 1484 * If the target has left us in data phase, loop through 1485 * the dma code again. We will only loop if there is a 1486 * data overrun. 1487 */ 1488 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1489 test SSTAT0, TARGET jnz data_phase_done; 1490 } 1491 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1492 test SSTAT1, REQINIT jz .; 1493 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1494 } 1495 1496data_phase_done: 1497 /* Kill off any pending prefetch */ 1498 call disable_ccsgen; 1499 or LONGJMP_ADDR[1], INVALID_ADDR; 1500 1501 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1502 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1503 /* 1504 and SEQ_FLAGS, ~DPHASE_PENDING; 1505 * For data-in phases, wait for any pending acks from the 1506 * initiator before changing phase. We only need to 1507 * send Ignore Wide Residue messages for data-in phases. 1508 test DFCNTRL, DIRECTION jz target_ITloop; 1509 test SSTAT1, REQINIT jnz .; 1510 test DATA_COUNT_ODD, 0x1 jz target_ITloop; 1511 SET_MODE(M_SCSI, M_SCSI) 1512 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1513 */ 1514 /* 1515 * Issue an Ignore Wide Residue Message. 1516 mvi P_MESGIN|BSYO call change_phase; 1517 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1518 mvi 1 call target_outb; 1519 jmp target_ITloop; 1520 */ 1521 } else { 1522 jmp ITloop; 1523 } 1524 1525/* 1526 * We assume that, even though data may still be 1527 * transferring to the host, that the SCSI side of 1528 * the DMA engine is now in a static state. This 1529 * allows us to update our notion of where we are 1530 * in this transfer. 1531 * 1532 * If, by chance, we stopped before being able 1533 * to fetch additional segments for this transfer, 1534 * yet the last S/G was completely exhausted, 1535 * call our idle loop until it is able to load 1536 * another segment. This will allow us to immediately 1537 * pickup on the next segment on the next data phase. 1538 * 1539 * If we happened to stop on the last segment, then 1540 * our residual information is still correct from 1541 * the idle loop and there is no need to perform 1542 * any fixups. 1543 */ 1544residual_before_last_seg: 1545 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1546 /* 1547 * Can never happen from an interrupt as the packetized 1548 * hardware will only interrupt us once SHVALID or 1549 * LAST_SEG_DONE. 1550 */ 1551 call idle_loop_service_fifos; 1552 RESTORE_MODE(SAVED_MODE) 1553 /* FALLTHROUGH */ 1554calc_residual: 1555 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1556 /* Record if we've consumed all S/G entries */ 1557 test MDFFSTAT, SHVALID jz . + 2; 1558 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1559 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1560 1561sgptr_fixup: 1562 /* 1563 * Fixup the residual next S/G pointer. The S/G preload 1564 * feature of the chip allows us to load two elements 1565 * in addition to the currently active element. We 1566 * store the bottom byte of the next S/G pointer in 1567 * the SG_CACHE_PTR register so we can restore the 1568 * correct value when the DMA completes. If the next 1569 * sg ptr value has advanced to the point where higher 1570 * bytes in the address have been affected, fix them 1571 * too. 1572 */ 1573 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1574 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1575 add SCB_RESIDUAL_SGPTR[1], -1; 1576 adc SCB_RESIDUAL_SGPTR[2], -1; 1577 adc SCB_RESIDUAL_SGPTR[3], -1; 1578sgptr_fixup_done: 1579 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1580 clr DATA_COUNT_ODD; 1581 test SG_CACHE_SHADOW, ODD_SEG jz . + 2; 1582 or DATA_COUNT_ODD, 0x1; 1583 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1584 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1585 1586export timer_isr: 1587 call issue_cmdcmplt; 1588 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 1589 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 1590 /* 1591 * In H2A4, the mode pointer is not saved 1592 * for intvec2, but is restored on iret. 1593 * This can lead to the restoration of a 1594 * bogus mode ptr. Manually clear the 1595 * intmask bits and do a normal return 1596 * to compensate. 1597 */ 1598 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret; 1599 } else { 1600 or SEQINTCTL, IRET ret; 1601 } 1602 1603export seq_isr: 1604 if ((ahd->features & AHD_RTI) == 0) { 1605 /* 1606 * On RevA Silicon, if the target returns us to data-out 1607 * after we have already trained for data-out, it is 1608 * possible for us to transition the free running clock to 1609 * data-valid before the required 100ns P1 setup time (8 P1 1610 * assertions in fast-160 mode). This will only happen if 1611 * this L-Q is a continuation of a data transfer for which 1612 * we have already prefetched data into our FIFO (LQ/Data 1613 * followed by LQ/Data for the same write transaction). 1614 * This can cause some target implementations to miss the 1615 * first few data transfers on the bus. We detect this 1616 * situation by noticing that this is the first data transfer 1617 * after an LQ (LQIWORKONLQ true), that the data transfer is 1618 * a continuation of a transfer already setup in our FIFO 1619 * (SAVEPTRS interrupt), and that the transaction is a write 1620 * (DIRECTION set in DFCNTRL). The delay is performed by 1621 * disabling SCSIEN until we see the first REQ from the 1622 * target. 1623 * 1624 * First instruction in an ISR cannot be a branch on 1625 * Rev A. Snapshot LQISTAT2 so the status is not missed 1626 * and deffer the test by one instruction. 1627 */ 1628 mov REG_ISR, LQISTAT2; 1629 test REG_ISR, LQIWORKONLQ jz main_isr; 1630 test SEQINTSRC, SAVEPTRS jz main_isr; 1631 test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo; 1632 /* 1633 * Switch to the active FIFO after clearing the snapshot 1634 * savepointer in the current FIFO. We do this so that 1635 * a pending CTXTDONE or SAVEPTR is visible in the active 1636 * FIFO. This status is the only way we can detect if we 1637 * have lost the race (e.g. host paused us) and our attepts 1638 * to disable the channel occurred after all REQs were 1639 * already seen and acked (REQINIT never comes true). 1640 */ 1641 mvi DFFSXFRCTL, CLRCHN; 1642 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1643 test DFCNTRL, DIRECTION jz interrupt_return; 1644 and DFCNTRL, ~SCSIEN; 1645snapshot_wait_data_valid: 1646 test SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz snapshot_data_valid; 1647 test SSTAT1, REQINIT jz snapshot_wait_data_valid; 1648snapshot_data_valid: 1649 or DFCNTRL, SCSIEN; 1650 or SEQINTCTL, IRET ret; 1651snapshot_saveptr: 1652 mvi DFFSXFRCTL, CLRCHN; 1653 or SEQINTCTL, IRET ret; 1654main_isr: 1655 } 1656 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1657 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1658 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1659 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1660 SET_SEQINTCODE(INVALID_SEQINT) 1661 1662/* 1663 * There are two types of save pointers interrupts: 1664 * The first is a snapshot save pointers where the current FIFO is not 1665 * active and contains a snapshot of the current poniter information. 1666 * This happens between packets in a stream for a single L_Q. Since we 1667 * are not performing a pointer save, we can safely clear the channel 1668 * so it can be used for other transactions. On RTI capable controllers, 1669 * where snapshots can, and are, disabled, the code to handle this type 1670 * of snapshot is not active. 1671 * 1672 * The second case is a save pointers on an active FIFO which occurs 1673 * if the target changes to a new L_Q or busfrees/QASes and the transfer 1674 * has a residual. This should occur coincident with a ctxtdone. We 1675 * disable the interrupt and allow our active routine to handle the 1676 * save. 1677 */ 1678saveptr_intr: 1679 if ((ahd->features & AHD_RTI) == 0) { 1680 test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr; 1681 } 1682saveptr_active_fifo: 1683 and SEQIMODE, ~ENSAVEPTRS; 1684 or SEQINTCTL, IRET ret; 1685 1686cfg4data_intr: 1687 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count; 1688 call load_first_seg; 1689 call pkt_handle_xfer; 1690 inc SCB_FIFO_USE_COUNT; 1691interrupt_return: 1692 or SEQINTCTL, IRET ret; 1693 1694cfg4istat_intr: 1695 call freeze_queue; 1696 add NONE, -13, SCB_CDB_LEN; 1697 jnc cfg4istat_have_sense_addr; 1698 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1699 /* 1700 * Host sets up address/count and enables transfer. 1701 */ 1702 SET_SEQINTCODE(CFG4ISTAT_INTR) 1703 jmp cfg4istat_setup_handler; 1704cfg4istat_have_sense_addr: 1705 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1706 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1707 mvi SG_CACHE_PRE, LAST_SEG; 1708 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1709cfg4istat_setup_handler: 1710 /* 1711 * Status pkt is transferring to host. 1712 * Wait in idle loop for transfer to complete. 1713 * If a command completed before an attempted 1714 * task management function completed, notify the host. 1715 */ 1716 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func; 1717 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 1718cfg4istat_no_taskmgmt_func: 1719 call pkt_handle_status; 1720 or SEQINTCTL, IRET ret; 1721 1722cfg4icmd_intr: 1723 /* 1724 * In the case of DMAing a CDB from the host, the normal 1725 * CDB buffer is formatted with an 8 byte address followed 1726 * by a 1 byte count. 1727 */ 1728 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 1729 mvi SG_CACHE_PRE, LAST_SEG; 1730 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1731 call pkt_handle_cdb; 1732 or SEQINTCTL, IRET ret; 1733 1734/* 1735 * See if the target has gone on in this context creating an 1736 * overrun condition. For the write case, the hardware cannot 1737 * ack bytes until data are provided. So, if the target begins 1738 * another packet without changing contexts, implying we are 1739 * not sitting on a packet boundary, we are in an overrun 1740 * situation. For the read case, the hardware will continue to 1741 * ack bytes into the FIFO, and may even ack the last overrun packet 1742 * into the FIFO. If the FIFO should become non-empty, we are in 1743 * a read overrun case. 1744 */ 1745#define check_overrun \ 1746 /* Not on a packet boundary. */ \ 1747 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1748 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1749 1750pkt_handle_xfer: 1751 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1752 call setjmp; 1753 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1754 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1755 test SCSISIGO, ATNO jnz . + 2; 1756 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 1757 /* 1758 * Defer handling of this NONPACKREQ until we 1759 * can be sure it pertains to this FIFO. SAVEPTRS 1760 * will not be asserted if the NONPACKREQ is for us, 1761 * so we must simulate it if shaddow is valid. If 1762 * shaddow is not valid, keep running this FIFO until we 1763 * have satisfied the transfer by loading segments and 1764 * waiting for either shaddow valid or last_seg_done. 1765 */ 1766 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 1767pkt_service_fifo: 1768 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1769pkt_last_seg: 1770 call setjmp; 1771 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1772 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done; 1773 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1774 test SCSISIGO, ATNO jnz . + 2; 1775 test SSTAT2, NONPACKREQ jz return; 1776 test MDFFSTAT, SHVALID jz return; 1777 /* FALLTHROUGH */ 1778 1779/* 1780 * Either a SAVEPTRS interrupt condition is pending for this FIFO 1781 * or we have a pending NONPACKREQ for this FIFO. We differentiate 1782 * between the two by capturing the state of the SAVEPTRS interrupt 1783 * prior to clearing this status and executing the common code for 1784 * these two cases. 1785 */ 1786pkt_saveptrs: 1787BEGIN_CRITICAL; 1788 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1789 or DFCNTRL, FIFOFLUSH; 1790 } 1791 mov REG0, SEQINTSRC; 1792 call calc_residual; 1793 call save_pointers; 1794 mvi CLRSEQINTSRC, CLRSAVEPTRS; 1795 call disable_ccsgen; 1796 or SEQIMODE, ENSAVEPTRS; 1797 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status; 1798 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status; 1799 /* 1800 * Keep a handler around for this FIFO until it drains 1801 * to the host to guarantee that we don't complete the 1802 * command to the host before the data arrives. 1803 */ 1804pkt_saveptrs_wait_fifoemp: 1805 call setjmp; 1806 test DFSTATUS, FIFOEMP jz return; 1807pkt_saveptrs_check_status: 1808 or LONGJMP_ADDR[1], INVALID_ADDR; 1809 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 1810 dec SCB_FIFO_USE_COUNT; 1811 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 1812 mvi DFFSXFRCTL, CLRCHN ret; 1813END_CRITICAL; 1814 1815/* 1816 * LAST_SEG_DONE status has been seen in the current FIFO. 1817 * This indicates that all of the allowed data for this 1818 * command has transferred across the SCSI and host buses. 1819 * Check for overrun and see if we can complete this command. 1820 */ 1821pkt_last_seg_done: 1822BEGIN_CRITICAL; 1823 /* 1824 * Mark transfer as completed. 1825 */ 1826 or SCB_SGPTR, SG_LIST_NULL; 1827 1828 /* 1829 * Wait for the current context to finish to verify that 1830 * no overrun condition has occurred. 1831 */ 1832 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 1833 call setjmp; 1834pkt_wait_ctxt_done_loop: 1835 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 1836 /* 1837 * A sufficiently large overrun or a NONPACKREQ may 1838 * prevent CTXTDONE from ever asserting, so we must 1839 * poll for these statuses too. 1840 */ 1841 check_overrun; 1842 test SSTAT2, NONPACKREQ jz return; 1843 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1844 /* FALLTHROUGH */ 1845 1846pkt_ctxt_done: 1847 check_overrun; 1848 or LONGJMP_ADDR[1], INVALID_ADDR; 1849 /* 1850 * If status has been received, it is safe to skip 1851 * the check to see if another FIFO is active because 1852 * LAST_SEG_DONE has been observed. However, we check 1853 * the FIFO anyway since it costs us only one extra 1854 * instruction to leverage common code to perform the 1855 * SCB completion. 1856 */ 1857 dec SCB_FIFO_USE_COUNT; 1858 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 1859 mvi DFFSXFRCTL, CLRCHN ret; 1860END_CRITICAL; 1861 1862/* 1863 * Must wait until CDB xfer is over before issuing the 1864 * clear channel. 1865 */ 1866pkt_handle_cdb: 1867 call setjmp; 1868 test SG_CACHE_SHADOW, LAST_SEG_DONE jz return; 1869 or LONGJMP_ADDR[1], INVALID_ADDR; 1870 mvi DFFSXFRCTL, CLRCHN ret; 1871 1872/* 1873 * Watch over the status transfer. Our host sense buffer is 1874 * large enough to take the maximum allowed status packet. 1875 * None-the-less, we must still catch and report overruns to 1876 * the host. Additionally, properly catch unexpected non-packet 1877 * phases that are typically caused by CRC errors in status packet 1878 * transmission. 1879 */ 1880pkt_handle_status: 1881 call setjmp; 1882 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 1883 test SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq; 1884 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 1885pkt_status_IU_done: 1886 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1887 or DFCNTRL, FIFOFLUSH; 1888 } 1889 test DFSTATUS, FIFOEMP jz return; 1890BEGIN_CRITICAL; 1891 or LONGJMP_ADDR[1], INVALID_ADDR; 1892 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 1893 or SCB_CONTROL, STATUS_RCVD; 1894 jmp pkt_complete_scb_if_fifos_idle; 1895END_CRITICAL; 1896pkt_status_check_overrun: 1897 /* 1898 * Status PKT overruns are uncerimoniously recovered with a 1899 * bus reset. If we've overrun, let the host know so that 1900 * recovery can be performed. 1901 * 1902 * LAST_SEG_DONE has been observed. If either CTXTDONE or 1903 * a NONPACKREQ phase change have occurred and the FIFO is 1904 * empty, there is no overrun. 1905 */ 1906 test DFSTATUS, FIFOEMP jz pkt_status_report_overrun; 1907 test SEQINTSRC, CTXTDONE jz . + 2; 1908 test DFSTATUS, FIFOEMP jnz pkt_status_IU_done; 1909 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 1910 test DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq; 1911pkt_status_report_overrun: 1912 SET_SEQINTCODE(STATUS_OVERRUN) 1913 /* SEQUENCER RESTARTED */ 1914pkt_status_check_nonpackreq: 1915 /* 1916 * CTXTDONE may be held off if a NONPACKREQ is associated with 1917 * the current context. If a NONPACKREQ is observed, decide 1918 * if it is for the current context. If it is for the current 1919 * context, we must defer NONPACKREQ processing until all data 1920 * has transferred to the host. 1921 */ 1922 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 1923 test SCSISIGO, ATNO jnz . + 2; 1924 test SSTAT2, NONPACKREQ jz return; 1925 test SEQINTSRC, CTXTDONE jnz pkt_status_IU_done; 1926 test DFSTATUS, FIFOEMP jz return; 1927 /* 1928 * The unexpected nonpkt phase handler assumes that any 1929 * data channel use will have a FIFO reference count. It 1930 * turns out that the status handler doesn't need a refernce 1931 * count since the status received flag, and thus completion 1932 * processing, cannot be set until the handler is finished. 1933 * We increment the count here to make the nonpkt handler 1934 * happy. 1935 */ 1936 inc SCB_FIFO_USE_COUNT; 1937 /* FALLTHROUGH */ 1938 1939/* 1940 * Nonpackreq is a polled status. It can come true in three situations: 1941 * we have received an L_Q, we have sent one or more L_Qs, or there is no 1942 * L_Q context associated with this REQ (REQ occurs immediately after a 1943 * (re)selection). Routines that know that the context responsible for this 1944 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 1945 * top level idle loop, we exhaust all active contexts prior to determining that 1946 * we simply do not have the full I_T_L_Q for this phase. 1947 */ 1948unexpected_nonpkt_phase_find_ctxt: 1949 /* 1950 * This nonpackreq is most likely associated with one of the tags 1951 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 1952 * nonpackreq if we've cleared out the FIFOs and handled any 1953 * pending SELDO. 1954 */ 1955SET_SRC_MODE M_SCSI; 1956SET_DST_MODE M_SCSI; 1957 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 1958 cmp A, FIFO1FREE|FIFO0FREE jne return; 1959 test SSTAT0, SELDO jnz return; 1960 mvi SCBPTR[1], SCB_LIST_NULL; 1961unexpected_nonpkt_phase: 1962 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz . + 3; 1963SET_SRC_MODE M_DFF0; 1964SET_DST_MODE M_DFF0; 1965 or LONGJMP_ADDR[1], INVALID_ADDR; 1966 dec SCB_FIFO_USE_COUNT; 1967 mvi DFFSXFRCTL, CLRCHN; 1968 mvi CLRSINT2, CLRNONPACKREQ; 1969 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 1970 SET_SEQINTCODE(ENTERING_NONPACK) 1971 jmp ITloop; 1972 1973illegal_phase: 1974 SET_SEQINTCODE(ILLEGAL_PHASE) 1975 jmp ITloop; 1976 1977/* 1978 * We have entered an overrun situation. If we have working 1979 * BITBUCKET, flip that on and let the hardware eat any overrun 1980 * data. Otherwise use an overrun buffer in the host to simulate 1981 * BITBUCKET. 1982 */ 1983pkt_handle_overrun_inc_use_count: 1984 inc SCB_FIFO_USE_COUNT; 1985pkt_handle_overrun: 1986 SET_SEQINTCODE(CFG4OVERRUN) 1987 call freeze_queue; 1988 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 1989 or DFFSXFRCTL, DFFBITBUCKET; 1990SET_SRC_MODE M_DFF1; 1991SET_DST_MODE M_DFF1; 1992 } else { 1993 call load_overrun_buf; 1994 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 1995 } 1996 call setjmp; 1997 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1998 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done; 1999 call load_overrun_buf; 2000 or DFCNTRL, PRELOADEN; 2001overrun_load_done: 2002 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 2003 } else { 2004 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end; 2005 } 2006 test SSTAT2, NONPACKREQ jz return; 2007pkt_overrun_end: 2008 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 2009 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 2010 dec SCB_FIFO_USE_COUNT; 2011 or LONGJMP_ADDR[1], INVALID_ADDR; 2012 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2013 mvi DFFSXFRCTL, CLRCHN ret; 2014 2015if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2016load_overrun_buf: 2017 /* 2018 * Load a dummy segment if preload space is available. 2019 */ 2020 mov HADDR[0], SHARED_DATA_ADDR; 2021 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 2022 mov ACCUM_SAVE, A; 2023 clr A; 2024 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 2025 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 2026 mov A, ACCUM_SAVE; 2027 bmov HADDR[4], ALLZEROS, 4; 2028 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 2029 clr HCNT[0]; 2030 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 2031 clr HCNT[2] ret; 2032} 2033