1/* 2 * Adaptec U320 device driver firmware for Linux and FreeBSD. 3 * 4 * Copyright (c) 1994-2001 Justin T. Gibbs. 5 * Copyright (c) 2000-2002 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 * 40 * $FreeBSD$ 41 */ 42 43VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#72 $" 44PATCH_ARG_LIST = "struct ahd_softc *ahd" 45PREFIX = "ahd_" 46 47#include "aic79xx.reg" 48#include "scsi_message.h" 49 50restart: 51if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 52 test SEQINTCODE, 0xFF jz idle_loop; 53 SET_SEQINTCODE(NO_SEQINT) 54} 55 56idle_loop: 57 58 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 59 /* 60 * Convert ERROR status into a sequencer 61 * interrupt to handle the case of an 62 * interrupt collision on the hardware 63 * setting of HWERR. 64 */ 65 test ERROR, 0xFF jz . + 2; 66 SET_SEQINTCODE(SAW_HWERR) 67 } 68 SET_MODE(M_SCSI, M_SCSI) 69 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 70 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus; 71 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 72 /* 73 * ENSELO is cleared by a SELDO, so we must test for SELDO 74 * one last time. 75 */ 76BEGIN_CRITICAL; 77 test SSTAT0, SELDO jnz select_out; 78END_CRITICAL; 79 call start_selection; 80idle_loop_checkbus: 81BEGIN_CRITICAL; 82 test SSTAT0, SELDO jnz select_out; 83END_CRITICAL; 84 test SSTAT0, SELDI jnz select_in; 85 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 86 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 87 call unexpected_nonpkt_phase_find_ctxt; 88idle_loop_check_nonpackreq: 89 test SSTAT2, NONPACKREQ jz . + 2; 90 call unexpected_nonpkt_phase_find_ctxt; 91 call idle_loop_gsfifo_in_scsi_mode; 92 call idle_loop_service_fifos; 93 call idle_loop_cchan; 94 jmp idle_loop; 95 96BEGIN_CRITICAL; 97idle_loop_gsfifo: 98 SET_MODE(M_SCSI, M_SCSI) 99idle_loop_gsfifo_in_scsi_mode: 100 test LQISTAT2, LQIGSAVAIL jz return; 101 /* 102 * We have received good status for this transaction. There may 103 * still be data in our FIFOs draining to the host. Setup 104 * monitoring of the draining process or complete the SCB. 105 */ 106good_status_IU_done: 107 bmov SCBPTR, GSFIFO, 2; 108 clr SCB_SCSI_STATUS; 109 or SCB_CONTROL, STATUS_RCVD; 110 111 /* 112 * Since this status did not consume a FIFO, we have to 113 * be a bit more dilligent in how we check for FIFOs pertaining 114 * to this transaction. There are three states that a FIFO still 115 * transferring data may be in. 116 * 117 * 1) Configured and draining to the host, with a pending CLRCHN. 118 * 2) Configured and draining to the host, no pending CLRCHN. 119 * 3) Pending cfg4data, fifo not empty. 120 * 121 * Cases 1 and 2 can be detected by noticing that a longjmp is 122 * active for the FIFO and LONGJMP_SCB matches our SCB. In this 123 * case, we allow the routine servicing the FIFO to complete the SCB. 124 * 125 * Case 3 implies either a pending or yet to occur save data 126 * pointers for this same context in the other FIFO. So, if 127 * we detect case 2, we will properly defer the post of the SCB 128 * and achieve the desired result. The pending cfg4data will 129 * notice that status has been received and complete the SCB. 130 */ 131 test SCB_SGPTR, SG_LIST_NULL jz good_status_check_fifos; 132 /* 133 * All segments have been loaded (or no data transfer), so 134 * it is safe to complete the command. Since this was a 135 * cheap command to check for completion, loop to see if 136 * more entries can be removed from the GSFIFO. 137 */ 138 call complete; 139END_CRITICAL; 140 jmp idle_loop_gsfifo_in_scsi_mode; 141BEGIN_CRITICAL; 142good_status_check_fifos: 143 clc; 144 bmov ARG_1, SCBPTR, 2; 145 SET_MODE(M_DFF0, M_DFF0) 146 call check_fifo; 147 jc return; 148 SET_MODE(M_DFF1, M_DFF1) 149 call check_fifo; 150 jc return; 151 SET_MODE(M_SCSI, M_SCSI) 152 jmp queue_scb_completion; 153END_CRITICAL; 154 155idle_loop_service_fifos: 156 SET_MODE(M_DFF0, M_DFF0) 157 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 158 call longjmp; 159idle_loop_next_fifo: 160 SET_MODE(M_DFF1, M_DFF1) 161 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp; 162 ret; 163 164idle_loop_cchan: 165 SET_MODE(M_CCHAN, M_CCHAN) 166BEGIN_CRITICAL; 167 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 168 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 169 test CCSCBCTL, CCSCBDONE jz return; 170END_CRITICAL; 171 /* FALLTHROUGH */ 172scbdma_tohost_done: 173 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 174 /* 175 * A complete SCB upload requires no intervention. 176 * The SCB is already on the COMPLETE_SCB list 177 * and its completion notification will now be 178 * handled just like any other SCB. 179 */ 180 and CCSCBCTL, ~(CCARREN|CCSCBEN) ret; 181fill_qoutfifo_dmadone: 182 and CCSCBCTL, ~(CCARREN|CCSCBEN); 183 mvi INTSTAT, CMDCMPLT; 184 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 185 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 186 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 187 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; 188 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; 189 190BEGIN_CRITICAL; 191fetch_new_scb_inprog: 192 test CCSCBCTL, ARRDONE jz return; 193fetch_new_scb_done: 194 and CCSCBCTL, ~(CCARREN|CCSCBEN); 195 bmov REG0, SCBPTR, 2; 196 /* Update the next SCB address to download. */ 197 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 198 mvi SCB_NEXT[1], SCB_LIST_NULL; 199 mvi SCB_NEXT2[1], SCB_LIST_NULL; 200 /* Increment our position in the QINFIFO. */ 201 mov NONE, SNSCB_QOFF; 202 /* 203 * SCBs that want to send messages are always 204 * queued independently. This ensures that they 205 * are at the head of the SCB list to select out 206 * to a target and we will see the MK_MESSAGE flag. 207 */ 208 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb; 209 shr SINDEX, 3, SCB_SCSIID; 210 and SINDEX, ~0x1; 211 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 212 bmov DINDEX, SINDEX, 2; 213 bmov SCBPTR, SINDIR, 2; 214 bmov DINDIR, REG0, 2; 215 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 216 bmov SCB_NEXT, REG0, 2 ret; 217first_new_target_scb: 218 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 219 bmov SCBPTR, WAITING_TID_TAIL, 2; 220 bmov SCB_NEXT2, REG0, 2; 221 bmov WAITING_TID_TAIL, REG0, 2 ret; 222first_new_scb: 223 bmov WAITING_TID_HEAD, REG0, 2; 224 bmov WAITING_TID_TAIL, REG0, 2 ret; 225END_CRITICAL; 226 227scbdma_idle: 228 /* 229 * Give precedence to downloading new SCBs to execute 230 * unless select-outs are currently frozen. 231 * XXX Use a timer to prevent completion starvation. 232 */ 233 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2; 234BEGIN_CRITICAL; 235 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 236 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 237 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 238 /* FALLTHROUGH */ 239fill_qoutfifo: 240 /* 241 * Keep track of the SCBs we are dmaing just 242 * in case the DMA fails or is aborted. 243 */ 244 mov A, QOUTFIFO_ENTRY_VALID_TAG; 245 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 246 mvi CCSCBCTL, CCSCBRESET; 247 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 248 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 249fill_qoutfifo_loop: 250 mov CCSCBRAM, SCBPTR; 251 or CCSCBRAM, A, SCBPTR[1]; 252 mov NONE, SDSCB_QOFF; 253 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 254 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 255 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done; 256 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 257 jmp fill_qoutfifo_loop; 258fill_qoutfifo_done: 259 mov SCBHCNT, CCSCBADDR; 260 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 261 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 262 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 263 264fetch_new_scb: 265 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 266 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 267dma_complete_scb: 268 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 269 bmov SCBHADDR, SCB_BUSADDR, 4; 270 mvi CCARREN|CCSCBEN|CCSCBRESET call dma_scb; 271 /* 272 * Now that we've started the DMA, push us onto 273 * the normal completion queue to have our SCBID 274 * posted to the kernel. 275 */ 276 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 277 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 278 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 279END_CRITICAL; 280 281/* 282 * Either post or fetch an SCB from host memory. The caller 283 * is responsible for polling for transfer completion. 284 * 285 * Prerequisits: Mode == M_CCHAN 286 * SINDEX contains CCSCBCTL flags 287 * SCBHADDR set to Host SCB address 288 * SCBPTR set to SCB src location on "push" operations 289 */ 290SET_SRC_MODE M_CCHAN; 291SET_DST_MODE M_CCHAN; 292dma_scb: 293 mvi SCBHCNT, SCB_TRANSFER_SIZE; 294 mov CCSCBCTL, SINDEX ret; 295 296BEGIN_CRITICAL; 297setjmp_setscb: 298 bmov LONGJMP_SCB, SCBPTR, 2; 299setjmp: 300 bmov LONGJMP_ADDR, STACK, 2 ret; 301setjmp_inline: 302 bmov LONGJMP_ADDR, STACK, 2; 303longjmp: 304 bmov STACK, LONGJMP_ADDR, 2 ret; 305END_CRITICAL; 306 307/*************************** Chip Bug Work Arounds ****************************/ 308/* 309 * Must disable interrupts when setting the mode pointer 310 * register as an interrupt occurring mid update will 311 * fail to store the new mode value for restoration on 312 * an iret. 313 */ 314if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 315set_mode_work_around: 316 mvi SEQINTCTL, INTVEC1DSL; 317 mov MODE_PTR, SINDEX; 318 clr SEQINTCTL ret; 319 320toggle_dff_mode_work_around: 321 mvi SEQINTCTL, INTVEC1DSL; 322 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 323 clr SEQINTCTL ret; 324} 325 326 327if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 328set_seqint_work_around: 329 mov SEQINTCODE, SINDEX; 330 mvi SEQINTCODE, NO_SEQINT ret; 331} 332 333/************************ Packetized LongJmp Routines *************************/ 334SET_SRC_MODE M_SCSI; 335SET_DST_MODE M_SCSI; 336start_selection: 337BEGIN_CRITICAL; 338 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 339 /* 340 * Razor #494 341 * Rev A hardware fails to update LAST/CURR/NEXTSCB 342 * correctly after a packetized selection in several 343 * situations: 344 * 345 * 1) If only one command existed in the queue, the 346 * LAST/CURR/NEXTSCB are unchanged. 347 * 348 * 2) In a non QAS, protocol allowed phase change, 349 * the queue is shifted 1 too far. LASTSCB is 350 * the last SCB that was correctly processed. 351 * 352 * 3) In the QAS case, if the full list of commands 353 * was successfully sent, NEXTSCB is NULL and neither 354 * CURRSCB nor LASTSCB can be trusted. We must 355 * manually walk the list counting MAXCMDCNT elements 356 * to find the last SCB that was sent correctly. 357 * 358 * To simplify the workaround for this bug in SELDO 359 * handling, we initialize LASTSCB prior to enabling 360 * selection so we can rely on it even for case #1 above. 361 */ 362 bmov LASTSCB, WAITING_TID_HEAD, 2; 363 } 364 bmov CURRSCB, WAITING_TID_HEAD, 2; 365 bmov SCBPTR, WAITING_TID_HEAD, 2; 366 shr SELOID, 4, SCB_SCSIID; 367 /* 368 * If we want to send a message to the device, ensure 369 * we are selecting with atn irregardless of our packetized 370 * agreement. Since SPI4 only allows target reset or PPR 371 * messages if this is a packetized connection, the change 372 * to our negotiation table entry for this selection will 373 * be cleared when the message is acted on. 374 */ 375 test SCB_CONTROL, MK_MESSAGE jz . + 3; 376 mov NEGOADDR, SELOID; 377 or NEGCONOPTS, ENAUTOATNO; 378 or SCSISEQ0, ENSELO ret; 379END_CRITICAL; 380 381/* 382 * Allocate a FIFO for a non-packetized transaction. 383 * In RevA hardware, both FIFOs must be free before we 384 * can allocate a FIFO for a non-packetized transaction. 385 */ 386allocate_fifo_loop: 387 /* 388 * Do whatever work is required to free a FIFO. 389 */ 390 call idle_loop_service_fifos; 391 SET_MODE(M_SCSI, M_SCSI) 392allocate_fifo: 393 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) { 394 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 395 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 396 } else { 397 test DFFSTAT, FIFO1FREE jnz allocate_fifo1; 398 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop; 399 mvi DFFSTAT, B_CURRFIFO_0; 400 SET_MODE(M_DFF0, M_DFF0) 401 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 402 } 403SET_SRC_MODE M_SCSI; 404SET_DST_MODE M_SCSI; 405allocate_fifo1: 406 mvi DFFSTAT, CURRFIFO_1; 407 SET_MODE(M_DFF1, M_DFF1) 408 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 409 410/* 411 * We have been reselected as an initiator 412 * or selected as a target. 413 */ 414SET_SRC_MODE M_SCSI; 415SET_DST_MODE M_SCSI; 416select_in: 417 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 418 /* 419 * This exposes a window whereby a 420 * busfree just after a selection will 421 * be missed, but there is not other safe 422 * way to enable busfree detection if 423 * the busfreerev function is broken. 424 */ 425 mvi CLRSINT1,CLRBUSFREE; 426 or SIMODE1, ENBUSFREE; 427 } 428 or SXFRCTL0, SPIOEN; 429 and SAVED_SCSIID, SELID_MASK, SELID; 430 and A, OID, IOWNID; 431 or SAVED_SCSIID, A; 432 mvi CLRSINT0, CLRSELDI; 433 jmp ITloop; 434 435/* 436 * We have successfully selected out. 437 * 438 * Clear SELDO. 439 * Dequeue all SCBs sent from the waiting queue 440 * Requeue all SCBs *not* sent to the tail of the waiting queue 441 * Take Razor #494 into account for above. 442 * 443 * In Packetized Mode: 444 * Return to the idle loop. Our interrupt handler will take 445 * care of any incoming L_Qs. 446 * 447 * In Non-Packetize Mode: 448 * Continue to our normal state machine. 449 */ 450SET_SRC_MODE M_SCSI; 451SET_DST_MODE M_SCSI; 452select_out: 453BEGIN_CRITICAL; 454 /* Clear out all SCBs that have been successfully sent. */ 455 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 456 /* 457 * For packetized, the LQO manager clears ENSELO on 458 * the assertion of SELDO. If we are non-packetized, 459 * LASTSCB and CURRSCB are acuate. 460 */ 461 test SCSISEQ0, ENSELO jnz use_lastscb; 462 463 /* 464 * The update is correct for LQOSTAT1 errors. All 465 * but LQOBUSFREE are handled by kernel interrupts. 466 * If we see LQOBUSFREE, return to the idle loop. 467 * Once we are out of the select_out critical section, 468 * the kernel will cleanup the LQOBUSFREE and we will 469 * eventually restart the selection if appropriate. 470 */ 471 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 472 473 /* 474 * On a phase change oustside of packet boundaries, 475 * LASTSCB points to the currently active SCB context 476 * on the bus. 477 */ 478 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 479 480 /* 481 * If the hardware has traversed the whole list, NEXTSCB 482 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 483 * but MAXCMDCNT is accurate. If we stop part way through 484 * the list or only had one command to issue, NEXTSCB[1] is 485 * not NULL and LASTSCB is the last command to go out. 486 */ 487 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 488 489 /* 490 * Brute force walk. 491 */ 492 bmov SCBPTR, WAITING_TID_HEAD, 2; 493 mvi SEQINTCTL, INTVEC1DSL; 494 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 495 mov A, MAXCMDCNT; 496 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 497 clr SEQINTCTL; 498find_lastscb_loop: 499 dec A; 500 test A, 0xFF jz found_last_sent_scb; 501 bmov SCBPTR, SCB_NEXT, 2; 502 jmp find_lastscb_loop; 503use_lastscb: 504 bmov SCBPTR, LASTSCB, 2; 505found_last_sent_scb: 506 bmov CURRSCB, SCBPTR, 2; 507curscb_ww_done: 508 } else { 509 /* 510 * Untested - Verify with Rev B. 511 */ 512 bmov SCBPTR, CURRSCB, 2; 513 } 514 515 /* 516 * Requeue any SCBs not sent, to the tail of the waiting Q. 517 */ 518 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done; 519 520 /* 521 * We know that neither the per-TID list nor the list of 522 * TIDs is empty. Use this knowledge to our advantage. 523 */ 524 bmov REG0, SCB_NEXT, 2; 525 bmov SCBPTR, WAITING_TID_TAIL, 2; 526 bmov SCB_NEXT2, REG0, 2; 527 bmov WAITING_TID_TAIL, REG0, 2; 528 jmp select_out_inc_tid_q; 529 530select_out_list_done: 531 /* 532 * The whole list made it. Just clear our TID's tail pointer 533 * unless we were queued independently due to our need to 534 * send a message. 535 */ 536 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q; 537 shr DINDEX, 3, SCB_SCSIID; 538 or DINDEX, 1; /* Want only the second byte */ 539 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 540 mvi DINDIR, SCB_LIST_NULL; 541select_out_inc_tid_q: 542 bmov SCBPTR, WAITING_TID_HEAD, 2; 543 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 544 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 545 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 546 bmov SCBPTR, CURRSCB, 2; 547END_CRITICAL; 548 mvi CLRSINT0, CLRSELDO; 549 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase; 550 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase; 551 552 /* 553 * If this is a packetized connection, return to our 554 * idle_loop and let our interrupt handler deal with 555 * any connection setup/teardown issues. The only 556 * exception is the case of MK_MESSAGE SCBs. In the 557 * A, the LQO manager transitions to LQOSTOP0 even if 558 * we have selected out with ATN asserted and the target 559 * REQs in a non-packet phase. 560 */ 561 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 562 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 563 test SCSISIGO, ATNO jnz select_out_non_packetized; 564select_out_no_message: 565 } 566 test LQOSTAT2, LQOSTOP0 jnz idle_loop; 567 568select_out_non_packetized: 569 /* Non packetized request. */ 570 and SCSISEQ0, ~ENSELO; 571 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 572 /* 573 * This exposes a window whereby a 574 * busfree just after a selection will 575 * be missed, but there is not other safe 576 * way to enable busfree detection if 577 * the busfreerev function is broken. 578 */ 579 mvi CLRSINT1,CLRBUSFREE; 580 or SIMODE1, ENBUSFREE; 581 } 582 mov SAVED_SCSIID, SCB_SCSIID; 583 mov SAVED_LUN, SCB_LUN; 584 or SXFRCTL0, SPIOEN; 585 586 /* 587 * As soon as we get a successful selection, the target 588 * should go into the message out phase since we have ATN 589 * asserted. 590 */ 591 mvi MSG_OUT, MSG_IDENTIFYFLAG; 592 mvi SEQ_FLAGS, NO_CDB_SENT; 593 594 /* 595 * Main loop for information transfer phases. Wait for the 596 * target to assert REQ before checking MSG, C/D and I/O for 597 * the bus phase. 598 */ 599mesgin_phasemis: 600ITloop: 601 call phase_lock; 602 603 mov A, LASTPHASE; 604 605 test A, ~P_DATAIN_DT jz p_data; 606 cmp A,P_COMMAND je p_command; 607 cmp A,P_MESGOUT je p_mesgout; 608 cmp A,P_STATUS je p_status; 609 cmp A,P_MESGIN je p_mesgin; 610 611 SET_SEQINTCODE(BAD_PHASE) 612 jmp ITloop; /* Try reading the bus again. */ 613 614/* 615 * Command phase. Set up the DMA registers and let 'er rip. 616 */ 617p_command: 618 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay; 619 SET_SEQINTCODE(PROTO_VIOLATION) 620p_command_okay: 621 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 622 jnz p_command_allocate_fifo; 623 /* 624 * Command retry. Free our current FIFO and 625 * re-allocate a FIFO so transfer state is 626 * reset. 627 */ 628SET_SRC_MODE M_DFF1; 629SET_DST_MODE M_DFF1; 630 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 631 SET_MODE(M_SCSI, M_SCSI) 632p_command_allocate_fifo: 633 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 634 call allocate_fifo; 635SET_SRC_MODE M_DFF1; 636SET_DST_MODE M_DFF1; 637 add NONE, -17, SCB_CDB_LEN; 638 jnc p_command_embedded; 639p_command_from_host: 640 bmov HADDR[0], SCB_CDB_PTR, 11; 641 mvi SG_CACHE_PRE, LAST_SEG; 642 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 643 jmp p_command_xfer; 644p_command_embedded: 645 bmov SHCNT[0], SCB_CDB_LEN, 1; 646 bmov DFDAT, SCB_CDB_STORE, 16; 647 mvi DFCNTRL, SCSIEN; 648p_command_xfer: 649 and SEQ_FLAGS, ~NO_CDB_SENT; 650 test DFCNTRL, SCSIEN jnz .; 651 /* 652 * DMA Channel automatically disabled. 653 * Don't allow a data phase if the command 654 * was not fully transferred. 655 */ 656 test SSTAT2, SDONE jnz ITloop; 657 or SEQ_FLAGS, NO_CDB_SENT; 658 jmp ITloop; 659 660 661/* 662 * Status phase. Wait for the data byte to appear, then read it 663 * and store it into the SCB. 664 */ 665SET_SRC_MODE M_SCSI; 666SET_DST_MODE M_SCSI; 667p_status: 668 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation; 669p_status_okay: 670 mov SCB_SCSI_STATUS, SCSIDAT; 671 or SCB_CONTROL, STATUS_RCVD; 672 jmp ITloop; 673 674/* 675 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 676 * indentify message sequence and send it to the target. The host may 677 * override this behavior by setting the MK_MESSAGE bit in the SCB 678 * control byte. This will cause us to interrupt the host and allow 679 * it to handle the message phase completely on its own. If the bit 680 * associated with this target is set, we will also interrupt the host, 681 * thereby allowing it to send a message on the next selection regardless 682 * of the transaction being sent. 683 * 684 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 685 * This is done to allow the host to send messages outside of an identify 686 * sequence while protecting the seqencer from testing the MK_MESSAGE bit 687 * on an SCB that might not be for the current nexus. (For example, a 688 * BDR message in responce to a bad reselection would leave us pointed to 689 * an SCB that doesn't have anything to do with the current target). 690 * 691 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 692 * bus device reset). 693 * 694 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 695 * in case the target decides to put us in this phase for some strange 696 * reason. 697 */ 698p_mesgout_retry: 699 /* Turn on ATN for the retry */ 700 mvi SCSISIGO, ATNO; 701p_mesgout: 702 mov SINDEX, MSG_OUT; 703 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 704 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 705p_mesgout_identify: 706 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 707 test SCB_CONTROL, DISCENB jnz . + 2; 708 and SINDEX, ~DISCENB; 709/* 710 * Send a tag message if TAG_ENB is set in the SCB control block. 711 * Use SCB_NONPACKET_TAG as the tag value. 712 */ 713p_mesgout_tag: 714 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 715 mov SCSIDAT, SINDEX; /* Send the identify message */ 716 call phase_lock; 717 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 718 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 719 call phase_lock; 720 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 721 mov SCBPTR jmp p_mesgout_onebyte; 722/* 723 * Interrupt the driver, and allow it to handle this message 724 * phase and any required retries. 725 */ 726p_mesgout_from_host: 727 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 728 jmp host_message_loop; 729 730p_mesgout_onebyte: 731 mvi CLRSINT1, CLRATNO; 732 mov SCSIDAT, SINDEX; 733 734/* 735 * If the next bus phase after ATN drops is message out, it means 736 * that the target is requesting that the last message(s) be resent. 737 */ 738 call phase_lock; 739 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 740 741p_mesgout_done: 742 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 743 mov LAST_MSG, MSG_OUT; 744 mvi MSG_OUT, MSG_NOOP; /* No message left */ 745 jmp ITloop; 746 747/* 748 * Message in phase. Bytes are read using Automatic PIO mode. 749 */ 750p_mesgin: 751 /* read the 1st message byte */ 752 mvi ACCUM call inb_first; 753 754 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 755 cmp A,MSG_DISCONNECT je mesgin_disconnect; 756 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 757 cmp ALLZEROS,A je mesgin_complete; 758 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 759 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 760 cmp A,MSG_NOOP je mesgin_done; 761 762/* 763 * Pushed message loop to allow the kernel to 764 * run it's own message state engine. To avoid an 765 * extra nop instruction after signaling the kernel, 766 * we perform the phase_lock before checking to see 767 * if we should exit the loop and skip the phase_lock 768 * in the ITloop. Performing back to back phase_locks 769 * shouldn't hurt, but why do it twice... 770 */ 771host_message_loop: 772 call phase_lock; /* Benign the first time through. */ 773 SET_SEQINTCODE(HOST_MSG_LOOP) 774 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 775 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 776 mov SCSIDAT, RETURN_2; 777 jmp host_message_loop; 778 /* Must be CONT_MSG_LOOP_READ */ 779 mov NONE, SCSIDAT; /* ACK Byte */ 780 jmp host_message_loop; 781 782mesgin_ign_wide_residue: 783 shr NEGOADDR, 4, SAVED_SCSIID; 784 test NEGCONOPTS, WIDEXFER jz mesgin_reject; 785 /* Pull the residue byte */ 786 mvi REG0 call inb_next; 787 cmp REG0, 0x01 jne mesgin_reject; 788 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 789 test DATA_COUNT_ODD, 0x1 jz mesgin_done; 790 SET_SEQINTCODE(IGN_WIDE_RES) 791 jmp mesgin_done; 792 793mesgin_proto_violation: 794 SET_SEQINTCODE(PROTO_VIOLATION) 795 jmp mesgin_done; 796mesgin_reject: 797 mvi MSG_MESSAGE_REJECT call mk_mesg; 798mesgin_done: 799 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 800 jmp ITloop; 801 802#define INDEX_DISC_LIST(scsiid, lun) \ 803 and A, 0xC0, scsiid; \ 804 or SCBPTR, A, lun; \ 805 clr SCBPTR[1]; \ 806 and SINDEX, 0x30, scsiid; \ 807 shr SINDEX, 3; /* Multiply by 2 */ \ 808 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 809 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 810 811mesgin_identify: 812 /* 813 * Determine whether a target is using tagged or non-tagged 814 * transactions by first looking at the transaction stored in 815 * the per-device, disconnected array. If there is no untagged 816 * transaction for this target, this must be a tagged transaction. 817 */ 818 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 819 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 820 bmov DINDEX, SINDEX, 2; 821 bmov REG0, SINDIR, 2; 822 cmp REG0[1], SCB_LIST_NULL je snoop_tag; 823 /* Untagged. Clear the busy table entry and setup the SCB. */ 824 bmov DINDIR, ALLONES, 2; 825 bmov SCBPTR, REG0, 2; 826 jmp setup_SCB; 827 828/* 829 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 830 * If we get one, we use the tag returned to find the proper 831 * SCB. After receiving the tag, look for the SCB at SCB locations tag and 832 * tag + 256. 833 */ 834snoop_tag: 835 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 836 or SEQ_FLAGS, 0x80; 837 } 838 mov NONE, SCSIDAT; /* ACK Identify MSG */ 839 call phase_lock; 840 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 841 or SEQ_FLAGS, 0x1; 842 } 843 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 844 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 845 or SEQ_FLAGS, 0x2; 846 } 847 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 848get_tag: 849 clr SCBPTR[1]; 850 mvi SCBPTR call inb_next; /* tag value */ 851verify_scb: 852 test SCB_CONTROL,DISCONNECTED jz verify_other_scb; 853 mov A, SAVED_SCSIID; 854 cmp SCB_SCSIID, A jne verify_other_scb; 855 mov A, SAVED_LUN; 856 cmp SCB_LUN, A je setup_SCB_disconnected; 857verify_other_scb: 858 xor SCBPTR[1], 1; 859 test SCBPTR[1], 0xFF jnz verify_scb; 860 jmp not_found; 861 862/* 863 * Ensure that the SCB the tag points to is for 864 * an SCB transaction to the reconnecting target. 865 */ 866setup_SCB: 867 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 868 or SEQ_FLAGS, 0x10; 869 } 870 test SCB_CONTROL,DISCONNECTED jz not_found; 871setup_SCB_disconnected: 872 and SCB_CONTROL,~DISCONNECTED; 873 clr SEQ_FLAGS; /* make note of IDENTIFY */ 874 test SCB_SGPTR, SG_LIST_NULL jnz . + 3; 875 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 876 call allocate_fifo; 877 /* See if the host wants to send a message upon reconnection */ 878 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 879 mvi HOST_MSG call mk_mesg; 880 jmp mesgin_done; 881 882not_found: 883 SET_SEQINTCODE(NO_MATCH) 884 jmp mesgin_done; 885 886not_found_ITloop: 887 SET_SEQINTCODE(NO_MATCH) 888 jmp ITloop; 889 890/* 891 * We received a "command complete" message. Put the SCB on the complete 892 * queue and trigger a completion interrupt via the idle loop. Before doing 893 * so, check to see if there 894 * is a residual or the status byte is something other than STATUS_GOOD (0). 895 * In either of these conditions, we upload the SCB back to the host so it can 896 * process this information. In the case of a non zero status byte, we 897 * additionally interrupt the kernel driver synchronously, allowing it to 898 * decide if sense should be retrieved. If the kernel driver wishes to request 899 * sense, it will fill the kernel SCB with a request sense command, requeue 900 * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting 901 * RETURN_1 to SEND_SENSE. 902 */ 903mesgin_complete: 904 905 /* 906 * If ATN is raised, we still want to give the target a message. 907 * Perhaps there was a parity error on this last message byte. 908 * Either way, the target should take us to message out phase 909 * and then attempt to complete the command again. We should use a 910 * critical section here to guard against a timeout triggering 911 * for this command and setting ATN while we are still processing 912 * the completion. 913 test SCSISIGI, ATNI jnz mesgin_done; 914 */ 915 916 /* 917 * If we are identified and have successfully sent the CDB, 918 * any status will do. Optimize this fast path. 919 */ 920 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation; 921 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted; 922 923 /* 924 * If the target never sent an identify message but instead went 925 * to mesgin to give an invalid message, let the host abort us. 926 */ 927 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation; 928 929 /* 930 * If we recevied good status but never successfully sent the 931 * cdb, abort the command. 932 */ 933 test SCB_SCSI_STATUS,0xff jnz complete_accepted; 934 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation; 935complete_accepted: 936 937 /* 938 * See if we attempted to deliver a message but the target ingnored us. 939 */ 940 test SCB_CONTROL, MK_MESSAGE jz . + 2; 941 SET_SEQINTCODE(MKMSG_FAILED) 942 call queue_scb_completion; 943 jmp await_busfree; 944 945freeze_queue: 946 /* Cancel any pending select-out. */ 947 test SSTAT0, SELDO jnz . + 2; 948 and SCSISEQ0, ~ENSELO; 949 mov ACCUM_SAVE, A; 950 clr A; 951 add QFREEZE_COUNT, 1; 952 adc QFREEZE_COUNT[1], A; 953 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 954 mov A, ACCUM_SAVE ret; 955 956queue_arg1_scb_completion: 957 SET_MODE(M_SCSI, M_SCSI) 958 bmov SCBPTR, ARG_1, 2; 959queue_scb_completion: 960 if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0) { 961 /* 962 * Set MK_MESSAGE to trigger an abort should this SCB 963 * be referenced by a target even though it is not currently 964 * active. 965 */ 966 or SCB_CONTROL, MK_MESSAGE; 967 } 968 test SCB_SCSI_STATUS,0xff jnz bad_status; 969 /* 970 * Check for residuals 971 */ 972 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 973 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 974 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 975complete: 976 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 977 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 978bad_status: 979 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 980 call freeze_queue; 981upload_scb: 982 bmov SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2; 983 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 984 or SCB_SGPTR, SG_STATUS_VALID ret; 985 986/* 987 * Is it a disconnect message? Set a flag in the SCB to remind us 988 * and await the bus going free. If this is an untagged transaction 989 * store the SCB id for it in our untagged target table for lookup on 990 * a reselction. 991 */ 992mesgin_disconnect: 993 /* 994 * If ATN is raised, we still want to give the target a message. 995 * Perhaps there was a parity error on this last message byte 996 * or we want to abort this command. Either way, the target 997 * should take us to message out phase and then attempt to 998 * disconnect again. 999 * XXX - Wait for more testing. 1000 test SCSISIGI, ATNI jnz mesgin_done; 1001 */ 1002 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT 1003 jnz mesgin_proto_violation; 1004 or SCB_CONTROL,DISCONNECTED; 1005 test SCB_CONTROL, TAG_ENB jnz await_busfree; 1006queue_disc_scb: 1007 bmov REG0, SCBPTR, 2; 1008 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1009 bmov DINDEX, SINDEX, 2; 1010 bmov DINDIR, REG0, 2; 1011 bmov SCBPTR, REG0, 2; 1012 /* FALLTHROUGH */ 1013await_busfree: 1014 and SIMODE1, ~ENBUSFREE; 1015 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) { 1016 /* 1017 * In the BUSFREEREV_BUG case, the 1018 * busfree status was cleared at the 1019 * beginning of the connection. 1020 */ 1021 mvi CLRSINT1,CLRBUSFREE; 1022 } 1023 mov NONE, SCSIDAT; /* Ack the last byte */ 1024 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1025 jnz await_busfree_not_m_dff; 1026SET_SRC_MODE M_DFF1; 1027SET_DST_MODE M_DFF1; 1028await_busfree_clrchn: 1029 mvi DFFSXFRCTL, CLRCHN; 1030await_busfree_not_m_dff: 1031 call clear_target_state; 1032 test SSTAT1,REQINIT|BUSFREE jz .; 1033 test SSTAT1, BUSFREE jnz idle_loop; 1034 SET_SEQINTCODE(MISSED_BUSFREE) 1035 1036 1037/* 1038 * Save data pointers message: 1039 * Copying RAM values back to SCB, for Save Data Pointers message, but 1040 * only if we've actually been into a data phase to change them. This 1041 * protects against bogus data in scratch ram and the residual counts 1042 * since they are only initialized when we go into data_in or data_out. 1043 * Ack the message as soon as possible. 1044 */ 1045SET_SRC_MODE M_DFF1; 1046SET_DST_MODE M_DFF1; 1047mesgin_sdptrs: 1048 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1049 test SEQ_FLAGS, DPHASE jz ITloop; 1050 call save_pointers; 1051 jmp ITloop; 1052 1053save_pointers: 1054 /* 1055 * If we are asked to save our position at the end of the 1056 * transfer, just mark us at the end rather than perform a 1057 * full save. 1058 */ 1059 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1060 or SCB_SGPTR, SG_LIST_NULL ret; 1061 1062save_pointers_full: 1063 /* 1064 * The SCB_DATAPTR becomes the current SHADDR. 1065 * All other information comes directly from our residual 1066 * state. 1067 */ 1068 bmov SCB_DATAPTR, SHADDR, 8; 1069 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1070 1071/* 1072 * Restore pointers message? Data pointers are recopied from the 1073 * SCB anytime we enter a data phase for the first time, so all 1074 * we need to do is clear the DPHASE flag and let the data phase 1075 * code do the rest. We also reset/reallocate the FIFO to make 1076 * sure we have a clean start for the next data or command phase. 1077 */ 1078mesgin_rdptrs: 1079 and SEQ_FLAGS, ~DPHASE; 1080 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1081 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1082 SET_MODE(M_SCSI, M_SCSI) 1083msgin_rdptrs_get_fifo: 1084 call allocate_fifo; 1085 jmp mesgin_done; 1086 1087clear_target_state: 1088 mvi LASTPHASE, P_BUSFREE; 1089 /* clear target specific flags */ 1090 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret; 1091 1092phase_lock: 1093 test SCSIPHASE, 0xFF jz .; 1094 test SSTAT1, SCSIPERR jnz phase_lock; 1095phase_lock_latch_phase: 1096 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1097 1098/* 1099 * Functions to read data in Automatic PIO mode. 1100 * 1101 * An ACK is not sent on input from the target until SCSIDATL is read from. 1102 * So we wait until SCSIDATL is latched (the usual way), then read the data 1103 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1104 * line, or we just want to acknowledge the byte, then we do a dummy read 1105 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1106 * data byte on the bus until we send our ACK. 1107 * 1108 * The assumption here is that these are called in a particular sequence, 1109 * and that REQ is already set when inb_first is called. inb_{first,next} 1110 * use the same calling convention as inb. 1111 */ 1112inb_next: 1113 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1114inb_next_wait: 1115 /* 1116 * If there is a parity error, wait for the kernel to 1117 * see the interrupt and prepare our message response 1118 * before continuing. 1119 */ 1120 test SCSIPHASE, 0xFF jz .; 1121 test SSTAT1, SCSIPERR jnz inb_next_wait; 1122inb_next_check_phase: 1123 and LASTPHASE, PHASE_MASK, SCSISIGI; 1124 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1125inb_first: 1126 clr DINDEX[1]; 1127 mov DINDEX,SINDEX; 1128 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1129inb_last: 1130 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1131 1132mk_mesg: 1133 mvi SCSISIGO, ATNO; 1134 mov MSG_OUT,SINDEX ret; 1135 1136SET_SRC_MODE M_DFF1; 1137SET_DST_MODE M_DFF1; 1138disable_ccsgen: 1139 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; 1140 clr CCSGCTL; 1141disable_ccsgen_fetch_done: 1142 clr SG_STATE ret; 1143 1144service_fifo: 1145 /* 1146 * Do we have any prefetch left??? 1147 */ 1148 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1149 1150 /* 1151 * Can this FIFO have access to the S/G cache yet? 1152 */ 1153 test CCSGCTL, SG_CACHE_AVAIL jz return; 1154 1155 /* Did we just finish fetching segs? */ 1156 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete; 1157 1158 /* Are we actively fetching segments? */ 1159 test CCSGCTL, CCSGENACK jnz return; 1160 1161 /* 1162 * We fetch a "cacheline aligned" and sized amount of data 1163 * so we don't end up referencing a non-existant page. 1164 * Cacheline aligned is in quotes because the kernel will 1165 * set the prefetch amount to a reasonable level if the 1166 * cacheline size is unknown. 1167 */ 1168 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4; 1169 mvi SGHCNT, SG_PREFETCH_CNT; 1170 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) { 1171 /* 1172 * Need two instruction between "touches" of SGHADDR. 1173 */ 1174 nop; 1175 } 1176 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1177 mvi CCSGCTL, CCSGEN|SG_CACHE_AVAIL|CCSGRESET; 1178 or SG_STATE, FETCH_INPROG ret; 1179idle_sgfetch_complete: 1180 /* 1181 * Guard against SG_CACHE_AVAIL activating during sg fetch 1182 * request in the other FIFO. 1183 */ 1184 test SG_STATE, FETCH_INPROG jz return; 1185 clr CCSGCTL; 1186 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1187 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1188idle_sg_avail: 1189 /* Does the hardware have space for another SG entry? */ 1190 test DFSTATUS, PRELOAD_AVAIL jz return; 1191 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1192 bmov HADDR, CCSGRAM, 8; 1193 } else { 1194 bmov HADDR, CCSGRAM, 4; 1195 } 1196 bmov HCNT, CCSGRAM, 3; 1197 test HCNT[0], 0x1 jz . + 2; 1198 xor DATA_COUNT_ODD, 0x1; 1199 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1200 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1201 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1202 } 1203 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1204 /* Skip 4 bytes of pad. */ 1205 add CCSGADDR, 4; 1206 } 1207sg_advance: 1208 clr A; /* add sizeof(struct scatter) */ 1209 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1210 adc SCB_RESIDUAL_SGPTR[1],A; 1211 adc SCB_RESIDUAL_SGPTR[2],A; 1212 adc SCB_RESIDUAL_SGPTR[3],A; 1213 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1214 test DATA_COUNT_ODD, 0x1 jz . + 2; 1215 or SINDEX, ODD_SEG; 1216 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1217 or SINDEX, LAST_SEG; 1218 clr SG_STATE; 1219 mov SG_CACHE_PRE, SINDEX; 1220 /* 1221 * Load the segment. Or in HDMAEN here too 1222 * just in case HDMAENACK has not come true 1223 * by the time this segment is loaded. If 1224 * HDMAENACK is not true, this or will disable 1225 * HDMAEN mid-transfer. We do not want to simply 1226 * mvi our original settings as SCSIEN automatically 1227 * de-asserts and we don't want to accidentally 1228 * re-enable it. 1229 */ 1230 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { 1231 /* 1232 * Use SCSIENWRDIS so that SCSIEN is never 1233 * modified by this operation. 1234 */ 1235 or DFCNTRL, PRELOADEN|SCSIENWRDIS|HDMAEN; 1236 } else { 1237 or DFCNTRL, PRELOADEN|HDMAEN; 1238 } 1239 /* 1240 * Do we have another segment in the cache? 1241 */ 1242 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1243 jnc return; 1244 and SG_STATE, ~SEGS_AVAIL ret; 1245 1246/* 1247 * Initialize the DMA address and counter from the SCB. 1248 */ 1249load_first_seg: 1250 bmov HADDR, SCB_DATAPTR, 11; 1251 and DATA_COUNT_ODD, 0x1, SCB_DATACNT[0]; 1252 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0]; 1253 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1254 or REG_ISR, LAST_SEG; 1255 test DATA_COUNT_ODD, 0x1 jz . + 2; 1256 or REG_ISR, ODD_SEG; 1257 mov SG_CACHE_PRE, REG_ISR; 1258 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1259 /* 1260 * Since we've are entering a data phase, we will 1261 * rely on the SCB_RESID* fields. Initialize the 1262 * residual and clear the full residual flag. 1263 */ 1264 and SCB_SGPTR[0], ~SG_FULL_RESID; 1265 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1266 /* If we need more S/G elements, tell the idle loop */ 1267 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1268 mvi SG_STATE, LOADING_NEEDED ret; 1269 clr SG_STATE ret; 1270 1271p_data_handle_xfer: 1272 call setjmp_setscb; 1273 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1274p_data_clear_handler: 1275 or LONGJMP_ADDR[1], INVALID_ADDR ret; 1276 1277p_data: 1278 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1279 SET_SEQINTCODE(PROTO_VIOLATION) 1280p_data_allowed: 1281 1282 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1283 1284 /* 1285 * If we re-enter the data phase after going through another 1286 * phase, our transfer location has almost certainly been 1287 * corrupted by the interveining, non-data, transfers. Ask 1288 * the host driver to fix us up based on the transfer residual 1289 * unless we already know that we should be bitbucketing. 1290 */ 1291 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1292 SET_SEQINTCODE(PDATA_REINIT) 1293 jmp data_phase_inbounds; 1294 1295p_data_bitbucket: 1296 /* 1297 * Turn on `Bit Bucket' mode, wait until the target takes 1298 * us to another phase, and then notify the host. 1299 */ 1300 mov SAVED_MODE, MODE_PTR; 1301 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1302 jnz bitbucket_not_m_dff; 1303 /* 1304 * Ensure that any FIFO contents are cleared out and the 1305 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1306 * doesn't discard data already in the FIFO. 1307 */ 1308 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1309 SET_MODE(M_SCSI, M_SCSI) 1310bitbucket_not_m_dff: 1311 or SXFRCTL1,BITBUCKET; 1312 /* Wait for non-data phase. */ 1313 test SCSIPHASE, ~DATA_PHASE_MASK jz .; 1314 and SXFRCTL1, ~BITBUCKET; 1315 RESTORE_MODE(SAVED_MODE) 1316SET_SRC_MODE M_DFF1; 1317SET_DST_MODE M_DFF1; 1318 SET_SEQINTCODE(DATA_OVERRUN) 1319 jmp ITloop; 1320 1321data_phase_initialize: 1322 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1323 call load_first_seg; 1324data_phase_inbounds: 1325 /* We have seen a data phase at least once. */ 1326 or SEQ_FLAGS, DPHASE; 1327 mov SAVED_MODE, MODE_PTR; 1328 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop; 1329 call p_data_handle_xfer; 1330data_group_dma_loop: 1331 /* 1332 * The transfer is complete if either the last segment 1333 * completes or the target changes phase. Both conditions 1334 * will clear SCSIEN. 1335 */ 1336 call idle_loop_service_fifos; 1337 call idle_loop_cchan; 1338 call idle_loop_gsfifo; 1339 RESTORE_MODE(SAVED_MODE) 1340 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1341 1342data_group_dmafinish: 1343 /* 1344 * The transfer has terminated either due to a phase 1345 * change, and/or the completion of the last segment. 1346 * We have two goals here. Do as much other work 1347 * as possible while the data fifo drains on a read 1348 * and respond as quickly as possible to the standard 1349 * messages (save data pointers/disconnect and command 1350 * complete) that usually follow a data phase. 1351 */ 1352 call calc_residual; 1353 1354 /* 1355 * Go ahead and shut down the DMA engine now. 1356 */ 1357 test DFCNTRL, DIRECTION jnz data_phase_finish; 1358data_group_fifoflush: 1359 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1360 or DFCNTRL, FIFOFLUSH; 1361 } 1362 /* 1363 * We have enabled the auto-ack feature. This means 1364 * that the controller may have already transferred 1365 * some overrun bytes into the data FIFO and acked them 1366 * on the bus. The only way to detect this situation is 1367 * to wait for LAST_SEG_DONE to come true on a completed 1368 * transfer and then test to see if the data FIFO is 1369 * non-empty. We know there is more data yet to transfer 1370 * if SG_LIST_NULL is not yet set, thus there cannot be 1371 * an overrun. 1372 */ 1373 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1374 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1375 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1376 /* Overrun */ 1377 jmp p_data; 1378data_phase_finish: 1379 /* 1380 * If the target has left us in data phase, loop through 1381 * the dma code again. We will only loop if there is a 1382 * data overrun. 1383 */ 1384 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1385 test SSTAT0, TARGET jnz data_phase_done; 1386 } 1387 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1388 test SSTAT1, REQINIT jz .; 1389 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1390 } 1391 1392data_phase_done: 1393 /* Kill off any pending prefetch */ 1394 call disable_ccsgen; 1395 or LONGJMP_ADDR[1], INVALID_ADDR; 1396 1397 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1398 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1399 /* 1400 and SEQ_FLAGS, ~DPHASE_PENDING; 1401 * For data-in phases, wait for any pending acks from the 1402 * initiator before changing phase. We only need to 1403 * send Ignore Wide Residue messages for data-in phases. 1404 test DFCNTRL, DIRECTION jz target_ITloop; 1405 test SSTAT1, REQINIT jnz .; 1406 test DATA_COUNT_ODD, 0x1 jz target_ITloop; 1407 SET_MODE(M_SCSI, M_SCSI) 1408 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1409 */ 1410 /* 1411 * Issue an Ignore Wide Residue Message. 1412 mvi P_MESGIN|BSYO call change_phase; 1413 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1414 mvi 1 call target_outb; 1415 jmp target_ITloop; 1416 */ 1417 } else { 1418 jmp ITloop; 1419 } 1420 1421/* 1422 * We assume that, even though data may still be 1423 * transferring to the host, that the SCSI side of 1424 * the DMA engine is now in a static state. This 1425 * allows us to update our notion of where we are 1426 * in this transfer. 1427 * 1428 * If, by chance, we stopped before being able 1429 * to fetch additional segments for this transfer, 1430 * yet the last S/G was completely exhausted, 1431 * call our idle loop until it is able to load 1432 * another segment. This will allow us to immediately 1433 * pickup on the next segment on the next data phase. 1434 * 1435 * If we happened to stop on the last segment, then 1436 * our residual information is still correct from 1437 * the idle loop and there is no need to perform 1438 * any fixups. 1439 */ 1440calc_residual: 1441 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1442 /* Record if we've consumed all S/G entries */ 1443 test MDFFSTAT, SHVALID jz . + 2; 1444 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1445 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1446residual_before_last_seg: 1447 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1448 /* 1449 * Can never happen from an interrupt as the packetized 1450 * hardware will only interrupt us once SHVALID or 1451 * LAST_SEG_DONE. 1452 */ 1453 call idle_loop_service_fifos; 1454 RESTORE_MODE(SAVED_MODE) 1455 jmp calc_residual; 1456 1457sgptr_fixup: 1458 /* 1459 * Fixup the residual next S/G pointer. The S/G preload 1460 * feature of the chip allows us to load two elements 1461 * in addition to the currently active element. We 1462 * store the bottom byte of the next S/G pointer in 1463 * the SG_CACHE_PTR register so we can restore the 1464 * correct value when the DMA completes. If the next 1465 * sg ptr value has advanced to the point where higher 1466 * bytes in the address have been affected, fix them 1467 * too. 1468 */ 1469 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1470 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1471 add SCB_RESIDUAL_SGPTR[1], -1; 1472 adc SCB_RESIDUAL_SGPTR[2], -1; 1473 adc SCB_RESIDUAL_SGPTR[3], -1; 1474sgptr_fixup_done: 1475 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1476 clr DATA_COUNT_ODD; 1477 test SG_CACHE_SHADOW, ODD_SEG jz . + 2; 1478 or DATA_COUNT_ODD, 0x1; 1479 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1480 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1481 1482export seq_isr: 1483 nop; /* Jumps in the first ISR instruction fail on Rev A. */ 1484 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1485 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1486 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1487 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1488 SET_SEQINTCODE(INVALID_SEQINT) 1489 1490/* 1491 * There are two types of save pointers interrupts: 1492 * The first is a snapshot save pointers where the current FIFO is not 1493 * active and contains a snapshot of the current poniter information. 1494 * This happens between packets in a stream for a single L_Q. Since we 1495 * are not performing a pointer save, we can safely clear the channel 1496 * so it can be used for other transactions. 1497 * 1498 * The second case is a save pointers on an active FIFO which occurs 1499 * if the target changes to a new L_Q or busfrees/QAS' and the transfer 1500 * has a residual. This should occur coincident with a ctxtdone. We 1501 * disable the interrupt and allow our active routine to handle the 1502 * save. 1503 */ 1504saveptr_intr: 1505 test DFCNTRL, HDMAENACK jz snapshot_saveptr; 1506 and SEQIMODE, ~ENSAVEPTRS; 1507 or SEQINTCTL, IRET ret; 1508snapshot_saveptr: 1509 mvi DFFSXFRCTL, CLRCHN; 1510 or SEQINTCTL, IRET ret; 1511 1512cfg4data_intr: 1513 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun; 1514 call load_first_seg; 1515 call pkt_handle_xfer; 1516 or SEQINTCTL, IRET ret; 1517 1518cfg4istat_intr: 1519 call freeze_queue; 1520 add NONE, -13, SCB_CDB_LEN; 1521 jnc cfg4istat_have_sense_addr; 1522 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1523 /* 1524 * Host sets up address/count and enables transfer. 1525 */ 1526 SET_SEQINTCODE(CFG4ISTAT_INTR) 1527 jmp cfg4istat_setup_handler; 1528cfg4istat_have_sense_addr: 1529 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1530 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1531 mvi SG_CACHE_PRE, LAST_SEG; 1532 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1533cfg4istat_setup_handler: 1534 /* 1535 * Status pkt is transferring to host. 1536 * Wait in idle loop for transfer to complete. 1537 */ 1538 call pkt_handle_status; 1539 or SEQINTCTL, IRET ret; 1540 1541/* 1542 * See if the target has gone on in this context creating an 1543 * overrun condition. For the write case, the hardware cannot 1544 * ack bytes until data are provided. So, if the target begins 1545 * another packet without changing contexts, implying we are 1546 * not sitting on a packet boundary, we are in an overrun 1547 * situation. For the read case, the hardware will continue to 1548 * ack bytes into the FIFO, and may even ack the last overrun packet 1549 * into the FIFO. If the FIFO should become non-empty, we are in 1550 * a read overrun case. 1551 */ 1552#define check_overrun \ 1553 /* Not on a packet boundary. */ \ 1554 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1555 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1556 1557pkt_handle_xfer: 1558 bmov LONGJMP_SCB, SCBPTR, 2; 1559 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1560 call setjmp; 1561 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1562 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1563 test SCSISIGO, ATNO jnz . + 2; 1564 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 1565 /* 1566 * Defer handling of this NONPACKREQ until we 1567 * can be sure it pertains to this FIFO. SAVEPTRS 1568 * will not be asserted if the NONPACKREQ is for us, 1569 * so we must simulate it if shaddow is valid. If 1570 * shaddow is not valid, keep running this FIFO until we 1571 * have satisfied the transfer by loading segments and 1572 * waiting for either shaddow valid or last_seg_done. 1573 */ 1574 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 1575pkt_service_fifo: 1576 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1577pkt_last_seg: 1578 call setjmp; 1579 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1580 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz last_pkt_done; 1581 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1582 test SCSISIGO, ATNO jnz . + 2; 1583 test SSTAT2, NONPACKREQ jz return; 1584 test MDFFSTAT, SHVALID jz return; 1585 /* FALLTHROUGH */ 1586 1587/* 1588 * Either a SAVEPTRS interrupt condition is pending for this FIFO 1589 * or we have a pending nonpackreq for this FIFO. We differentiate 1590 * between the two by capturing the state of the SAVEPTRS interrupt 1591 * prior to clearing this status and executing the common code for 1592 * these two cases. 1593 */ 1594pkt_saveptrs: 1595BEGIN_CRITICAL; 1596 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1597 or DFCNTRL, FIFOFLUSH; 1598 } 1599 mov REG0, SEQINTSRC; 1600 call calc_residual; 1601 call save_pointers; 1602 mvi CLRSEQINTSRC, CLRSAVEPTRS; 1603 call disable_ccsgen; 1604 or SEQIMODE, ENSAVEPTRS; 1605 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status; 1606 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status; 1607 /* 1608 * Keep a handler around for this FIFO until it drains 1609 * to the host to guarantee that we don't complete the 1610 * command to the host before the data arrives. 1611 */ 1612pkt_saveptrs_wait_fifoemp: 1613 call setjmp; 1614 test DFSTATUS, FIFOEMP jz return; 1615pkt_saveptrs_check_status: 1616 or LONGJMP_ADDR[1], INVALID_ADDR; 1617 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 1618 test SCB_CONTROL, STATUS_RCVD jz pkt_saveptrs_clrchn; 1619 jmp last_pkt_complete; 1620pkt_saveptrs_clrchn: 1621 mvi DFFSXFRCTL, CLRCHN ret; 1622END_CRITICAL; 1623 1624last_pkt_done: 1625BEGIN_CRITICAL; 1626 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1627 or DFCNTRL, FIFOFLUSH; 1628 } 1629 test SCB_CONTROL, STATUS_RCVD jz wait_pkt_end; 1630 check_overrun; 1631 or SCB_SGPTR, SG_LIST_NULL; 1632 /* 1633 * It is safe to skip the other FIFO check since 1634 * we defer CLRCHN on SAVEPTRS until all data in 1635 * the FIFO are seen by the host and a CFG4DATA 1636 * in this FIFO for the same context is held off 1637 * by hardware. 1638 */ 1639last_pkt_queue_scb: 1640 or LONGJMP_ADDR[1], INVALID_ADDR; 1641 bmov ARG_1, SCBPTR, 2; 1642 mvi DFFSXFRCTL, CLRCHN; 1643 jmp queue_arg1_scb_completion; 1644 1645last_pkt_complete: 1646 bmov ARG_1, SCBPTR, 2; 1647 mvi DFFSXFRCTL, CLRCHN; 1648check_other_fifo: 1649 clc; 1650 TOGGLE_DFF_MODE 1651 call check_fifo; 1652 jnc queue_arg1_scb_completion; 1653return: 1654 ret; 1655 1656wait_pkt_end: 1657 call setjmp; 1658END_CRITICAL; 1659wait_pkt_end_loop: 1660 test SEQINTSRC, CTXTDONE jnz pkt_end; 1661 check_overrun; 1662 test SSTAT2, NONPACKREQ jz return; 1663 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1664pkt_end: 1665BEGIN_CRITICAL; 1666 check_overrun; 1667 or LONGJMP_ADDR[1], INVALID_ADDR; 1668 or SCB_SGPTR, SG_LIST_NULL; 1669 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_complete; 1670 mvi DFFSXFRCTL, CLRCHN ret; 1671END_CRITICAL; 1672 1673check_status_overrun: 1674 test SHCNT[2], 0xFF jz status_IU_done; 1675 SET_SEQINTCODE(STATUS_OVERRUN) 1676 jmp status_IU_done; 1677pkt_handle_status: 1678 call setjmp_setscb; 1679 test MDFFSTAT, LASTSDONE jnz check_status_overrun; 1680 test SEQINTSRC, CTXTDONE jz return; 1681status_IU_done: 1682BEGIN_CRITICAL; 1683 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1684 or DFCNTRL, FIFOFLUSH; 1685 } 1686 or LONGJMP_ADDR[1], INVALID_ADDR; 1687 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 1688 or SCB_CONTROL, STATUS_RCVD; 1689 jmp last_pkt_complete; 1690END_CRITICAL; 1691 1692SET_SRC_MODE M_DFF0; 1693SET_DST_MODE M_DFF0; 1694BEGIN_CRITICAL; 1695check_fifo: 1696 test LONGJMP_ADDR[1], INVALID_ADDR jnz return; 1697 mov A, ARG_2; 1698 cmp LONGJMP_SCB[1], A jne return; 1699 mov A, ARG_1; 1700 cmp LONGJMP_SCB[0], A jne return; 1701 stc ret; 1702END_CRITICAL; 1703 1704/* 1705 * Nonpackreq is a polled status. It can come true in three situations: 1706 * we have received an L_Q, we have sent one or more L_Qs, or there is no 1707 * L_Q context associated with this REQ (REQ occurs immediately after a 1708 * (re)selection). Routines that know that the context responsible for this 1709 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 1710 * top level idle loop, we exhaust all active contexts prior to determining that 1711 * we simply do not have the full I_T_L_Q for this phase. 1712 */ 1713unexpected_nonpkt_phase_find_ctxt: 1714 /* 1715 * This nonpackreq is most likely associated with one of the tags 1716 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 1717 * nonpackreq if we've cleared out the FIFOs and handled any 1718 * pending SELDO. 1719 */ 1720SET_SRC_MODE M_SCSI; 1721SET_DST_MODE M_SCSI; 1722 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 1723 cmp A, FIFO1FREE|FIFO0FREE jne return; 1724 test SSTAT0, SELDO jnz return; 1725 mvi SCBPTR[1], SCB_LIST_NULL; 1726unexpected_nonpkt_phase: 1727 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz . + 3; 1728SET_SRC_MODE M_DFF0; 1729SET_DST_MODE M_DFF0; 1730 or LONGJMP_ADDR[1], INVALID_ADDR; 1731 mvi DFFSXFRCTL, CLRCHN; 1732 mvi CLRSINT2, CLRNONPACKREQ; 1733 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 1734 SET_SEQINTCODE(ENTERING_NONPACK) 1735 jmp ITloop; 1736 1737illegal_phase: 1738 SET_SEQINTCODE(ILLEGAL_PHASE) 1739 jmp ITloop; 1740 1741/* 1742 * We have entered an overrun situation. If we have working 1743 * BITBUCKET, flip that on and let the hardware eat any overrun 1744 * data. Otherwise use an overrun buffer in the host to simulate 1745 * BITBUCKET. 1746 */ 1747pkt_handle_overrun: 1748 SET_SEQINTCODE(CFG4OVERRUN) 1749 call freeze_queue; 1750 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 1751 or DFFSXFRCTL, DFFBITBUCKET; 1752SET_SRC_MODE M_DFF1; 1753SET_DST_MODE M_DFF1; 1754 } else { 1755 call load_overrun_buf; 1756 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 1757 } 1758 call setjmp; 1759 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1760 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done; 1761 call load_overrun_buf; 1762 or DFCNTRL, PRELOADEN; 1763overrun_load_done: 1764 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 1765 } else { 1766 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end; 1767 } 1768 test SSTAT2, NONPACKREQ jz return; 1769pkt_overrun_end: 1770 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 1771 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1772 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_queue_scb; 1773 mvi DFFSXFRCTL, CLRCHN ret; 1774 1775if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1776load_overrun_buf: 1777 /* 1778 * Load a dummy segment if preload space is available. 1779 */ 1780 mov HADDR[0], SHARED_DATA_ADDR; 1781 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 1782 mov ACCUM_SAVE, A; 1783 clr A; 1784 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 1785 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 1786 mov A, ACCUM_SAVE; 1787 bmov HADDR[4], ALLZEROS, 4; 1788 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 1789 clr HCNT[0]; 1790 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 1791 clr HCNT[2]; 1792} 1793 1794cfg4icmd_intr: 1795