1/* 2 * Adaptec U320 device driver firmware for Linux and FreeBSD. 3 * 4 * Copyright (c) 1994-2001 Justin T. Gibbs. 5 * Copyright (c) 2000-2002 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 * 40 * $FreeBSD$ 41 */ 42 43VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#118 $" 44PATCH_ARG_LIST = "struct ahd_softc *ahd" 45PREFIX = "ahd_" 46 47#include "aic79xx.reg" 48#include "scsi_message.h" 49 50restart: 51if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 52 test SEQINTCODE, 0xFF jz idle_loop; 53 SET_SEQINTCODE(NO_SEQINT) 54} 55 56idle_loop: 57 58 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 59 /* 60 * Convert ERROR status into a sequencer 61 * interrupt to handle the case of an 62 * interrupt collision on the hardware 63 * setting of HWERR. 64 */ 65 test ERROR, 0xFF jz no_error_set; 66 SET_SEQINTCODE(SAW_HWERR) 67no_error_set: 68 } 69 SET_MODE(M_SCSI, M_SCSI) 70 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 71 test SEQ_FLAGS2, SELECTOUT_QFROZEN jz check_waiting_list; 72 /* 73 * If the kernel has caught up with us, thaw the queue. 74 */ 75 mov A, KERNEL_QFREEZE_COUNT; 76 cmp QFREEZE_COUNT, A jne check_frozen_completions; 77 mov A, KERNEL_QFREEZE_COUNT[1]; 78 cmp QFREEZE_COUNT[1], A jne check_frozen_completions; 79 and SEQ_FLAGS2, ~SELECTOUT_QFROZEN; 80 jmp check_waiting_list; 81check_frozen_completions: 82 test SSTAT0, SELDO|SELINGO jnz idle_loop_checkbus; 83BEGIN_CRITICAL; 84 /* 85 * If we have completions stalled waiting for the qfreeze 86 * to take effect, move them over to the complete_scb list 87 * now that no selections are pending. 88 */ 89 cmp COMPLETE_ON_QFREEZE_HEAD[1],SCB_LIST_NULL je idle_loop_checkbus; 90 /* 91 * Find the end of the qfreeze list. The first element has 92 * to be treated specially. 93 */ 94 bmov SCBPTR, COMPLETE_ON_QFREEZE_HEAD, 2; 95 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je join_lists; 96 /* 97 * Now the normal loop. 98 */ 99 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 100 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . - 1; 101join_lists: 102 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 103 bmov COMPLETE_SCB_HEAD, COMPLETE_ON_QFREEZE_HEAD, 2; 104 mvi COMPLETE_ON_QFREEZE_HEAD[1], SCB_LIST_NULL; 105 jmp idle_loop_checkbus; 106check_waiting_list: 107 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 108 /* 109 * ENSELO is cleared by a SELDO, so we must test for SELDO 110 * one last time. 111 */ 112 test SSTAT0, SELDO jnz select_out; 113END_CRITICAL; 114 call start_selection; 115idle_loop_checkbus: 116BEGIN_CRITICAL; 117 test SSTAT0, SELDO jnz select_out; 118END_CRITICAL; 119 test SSTAT0, SELDI jnz select_in; 120 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 121 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 122 call unexpected_nonpkt_phase_find_ctxt; 123idle_loop_check_nonpackreq: 124 test SSTAT2, NONPACKREQ jz . + 2; 125 call unexpected_nonpkt_phase_find_ctxt; 126 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 127 /* 128 * On Rev A. hardware, the busy LED is only 129 * turned on automaically during selections 130 * and re-selections. Make the LED status 131 * more useful by forcing it to be on so 132 * long as one of our data FIFOs is active. 133 */ 134 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 135 cmp A, FIFO0FREE|FIFO1FREE jne . + 3; 136 and SBLKCTL, ~DIAGLEDEN|DIAGLEDON; 137 jmp . + 2; 138 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 139 } 140 call idle_loop_gsfifo_in_scsi_mode; 141 call idle_loop_service_fifos; 142 call idle_loop_cchan; 143 jmp idle_loop; 144 145idle_loop_gsfifo: 146 SET_MODE(M_SCSI, M_SCSI) 147BEGIN_CRITICAL; 148idle_loop_gsfifo_in_scsi_mode: 149 test LQISTAT2, LQIGSAVAIL jz return; 150 /* 151 * We have received good status for this transaction. There may 152 * still be data in our FIFOs draining to the host. Complete 153 * the SCB only if all data has transferred to the host. 154 */ 155good_status_IU_done: 156 bmov SCBPTR, GSFIFO, 2; 157 clr SCB_SCSI_STATUS; 158 /* 159 * If a command completed before an attempted task management 160 * function completed, notify the host after disabling any 161 * pending select-outs. 162 */ 163 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally; 164 test SSTAT0, SELDO|SELINGO jnz . + 2; 165 and SCSISEQ0, ~ENSELO; 166 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 167gsfifo_complete_normally: 168 or SCB_CONTROL, STATUS_RCVD; 169 170 /* 171 * Since this status did not consume a FIFO, we have to 172 * be a bit more dilligent in how we check for FIFOs pertaining 173 * to this transaction. There are two states that a FIFO still 174 * transferring data may be in. 175 * 176 * 1) Configured and draining to the host, with a FIFO handler. 177 * 2) Pending cfg4data, fifo not empty. 178 * 179 * Case 1 can be detected by noticing a non-zero FIFO active 180 * count in the SCB. In this case, we allow the routine servicing 181 * the FIFO to complete the SCB. 182 * 183 * Case 2 implies either a pending or yet to occur save data 184 * pointers for this same context in the other FIFO. So, if 185 * we detect case 1, we will properly defer the post of the SCB 186 * and achieve the desired result. The pending cfg4data will 187 * notice that status has been received and complete the SCB. 188 */ 189 test SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode; 190 call complete; 191END_CRITICAL; 192 jmp idle_loop_gsfifo_in_scsi_mode; 193 194idle_loop_service_fifos: 195 SET_MODE(M_DFF0, M_DFF0) 196BEGIN_CRITICAL; 197 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 198 call longjmp; 199END_CRITICAL; 200idle_loop_next_fifo: 201 SET_MODE(M_DFF1, M_DFF1) 202BEGIN_CRITICAL; 203 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp; 204END_CRITICAL; 205return: 206 ret; 207 208idle_loop_cchan: 209 SET_MODE(M_CCHAN, M_CCHAN) 210 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty; 211 or QOFF_CTLSTA, HS_MAILBOX_ACT; 212 mov LOCAL_HS_MAILBOX, HS_MAILBOX; 213hs_mailbox_empty: 214BEGIN_CRITICAL; 215 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 216 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 217 test CCSCBCTL, CCSCBDONE jz return; 218 /* FALLTHROUGH */ 219scbdma_tohost_done: 220 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 221 /* 222 * An SCB has been succesfully uploaded to the host. 223 * If the SCB was uploaded for some reason other than 224 * bad SCSI status (currently only for underruns), we 225 * queue the SCB for normal completion. Otherwise, we 226 * wait until any select-out activity has halted, and 227 * then queue the completion. 228 */ 229 and CCSCBCTL, ~(CCARREN|CCSCBEN); 230 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 231 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . + 2; 232 mvi COMPLETE_DMA_SCB_TAIL[1], SCB_LIST_NULL; 233 test SCB_SCSI_STATUS, 0xff jz scbdma_queue_completion; 234 bmov SCB_NEXT_COMPLETE, COMPLETE_ON_QFREEZE_HEAD, 2; 235 bmov COMPLETE_ON_QFREEZE_HEAD, SCBPTR, 2 ret; 236scbdma_queue_completion: 237 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 238 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 239fill_qoutfifo_dmadone: 240 and CCSCBCTL, ~(CCARREN|CCSCBEN); 241 call qoutfifo_updated; 242 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 243 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 244 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 245 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; 246 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; 247END_CRITICAL; 248 249qoutfifo_updated: 250 /* 251 * If there are more commands waiting to be dma'ed 252 * to the host, always coalesce. Otherwise honor the 253 * host's wishes. 254 */ 255 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 256 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 257 test LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt; 258 259 /* 260 * If we have relatively few commands outstanding, don't 261 * bother waiting for another command to complete. 262 */ 263 test CMDS_PENDING[1], 0xFF jnz coalesce_by_count; 264 /* Add -1 so that jnc means <= not just < */ 265 add A, -1, INT_COALESCING_MINCMDS; 266 add NONE, A, CMDS_PENDING; 267 jnc issue_cmdcmplt; 268 269 /* 270 * If coalescing, only coalesce up to the limit 271 * provided by the host driver. 272 */ 273coalesce_by_count: 274 mov A, INT_COALESCING_MAXCMDS; 275 add NONE, A, INT_COALESCING_CMDCOUNT; 276 jc issue_cmdcmplt; 277 /* 278 * If the timer is not currently active, 279 * fire it up. 280 */ 281 test INTCTL, SWTMINTMASK jz return; 282 bmov SWTIMER, INT_COALESCING_TIMER, 2; 283 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 284 or INTCTL, SWTMINTEN|SWTIMER_START; 285 and INTCTL, ~SWTMINTMASK ret; 286 287issue_cmdcmplt: 288 mvi INTSTAT, CMDCMPLT; 289 clr INT_COALESCING_CMDCOUNT; 290 or INTCTL, SWTMINTMASK ret; 291 292BEGIN_CRITICAL; 293fetch_new_scb_inprog: 294 test CCSCBCTL, ARRDONE jz return; 295fetch_new_scb_done: 296 and CCSCBCTL, ~(CCARREN|CCSCBEN); 297 bmov REG0, SCBPTR, 2; 298 clr A; 299 add CMDS_PENDING, 1; 300 adc CMDS_PENDING[1], A; 301 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { 302 /* 303 * "Short Luns" are not placed into outgoing LQ 304 * packets in the correct byte order. Use a full 305 * sized lun field instead and fill it with the 306 * one byte of lun information we support. 307 */ 308 mov SCB_PKT_LUN[6], SCB_LUN; 309 } 310 /* 311 * The FIFO use count field is shared with the 312 * tag set by the host so that our SCB dma engine 313 * knows the correct location to store the SCB. 314 * Set it to zero before processing the SCB. 315 */ 316 clr SCB_FIFO_USE_COUNT; 317 /* Update the next SCB address to download. */ 318 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 319 mvi SCB_NEXT[1], SCB_LIST_NULL; 320 mvi SCB_NEXT2[1], SCB_LIST_NULL; 321 /* Increment our position in the QINFIFO. */ 322 mov NONE, SNSCB_QOFF; 323 /* 324 * SCBs that want to send messages are always 325 * queued independently. This ensures that they 326 * are at the head of the SCB list to select out 327 * to a target and we will see the MK_MESSAGE flag. 328 */ 329 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb; 330 shr SINDEX, 3, SCB_SCSIID; 331 and SINDEX, ~0x1; 332 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 333 bmov DINDEX, SINDEX, 2; 334 bmov SCBPTR, SINDIR, 2; 335 bmov DINDIR, REG0, 2; 336 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 337 bmov SCB_NEXT, REG0, 2 ret; 338first_new_target_scb: 339 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 340 bmov SCBPTR, WAITING_TID_TAIL, 2; 341 bmov SCB_NEXT2, REG0, 2; 342 bmov WAITING_TID_TAIL, REG0, 2 ret; 343first_new_scb: 344 bmov WAITING_TID_HEAD, REG0, 2; 345 bmov WAITING_TID_TAIL, REG0, 2 ret; 346END_CRITICAL; 347 348scbdma_idle: 349 /* 350 * Give precedence to downloading new SCBs to execute 351 * unless select-outs are currently frozen. 352 */ 353 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2; 354BEGIN_CRITICAL; 355 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 356 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 357 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 358 /* FALLTHROUGH */ 359fill_qoutfifo: 360 /* 361 * Keep track of the SCBs we are dmaing just 362 * in case the DMA fails or is aborted. 363 */ 364 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 365 mvi CCSCBCTL, CCSCBRESET; 366 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 367 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 368fill_qoutfifo_loop: 369 bmov CCSCBRAM, SCBPTR, 2; 370 mov CCSCBRAM, SCB_SGPTR[0]; 371 bmov CCSCBRAM, ALLZEROS, 4; 372 mov CCSCBRAM, QOUTFIFO_ENTRY_VALID_TAG; 373 mov NONE, SDSCB_QOFF; 374 inc INT_COALESCING_CMDCOUNT; 375 add CMDS_PENDING, -1; 376 adc CMDS_PENDING[1], -1; 377 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 378 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 379 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done; 380 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 381 jmp fill_qoutfifo_loop; 382fill_qoutfifo_done: 383 mov SCBHCNT, CCSCBADDR; 384 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 385 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 386 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 387 388fetch_new_scb: 389 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 390 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 391dma_complete_scb: 392 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 393 bmov SCBHADDR, SCB_BUSADDR, 4; 394 mvi CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb; 395 396/* 397 * Either post or fetch an SCB from host memory. The caller 398 * is responsible for polling for transfer completion. 399 * 400 * Prerequisits: Mode == M_CCHAN 401 * SINDEX contains CCSCBCTL flags 402 * SCBHADDR set to Host SCB address 403 * SCBPTR set to SCB src location on "push" operations 404 */ 405SET_SRC_MODE M_CCHAN; 406SET_DST_MODE M_CCHAN; 407dma_scb: 408 mvi SCBHCNT, SCB_TRANSFER_SIZE; 409 mov CCSCBCTL, SINDEX ret; 410 411setjmp: 412 /* 413 * At least on the A, a return in the same 414 * instruction as the bmov results in a return 415 * to the caller, not to the new address at the 416 * top of the stack. Since we want the latter 417 * (we use setjmp to register a handler from an 418 * interrupt context but not invoke that handler 419 * until we return to our idle loop), use a 420 * separate ret instruction. 421 */ 422 bmov LONGJMP_ADDR, STACK, 2; 423 ret; 424setjmp_inline: 425 bmov LONGJMP_ADDR, STACK, 2; 426longjmp: 427 bmov STACK, LONGJMP_ADDR, 2 ret; 428END_CRITICAL; 429 430/*************************** Chip Bug Work Arounds ****************************/ 431/* 432 * Must disable interrupts when setting the mode pointer 433 * register as an interrupt occurring mid update will 434 * fail to store the new mode value for restoration on 435 * an iret. 436 */ 437if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 438set_mode_work_around: 439 mvi SEQINTCTL, INTVEC1DSL; 440 mov MODE_PTR, SINDEX; 441 clr SEQINTCTL ret; 442} 443 444 445if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 446set_seqint_work_around: 447 mov SEQINTCODE, SINDEX; 448 mvi SEQINTCODE, NO_SEQINT ret; 449} 450 451/************************ Packetized LongJmp Routines *************************/ 452SET_SRC_MODE M_SCSI; 453SET_DST_MODE M_SCSI; 454start_selection: 455BEGIN_CRITICAL; 456 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 457 /* 458 * Razor #494 459 * Rev A hardware fails to update LAST/CURR/NEXTSCB 460 * correctly after a packetized selection in several 461 * situations: 462 * 463 * 1) If only one command existed in the queue, the 464 * LAST/CURR/NEXTSCB are unchanged. 465 * 466 * 2) In a non QAS, protocol allowed phase change, 467 * the queue is shifted 1 too far. LASTSCB is 468 * the last SCB that was correctly processed. 469 * 470 * 3) In the QAS case, if the full list of commands 471 * was successfully sent, NEXTSCB is NULL and neither 472 * CURRSCB nor LASTSCB can be trusted. We must 473 * manually walk the list counting MAXCMDCNT elements 474 * to find the last SCB that was sent correctly. 475 * 476 * To simplify the workaround for this bug in SELDO 477 * handling, we initialize LASTSCB prior to enabling 478 * selection so we can rely on it even for case #1 above. 479 */ 480 bmov LASTSCB, WAITING_TID_HEAD, 2; 481 } 482 bmov CURRSCB, WAITING_TID_HEAD, 2; 483 bmov SCBPTR, WAITING_TID_HEAD, 2; 484 shr SELOID, 4, SCB_SCSIID; 485 /* 486 * If we want to send a message to the device, ensure 487 * we are selecting with atn irregardless of our packetized 488 * agreement. Since SPI4 only allows target reset or PPR 489 * messages if this is a packetized connection, the change 490 * to our negotiation table entry for this selection will 491 * be cleared when the message is acted on. 492 */ 493 test SCB_CONTROL, MK_MESSAGE jz . + 3; 494 mov NEGOADDR, SELOID; 495 or NEGCONOPTS, ENAUTOATNO; 496 or SCSISEQ0, ENSELO ret; 497END_CRITICAL; 498 499/* 500 * Allocate a FIFO for a non-packetized transaction. 501 * In RevA hardware, both FIFOs must be free before we 502 * can allocate a FIFO for a non-packetized transaction. 503 */ 504allocate_fifo_loop: 505 /* 506 * Do whatever work is required to free a FIFO. 507 */ 508 call idle_loop_service_fifos; 509 SET_MODE(M_SCSI, M_SCSI) 510allocate_fifo: 511 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) { 512 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 513 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 514 } else { 515 test DFFSTAT, FIFO1FREE jnz allocate_fifo1; 516 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop; 517 mvi DFFSTAT, B_CURRFIFO_0; 518 SET_MODE(M_DFF0, M_DFF0) 519 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 520 } 521SET_SRC_MODE M_SCSI; 522SET_DST_MODE M_SCSI; 523allocate_fifo1: 524 mvi DFFSTAT, CURRFIFO_1; 525 SET_MODE(M_DFF1, M_DFF1) 526 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 527 528/* 529 * We have been reselected as an initiator 530 * or selected as a target. 531 */ 532SET_SRC_MODE M_SCSI; 533SET_DST_MODE M_SCSI; 534select_in: 535 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 536 /* 537 * On Rev A. hardware, the busy LED is only 538 * turned on automaically during selections 539 * and re-selections. Make the LED status 540 * more useful by forcing it to be on from 541 * the point of selection until our idle 542 * loop determines that neither of our FIFOs 543 * are busy. This handles the non-packetized 544 * case nicely as we will not return to the 545 * idle loop until the busfree at the end of 546 * each transaction. 547 */ 548 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 549 } 550 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 551 /* 552 * Test to ensure that the bus has not 553 * already gone free prior to clearing 554 * any stale busfree status. This avoids 555 * a window whereby a busfree just after 556 * a selection could be missed. 557 */ 558 test SCSISIGI, BSYI jz . + 2; 559 mvi CLRSINT1,CLRBUSFREE; 560 or SIMODE1, ENBUSFREE; 561 } 562 or SXFRCTL0, SPIOEN; 563 and SAVED_SCSIID, SELID_MASK, SELID; 564 and A, OID, IOWNID; 565 or SAVED_SCSIID, A; 566 mvi CLRSINT0, CLRSELDI; 567 jmp ITloop; 568 569/* 570 * We have successfully selected out. 571 * 572 * Clear SELDO. 573 * Dequeue all SCBs sent from the waiting queue 574 * Requeue all SCBs *not* sent to the tail of the waiting queue 575 * Take Razor #494 into account for above. 576 * 577 * In Packetized Mode: 578 * Return to the idle loop. Our interrupt handler will take 579 * care of any incoming L_Qs. 580 * 581 * In Non-Packetize Mode: 582 * Continue to our normal state machine. 583 */ 584SET_SRC_MODE M_SCSI; 585SET_DST_MODE M_SCSI; 586select_out: 587BEGIN_CRITICAL; 588 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 589 /* 590 * On Rev A. hardware, the busy LED is only 591 * turned on automaically during selections 592 * and re-selections. Make the LED status 593 * more useful by forcing it to be on from 594 * the point of re-selection until our idle 595 * loop determines that neither of our FIFOs 596 * are busy. This handles the non-packetized 597 * case nicely as we will not return to the 598 * idle loop until the busfree at the end of 599 * each transaction. 600 */ 601 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 602 } 603 /* Clear out all SCBs that have been successfully sent. */ 604 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 605 /* 606 * For packetized, the LQO manager clears ENSELO on 607 * the assertion of SELDO. If we are non-packetized, 608 * LASTSCB and CURRSCB are accurate. 609 */ 610 test SCSISEQ0, ENSELO jnz use_lastscb; 611 612 /* 613 * The update is correct for LQOSTAT1 errors. All 614 * but LQOBUSFREE are handled by kernel interrupts. 615 * If we see LQOBUSFREE, return to the idle loop. 616 * Once we are out of the select_out critical section, 617 * the kernel will cleanup the LQOBUSFREE and we will 618 * eventually restart the selection if appropriate. 619 */ 620 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 621 622 /* 623 * On a phase change oustside of packet boundaries, 624 * LASTSCB points to the currently active SCB context 625 * on the bus. 626 */ 627 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 628 629 /* 630 * If the hardware has traversed the whole list, NEXTSCB 631 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 632 * but MAXCMDCNT is accurate. If we stop part way through 633 * the list or only had one command to issue, NEXTSCB[1] is 634 * not NULL and LASTSCB is the last command to go out. 635 */ 636 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 637 638 /* 639 * Brute force walk. 640 */ 641 bmov SCBPTR, WAITING_TID_HEAD, 2; 642 mvi SEQINTCTL, INTVEC1DSL; 643 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 644 mov A, MAXCMDCNT; 645 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 646 clr SEQINTCTL; 647find_lastscb_loop: 648 dec A; 649 test A, 0xFF jz found_last_sent_scb; 650 bmov SCBPTR, SCB_NEXT, 2; 651 jmp find_lastscb_loop; 652use_lastscb: 653 bmov SCBPTR, LASTSCB, 2; 654found_last_sent_scb: 655 bmov CURRSCB, SCBPTR, 2; 656curscb_ww_done: 657 } else { 658 bmov SCBPTR, CURRSCB, 2; 659 } 660 661 /* 662 * Requeue any SCBs not sent, to the tail of the waiting Q. 663 */ 664 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done; 665 666 /* 667 * We know that neither the per-TID list nor the list of 668 * TIDs is empty. Use this knowledge to our advantage. 669 */ 670 bmov REG0, SCB_NEXT, 2; 671 bmov SCBPTR, WAITING_TID_TAIL, 2; 672 bmov SCB_NEXT2, REG0, 2; 673 bmov WAITING_TID_TAIL, REG0, 2; 674 jmp select_out_inc_tid_q; 675 676select_out_list_done: 677 /* 678 * The whole list made it. Just clear our TID's tail pointer 679 * unless we were queued independently due to our need to 680 * send a message. 681 */ 682 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q; 683 shr DINDEX, 3, SCB_SCSIID; 684 or DINDEX, 1; /* Want only the second byte */ 685 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 686 mvi DINDIR, SCB_LIST_NULL; 687select_out_inc_tid_q: 688 bmov SCBPTR, WAITING_TID_HEAD, 2; 689 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 690 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 691 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 692 bmov SCBPTR, CURRSCB, 2; 693 mvi CLRSINT0, CLRSELDO; 694 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase; 695 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase; 696 697 /* 698 * If this is a packetized connection, return to our 699 * idle_loop and let our interrupt handler deal with 700 * any connection setup/teardown issues. The only 701 * exceptions are the case of MK_MESSAGE and task management 702 * SCBs. 703 */ 704 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 705 /* 706 * In the A, the LQO manager transitions to LQOSTOP0 even if 707 * we have selected out with ATN asserted and the target 708 * REQs in a non-packet phase. 709 */ 710 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 711 test SCSISIGO, ATNO jnz select_out_non_packetized; 712select_out_no_message: 713 } 714 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized; 715 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop; 716 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE) 717 jmp idle_loop; 718 719select_out_non_packetized: 720 /* Non packetized request. */ 721 and SCSISEQ0, ~ENSELO; 722 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 723 /* 724 * Test to ensure that the bus has not 725 * already gone free prior to clearing 726 * any stale busfree status. This avoids 727 * a window whereby a busfree just after 728 * a selection could be missed. 729 */ 730 test SCSISIGI, BSYI jz . + 2; 731 mvi CLRSINT1,CLRBUSFREE; 732 or SIMODE1, ENBUSFREE; 733 } 734 mov SAVED_SCSIID, SCB_SCSIID; 735 mov SAVED_LUN, SCB_LUN; 736 mvi SEQ_FLAGS, NO_CDB_SENT; 737END_CRITICAL; 738 or SXFRCTL0, SPIOEN; 739 740 /* 741 * As soon as we get a successful selection, the target 742 * should go into the message out phase since we have ATN 743 * asserted. 744 */ 745 mvi MSG_OUT, MSG_IDENTIFYFLAG; 746 747 /* 748 * Main loop for information transfer phases. Wait for the 749 * target to assert REQ before checking MSG, C/D and I/O for 750 * the bus phase. 751 */ 752mesgin_phasemis: 753ITloop: 754 call phase_lock; 755 756 mov A, LASTPHASE; 757 758 test A, ~P_DATAIN_DT jz p_data; 759 cmp A,P_COMMAND je p_command; 760 cmp A,P_MESGOUT je p_mesgout; 761 cmp A,P_STATUS je p_status; 762 cmp A,P_MESGIN je p_mesgin; 763 764 SET_SEQINTCODE(BAD_PHASE) 765 jmp ITloop; /* Try reading the bus again. */ 766 767/* 768 * Command phase. Set up the DMA registers and let 'er rip. 769 */ 770p_command: 771 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay; 772 SET_SEQINTCODE(PROTO_VIOLATION) 773p_command_okay: 774 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 775 jnz p_command_allocate_fifo; 776 /* 777 * Command retry. Free our current FIFO and 778 * re-allocate a FIFO so transfer state is 779 * reset. 780 */ 781SET_SRC_MODE M_DFF1; 782SET_DST_MODE M_DFF1; 783 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 784 SET_MODE(M_SCSI, M_SCSI) 785p_command_allocate_fifo: 786 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 787 call allocate_fifo; 788SET_SRC_MODE M_DFF1; 789SET_DST_MODE M_DFF1; 790 add NONE, -17, SCB_CDB_LEN; 791 jnc p_command_embedded; 792p_command_from_host: 793 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 794 mvi SG_CACHE_PRE, LAST_SEG; 795 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 796 jmp p_command_xfer; 797p_command_embedded: 798 bmov SHCNT[0], SCB_CDB_LEN, 1; 799 bmov DFDAT, SCB_CDB_STORE, 16; 800 mvi DFCNTRL, SCSIEN; 801p_command_xfer: 802 and SEQ_FLAGS, ~NO_CDB_SENT; 803 if ((ahd->features & AHD_FAST_CDB_DELIVERY) != 0) { 804 /* 805 * To speed up CDB delivery in Rev B, all CDB acks 806 * are "released" to the output sync as soon as the 807 * command phase starts. There is only one problem 808 * with this approach. If the target changes phase 809 * before all data are sent, we have left over acks 810 * that can go out on the bus in a data phase. Due 811 * to other chip contraints, this only happens if 812 * the target goes to data-in, but if the acks go 813 * out before we can test SDONE, we'll think that 814 * the transfer has completed successfully. Work 815 * around this by taking advantage of the 400ns or 816 * 800ns dead time between command phase and the REQ 817 * of the new phase. If the transfer has completed 818 * successfully, SCSIEN should fall *long* before we 819 * see a phase change. We thus treat any phasemiss 820 * that occurs before SCSIEN falls as an incomplete 821 * transfer. 822 */ 823 test SSTAT1, PHASEMIS jnz p_command_xfer_failed; 824 test DFCNTRL, SCSIEN jnz . - 1; 825 } else { 826 test DFCNTRL, SCSIEN jnz .; 827 } 828 /* 829 * DMA Channel automatically disabled. 830 * Don't allow a data phase if the command 831 * was not fully transferred. 832 */ 833 test SSTAT2, SDONE jnz ITloop; 834p_command_xfer_failed: 835 or SEQ_FLAGS, NO_CDB_SENT; 836 jmp ITloop; 837 838 839/* 840 * Status phase. Wait for the data byte to appear, then read it 841 * and store it into the SCB. 842 */ 843SET_SRC_MODE M_SCSI; 844SET_DST_MODE M_SCSI; 845p_status: 846 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation; 847p_status_okay: 848 mov SCB_SCSI_STATUS, SCSIDAT; 849 or SCB_CONTROL, STATUS_RCVD; 850 jmp ITloop; 851 852/* 853 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 854 * indentify message sequence and send it to the target. The host may 855 * override this behavior by setting the MK_MESSAGE bit in the SCB 856 * control byte. This will cause us to interrupt the host and allow 857 * it to handle the message phase completely on its own. If the bit 858 * associated with this target is set, we will also interrupt the host, 859 * thereby allowing it to send a message on the next selection regardless 860 * of the transaction being sent. 861 * 862 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 863 * This is done to allow the host to send messages outside of an identify 864 * sequence while protecting the seqencer from testing the MK_MESSAGE bit 865 * on an SCB that might not be for the current nexus. (For example, a 866 * BDR message in responce to a bad reselection would leave us pointed to 867 * an SCB that doesn't have anything to do with the current target). 868 * 869 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 870 * bus device reset). 871 * 872 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 873 * in case the target decides to put us in this phase for some strange 874 * reason. 875 */ 876p_mesgout_retry: 877 /* Turn on ATN for the retry */ 878 mvi SCSISIGO, ATNO; 879p_mesgout: 880 mov SINDEX, MSG_OUT; 881 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 882 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 883p_mesgout_identify: 884 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 885 test SCB_CONTROL, DISCENB jnz . + 2; 886 and SINDEX, ~DISCENB; 887/* 888 * Send a tag message if TAG_ENB is set in the SCB control block. 889 * Use SCB_NONPACKET_TAG as the tag value. 890 */ 891p_mesgout_tag: 892 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 893 mov SCSIDAT, SINDEX; /* Send the identify message */ 894 call phase_lock; 895 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 896 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 897 call phase_lock; 898 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 899 mov SCBPTR jmp p_mesgout_onebyte; 900/* 901 * Interrupt the driver, and allow it to handle this message 902 * phase and any required retries. 903 */ 904p_mesgout_from_host: 905 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 906 jmp host_message_loop; 907 908p_mesgout_onebyte: 909 mvi CLRSINT1, CLRATNO; 910 mov SCSIDAT, SINDEX; 911 912/* 913 * If the next bus phase after ATN drops is message out, it means 914 * that the target is requesting that the last message(s) be resent. 915 */ 916 call phase_lock; 917 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 918 919p_mesgout_done: 920 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 921 mov LAST_MSG, MSG_OUT; 922 mvi MSG_OUT, MSG_NOOP; /* No message left */ 923 jmp ITloop; 924 925/* 926 * Message in phase. Bytes are read using Automatic PIO mode. 927 */ 928p_mesgin: 929 /* read the 1st message byte */ 930 mvi ACCUM call inb_first; 931 932 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 933 cmp A,MSG_DISCONNECT je mesgin_disconnect; 934 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 935 cmp ALLZEROS,A je mesgin_complete; 936 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 937 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 938 cmp A,MSG_NOOP je mesgin_done; 939 940/* 941 * Pushed message loop to allow the kernel to 942 * run it's own message state engine. To avoid an 943 * extra nop instruction after signaling the kernel, 944 * we perform the phase_lock before checking to see 945 * if we should exit the loop and skip the phase_lock 946 * in the ITloop. Performing back to back phase_locks 947 * shouldn't hurt, but why do it twice... 948 */ 949host_message_loop: 950 call phase_lock; /* Benign the first time through. */ 951 SET_SEQINTCODE(HOST_MSG_LOOP) 952 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 953 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 954 mov SCSIDAT, RETURN_2; 955 jmp host_message_loop; 956 /* Must be CONT_MSG_LOOP_READ */ 957 mov NONE, SCSIDAT; /* ACK Byte */ 958 jmp host_message_loop; 959 960mesgin_ign_wide_residue: 961 mov SAVED_MODE, MODE_PTR; 962 SET_MODE(M_SCSI, M_SCSI) 963 shr NEGOADDR, 4, SAVED_SCSIID; 964 mov A, NEGCONOPTS; 965 RESTORE_MODE(SAVED_MODE) 966 test A, WIDEXFER jz mesgin_reject; 967 /* Pull the residue byte */ 968 mvi REG0 call inb_next; 969 cmp REG0, 0x01 jne mesgin_reject; 970 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 971 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done; 972 SET_SEQINTCODE(IGN_WIDE_RES) 973 jmp mesgin_done; 974 975mesgin_proto_violation: 976 SET_SEQINTCODE(PROTO_VIOLATION) 977 jmp mesgin_done; 978mesgin_reject: 979 mvi MSG_MESSAGE_REJECT call mk_mesg; 980mesgin_done: 981 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 982 jmp ITloop; 983 984#define INDEX_DISC_LIST(scsiid, lun) \ 985 and A, 0xC0, scsiid; \ 986 or SCBPTR, A, lun; \ 987 clr SCBPTR[1]; \ 988 and SINDEX, 0x30, scsiid; \ 989 shr SINDEX, 3; /* Multiply by 2 */ \ 990 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 991 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 992 993mesgin_identify: 994 /* 995 * Determine whether a target is using tagged or non-tagged 996 * transactions by first looking at the transaction stored in 997 * the per-device, disconnected array. If there is no untagged 998 * transaction for this target, this must be a tagged transaction. 999 */ 1000 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 1001 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1002 bmov DINDEX, SINDEX, 2; 1003 bmov REG0, SINDIR, 2; 1004 cmp REG0[1], SCB_LIST_NULL je snoop_tag; 1005 /* Untagged. Clear the busy table entry and setup the SCB. */ 1006 bmov DINDIR, ALLONES, 2; 1007 bmov SCBPTR, REG0, 2; 1008 jmp setup_SCB; 1009 1010/* 1011 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 1012 * If we get one, we use the tag returned to find the proper 1013 * SCB. After receiving the tag, look for the SCB at SCB locations tag and 1014 * tag + 256. 1015 */ 1016snoop_tag: 1017 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1018 or SEQ_FLAGS, 0x80; 1019 } 1020 mov NONE, SCSIDAT; /* ACK Identify MSG */ 1021 call phase_lock; 1022 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1023 or SEQ_FLAGS, 0x1; 1024 } 1025 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 1026 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1027 or SEQ_FLAGS, 0x2; 1028 } 1029 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 1030get_tag: 1031 clr SCBPTR[1]; 1032 mvi SCBPTR call inb_next; /* tag value */ 1033verify_scb: 1034 test SCB_CONTROL,DISCONNECTED jz verify_other_scb; 1035 mov A, SAVED_SCSIID; 1036 cmp SCB_SCSIID, A jne verify_other_scb; 1037 mov A, SAVED_LUN; 1038 cmp SCB_LUN, A je setup_SCB_disconnected; 1039verify_other_scb: 1040 xor SCBPTR[1], 1; 1041 test SCBPTR[1], 0xFF jnz verify_scb; 1042 jmp not_found; 1043 1044/* 1045 * Ensure that the SCB the tag points to is for 1046 * an SCB transaction to the reconnecting target. 1047 */ 1048setup_SCB: 1049 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1050 or SEQ_FLAGS, 0x10; 1051 } 1052 test SCB_CONTROL,DISCONNECTED jz not_found; 1053setup_SCB_disconnected: 1054 and SCB_CONTROL,~DISCONNECTED; 1055 clr SEQ_FLAGS; /* make note of IDENTIFY */ 1056 test SCB_SGPTR, SG_LIST_NULL jnz . + 3; 1057 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 1058 call allocate_fifo; 1059 /* See if the host wants to send a message upon reconnection */ 1060 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 1061 mvi HOST_MSG call mk_mesg; 1062 jmp mesgin_done; 1063 1064not_found: 1065 SET_SEQINTCODE(NO_MATCH) 1066 jmp mesgin_done; 1067 1068not_found_ITloop: 1069 SET_SEQINTCODE(NO_MATCH) 1070 jmp ITloop; 1071 1072/* 1073 * We received a "command complete" message. Put the SCB on the complete 1074 * queue and trigger a completion interrupt via the idle loop. Before doing 1075 * so, check to see if there is a residual or the status byte is something 1076 * other than STATUS_GOOD (0). In either of these conditions, we upload the 1077 * SCB back to the host so it can process this information. 1078 */ 1079mesgin_complete: 1080 1081 /* 1082 * If ATN is raised, we still want to give the target a message. 1083 * Perhaps there was a parity error on this last message byte. 1084 * Either way, the target should take us to message out phase 1085 * and then attempt to complete the command again. We should use a 1086 * critical section here to guard against a timeout triggering 1087 * for this command and setting ATN while we are still processing 1088 * the completion. 1089 test SCSISIGI, ATNI jnz mesgin_done; 1090 */ 1091 1092 /* 1093 * If we are identified and have successfully sent the CDB, 1094 * any status will do. Optimize this fast path. 1095 */ 1096 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation; 1097 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted; 1098 1099 /* 1100 * If the target never sent an identify message but instead went 1101 * to mesgin to give an invalid message, let the host abort us. 1102 */ 1103 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation; 1104 1105 /* 1106 * If we recevied good status but never successfully sent the 1107 * cdb, abort the command. 1108 */ 1109 test SCB_SCSI_STATUS,0xff jnz complete_accepted; 1110 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation; 1111complete_accepted: 1112 1113 /* 1114 * See if we attempted to deliver a message but the target ingnored us. 1115 */ 1116 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg; 1117 SET_SEQINTCODE(MKMSG_FAILED) 1118complete_nomsg: 1119 call queue_scb_completion; 1120 jmp await_busfree; 1121 1122BEGIN_CRITICAL; 1123freeze_queue: 1124 /* Cancel any pending select-out. */ 1125 test SSTAT0, SELDO|SELINGO jnz . + 2; 1126 and SCSISEQ0, ~ENSELO; 1127 mov ACCUM_SAVE, A; 1128 clr A; 1129 add QFREEZE_COUNT, 1; 1130 adc QFREEZE_COUNT[1], A; 1131 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 1132 mov A, ACCUM_SAVE ret; 1133END_CRITICAL; 1134 1135/* 1136 * Complete the current FIFO's SCB if data for this same 1137 * SCB is not transferring in the other FIFO. 1138 */ 1139SET_SRC_MODE M_DFF1; 1140SET_DST_MODE M_DFF1; 1141pkt_complete_scb_if_fifos_idle: 1142 bmov ARG_1, SCBPTR, 2; 1143 mvi DFFSXFRCTL, CLRCHN; 1144 SET_MODE(M_SCSI, M_SCSI) 1145 bmov SCBPTR, ARG_1, 2; 1146 test SCB_FIFO_USE_COUNT, 0xFF jnz return; 1147queue_scb_completion: 1148 test SCB_SCSI_STATUS,0xff jnz bad_status; 1149 /* 1150 * Check for residuals 1151 */ 1152 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 1153 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 1154 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 1155complete: 1156BEGIN_CRITICAL; 1157 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 1158 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 1159END_CRITICAL; 1160bad_status: 1161 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 1162 call freeze_queue; 1163upload_scb: 1164 /* 1165 * Restore SCB TAG since we reuse this field 1166 * in the sequencer. We don't want to corrupt 1167 * it on the host. 1168 */ 1169 bmov SCB_TAG, SCBPTR, 2; 1170BEGIN_CRITICAL; 1171 or SCB_SGPTR, SG_STATUS_VALID; 1172 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL; 1173 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne add_dma_scb_tail; 1174 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 1175 bmov COMPLETE_DMA_SCB_TAIL, SCBPTR, 2 ret; 1176add_dma_scb_tail: 1177 bmov REG0, SCBPTR, 2; 1178 bmov SCBPTR, COMPLETE_DMA_SCB_TAIL, 2; 1179 bmov SCB_NEXT_COMPLETE, REG0, 2; 1180 bmov COMPLETE_DMA_SCB_TAIL, REG0, 2 ret; 1181END_CRITICAL; 1182 1183/* 1184 * Is it a disconnect message? Set a flag in the SCB to remind us 1185 * and await the bus going free. If this is an untagged transaction 1186 * store the SCB id for it in our untagged target table for lookup on 1187 * a reselction. 1188 */ 1189mesgin_disconnect: 1190 /* 1191 * If ATN is raised, we still want to give the target a message. 1192 * Perhaps there was a parity error on this last message byte 1193 * or we want to abort this command. Either way, the target 1194 * should take us to message out phase and then attempt to 1195 * disconnect again. 1196 * XXX - Wait for more testing. 1197 test SCSISIGI, ATNI jnz mesgin_done; 1198 */ 1199 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT 1200 jnz mesgin_proto_violation; 1201 or SCB_CONTROL,DISCONNECTED; 1202 test SCB_CONTROL, TAG_ENB jnz await_busfree; 1203queue_disc_scb: 1204 bmov REG0, SCBPTR, 2; 1205 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1206 bmov DINDEX, SINDEX, 2; 1207 bmov DINDIR, REG0, 2; 1208 bmov SCBPTR, REG0, 2; 1209 /* FALLTHROUGH */ 1210await_busfree: 1211 and SIMODE1, ~ENBUSFREE; 1212 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) { 1213 /* 1214 * In the BUSFREEREV_BUG case, the 1215 * busfree status was cleared at the 1216 * beginning of the connection. 1217 */ 1218 mvi CLRSINT1,CLRBUSFREE; 1219 } 1220 mov NONE, SCSIDAT; /* Ack the last byte */ 1221 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1222 jnz await_busfree_not_m_dff; 1223SET_SRC_MODE M_DFF1; 1224SET_DST_MODE M_DFF1; 1225await_busfree_clrchn: 1226 mvi DFFSXFRCTL, CLRCHN; 1227await_busfree_not_m_dff: 1228 /* clear target specific flags */ 1229 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT; 1230 test SSTAT1,REQINIT|BUSFREE jz .; 1231 /* 1232 * We only set BUSFREE status once either a new 1233 * phase has been detected or we are really 1234 * BUSFREE. This allows the driver to know 1235 * that we are active on the bus even though 1236 * no identified transaction exists should a 1237 * timeout occur while awaiting busfree. 1238 */ 1239 mvi LASTPHASE, P_BUSFREE; 1240 test SSTAT1, BUSFREE jnz idle_loop; 1241 SET_SEQINTCODE(MISSED_BUSFREE) 1242 1243 1244/* 1245 * Save data pointers message: 1246 * Copying RAM values back to SCB, for Save Data Pointers message, but 1247 * only if we've actually been into a data phase to change them. This 1248 * protects against bogus data in scratch ram and the residual counts 1249 * since they are only initialized when we go into data_in or data_out. 1250 * Ack the message as soon as possible. 1251 */ 1252SET_SRC_MODE M_DFF1; 1253SET_DST_MODE M_DFF1; 1254mesgin_sdptrs: 1255 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1256 test SEQ_FLAGS, DPHASE jz ITloop; 1257 call save_pointers; 1258 jmp ITloop; 1259 1260save_pointers: 1261 /* 1262 * If we are asked to save our position at the end of the 1263 * transfer, just mark us at the end rather than perform a 1264 * full save. 1265 */ 1266 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1267 or SCB_SGPTR, SG_LIST_NULL ret; 1268 1269save_pointers_full: 1270 /* 1271 * The SCB_DATAPTR becomes the current SHADDR. 1272 * All other information comes directly from our residual 1273 * state. 1274 */ 1275 bmov SCB_DATAPTR, SHADDR, 8; 1276 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1277 1278/* 1279 * Restore pointers message? Data pointers are recopied from the 1280 * SCB anytime we enter a data phase for the first time, so all 1281 * we need to do is clear the DPHASE flag and let the data phase 1282 * code do the rest. We also reset/reallocate the FIFO to make 1283 * sure we have a clean start for the next data or command phase. 1284 */ 1285mesgin_rdptrs: 1286 and SEQ_FLAGS, ~DPHASE; 1287 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1288 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1289 SET_MODE(M_SCSI, M_SCSI) 1290msgin_rdptrs_get_fifo: 1291 call allocate_fifo; 1292 jmp mesgin_done; 1293 1294phase_lock: 1295 if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) { 1296 /* 1297 * Don't ignore persistent REQ assertions just because 1298 * they were asserted within the bus settle delay window. 1299 * This allows us to tolerate devices like the GEM318 1300 * that violate the SCSI spec. We are careful not to 1301 * count REQ while we are waiting for it to fall during 1302 * an async phase due to our asserted ACK. Each 1303 * sequencer instruction takes ~25ns, so the REQ must 1304 * last at least 100ns in order to be counted as a true 1305 * REQ. 1306 */ 1307 test SCSIPHASE, 0xFF jnz phase_locked; 1308 test SCSISIGI, ACKI jnz phase_lock; 1309 test SCSISIGI, REQI jz phase_lock; 1310 test SCSIPHASE, 0xFF jnz phase_locked; 1311 test SCSISIGI, ACKI jnz phase_lock; 1312 test SCSISIGI, REQI jz phase_lock; 1313phase_locked: 1314 } else { 1315 test SCSIPHASE, 0xFF jz .; 1316 } 1317 test SSTAT1, SCSIPERR jnz phase_lock; 1318phase_lock_latch_phase: 1319 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1320 1321/* 1322 * Functions to read data in Automatic PIO mode. 1323 * 1324 * An ACK is not sent on input from the target until SCSIDATL is read from. 1325 * So we wait until SCSIDATL is latched (the usual way), then read the data 1326 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1327 * line, or we just want to acknowledge the byte, then we do a dummy read 1328 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1329 * data byte on the bus until we send our ACK. 1330 * 1331 * The assumption here is that these are called in a particular sequence, 1332 * and that REQ is already set when inb_first is called. inb_{first,next} 1333 * use the same calling convention as inb. 1334 */ 1335inb_next: 1336 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1337inb_next_wait: 1338 /* 1339 * If there is a parity error, wait for the kernel to 1340 * see the interrupt and prepare our message response 1341 * before continuing. 1342 */ 1343 test SCSIPHASE, 0xFF jz .; 1344 test SSTAT1, SCSIPERR jnz inb_next_wait; 1345inb_next_check_phase: 1346 and LASTPHASE, PHASE_MASK, SCSISIGI; 1347 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1348inb_first: 1349 clr DINDEX[1]; 1350 mov DINDEX,SINDEX; 1351 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1352inb_last: 1353 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1354 1355mk_mesg: 1356 mvi SCSISIGO, ATNO; 1357 mov MSG_OUT,SINDEX ret; 1358 1359SET_SRC_MODE M_DFF1; 1360SET_DST_MODE M_DFF1; 1361disable_ccsgen: 1362 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; 1363 clr CCSGCTL; 1364disable_ccsgen_fetch_done: 1365 clr SG_STATE ret; 1366 1367service_fifo: 1368 /* 1369 * Do we have any prefetch left??? 1370 */ 1371 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1372 1373 /* 1374 * Can this FIFO have access to the S/G cache yet? 1375 */ 1376 test CCSGCTL, SG_CACHE_AVAIL jz return; 1377 1378 /* Did we just finish fetching segs? */ 1379 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete; 1380 1381 /* Are we actively fetching segments? */ 1382 test CCSGCTL, CCSGENACK jnz return; 1383 1384 /* 1385 * Should the other FIFO get the S/G cache first? If 1386 * both FIFOs have been allocated since we last checked 1387 * any FIFO, it is important that we service a FIFO 1388 * that is not actively on the bus first. This guarantees 1389 * that a FIFO will be freed to handle snapshot requests for 1390 * any FIFO that is still on the bus. Chips with RTI do not 1391 * perform snapshots, so don't bother with this test there. 1392 */ 1393 if ((ahd->features & AHD_RTI) == 0) { 1394 /* 1395 * If we're not still receiving SCSI data, 1396 * it is safe to allocate the S/G cache to 1397 * this FIFO. 1398 */ 1399 test DFCNTRL, SCSIEN jz idle_sgfetch_start; 1400 1401 /* 1402 * Switch to the other FIFO. Non-RTI chips 1403 * also have the "set mode" bug, so we must 1404 * disable interrupts during the switch. 1405 */ 1406 mvi SEQINTCTL, INTVEC1DSL; 1407 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1408 1409 /* 1410 * If the other FIFO needs loading, then it 1411 * must not have claimed the S/G cache yet 1412 * (SG_CACHE_AVAIL would have been cleared in 1413 * the orginal FIFO mode and we test this above). 1414 * Return to the idle loop so we can process the 1415 * FIFO not currently on the bus first. 1416 */ 1417 test SG_STATE, LOADING_NEEDED jz idle_sgfetch_okay; 1418 clr SEQINTCTL ret; 1419idle_sgfetch_okay: 1420 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1421 clr SEQINTCTL; 1422 } 1423 1424idle_sgfetch_start: 1425 /* 1426 * We fetch a "cacheline aligned" and sized amount of data 1427 * so we don't end up referencing a non-existant page. 1428 * Cacheline aligned is in quotes because the kernel will 1429 * set the prefetch amount to a reasonable level if the 1430 * cacheline size is unknown. 1431 */ 1432 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4; 1433 mvi SGHCNT, SG_PREFETCH_CNT; 1434 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) { 1435 /* 1436 * Need two instructions between "touches" of SGHADDR. 1437 */ 1438 nop; 1439 } 1440 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1441 mvi CCSGCTL, CCSGEN|CCSGRESET; 1442 or SG_STATE, FETCH_INPROG ret; 1443idle_sgfetch_complete: 1444 /* 1445 * Guard against SG_CACHE_AVAIL activating during sg fetch 1446 * request in the other FIFO. 1447 */ 1448 test SG_STATE, FETCH_INPROG jz return; 1449 clr CCSGCTL; 1450 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1451 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1452idle_sg_avail: 1453 /* Does the hardware have space for another SG entry? */ 1454 test DFSTATUS, PRELOAD_AVAIL jz return; 1455 /* 1456 * On the A, preloading a segment before HDMAENACK 1457 * comes true can clobber the shaddow address of the 1458 * first segment in the S/G FIFO. Wait until it is 1459 * safe to proceed. 1460 */ 1461 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) { 1462 test DFCNTRL, HDMAENACK jz return; 1463 } 1464 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1465 bmov HADDR, CCSGRAM, 8; 1466 } else { 1467 bmov HADDR, CCSGRAM, 4; 1468 } 1469 bmov HCNT, CCSGRAM, 3; 1470 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1471 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1472 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1473 } 1474 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1475 /* Skip 4 bytes of pad. */ 1476 add CCSGADDR, 4; 1477 } 1478sg_advance: 1479 clr A; /* add sizeof(struct scatter) */ 1480 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1481 adc SCB_RESIDUAL_SGPTR[1],A; 1482 adc SCB_RESIDUAL_SGPTR[2],A; 1483 adc SCB_RESIDUAL_SGPTR[3],A; 1484 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1485 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1486 or SINDEX, LAST_SEG; 1487 clr SG_STATE; 1488 mov SG_CACHE_PRE, SINDEX; 1489 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { 1490 /* 1491 * Use SCSIENWRDIS so that SCSIEN is never 1492 * modified by this operation. 1493 */ 1494 or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS; 1495 } else { 1496 or DFCNTRL, PRELOADEN|HDMAEN; 1497 } 1498 /* 1499 * Do we have another segment in the cache? 1500 */ 1501 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1502 jnc return; 1503 and SG_STATE, ~SEGS_AVAIL ret; 1504 1505/* 1506 * Initialize the DMA address and counter from the SCB. 1507 */ 1508load_first_seg: 1509 bmov HADDR, SCB_DATAPTR, 11; 1510 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0]; 1511 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1512 or REG_ISR, LAST_SEG; 1513 mov SG_CACHE_PRE, REG_ISR; 1514 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1515 /* 1516 * Since we've are entering a data phase, we will 1517 * rely on the SCB_RESID* fields. Initialize the 1518 * residual and clear the full residual flag. 1519 */ 1520 and SCB_SGPTR[0], ~SG_FULL_RESID; 1521 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1522 /* If we need more S/G elements, tell the idle loop */ 1523 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1524 mvi SG_STATE, LOADING_NEEDED ret; 1525 clr SG_STATE ret; 1526 1527p_data_handle_xfer: 1528 call setjmp; 1529 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1530p_data_clear_handler: 1531 or LONGJMP_ADDR[1], INVALID_ADDR ret; 1532 1533p_data: 1534 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1535 SET_SEQINTCODE(PROTO_VIOLATION) 1536p_data_allowed: 1537 1538 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1539 1540 /* 1541 * If we re-enter the data phase after going through another 1542 * phase, our transfer location has almost certainly been 1543 * corrupted by the interveining, non-data, transfers. Ask 1544 * the host driver to fix us up based on the transfer residual 1545 * unless we already know that we should be bitbucketing. 1546 */ 1547 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1548 SET_SEQINTCODE(PDATA_REINIT) 1549 jmp data_phase_inbounds; 1550 1551p_data_bitbucket: 1552 /* 1553 * Turn on `Bit Bucket' mode, wait until the target takes 1554 * us to another phase, and then notify the host. 1555 */ 1556 mov SAVED_MODE, MODE_PTR; 1557 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1558 jnz bitbucket_not_m_dff; 1559 /* 1560 * Ensure that any FIFO contents are cleared out and the 1561 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1562 * doesn't discard data already in the FIFO. 1563 */ 1564 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1565 SET_MODE(M_SCSI, M_SCSI) 1566bitbucket_not_m_dff: 1567 or SXFRCTL1,BITBUCKET; 1568 /* Wait for non-data phase. */ 1569 test SCSIPHASE, ~DATA_PHASE_MASK jz .; 1570 and SXFRCTL1, ~BITBUCKET; 1571 RESTORE_MODE(SAVED_MODE) 1572SET_SRC_MODE M_DFF1; 1573SET_DST_MODE M_DFF1; 1574 SET_SEQINTCODE(DATA_OVERRUN) 1575 jmp ITloop; 1576 1577data_phase_initialize: 1578 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1579 call load_first_seg; 1580data_phase_inbounds: 1581 /* We have seen a data phase at least once. */ 1582 or SEQ_FLAGS, DPHASE; 1583 mov SAVED_MODE, MODE_PTR; 1584 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop; 1585 call p_data_handle_xfer; 1586data_group_dma_loop: 1587 /* 1588 * The transfer is complete if either the last segment 1589 * completes or the target changes phase. Both conditions 1590 * will clear SCSIEN. 1591 */ 1592 call idle_loop_service_fifos; 1593 call idle_loop_cchan; 1594 call idle_loop_gsfifo; 1595 RESTORE_MODE(SAVED_MODE) 1596 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1597 1598data_group_dmafinish: 1599 /* 1600 * The transfer has terminated either due to a phase 1601 * change, and/or the completion of the last segment. 1602 * We have two goals here. Do as much other work 1603 * as possible while the data fifo drains on a read 1604 * and respond as quickly as possible to the standard 1605 * messages (save data pointers/disconnect and command 1606 * complete) that usually follow a data phase. 1607 */ 1608 call calc_residual; 1609 1610 /* 1611 * Go ahead and shut down the DMA engine now. 1612 */ 1613 test DFCNTRL, DIRECTION jnz data_phase_finish; 1614data_group_fifoflush: 1615 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1616 or DFCNTRL, FIFOFLUSH; 1617 } 1618 /* 1619 * We have enabled the auto-ack feature. This means 1620 * that the controller may have already transferred 1621 * some overrun bytes into the data FIFO and acked them 1622 * on the bus. The only way to detect this situation is 1623 * to wait for LAST_SEG_DONE to come true on a completed 1624 * transfer and then test to see if the data FIFO is 1625 * non-empty. We know there is more data yet to transfer 1626 * if SG_LIST_NULL is not yet set, thus there cannot be 1627 * an overrun. 1628 */ 1629 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1630 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1631 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1632 /* Overrun */ 1633 jmp p_data; 1634data_phase_finish: 1635 /* 1636 * If the target has left us in data phase, loop through 1637 * the dma code again. We will only loop if there is a 1638 * data overrun. 1639 */ 1640 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1641 test SSTAT0, TARGET jnz data_phase_done; 1642 } 1643 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1644 test SSTAT1, REQINIT jz .; 1645 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1646 } 1647 1648data_phase_done: 1649 /* Kill off any pending prefetch */ 1650 call disable_ccsgen; 1651 or LONGJMP_ADDR[1], INVALID_ADDR; 1652 1653 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1654 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1655 /* 1656 and SEQ_FLAGS, ~DPHASE_PENDING; 1657 * For data-in phases, wait for any pending acks from the 1658 * initiator before changing phase. We only need to 1659 * send Ignore Wide Residue messages for data-in phases. 1660 test DFCNTRL, DIRECTION jz target_ITloop; 1661 test SSTAT1, REQINIT jnz .; 1662 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop; 1663 SET_MODE(M_SCSI, M_SCSI) 1664 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1665 */ 1666 /* 1667 * Issue an Ignore Wide Residue Message. 1668 mvi P_MESGIN|BSYO call change_phase; 1669 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1670 mvi 1 call target_outb; 1671 jmp target_ITloop; 1672 */ 1673 } else { 1674 jmp ITloop; 1675 } 1676 1677/* 1678 * We assume that, even though data may still be 1679 * transferring to the host, that the SCSI side of 1680 * the DMA engine is now in a static state. This 1681 * allows us to update our notion of where we are 1682 * in this transfer. 1683 * 1684 * If, by chance, we stopped before being able 1685 * to fetch additional segments for this transfer, 1686 * yet the last S/G was completely exhausted, 1687 * call our idle loop until it is able to load 1688 * another segment. This will allow us to immediately 1689 * pickup on the next segment on the next data phase. 1690 * 1691 * If we happened to stop on the last segment, then 1692 * our residual information is still correct from 1693 * the idle loop and there is no need to perform 1694 * any fixups. 1695 */ 1696residual_before_last_seg: 1697 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1698 /* 1699 * Can never happen from an interrupt as the packetized 1700 * hardware will only interrupt us once SHVALID or 1701 * LAST_SEG_DONE. 1702 */ 1703 call idle_loop_service_fifos; 1704 RESTORE_MODE(SAVED_MODE) 1705 /* FALLTHROUGH */ 1706calc_residual: 1707 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1708 /* Record if we've consumed all S/G entries */ 1709 test MDFFSTAT, SHVALID jz . + 2; 1710 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1711 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1712 1713sgptr_fixup: 1714 /* 1715 * Fixup the residual next S/G pointer. The S/G preload 1716 * feature of the chip allows us to load two elements 1717 * in addition to the currently active element. We 1718 * store the bottom byte of the next S/G pointer in 1719 * the SG_CACHE_PTR register so we can restore the 1720 * correct value when the DMA completes. If the next 1721 * sg ptr value has advanced to the point where higher 1722 * bytes in the address have been affected, fix them 1723 * too. 1724 */ 1725 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1726 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1727 add SCB_RESIDUAL_SGPTR[1], -1; 1728 adc SCB_RESIDUAL_SGPTR[2], -1; 1729 adc SCB_RESIDUAL_SGPTR[3], -1; 1730sgptr_fixup_done: 1731 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1732 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1733 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1734 1735export timer_isr: 1736 call issue_cmdcmplt; 1737 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 1738 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 1739 /* 1740 * In H2A4, the mode pointer is not saved 1741 * for intvec2, but is restored on iret. 1742 * This can lead to the restoration of a 1743 * bogus mode ptr. Manually clear the 1744 * intmask bits and do a normal return 1745 * to compensate. 1746 */ 1747 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret; 1748 } else { 1749 or SEQINTCTL, IRET ret; 1750 } 1751 1752export seq_isr: 1753 if ((ahd->features & AHD_RTI) == 0) { 1754 /* 1755 * On RevA Silicon, if the target returns us to data-out 1756 * after we have already trained for data-out, it is 1757 * possible for us to transition the free running clock to 1758 * data-valid before the required 100ns P1 setup time (8 P1 1759 * assertions in fast-160 mode). This will only happen if 1760 * this L-Q is a continuation of a data transfer for which 1761 * we have already prefetched data into our FIFO (LQ/Data 1762 * followed by LQ/Data for the same write transaction). 1763 * This can cause some target implementations to miss the 1764 * first few data transfers on the bus. We detect this 1765 * situation by noticing that this is the first data transfer 1766 * after an LQ (LQIWORKONLQ true), that the data transfer is 1767 * a continuation of a transfer already setup in our FIFO 1768 * (SAVEPTRS interrupt), and that the transaction is a write 1769 * (DIRECTION set in DFCNTRL). The delay is performed by 1770 * disabling SCSIEN until we see the first REQ from the 1771 * target. 1772 * 1773 * First instruction in an ISR cannot be a branch on 1774 * Rev A. Snapshot LQISTAT2 so the status is not missed 1775 * and deffer the test by one instruction. 1776 */ 1777 mov REG_ISR, LQISTAT2; 1778 test REG_ISR, LQIWORKONLQ jz main_isr; 1779 test SEQINTSRC, SAVEPTRS jz main_isr; 1780 test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo; 1781 /* 1782 * Switch to the active FIFO after clearing the snapshot 1783 * savepointer in the current FIFO. We do this so that 1784 * a pending CTXTDONE or SAVEPTR is visible in the active 1785 * FIFO. This status is the only way we can detect if we 1786 * have lost the race (e.g. host paused us) and our attempts 1787 * to disable the channel occurred after all REQs were 1788 * already seen and acked (REQINIT never comes true). 1789 */ 1790 mvi DFFSXFRCTL, CLRCHN; 1791 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1792 test DFCNTRL, DIRECTION jz interrupt_return; 1793 and DFCNTRL, ~SCSIEN; 1794snapshot_wait_data_valid: 1795 test SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz interrupt_return; 1796 test SSTAT1, REQINIT jz snapshot_wait_data_valid; 1797snapshot_data_valid: 1798 or DFCNTRL, SCSIEN; 1799 or SEQINTCTL, IRET ret; 1800snapshot_saveptr: 1801 mvi DFFSXFRCTL, CLRCHN; 1802 or SEQINTCTL, IRET ret; 1803main_isr: 1804 } 1805 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1806 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1807 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1808 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1809 SET_SEQINTCODE(INVALID_SEQINT) 1810 1811/* 1812 * There are two types of save pointers interrupts: 1813 * The first is a snapshot save pointers where the current FIFO is not 1814 * active and contains a snapshot of the current poniter information. 1815 * This happens between packets in a stream for a single L_Q. Since we 1816 * are not performing a pointer save, we can safely clear the channel 1817 * so it can be used for other transactions. On RTI capable controllers, 1818 * where snapshots can, and are, disabled, the code to handle this type 1819 * of snapshot is not active. 1820 * 1821 * The second case is a save pointers on an active FIFO which occurs 1822 * if the target changes to a new L_Q or busfrees/QASes and the transfer 1823 * has a residual. This should occur coincident with a ctxtdone. We 1824 * disable the interrupt and allow our active routine to handle the 1825 * save. 1826 */ 1827saveptr_intr: 1828 if ((ahd->features & AHD_RTI) == 0) { 1829 test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr; 1830 } 1831saveptr_active_fifo: 1832 and SEQIMODE, ~ENSAVEPTRS; 1833 or SEQINTCTL, IRET ret; 1834 1835cfg4data_intr: 1836 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count; 1837 call load_first_seg; 1838 call pkt_handle_xfer; 1839 inc SCB_FIFO_USE_COUNT; 1840interrupt_return: 1841 or SEQINTCTL, IRET ret; 1842 1843cfg4istat_intr: 1844 call freeze_queue; 1845 add NONE, -13, SCB_CDB_LEN; 1846 jnc cfg4istat_have_sense_addr; 1847 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1848 /* 1849 * Host sets up address/count and enables transfer. 1850 */ 1851 SET_SEQINTCODE(CFG4ISTAT_INTR) 1852 jmp cfg4istat_setup_handler; 1853cfg4istat_have_sense_addr: 1854 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1855 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1856 mvi SG_CACHE_PRE, LAST_SEG; 1857 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1858cfg4istat_setup_handler: 1859 /* 1860 * Status pkt is transferring to host. 1861 * Wait in idle loop for transfer to complete. 1862 * If a command completed before an attempted 1863 * task management function completed, notify the host. 1864 */ 1865 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func; 1866 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 1867cfg4istat_no_taskmgmt_func: 1868 call pkt_handle_status; 1869 or SEQINTCTL, IRET ret; 1870 1871cfg4icmd_intr: 1872 /* 1873 * In the case of DMAing a CDB from the host, the normal 1874 * CDB buffer is formatted with an 8 byte address followed 1875 * by a 1 byte count. 1876 */ 1877 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 1878 mvi SG_CACHE_PRE, LAST_SEG; 1879 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1880 call pkt_handle_cdb; 1881 or SEQINTCTL, IRET ret; 1882 1883/* 1884 * See if the target has gone on in this context creating an 1885 * overrun condition. For the write case, the hardware cannot 1886 * ack bytes until data are provided. So, if the target begins 1887 * another packet without changing contexts, implying we are 1888 * not sitting on a packet boundary, we are in an overrun 1889 * situation. For the read case, the hardware will continue to 1890 * ack bytes into the FIFO, and may even ack the last overrun packet 1891 * into the FIFO. If the FIFO should become non-empty, we are in 1892 * a read overrun case. 1893 */ 1894#define check_overrun \ 1895 /* Not on a packet boundary. */ \ 1896 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1897 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1898 1899pkt_handle_xfer: 1900 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1901 call setjmp; 1902 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1903 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1904 test SCSISIGO, ATNO jnz . + 2; 1905 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 1906 /* 1907 * Defer handling of this NONPACKREQ until we 1908 * can be sure it pertains to this FIFO. SAVEPTRS 1909 * will not be asserted if the NONPACKREQ is for us, 1910 * so we must simulate it if shaddow is valid. If 1911 * shaddow is not valid, keep running this FIFO until we 1912 * have satisfied the transfer by loading segments and 1913 * waiting for either shaddow valid or last_seg_done. 1914 */ 1915 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 1916pkt_service_fifo: 1917 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1918pkt_last_seg: 1919 call setjmp; 1920 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1921 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done; 1922 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1923 test SCSISIGO, ATNO jnz . + 2; 1924 test SSTAT2, NONPACKREQ jz return; 1925 test MDFFSTAT, SHVALID jz return; 1926 /* FALLTHROUGH */ 1927 1928/* 1929 * Either a SAVEPTRS interrupt condition is pending for this FIFO 1930 * or we have a pending NONPACKREQ for this FIFO. We differentiate 1931 * between the two by capturing the state of the SAVEPTRS interrupt 1932 * prior to clearing this status and executing the common code for 1933 * these two cases. 1934 */ 1935pkt_saveptrs: 1936BEGIN_CRITICAL; 1937 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1938 or DFCNTRL, FIFOFLUSH; 1939 } 1940 mov REG0, SEQINTSRC; 1941 call calc_residual; 1942 call save_pointers; 1943 mvi CLRSEQINTSRC, CLRSAVEPTRS; 1944 call disable_ccsgen; 1945 or SEQIMODE, ENSAVEPTRS; 1946 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status; 1947 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status; 1948 /* 1949 * Keep a handler around for this FIFO until it drains 1950 * to the host to guarantee that we don't complete the 1951 * command to the host before the data arrives. 1952 */ 1953pkt_saveptrs_wait_fifoemp: 1954 call setjmp; 1955 test DFSTATUS, FIFOEMP jz return; 1956pkt_saveptrs_check_status: 1957 or LONGJMP_ADDR[1], INVALID_ADDR; 1958 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 1959 dec SCB_FIFO_USE_COUNT; 1960 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 1961 mvi DFFSXFRCTL, CLRCHN ret; 1962 1963/* 1964 * LAST_SEG_DONE status has been seen in the current FIFO. 1965 * This indicates that all of the allowed data for this 1966 * command has transferred across the SCSI and host buses. 1967 * Check for overrun and see if we can complete this command. 1968 */ 1969pkt_last_seg_done: 1970 /* 1971 * Mark transfer as completed. 1972 */ 1973 or SCB_SGPTR, SG_LIST_NULL; 1974 1975 /* 1976 * Wait for the current context to finish to verify that 1977 * no overrun condition has occurred. 1978 */ 1979 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 1980 call setjmp; 1981pkt_wait_ctxt_done_loop: 1982 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 1983 /* 1984 * A sufficiently large overrun or a NONPACKREQ may 1985 * prevent CTXTDONE from ever asserting, so we must 1986 * poll for these statuses too. 1987 */ 1988 check_overrun; 1989 test SSTAT2, NONPACKREQ jz return; 1990 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1991 /* FALLTHROUGH */ 1992 1993pkt_ctxt_done: 1994 check_overrun; 1995 or LONGJMP_ADDR[1], INVALID_ADDR; 1996 /* 1997 * If status has been received, it is safe to skip 1998 * the check to see if another FIFO is active because 1999 * LAST_SEG_DONE has been observed. However, we check 2000 * the FIFO anyway since it costs us only one extra 2001 * instruction to leverage common code to perform the 2002 * SCB completion. 2003 */ 2004 dec SCB_FIFO_USE_COUNT; 2005 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2006 mvi DFFSXFRCTL, CLRCHN ret; 2007END_CRITICAL; 2008 2009/* 2010 * Must wait until CDB xfer is over before issuing the 2011 * clear channel. 2012 */ 2013pkt_handle_cdb: 2014 call setjmp; 2015 test SG_CACHE_SHADOW, LAST_SEG_DONE jz return; 2016 or LONGJMP_ADDR[1], INVALID_ADDR; 2017 mvi DFFSXFRCTL, CLRCHN ret; 2018 2019/* 2020 * Watch over the status transfer. Our host sense buffer is 2021 * large enough to take the maximum allowed status packet. 2022 * None-the-less, we must still catch and report overruns to 2023 * the host. Additionally, properly catch unexpected non-packet 2024 * phases that are typically caused by CRC errors in status packet 2025 * transmission. 2026 */ 2027pkt_handle_status: 2028 call setjmp; 2029 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 2030 test SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq; 2031 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 2032pkt_status_IU_done: 2033 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 2034 or DFCNTRL, FIFOFLUSH; 2035 } 2036 test DFSTATUS, FIFOEMP jz return; 2037BEGIN_CRITICAL; 2038 or LONGJMP_ADDR[1], INVALID_ADDR; 2039 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 2040 or SCB_CONTROL, STATUS_RCVD; 2041 jmp pkt_complete_scb_if_fifos_idle; 2042END_CRITICAL; 2043pkt_status_check_overrun: 2044 /* 2045 * Status PKT overruns are uncerimoniously recovered with a 2046 * bus reset. If we've overrun, let the host know so that 2047 * recovery can be performed. 2048 * 2049 * LAST_SEG_DONE has been observed. If either CTXTDONE or 2050 * a NONPACKREQ phase change have occurred and the FIFO is 2051 * empty, there is no overrun. 2052 */ 2053 test DFSTATUS, FIFOEMP jz pkt_status_report_overrun; 2054 test SEQINTSRC, CTXTDONE jz . + 2; 2055 test DFSTATUS, FIFOEMP jnz pkt_status_IU_done; 2056 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 2057 test DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq; 2058pkt_status_report_overrun: 2059 SET_SEQINTCODE(STATUS_OVERRUN) 2060 /* SEQUENCER RESTARTED */ 2061pkt_status_check_nonpackreq: 2062 /* 2063 * CTXTDONE may be held off if a NONPACKREQ is associated with 2064 * the current context. If a NONPACKREQ is observed, decide 2065 * if it is for the current context. If it is for the current 2066 * context, we must defer NONPACKREQ processing until all data 2067 * has transferred to the host. 2068 */ 2069 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 2070 test SCSISIGO, ATNO jnz . + 2; 2071 test SSTAT2, NONPACKREQ jz return; 2072 test SEQINTSRC, CTXTDONE jnz pkt_status_IU_done; 2073 test DFSTATUS, FIFOEMP jz return; 2074 /* 2075 * The unexpected nonpkt phase handler assumes that any 2076 * data channel use will have a FIFO reference count. It 2077 * turns out that the status handler doesn't need a refernce 2078 * count since the status received flag, and thus completion 2079 * processing, cannot be set until the handler is finished. 2080 * We increment the count here to make the nonpkt handler 2081 * happy. 2082 */ 2083 inc SCB_FIFO_USE_COUNT; 2084 /* FALLTHROUGH */ 2085 2086/* 2087 * Nonpackreq is a polled status. It can come true in three situations: 2088 * we have received an L_Q, we have sent one or more L_Qs, or there is no 2089 * L_Q context associated with this REQ (REQ occurs immediately after a 2090 * (re)selection). Routines that know that the context responsible for this 2091 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 2092 * top level idle loop, we exhaust all active contexts prior to determining that 2093 * we simply do not have the full I_T_L_Q for this phase. 2094 */ 2095unexpected_nonpkt_phase_find_ctxt: 2096 /* 2097 * This nonpackreq is most likely associated with one of the tags 2098 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 2099 * nonpackreq if we've cleared out the FIFOs and handled any 2100 * pending SELDO. 2101 */ 2102SET_SRC_MODE M_SCSI; 2103SET_DST_MODE M_SCSI; 2104 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 2105 cmp A, FIFO1FREE|FIFO0FREE jne return; 2106 test SSTAT0, SELDO jnz return; 2107 mvi SCBPTR[1], SCB_LIST_NULL; 2108unexpected_nonpkt_phase: 2109 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 2110 jnz unexpected_nonpkt_mode_cleared; 2111SET_SRC_MODE M_DFF0; 2112SET_DST_MODE M_DFF0; 2113 or LONGJMP_ADDR[1], INVALID_ADDR; 2114 dec SCB_FIFO_USE_COUNT; 2115 mvi DFFSXFRCTL, CLRCHN; 2116unexpected_nonpkt_mode_cleared: 2117 mvi CLRSINT2, CLRNONPACKREQ; 2118 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 2119 SET_SEQINTCODE(ENTERING_NONPACK) 2120 jmp ITloop; 2121 2122illegal_phase: 2123 SET_SEQINTCODE(ILLEGAL_PHASE) 2124 jmp ITloop; 2125 2126/* 2127 * We have entered an overrun situation. If we have working 2128 * BITBUCKET, flip that on and let the hardware eat any overrun 2129 * data. Otherwise use an overrun buffer in the host to simulate 2130 * BITBUCKET. 2131 */ 2132pkt_handle_overrun_inc_use_count: 2133 inc SCB_FIFO_USE_COUNT; 2134pkt_handle_overrun: 2135 SET_SEQINTCODE(CFG4OVERRUN) 2136 call freeze_queue; 2137 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 2138 or DFFSXFRCTL, DFFBITBUCKET; 2139SET_SRC_MODE M_DFF1; 2140SET_DST_MODE M_DFF1; 2141 } else { 2142 call load_overrun_buf; 2143 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 2144 } 2145 call setjmp; 2146 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2147 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done; 2148 call load_overrun_buf; 2149 or DFCNTRL, PRELOADEN; 2150overrun_load_done: 2151 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 2152 } else { 2153 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end; 2154 } 2155 test SSTAT2, NONPACKREQ jz return; 2156pkt_overrun_end: 2157 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 2158 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 2159 dec SCB_FIFO_USE_COUNT; 2160 or LONGJMP_ADDR[1], INVALID_ADDR; 2161 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2162 mvi DFFSXFRCTL, CLRCHN ret; 2163 2164if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2165load_overrun_buf: 2166 /* 2167 * Load a dummy segment if preload space is available. 2168 */ 2169 mov HADDR[0], SHARED_DATA_ADDR; 2170 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 2171 mov ACCUM_SAVE, A; 2172 clr A; 2173 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 2174 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 2175 mov A, ACCUM_SAVE; 2176 bmov HADDR[4], ALLZEROS, 4; 2177 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 2178 clr HCNT[0]; 2179 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 2180 clr HCNT[2] ret; 2181} 2182