1/* 2 * Adaptec 274x/284x/294x device driver firmware for Linux and FreeBSD. 3 * 4 * Copyright (c) 1994-2001 Justin T. Gibbs. 5 * Copyright (c) 2000-2001 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 * 40 * $FreeBSD$ 41 */ 42 43VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#42 $" 44PATCH_ARG_LIST = "struct ahd_softc *ahd" 45 46#include "aic79xx.reg" 47#include "scsi_message.h" 48 49idle_loop: 50 SET_MODE(M_SCSI, M_SCSI); 51 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 52 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus; 53 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 54 /* 55 * ENSELO is cleared by a SELDO, so we must test for SELDO 56 * one last time. 57 */ 58BEGIN_CRITICAL; 59 test SSTAT0, SELDO jnz select_out; 60END_CRITICAL; 61 call start_selection; 62idle_loop_checkbus: 63BEGIN_CRITICAL; 64 test SSTAT0, SELDO jnz select_out; 65END_CRITICAL; 66 test SSTAT0, SELDI jnz select_in; 67 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 68 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 69 call unexpected_nonpkt_phase_find_ctxt; 70idle_loop_check_nonpackreq: 71 test SSTAT2, NONPACKREQ jz idle_loop_scsi; 72 call unexpected_nonpkt_phase_find_ctxt; 73idle_loop_scsi: 74BEGIN_CRITICAL; 75 test LQISTAT2, LQIGSAVAIL jz idle_loop_service_fifos; 76 /* 77 * We have received good status for this transaction. There may 78 * still be data in our FIFOs draining to the host. Setup 79 * monitoring of the draining process or complete the SCB. 80 */ 81good_status_IU_done: 82 bmov SCBPTR, GSFIFO, 2; 83 clr SCB_SCSI_STATUS; 84 or SCB_CONTROL, STATUS_RCVD; 85 86 /* 87 * Since this status did not consume a FIFO, we have to 88 * be a bit more dilligent in how we check for FIFOs pertaining 89 * to this transaction. There are three states that a FIFO still 90 * transferring data may be in. 91 * 92 * 1) Configured and draining to the host, with a pending CLRCHN. 93 * 2) Configured and draining to the host, no pending CLRCHN. 94 * 3) Pending cfg4data, fifo not empty. 95 * 96 * For case 1, we assume that our DMA post of the completed command 97 * will occur after the FIFO finishes draining due to the higher 98 * priority of data FIFO transfers relative to command channel 99 * transfers. 100 * 101 * Case 2 can be detected by noticing that a longjmp is active for the 102 * FIFO and LONGJMP_SCB matches our SCB. In this case, we allow 103 * the routine servicing the FIFO to complete the SCB. 104 * 105 * Case 3 implies either a pending or yet to occur save data 106 * pointers for this same context in the other FIFO. So, if 107 * we detect case 2, we will properly defer the post of the SCB 108 * and achieve the desired result. The pending cfg4data will 109 * notice that status has been received and complete the SCB. 110 */ 111 test SCB_SGPTR, SG_LIST_NULL jz good_status_check_fifos; 112 /* 113 * All segments have been loaded (or no data transfer), so 114 * it is safe to complete the command. Since this was a 115 * cheap command to check for completion, loop to see if 116 * more entries can be removed from the GSFIFO. 117 */ 118 call complete; 119END_CRITICAL; 120 jmp idle_loop_scsi; 121BEGIN_CRITICAL; 122good_status_check_fifos: 123 clc; 124 bmov ARG_1, SCBPTR, 2; 125 SET_MODE(M_DFF0, M_DFF0); 126 call check_fifo; 127 jc idle_loop_service_fifos; 128 SET_MODE(M_DFF1, M_DFF1); 129 call check_fifo; 130 jc idle_loop_service_fifos; 131 SET_MODE(M_SCSI, M_SCSI); 132 call queue_scb_completion; 133END_CRITICAL; 134idle_loop_service_fifos: 135 SET_MODE(M_DFF0, M_DFF0); 136 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 137 call longjmp; 138idle_loop_next_fifo: 139 SET_MODE(M_DFF1, M_DFF1); 140 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_last_fifo_done; 141 call longjmp; 142idle_loop_last_fifo_done: 143 call idle_loop_cchan; 144 jmp idle_loop; 145 146idle_loop_cchan: 147 SET_MODE(M_CCHAN, M_CCHAN); 148 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 149 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 150 test CCSCBCTL, CCSCBDONE jz return; 151 /* FALLTHROUGH */ 152scbdma_tohost_done: 153 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 154 /* 155 * A complete SCB upload requires no intervention. 156 * The SCB is already on the COMPLETE_SCB list 157 * and its completion notification will now be 158 * handled just like any other SCB. 159 */ 160 and CCSCBCTL, ~(CCARREN|CCSCBEN) ret; 161fill_qoutfifo_dmadone: 162 and CCSCBCTL, ~(CCARREN|CCSCBEN); 163 mvi INTSTAT, CMDCMPLT; 164 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 165 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 166 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 167 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4 ret; 168 169fetch_new_scb_inprog: 170 test CCSCBCTL, ARRDONE jz return; 171fetch_new_scb_done: 172 and CCSCBCTL, ~(CCARREN|CCSCBEN); 173 bmov REG0, SCBPTR, 2; 174 /* Update the next SCB address to download. */ 175 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 176 mvi SCB_NEXT[1], SCB_LIST_NULL; 177 mvi SCB_NEXT2[1], SCB_LIST_NULL; 178 /* 179 * SCBs that want to send messages are always 180 * queued independently. This ensures that they 181 * are at the head of the SCB list to select out 182 * to a target and we will see the MK_MESSAGE flag. 183 */ 184 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb; 185 shr SINDEX, 3, SCB_SCSIID; 186 and SINDEX, ~0x1; 187 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 188 bmov DINDEX, SINDEX, 2; 189 bmov SCBPTR, SINDIR, 2; 190 bmov DINDIR, REG0, 2; 191 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 192 bmov SCB_NEXT, REG0, 2; 193fetch_new_scb_fini: 194 /* Increment our position in the QINFIFO. */ 195 mov NONE, SNSCB_QOFF ret; 196first_new_target_scb: 197 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 198 bmov SCBPTR, WAITING_TID_TAIL, 2; 199 bmov SCB_NEXT2, REG0, 2; 200 bmov WAITING_TID_TAIL, REG0, 2; 201 /* Increment our position in the QINFIFO. */ 202 mov NONE, SNSCB_QOFF ret; 203first_new_scb: 204 bmov WAITING_TID_HEAD, REG0, 2; 205 bmov WAITING_TID_TAIL, REG0, 2; 206 /* Increment our position in the QINFIFO. */ 207 mov NONE, SNSCB_QOFF ret; 208 209scbdma_idle: 210 /* 211 * Give precedence to downloading new SCBs to execute 212 * unless select-outs are currently frozen. 213 * XXX Use a timer to prevent completion starvation. 214 */ 215 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2; 216BEGIN_CRITICAL; 217 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 218 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 219 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 220 /* FALLTHROUGH */ 221fill_qoutfifo: 222 /* 223 * Keep track of the SCBs we are dmaing just 224 * in case the DMA fails or is aborted. 225 */ 226 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 227 mvi CCSCBCTL, CCSCBRESET; 228 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 229 bmov CCSCBRAM, COMPLETE_SCB_HEAD, 2; 230 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 231 jmp fill_qoutfifo_first_entry; 232fill_qoutfifo_loop: 233 bmov CCSCBRAM, SCB_NEXT_COMPLETE, 2; 234 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 235fill_qoutfifo_first_entry: 236 mov NONE, SDSCB_QOFF; 237 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 238 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 239 test QOFF_CTLSTA, SDSCB_ROLLOVR jz fill_qoutfifo_loop; 240fill_qoutfifo_done: 241 mov SCBHCNT, CCSCBADDR; 242 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 243 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 244 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 245 246fetch_new_scb: 247 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 248 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 249dma_complete_scb: 250 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 251 bmov SCBHADDR, SCB_BUSADDR, 4; 252 mvi CCARREN|CCSCBEN|CCSCBRESET call dma_scb; 253 /* 254 * Now that we've started the DMA, push us onto 255 * the normal completion queue to have our SCBID 256 * posted to the kernel. 257 */ 258 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 259 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 260 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 261END_CRITICAL; 262 263/* 264 * Either post or fetch an SCB from host memory. The caller 265 * is responsible for polling for transfer completion. 266 * 267 * Prerequisits: Mode == M_CCHAN 268 * SINDEX contains CCSCBCTL flags 269 * SCBHADDR set to Host SCB address 270 * SCBPTR set to SCB src location on "push" operations 271 */ 272SET_SRC_MODE M_CCHAN; 273SET_DST_MODE M_CCHAN; 274dma_scb: 275 mvi SCBHCNT, SCB_TRANSFER_SIZE; 276 mov CCSCBCTL, SINDEX; 277 or SEQ_FLAGS2, SCB_DMA ret; 278 279BEGIN_CRITICAL; 280setjmp_setscb: 281 bmov LONGJMP_SCB, SCBPTR, 2; 282setjmp: 283 bmov LONGJMP_ADDR, STACK, 2 ret; 284setjmp_inline: 285 bmov LONGJMP_ADDR, STACK, 2; 286longjmp: 287 bmov STACK, LONGJMP_ADDR, 2 ret; 288END_CRITICAL; 289 290/************************ Packetized LongJmp Routines *************************/ 291/* 292 * Must disable interrupts when setting the mode pointer 293 * register as an interrupt occurring mid update will 294 * fail to store the new mode value for restoration on 295 * an iret. 296 */ 297set_mode_work_around: 298 mvi SEQINTCTL, INTVEC1DSL; 299 mov MODE_PTR, SINDEX; 300 clr SEQINTCTL ret; 301 302SET_SRC_MODE M_SCSI; 303SET_DST_MODE M_SCSI; 304start_selection: 305BEGIN_CRITICAL; 306 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 307 /* 308 * Razor #494 309 * Rev A hardware fails to update LAST/CURR/NEXTSCB 310 * correctly after a packetized selection in several 311 * situations: 312 * 313 * 1) If only one command existed in the the queue, the 314 * LAST/CURR/NEXTSCB are unchanged. 315 * 316 * 2) In a non QAS, protocol allowed phase change, 317 * the queue is shifted 1 too far. LASTSCB is 318 * the last SCB that was correctly processed. 319 * 320 * 3) In the QAS case, if the full list of commands 321 * was successfully sent, NEXTSCB is NULL and neither 322 * CURRSCB nor LASTSCB can be trusted. We must 323 * manually walk the list counting MAXCMDCNT elements 324 * to find the last SCB that was sent correctly. 325 * 326 * To simplify the workaround for this bug in SELDO 327 * handling, we initialize LASTSCB prior to enabling 328 * selection so we can rely on it even for case #1 above. 329 */ 330 bmov LASTSCB, WAITING_TID_HEAD, 2; 331 } 332 bmov CURRSCB, WAITING_TID_HEAD, 2; 333 bmov SCBPTR, WAITING_TID_HEAD, 2; 334 shr SELOID, 4, SCB_SCSIID; 335 /* 336 * If we want to send a message to the device, ensure 337 * we are selecting with atn irregardless of our packetized 338 * agreement. Since SPI4 only allows target reset or PPR 339 * messages if this is a packetized connection, the change 340 * to our negotiation table entry for this selection will 341 * be cleared when the message is acted on. 342 */ 343 test SCB_CONTROL, MK_MESSAGE jz . + 3; 344 mov NEGOADDR, SELOID; 345 or NEGCONOPTS, ENAUTOATNO; 346 or SCSISEQ0, ENSELO ret; 347END_CRITICAL; 348 349/* 350 * Allocate a FIFO for a non-packetized transaction. 351 * For some reason unkown to me, both FIFOs must be free before we 352 * can allocate a FIFO for a non-packetized transaction. This 353 * may be fixed in Rev B. 354 */ 355allocate_fifo_loop: 356 /* 357 * Do whatever work is required to free a FIFO. 358 */ 359 SET_MODE(M_DFF0, M_DFF0); 360 test LONGJMP_ADDR[1], INVALID_ADDR jnz . + 2; 361 call longjmp; 362 SET_MODE(M_DFF1, M_DFF1); 363 test LONGJMP_ADDR[1], INVALID_ADDR jnz . + 2; 364 call longjmp; 365 SET_MODE(M_SCSI, M_SCSI); 366allocate_fifo: 367 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 368 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 369take_fifo: 370 bmov ARG_1, SCBPTR, 2; 371 or DFFSTAT, CURRFIFO; 372 SET_MODE(M_DFF1, M_DFF1); 373 bmov SCBPTR, ARG_1, 2 ret; 374 375/* 376 * We have been reselected as an initiator 377 * or selected as a target. 378 */ 379SET_SRC_MODE M_SCSI; 380SET_DST_MODE M_SCSI; 381select_in: 382 or SXFRCTL0, SPIOEN; 383 and SAVED_SCSIID, SELID_MASK, SELID; 384 and A, OID, IOWNID; 385 or SAVED_SCSIID, A; 386 mvi CLRSINT0, CLRSELDI; 387 jmp ITloop; 388 389/* 390 * We have successfully selected out. 391 * 392 * Clear SELDO. 393 * Dequeue all SCBs sent from the waiting queue 394 * Requeue all SCBs *not* sent to the tail of the waiting queue 395 * Take Razor #494 into account for above. 396 * 397 * In Packetized Mode: 398 * Return to the idle loop. Our interrupt handler will take 399 * care of any incoming L_Qs. 400 * 401 * In Non-Packetize Mode: 402 * Continue to our normal state machine. 403 */ 404SET_SRC_MODE M_SCSI; 405SET_DST_MODE M_SCSI; 406select_out: 407BEGIN_CRITICAL; 408 /* Clear out all SCBs that have been successfully sent. */ 409 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 410 /* 411 * For packetized, the LQO manager clears ENSELO on 412 * the assertion of SELDO. If we are non-packetized, 413 * LASTSCB and CURRSCB are acuate. 414 */ 415 test SCSISEQ0, ENSELO jnz use_lastscb; 416 417 /* 418 * The update is correct for LQOSTAT1 errors. All 419 * but LQOBUSFREE are handled by kernel interrupts. 420 * If we see LQOBUSFREE, return to the idle loop. 421 * Once we are out of the select_out critical section, 422 * the kernel will cleanup the LQOBUSFREE and we will 423 * eventually restart the selection if appropriate. 424 */ 425 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 426 427 /* 428 * On a phase change oustside of packet boundaries, 429 * LASTSCB points to the currently active SCB context 430 * on the bus. 431 */ 432 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 433 434 /* 435 * If the hardware has traversed the whole list, NEXTSCB 436 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 437 * but MAXCMDCNT is accurate. If we stop part way through 438 * the list or only had one command to issue, NEXTSCB[1] is 439 * not NULL and LASTSCB is the last command to go out. 440 */ 441 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 442 443 /* 444 * Brute force walk. 445 */ 446 bmov SCBPTR, WAITING_TID_HEAD, 2; 447 mvi SEQINTCTL, INTVEC1DSL; 448 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 449 mov A, MAXCMDCNT; 450 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 451 clr SEQINTCTL; 452find_lastscb_loop: 453 dec A; 454 test A, 0xFF jz found_last_sent_scb; 455 bmov SCBPTR, SCB_NEXT, 2; 456 jmp find_lastscb_loop; 457use_lastscb: 458 bmov SCBPTR, LASTSCB, 2; 459found_last_sent_scb: 460 bmov CURRSCB, SCBPTR, 2; 461curscb_ww_done: 462 } else { 463 /* 464 * Untested - Verify with Rev B. 465 */ 466 bmov SCBPTR, CURRSCB, 2; 467 } 468 /* 469 * Requeue any SCBs not sent, to the tail of the waiting Q. 470 */ 471 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done; 472 473 /* 474 * We know that neither the per-TID list nor the list of 475 * TIDs is empty. Use this knowledge to our advantage. 476 */ 477 bmov REG0, SCB_NEXT, 2; 478 bmov SCBPTR, WAITING_TID_TAIL, 2; 479 bmov SCB_NEXT2, REG0, 2; 480 bmov WAITING_TID_TAIL, REG0, 2; 481 jmp select_out_inc_tid_q; 482 483select_out_list_done: 484 /* 485 * The whole list made it. Just clear our TID's tail pointer 486 * unless we were queued independently due to our need to 487 * send a message. 488 */ 489 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q; 490 shr DINDEX, 3, SCB_SCSIID; 491/* XXX When we switch to SCB_SELOID, put +1 in addition below. */ 492 or DINDEX, 1; /* Want only the second byte */ 493 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 494 mvi DINDIR, SCB_LIST_NULL; 495select_out_inc_tid_q: 496 bmov SCBPTR, WAITING_TID_HEAD, 2; 497 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 498 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 499 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 500 bmov SCBPTR, CURRSCB, 2; 501END_CRITICAL; 502 503 mvi CLRSINT0, CLRSELDO; 504 505 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase; 506 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase; 507 508 /* 509 * If this is a packetized connection, return to our 510 * idle_loop and let our interrupt handler deal with 511 * any connection setup/teardown issues. The only 512 * exception is the case of MK_MESSAGE SCBs. In the 513 * A, the LQO manager transitions to LQOSTOP0 even if 514 * we have selected out with ATN asserted and the target 515 * REQs in a non-packet phase. 516 */ 517 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 518 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 519 test SCSISIGO, ATNO jnz select_out_non_packetized; 520select_out_no_message: 521 } 522 test LQOSTAT2, LQOSTOP0 jnz idle_loop; 523 524select_out_non_packetized: 525 /* Non packetized request. */ 526 and SCSISEQ0, ~ENSELO; 527 mov SAVED_SCSIID, SCB_SCSIID; 528 mov SAVED_LUN, SCB_LUN; 529 or SXFRCTL0, SPIOEN; 530 531 /* 532 * As soon as we get a successful selection, the target 533 * should go into the message out phase since we have ATN 534 * asserted. 535 */ 536 mvi MSG_OUT, MSG_IDENTIFYFLAG; 537 mvi SEQ_FLAGS, NO_CDB_SENT; 538 539 /* 540 * Main loop for information transfer phases. Wait for the 541 * target to assert REQ before checking MSG, C/D and I/O for 542 * the bus phase. 543 */ 544mesgin_phasemis: 545ITloop: 546 call phase_lock; 547 548 mov A, LASTPHASE; 549 550 test A, ~P_DATAIN_DT jz p_data; 551 cmp A,P_COMMAND je p_command; 552 cmp A,P_MESGOUT je p_mesgout; 553 cmp A,P_STATUS je p_status; 554 cmp A,P_MESGIN je p_mesgin; 555 556 mvi SEQINTCODE, BAD_PHASE; 557 jmp ITloop; /* Try reading the bus again. */ 558 559/* 560 * Command phase. Set up the DMA registers and let 'er rip. 561 */ 562p_command: 563SET_SRC_MODE M_DFF1; 564SET_DST_MODE M_DFF1; 565 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 566 jnz p_command_allocate_fifo; 567 /* 568 * Command retry. Free our current FIFO and 569 * re-allocate a FIFO so transfer state is 570 * reset. 571 */ 572 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 573p_command_allocate_fifo: 574 call allocate_fifo; 575 add NONE, -17, SCB_CDB_LEN; 576 jnc p_command_embedded; 577p_command_from_host: 578 bmov HADDR[0], SCB_CDB_PTR, 11; 579 mvi SG_CACHE_PRE, LAST_SEG; 580 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 581 jmp p_command_loop; 582p_command_embedded: 583 bmov SHCNT[0], SCB_CDB_LEN, 1; 584 bmov SHCNT[1], ALLZEROS, 2; 585 bmov DFDAT, SCB_CDB_STORE, 16; 586 mvi DFCNTRL, SCSIEN; 587p_command_loop: 588 test DFCNTRL, SCSIEN jnz p_command_loop; 589 /* 590 * DMA Channel automatically disabled. 591 * Don't allow a data phase if the command 592 * was not fully transferred. Make sure that 593 * we clear the IDENTIFY SEEN flag if a retry 594 * falls short too. 595 */ 596 and SEQ_FLAGS, ~NO_CDB_SENT; 597 test SSTAT2, SDONE jnz ITloop; 598 or SEQ_FLAGS, NO_CDB_SENT; 599 jmp ITloop; 600 601 602/* 603 * Status phase. Wait for the data byte to appear, then read it 604 * and store it into the SCB. 605 */ 606SET_SRC_MODE M_SCSI; 607SET_DST_MODE M_SCSI; 608p_status: 609 test SEQ_FLAGS,NOT_IDENTIFIED jz p_status_okay; 610 mvi SEQINTCODE, PROTO_VIOLATION; 611 jmp mesgin_done; 612p_status_okay: 613 mov SCB_SCSI_STATUS, SCSIDAT; 614 or SCB_CONTROL, STATUS_RCVD; 615 jmp ITloop; 616 617/* 618 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 619 * indentify message sequence and send it to the target. The host may 620 * override this behavior by setting the MK_MESSAGE bit in the SCB 621 * control byte. This will cause us to interrupt the host and allow 622 * it to handle the message phase completely on its own. If the bit 623 * associated with this target is set, we will also interrupt the host, 624 * thereby allowing it to send a message on the next selection regardless 625 * of the transaction being sent. 626 * 627 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 628 * This is done to allow the host to send messages outside of an identify 629 * sequence while protecting the seqencer from testing the MK_MESSAGE bit 630 * on an SCB that might not be for the current nexus. (For example, a 631 * BDR message in responce to a bad reselection would leave us pointed to 632 * an SCB that doesn't have anything to do with the current target). 633 * 634 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 635 * bus device reset). 636 * 637 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 638 * in case the target decides to put us in this phase for some strange 639 * reason. 640 */ 641p_mesgout_retry: 642 /* Turn on ATN for the retry */ 643 mvi SCSISIGO, ATNO; 644p_mesgout: 645 mov SINDEX, MSG_OUT; 646 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 647 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 648p_mesgout_identify: 649 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 650 test SCB_CONTROL, DISCENB jnz . + 2; 651 and SINDEX, ~DISCENB; 652/* 653 * Send a tag message if TAG_ENB is set in the SCB control block. 654 * Use SCB_NONPACKET_TAG as the tag value. 655 */ 656p_mesgout_tag: 657 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 658 mov SCSIDAT, SINDEX; /* Send the identify message */ 659 call phase_lock; 660 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 661 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 662 call phase_lock; 663 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 664 mov SCB_NONPACKET_TAG jmp p_mesgout_onebyte; 665/* 666 * Interrupt the driver, and allow it to handle this message 667 * phase and any required retries. 668 */ 669p_mesgout_from_host: 670 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 671 jmp host_message_loop; 672 673p_mesgout_onebyte: 674 mvi CLRSINT1, CLRATNO; 675 mov SCSIDAT, SINDEX; 676 677/* 678 * If the next bus phase after ATN drops is message out, it means 679 * that the target is requesting that the last message(s) be resent. 680 */ 681 call phase_lock; 682 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 683 684p_mesgout_done: 685 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 686 mov LAST_MSG, MSG_OUT; 687 mvi MSG_OUT, MSG_NOOP; /* No message left */ 688 jmp ITloop; 689 690/* 691 * Message in phase. Bytes are read using Automatic PIO mode. 692 */ 693p_mesgin: 694 /* read the 1st message byte */ 695 mvi ACCUM call inb_first; 696 697 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 698 cmp A,MSG_DISCONNECT je mesgin_disconnect; 699 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 700 cmp ALLZEROS,A je mesgin_complete; 701 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 702 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 703 cmp A,MSG_NOOP je mesgin_done; 704 705/* 706 * Pushed message loop to allow the kernel to 707 * run it's own message state engine. To avoid an 708 * extra nop instruction after signaling the kernel, 709 * we perform the phase_lock before checking to see 710 * if we should exit the loop and skip the phase_lock 711 * in the ITloop. Performing back to back phase_locks 712 * shouldn't hurt, but why do it twice... 713 */ 714host_message_loop: 715 call phase_lock; /* Benign the first time through. */ 716 mvi SEQINTCODE, HOST_MSG_LOOP; 717 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 718 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 719 mov SCSIDAT, RETURN_2; 720 jmp host_message_loop; 721 /* Must be CONT_MSG_LOOP_READ */ 722 mov NONE, SCSIDAT; /* ACK Byte */ 723 jmp host_message_loop; 724 725mesgin_ign_wide_residue: 726 shr NEGOADDR, 4, SAVED_SCSIID; 727 test NEGCONOPTS, WIDEXFER jz mesgin_reject; 728 /* Pull the residue byte */ 729 mvi REG0 call inb_next; 730 cmp REG0, 0x01 jne mesgin_reject; 731 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 732 test DATA_COUNT_ODD, 0x1 jz mesgin_done; 733 mvi SEQINTCODE, IGN_WIDE_RES; 734 jmp mesgin_done; 735 736mesgin_reject: 737 mvi MSG_MESSAGE_REJECT call mk_mesg; 738mesgin_done: 739 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 740 jmp ITloop; 741 742#define INDEX_DISC_LIST_SCB(target, lun) \ 743 mov SCBPTR, lun; \ 744 shr SCBPTR[1], 3, target 745 746#define INDEX_DISC_LIST(target, lun) \ 747 INDEX_DISC_LIST_SCB(target, lun); \ 748 and SINDEX, 0x7, target; \ 749 shl SINDEX, 1; \ 750 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 751 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 752 753mesgin_identify: 754 /* 755 * Determine whether a target is using tagged or non-tagged 756 * transactions by first looking at the transaction stored in 757 * the per-device, disconnected array. If there is no untagged 758 * transaction for this target this must be an untagged transaction. 759 */ 760 shr SINDEX, 4, SAVED_SCSIID; 761 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 762 INDEX_DISC_LIST(SINDEX, SAVED_LUN); 763 bmov DINDEX, SINDEX, 2; 764 bmov SCBPTR, SINDIR, 2; 765 cmp SCBPTR[1], SCB_LIST_NULL je snoop_tag; 766 test SCB_CONTROL, TAG_ENB jnz snoop_tag; 767 /* Untagged. Setup the SCB. */ 768 bmov REG1, SCB_TAG, 4; /* Save SCB_TAG and SCB_NEXT */ 769 jmp dequeue_first_scb; 770 771/* 772 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 773 * If we get one, we use the tag returned to find the proper 774 * SCB. The disconnected list contains any outstanding tagged transactions 775 * where SCB_TAG != SCB_NONPACKET_TAG or SCB_NONPACKET_TAG + 256. 776 * After receiving the tag, look for the SCB at SCB locations tag and 777 * tag + 256. If those SCBs do not match, traverse the disconnected 778 * list until we find the correct SCB. 779 */ 780snoop_tag: 781 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 782 or SEQ_FLAGS, 0x80; 783 } 784 mov NONE, SCSIDAT; /* ACK Identify MSG */ 785 call phase_lock; 786 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 787 or SEQ_FLAGS, 0x1; 788 } 789 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 790 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 791 or SEQ_FLAGS, 0x2; 792 } 793 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 794get_tag: 795 /* Save diconnected list head. */ 796 bmov REG0, SCBPTR, 2; 797 clr SCBPTR[1]; 798 mvi SCBPTR call inb_next; /* tag value */ 799 mov REG1, SCBPTR; 800verify_scb: 801 mov A, REG1; 802 cmp SCB_NONPACKET_TAG, A jne verify_other_scb; 803 mov A, SAVED_SCSIID; 804 cmp SCB_SCSIID, A jne verify_other_scb; 805 mov A, SAVED_LUN; 806 cmp SCB_LUN, A je setup_SCB; 807verify_other_scb: 808 xor SCBPTR[1], 1; 809 test SCBPTR[1], 0xFF jnz verify_scb; 810 811search_disc_list: 812 /* Restore disconnected list head. */ 813 bmov SCBPTR, REG0, 2; 814 mvi REG0[1], SCB_LIST_NULL; 815 mov A, REG1; 816search_disc_list_loop: 817 cmp SCB_NONPACKET_TAG, A je dequeue_scb; 818 bmov REG0, SCBPTR, 2; 819 bmov SCBPTR, SCB_NEXT, 2; 820 cmp SCBPTR[1], SCB_LIST_NULL jne search_disc_list_loop; 821 jmp not_found; 822 823dequeue_scb: 824 bmov REG1, SCB_TAG, 4; /* Save SCB_TAG and SCB_NEXT */ 825 cmp REG0[1], SCB_LIST_NULL jne dequeue_intermediate_SCB; 826dequeue_first_scb: 827 shr SINDEX, 4, SAVED_SCSIID; 828 INDEX_DISC_LIST_SCB(SINDEX, SAVED_LUN); 829 /* Update list head. */ 830 bmov DINDIR, REG2, 2; 831 jmp dequeue_restore; 832dequeue_intermediate_SCB: 833 bmov SCBPTR, REG0, 2; 834 bmov SCB_NEXT, REG2, 2; 835dequeue_restore: 836 bmov SCBPTR, REG1, 2; 837 838/* 839 * Ensure that the SCB the tag points to is for 840 * an SCB transaction to the reconnecting target. 841 */ 842setup_SCB: 843 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 844 or SEQ_FLAGS, 0x10; 845 } 846 test SCB_CONTROL,DISCONNECTED jz not_found; 847 and SCB_CONTROL,~DISCONNECTED; 848 clr SEQ_FLAGS; /* make note of IDENTIFY */ 849 test SCB_SGPTR, SG_LIST_NULL jnz . + 2; 850 call allocate_fifo; 851/* mvi SEQINTCODE, PRINT_RESIDUALS; */ 852 /* See if the host wants to send a message upon reconnection */ 853 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 854 mvi HOST_MSG call mk_mesg; 855 jmp mesgin_done; 856 857not_found: 858 mvi SEQINTCODE, NO_MATCH; 859 jmp mesgin_done; 860 861not_found_ITloop: 862 mvi SEQINTCODE, NO_MATCH; 863 jmp ITloop; 864 865/* 866 * We received a "command complete" message. Put the SCB on the complete 867 * queue and trigger a completion interrupt via the idle loop. Before doing 868 * so, check to see if there 869 * is a residual or the status byte is something other than STATUS_GOOD (0). 870 * In either of these conditions, we upload the SCB back to the host so it can 871 * process this information. In the case of a non zero status byte, we 872 * additionally interrupt the kernel driver synchronously, allowing it to 873 * decide if sense should be retrieved. If the kernel driver wishes to request 874 * sense, it will fill the kernel SCB with a request sense command, requeue 875 * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting 876 * RETURN_1 to SEND_SENSE. 877 */ 878mesgin_complete: 879 880 /* 881 * If ATN is raised, we still want to give the target a message. 882 * Perhaps there was a parity error on this last message byte. 883 * Either way, the target should take us to message out phase 884 * and then attempt to complete the command again. We should use a 885 * critical section here to guard against a timeout triggering 886 * for this command and setting ATN while we are still processing 887 * the completion. 888 test SCSISIGI, ATNI jnz mesgin_done; 889 */ 890 891 /* 892 * If the target never sent an identify message but instead went 893 * to mesgin to give an invalid message, let the host abort us. 894 */ 895 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz . + 3; 896 mvi SEQINTCODE, PROTO_VIOLATION; 897 jmp mesgin_done; 898 899 /* 900 * If the target never gave us status information, have 901 * the host abort the command. 902 */ 903 test SCB_CONTROL, STATUS_RCVD jz . - 2; 904 905 /* 906 * See if we attempted to deliver a message but the target ingnored us. 907 */ 908 test SCB_CONTROL, MK_MESSAGE jz . + 2; 909 mvi SEQINTCODE, MKMSG_FAILED; 910 call queue_scb_completion; 911 jmp await_busfree; 912 913freeze_queue: 914 /* Cancel any pending select-out. */ 915 test SSTAT0, SELDO jnz . + 2; 916 and SCSISEQ0, ~ENSELO; 917 mov ACCUM_SAVE, A; 918 clr A; 919 add QFREEZE_COUNT, 1; 920 adc QFREEZE_COUNT[1], A; 921 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 922 mov A, ACCUM_SAVE ret; 923 924queue_arg1_scb_completion: 925 SET_MODE(M_SCSI, M_SCSI); 926 bmov SCBPTR, ARG_1, 2; 927queue_scb_completion: 928 test SCB_SCSI_STATUS,0xff jnz bad_status; 929 /* 930 * Check for residuals 931 */ 932 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 933 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 934 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 935complete: 936 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 937 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 938bad_status: 939 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 940 call freeze_queue; 941upload_scb: 942 bmov SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2; 943 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 944 or SCB_SGPTR, SG_STATUS_VALID ret; 945 946/* 947 * Is it a disconnect message? Set a flag in the SCB to remind us 948 * and await the bus going free. If this is an untagged transaction 949 * store the SCB id for it in our untagged target table for lookup on 950 * a reselction. 951 */ 952mesgin_disconnect: 953 /* 954 * If ATN is raised, we still want to give the target a message. 955 * Perhaps there was a parity error on this last message byte 956 * or we want to abort this command. Either way, the target 957 * should take us to message out phase and then attempt to 958 * disconnect again. 959 * XXX - Wait for more testing. 960 test SCSISIGI, ATNI jnz mesgin_done; 961 */ 962 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz disconnect_allowed; 963 mvi SEQINTCODE, PROTO_VIOLATION; 964 jmp mesgin_done; 965disconnect_allowed: 966 or SCB_CONTROL,DISCONNECTED; 967 test SCB_CONTROL, TAG_ENB jz queue_disc_scb; 968 mov A, SCB_NONPACKET_TAG; 969 cmp SCBPTR, A je await_busfree; 970queue_disc_scb: 971 bmov REG0, SCBPTR, 2; 972 shr SINDEX, 4, SCB_SCSIID; 973 INDEX_DISC_LIST(SINDEX, SCB_LUN); 974 bmov DINDEX, SINDEX, 2; 975 bmov REG1, SINDIR, 2; 976 bmov DINDIR, REG0, 2; 977 bmov SCBPTR, REG0, 2; 978 bmov SCB_NEXT, REG1, 2; 979 /* FALLTHROUGH */ 980await_busfree: 981 and SIMODE1, ~ENBUSFREE; 982 mov NONE, SCSIDAT; /* Ack the last byte */ 983 call clear_target_state; 984 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 985 jnz await_busfree_not_m_dff; 986SET_SRC_MODE M_DFF1; 987SET_DST_MODE M_DFF1; 988await_busfree_clrchn: 989 mvi DFFSXFRCTL, CLRCHN; 990await_busfree_not_m_dff: 991 test SSTAT1,REQINIT|BUSFREE jz .; 992 test SSTAT1, BUSFREE jnz idle_loop; 993 mvi SEQINTCODE, MISSED_BUSFREE; 994 995 996/* 997 * Save data pointers message: 998 * Copying RAM values back to SCB, for Save Data Pointers message, but 999 * only if we've actually been into a data phase to change them. This 1000 * protects against bogus data in scratch ram and the residual counts 1001 * since they are only initialized when we go into data_in or data_out. 1002 * Ack the message as soon as possible. For chips without S/G pipelining, 1003 * we can only ack the message after SHADDR has been saved. On these 1004 * chips, SHADDR increments with every bus transaction, even PIO. 1005 */ 1006SET_SRC_MODE M_DFF1; 1007SET_DST_MODE M_DFF1; 1008mesgin_sdptrs: 1009 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1010 test SEQ_FLAGS, DPHASE jz ITloop; 1011 call save_pointers; 1012 jmp ITloop; 1013 1014save_pointers: 1015 /* 1016 * If we are asked to save our position at the end of the 1017 * transfer, just mark us at the end rather than perform a 1018 * full save. 1019 */ 1020 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1021 or SCB_SGPTR, SG_LIST_NULL ret; 1022 1023save_pointers_full: 1024 /* 1025 * The SCB_DATAPTR becomes the current SHADDR. 1026 * All other information comes directly from our residual 1027 * state. 1028 */ 1029 bmov SCB_DATAPTR, SHADDR, 8; 1030 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1031 1032/* 1033 * Restore pointers message? Data pointers are recopied from the 1034 * SCB anytime we enter a data phase for the first time, so all 1035 * we need to do is clear the DPHASE flag and let the data phase 1036 * code do the rest. We also reset/reallocate the FIFO to make 1037 * sure we have a clean start for the next data phase. 1038 */ 1039mesgin_rdptrs: 1040 and SEQ_FLAGS, ~DPHASE; 1041 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1042 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1043msgin_rdptrs_get_fifo: 1044 call allocate_fifo; 1045 jmp mesgin_done; 1046 1047clear_target_state: 1048 mvi LASTPHASE, P_BUSFREE; 1049 /* clear target specific flags */ 1050 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret; 1051 1052phase_lock: 1053 test SCSIPHASE, 0xFF jz .; 1054phase_lock_latch_phase: 1055 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1056 1057/* 1058 * Functions to read data in Automatic PIO mode. 1059 * 1060 * An ACK is not sent on input from the target until SCSIDATL is read from. 1061 * So we wait until SCSIDATL is latched (the usual way), then read the data 1062 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1063 * line, or we just want to acknowledge the byte, then we do a dummy read 1064 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1065 * data byte on the bus until we send our ACK. 1066 * 1067 * The assumption here is that these are called in a particular sequence, 1068 * and that REQ is already set when inb_first is called. inb_{first,next} 1069 * use the same calling convention as inb. 1070 */ 1071inb_next: 1072 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1073inb_next_wait: 1074 /* 1075 * If there is a parity error, wait for the kernel to 1076 * see the interrupt and prepare our message response 1077 * before continuing. 1078 */ 1079 test SCSIPHASE, 0xFF jz .; 1080inb_next_check_phase: 1081 and LASTPHASE, PHASE_MASK, SCSISIGI; 1082 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1083inb_first: 1084 clr DINDEX[1]; 1085 mov DINDEX,SINDEX; 1086 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1087inb_last: 1088 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1089 1090mk_mesg: 1091 mvi SCSISIGO, ATNO; 1092 mov MSG_OUT,SINDEX ret; 1093 1094SET_SRC_MODE M_DFF1; 1095SET_DST_MODE M_DFF1; 1096disable_ccsgen: 1097 test SG_STATE, FETCH_INPROG jz return; 1098 clr SG_STATE; 1099disable_ccsgen_fetch_done: 1100 clr CCSGCTL ret; 1101 1102toggle_dff_mode: 1103 mvi SEQINTCTL, INTVEC1DSL; 1104 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1105 clr SEQINTCTL ret; 1106 1107data_group_idle_loop: 1108 mov SAVED_MODE, MODE_PTR; 1109 test SG_STATE, LOADING_NEEDED jz . + 2; 1110 call service_fifo; 1111 call toggle_dff_mode; 1112 test SG_STATE, LOADING_NEEDED jz . + 2; 1113 call service_fifo; 1114 call idle_loop_cchan; 1115 mov SAVED_MODE jmp set_mode_work_around; 1116 1117service_fifo: 1118 /* 1119 * Do we have any prefetch left??? 1120 */ 1121 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1122 1123 /* 1124 * Can this FIFO have access to the S/G cache yet? 1125 */ 1126 test CCSGCTL, SG_CACHE_AVAIL jz return; 1127 1128 /* Did we just finish fetching segs? */ 1129 cmp CCSGCTL, CCSGEN|SG_CACHE_AVAIL|CCSGDONE 1130 je idle_sgfetch_complete; 1131 1132 /* Are we actively fetching segments? */ 1133 test CCSGCTL, CCSGEN jnz return; 1134 1135 /* 1136 * We fetch a "cacheline aligned" and sized amount of data 1137 * so we don't end up referencing a non-existant page. 1138 * Cacheline aligned is in quotes because the kernel will 1139 * set the prefetch amount to a reasonable level if the 1140 * cacheline size is unknown. 1141 */ 1142 mvi SGHCNT, SG_PREFETCH_CNT; 1143 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1144 bmov SGHADDR[1], SCB_RESIDUAL_SGPTR[1], 3; 1145 mvi CCSGCTL, CCSGEN|SG_CACHE_AVAIL|CCSGRESET; 1146 or SG_STATE, FETCH_INPROG ret; 1147idle_sgfetch_complete: 1148 /* 1149 * Guard against SG_CACHE_AVAIL activating during sg fetch 1150 * request in the other FIFO. 1151 */ 1152 test SG_STATE, FETCH_INPROG jz return; 1153 call disable_ccsgen_fetch_done; 1154 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1155 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1156idle_sg_avail: 1157 /* Does the hardware have space for another SG entry? */ 1158 test DFSTATUS, PRELOAD_AVAIL jz return; 1159 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1160 bmov HADDR, CCSGRAM, 8; 1161 } else { 1162 bmov HADDR, CCSGRAM, 4; 1163 } 1164 bmov HCNT, CCSGRAM, 3; 1165 test HCNT[0], 0x1 jz . + 2; 1166 xor DATA_COUNT_ODD, 0x1; 1167 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1168 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1169 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1170 } 1171 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1172 /* Skip 4 bytes of pad. */ 1173 add CCSGADDR, 4; 1174 } 1175sg_advance: 1176 clr A; /* add sizeof(struct scatter) */ 1177 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1178 adc SCB_RESIDUAL_SGPTR[1],A; 1179 adc SCB_RESIDUAL_SGPTR[2],A; 1180 adc SCB_RESIDUAL_SGPTR[3],A; 1181 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1182 test DATA_COUNT_ODD, 0x1 jz . + 2; 1183 or SINDEX, ODD_SEG; 1184 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1185 or SINDEX, LAST_SEG; 1186 clr SG_STATE; 1187 mov SG_CACHE_PRE, SINDEX; 1188 /* 1189 * Load the segment. Or in HDMAEN here too 1190 * just in case HDMAENACK has not come true 1191 * by the time this segment is loaded. If 1192 * HDMAENACK is not true, this or will disable 1193 * HDMAEN mid-transfer. We do not want to simply 1194 * mvi our original settings as SCSIEN automatically 1195 * de-asserts and we don't want to accidentally 1196 * re-enable it. 1197 */ 1198 or DFCNTRL, PRELOADEN|HDMAEN; 1199 /* 1200 * Do we have another segment in the cache? 1201 */ 1202 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1203 jnc return; 1204 and SG_STATE, ~SEGS_AVAIL ret; 1205 1206/* 1207 * Initialize the DMA address and counter from the SCB. 1208 */ 1209load_first_seg: 1210 bmov HADDR, SCB_DATAPTR, 11; 1211 and DATA_COUNT_ODD, 0x1, SCB_DATACNT[0]; 1212 and REG0, ~SG_FULL_RESID, SCB_SGPTR[0]; 1213 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1214 or REG0, LAST_SEG; 1215 test DATA_COUNT_ODD, 0x1 jz . + 2; 1216 or REG0, ODD_SEG; 1217 mov SG_CACHE_PRE, REG0; 1218 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1219 /* 1220 * Since we've are entering a data phase, we will 1221 * rely on the SCB_RESID* fields. Initialize the 1222 * residual and clear the full residual flag. 1223 */ 1224 and SCB_SGPTR[0], ~SG_FULL_RESID; 1225 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1226 /* If we need more S/G elements, tell the idle loop */ 1227 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1228 mvi SG_STATE, LOADING_NEEDED ret; 1229 clr SG_STATE ret; 1230 1231p_data: 1232 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1233 mvi SEQINTCODE, PROTO_VIOLATION; 1234p_data_allowed: 1235 1236 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1237 1238 /* 1239 * If we re-enter the data phase after going through another 1240 * phase, our transfer location has almost certainly been 1241 * corrupted by the interveining, non-data, transfers. Ask 1242 * the host driver to fix us up based on the transfer residual 1243 * unless we already know that we should be bitbucketing. 1244 */ 1245 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1246 mvi SEQINTCODE, PDATA_REINIT; 1247 1248p_data_bitbucket: 1249 /* 1250 * Turn on `Bit Bucket' mode, wait until the target takes 1251 * us to another phase, and then notify the host. 1252 */ 1253 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1254 jnz bitbucket_not_m_dff; 1255 /* 1256 * Ensure that any FIFO contents are cleared out and the 1257 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1258 * doesn't discard data already in the FIFO. 1259 */ 1260 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1261 SET_MODE(M_SCSI, M_SCSI); 1262bitbucket_not_m_dff: 1263 or SXFRCTL1,BITBUCKET; 1264 test SCSIPHASE, DATA_PHASE_MASK jnz .; 1265 and SXFRCTL1, ~BITBUCKET; 1266 SET_MODE(M_DFF1, M_DFF1); 1267 mvi SEQINTCODE, DATA_OVERRUN; 1268 jmp ITloop; 1269 1270data_phase_initialize: 1271 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1272 call load_first_seg; 1273data_phase_inbounds: 1274 /* We have seen a data phase at least once. */ 1275 or SEQ_FLAGS, DPHASE; 1276data_group_dma_loop: 1277 /* 1278 * The transfer is complete if either the last segment 1279 * completes or the target changes phase. Both conditions 1280 * will clear SCSIEN. We test SCSIEN twice during our 1281 * "idle loop" to avoid long delays before we notice the 1282 * SCSIEN transition. 1283 */ 1284 call data_group_idle_loop; 1285 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1286 1287data_group_dmafinish: 1288 /* 1289 * The transfer has terminated either due to a phase 1290 * change, and/or the completion of the last segment. 1291 * We have two goals here. Do as much other work 1292 * as possible while the data fifo drains on a read 1293 * and respond as quickly as possible to the standard 1294 * messages (save data pointers/disconnect and command 1295 * complete) that usually follow a data phase. 1296 */ 1297 call calc_residual; 1298 1299 /* 1300 * Go ahead and shut down the DMA engine now. 1301 */ 1302 test DFCNTRL, DIRECTION jnz data_phase_finish; 1303data_group_fifoflush: 1304 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1305 or DFCNTRL, FIFOFLUSH; 1306 } 1307 /* 1308 * We have enabled the auto-ack feature. This means 1309 * that the controller may have already transferred 1310 * some overrun bytes into the data FIFO and acked them 1311 * on the bus. The only way to detect this situation is 1312 * to wait for LAST_SEG_DONE to come true on a completed 1313 * transfer and then test to see if the data FIFO is 1314 * non-empty. We know there is more data yet to transfer 1315 * if SG_LIST_NULL is not yet set, thus there cannot be 1316 * an overrun. 1317 */ 1318 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1319 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1320 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1321 /* Overrun */ 1322 jmp p_data; 1323data_phase_finish: 1324 /* 1325 * If the target has left us in data phase, loop through 1326 * the dma code again. We will only loop if there is a 1327 * data overrun. 1328 */ 1329 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1330 test SSTAT0, TARGET jnz data_phase_done; 1331 } 1332 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1333 test SSTAT1, REQINIT jz .; 1334 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1335 } 1336 1337data_phase_done: 1338 /* Kill off any pending prefetch */ 1339 call disable_ccsgen; 1340 1341 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1342 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1343 /* 1344 and SEQ_FLAGS, ~DPHASE_PENDING; 1345 * For data-in phases, wait for any pending acks from the 1346 * initiator before changing phase. We only need to 1347 * send Ignore Wide Residue messages for data-in phases. 1348 test DFCNTRL, DIRECTION jz target_ITloop; 1349 test SSTAT1, REQINIT jnz .; 1350 test DATA_COUNT_ODD, 0x1 jz target_ITloop; 1351 SET_MODE(M_SCSI, M_SCSI); 1352 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1353 */ 1354 /* 1355 * Issue an Ignore Wide Residue Message. 1356 mvi P_MESGIN|BSYO call change_phase; 1357 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1358 mvi 1 call target_outb; 1359 jmp target_ITloop; 1360 */ 1361 } else { 1362 jmp ITloop; 1363 } 1364 1365/* 1366 * We assume that, even though data may still be 1367 * transferring to the host, that the SCSI side of 1368 * the DMA engine is now in a static state. This 1369 * allows us to update our notion of where we are 1370 * in this transfer. 1371 * 1372 * If, by chance, we stopped before being able 1373 * to fetch additional segments for this transfer, 1374 * yet the last S/G was completely exhausted, 1375 * call our idle loop until it is able to load 1376 * another segment. This will allow us to immediately 1377 * pickup on the next segment on the next data phase. 1378 * 1379 * If we happened to stop on the last segment, then 1380 * our residual information is still correct from 1381 * the idle loop and there is no need to perform 1382 * any fixups. 1383 */ 1384calc_residual: 1385 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1386 /* Record if we've consumed all S/G entries */ 1387 test MDFFSTAT, SHVALID jz . + 2; 1388 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1389 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1390residual_before_last_seg: 1391 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1392 /* 1393 * Can never happen from an interrupt as the packetized 1394 * hardware will only interrupt us once SHVALID or 1395 * LAST_SEG_DONE. 1396 */ 1397 call data_group_idle_loop; 1398 jmp calc_residual; 1399 1400sgptr_fixup: 1401 /* 1402 * Fixup the residual next S/G pointer. The S/G preload 1403 * feature of the chip allows us to load two elements 1404 * in addition to the currently active element. We 1405 * store the bottom byte of the next S/G pointer in 1406 * the SG_CACHE_PTR register so we can restore the 1407 * correct value when the DMA completes. If the next 1408 * sg ptr value has advanced to the point where higher 1409 * bytes in the address have been affected, fix them 1410 * too. 1411 */ 1412 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1413 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1414 add SCB_RESIDUAL_SGPTR[1], -1; 1415 adc SCB_RESIDUAL_SGPTR[2], -1; 1416 adc SCB_RESIDUAL_SGPTR[3], -1; 1417sgptr_fixup_done: 1418 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1419 clr DATA_COUNT_ODD; 1420 test SG_CACHE_SHADOW, ODD_SEG jz . + 2; 1421 or DATA_COUNT_ODD, 0x1; 1422 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1423 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1424 1425export seq_isr: 1426 nop; /* Jumps in the first ISR instruction fail on Rev A. */ 1427 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1428 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1429 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1430 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1431 mvi SEQINTCODE, INVALID_SEQINT; 1432 1433/* 1434 * There are two types of save pointers interrupts: 1435 * The first is a snapshot save pointers where the current FIFO is not 1436 * active and contains a snapshot of the current poniter information. 1437 * This happens between packets in a stream for a single L_Q. Since we 1438 * are not performing a pointer save, we can safely clear the channel 1439 * so it can be used for other transactions. 1440 * 1441 * The second case is a save pointers on an active FIFO which occurs 1442 * if the target changes to a new L_Q or busfrees/QAS' and the transfer 1443 * has a residual. This should occur coincident with a ctxtdone. We 1444 * disable the interrupt and allow our active routine to handle the 1445 * save. 1446 */ 1447saveptr_intr: 1448 test DFCNTRL, HDMAENACK jz snapshot_saveptr; 1449 and SEQIMODE, ~ENSAVEPTRS; 1450 or SEQINTCTL, IRET ret; 1451snapshot_saveptr: 1452 mvi DFFSXFRCTL, CLRCHN; 1453 or SEQINTCTL, IRET ret; 1454 1455cfg4data_intr: 1456 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun; 1457 call load_first_seg; 1458 call pkt_handle_xfer; 1459 or SEQINTCTL, IRET ret; 1460 1461cfg4istat_intr: 1462 call freeze_queue; 1463 add NONE, -13, SCB_CDB_LEN; 1464 jnc cfg4istat_have_sense_addr; 1465 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1466 /* 1467 * Host sets up address/count and enables transfer. 1468 */ 1469 mvi SEQINTCODE, CFG4ISTAT_INTR; 1470 jmp cfg4istat_setup_handler; 1471cfg4istat_have_sense_addr: 1472 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1473 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1474 mvi SG_CACHE_PRE, LAST_SEG; 1475 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1476cfg4istat_setup_handler: 1477 /* 1478 * Status pkt is transferring to host. 1479 * Wait in idle loop for transfer to complete. 1480 */ 1481 call pkt_handle_status; 1482 or SEQINTCTL, IRET ret; 1483 1484/* 1485 * See if the target has gone on in this context creating an 1486 * overrun condition. For the write case, the hardware cannot 1487 * ack bytes until data is provided. So, if the target begins 1488 * another packet without changing contexts, implying we are 1489 * not sitting on a packet boundary, we are in an overrun 1490 * situation. For the read case, the hardware will continue to 1491 * ack bytes into the FIFO, and may even ack the last overrun packet 1492 * into the FIFO. If the FIFO should become non-empty, we are in 1493 * a read overrun case. 1494 */ 1495#define check_overrun \ 1496 /* Not on a packet boundary. */ \ 1497 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1498 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1499 1500pkt_handle_xfer: 1501 bmov LONGJMP_SCB, SCBPTR, 2; 1502 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1503 call setjmp; 1504 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1505 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1506 test SCSISIGO, ATNO jnz . + 2; 1507 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 1508 /* 1509 * Defer handling of this NONPACKREQ until we 1510 * can be sure it pertains to this FIFO. SAVEPTRS 1511 * will not be asserted if the NONPACKREQ is for us, 1512 * so we must simulate it if shaddow is valid. If 1513 * shaddow is not valid, keep running this FIFO until we 1514 * have satisfied the transfer by loading segments and 1515 * waiting for either shaddow valid or last_seg_done. 1516 */ 1517 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 1518pkt_service_fifo: 1519 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1520pkt_last_seg: 1521 call setjmp; 1522 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1523 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz last_pkt_done; 1524 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1525 test SCSISIGO, ATNO jnz . + 2; 1526 test SSTAT2, NONPACKREQ jz return; 1527 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 1528 jmp return; 1529last_pkt_done: 1530BEGIN_CRITICAL; 1531 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1532 or DFCNTRL, FIFOFLUSH; 1533 } 1534 test SCB_CONTROL, STATUS_RCVD jz wait_pkt_end; 1535 check_overrun; 1536 or SCB_SGPTR, SG_LIST_NULL; 1537 /* 1538 * I think it is safe to skip the FIFO check. 1539 * in this case as LAST_SEG_DONE implies 1540 * the other FIFO, if ever active for this transfer, 1541 * has completed. 1542 */ 1543last_pkt_queue_scb: 1544 or LONGJMP_ADDR[1], INVALID_ADDR; 1545 bmov ARG_1, SCBPTR, 2; 1546 mvi DFFSXFRCTL, CLRCHN; 1547 jmp queue_arg1_scb_completion; 1548 1549last_pkt_complete: 1550 bmov ARG_1, SCBPTR, 2; 1551 mvi DFFSXFRCTL, CLRCHN; 1552check_other_fifo: 1553 clc; 1554 call toggle_dff_mode; 1555 call check_fifo; 1556 jnc queue_arg1_scb_completion; 1557return: 1558 ret; 1559 1560wait_pkt_end: 1561 call setjmp; 1562END_CRITICAL; 1563wait_pkt_end_loop: 1564 test SEQINTSRC, CTXTDONE jnz pkt_end; 1565 check_overrun; 1566 test SSTAT2, NONPACKREQ jz return; 1567 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1568pkt_end: 1569BEGIN_CRITICAL; 1570 check_overrun; 1571 or LONGJMP_ADDR[1], INVALID_ADDR; 1572 or SCB_SGPTR, SG_LIST_NULL; 1573 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_complete; 1574 mvi DFFSXFRCTL, CLRCHN ret; 1575END_CRITICAL; 1576 1577/* 1578 * Either a SAVEPTRS interrupt condition is pending for this FIFO 1579 * or we have a pending nonpackreq for this FIFO. We differentiate 1580 * between the two by capturing the state of the SAVEPTRS interrupt 1581 * prior to clearing and handling the common code of these two cases. 1582 */ 1583pkt_saveptrs: 1584BEGIN_CRITICAL; 1585 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1586 or DFCNTRL, FIFOFLUSH; 1587 } 1588 mov REG0, SEQINTSRC; 1589 mvi CLRSEQINTSRC, CLRSAVEPTRS; 1590 call calc_residual; 1591 call save_pointers; 1592 call disable_ccsgen; 1593 or SEQIMODE, ENSAVEPTRS; 1594 or LONGJMP_ADDR[1], INVALID_ADDR; 1595pkt_saveptrs_check_status: 1596 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 1597 test SCB_CONTROL, STATUS_RCVD jz pkt_saveptrs_clrchn; 1598 jmp last_pkt_complete; 1599pkt_saveptrs_clrchn: 1600 mvi DFFSXFRCTL, CLRCHN ret; 1601END_CRITICAL; 1602 1603check_status_overrun: 1604 test SHCNT[2], 0xFF jz status_IU_done; 1605 mvi SEQINTCODE, STATUS_OVERRUN; 1606 jmp status_IU_done; 1607pkt_handle_status: 1608 call setjmp_setscb; 1609 test MDFFSTAT, LASTSDONE jnz check_status_overrun; 1610 test SEQINTSRC, CTXTDONE jz return; 1611status_IU_done: 1612BEGIN_CRITICAL; 1613 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1614 or DFCNTRL, FIFOFLUSH; 1615 } 1616 or LONGJMP_ADDR[1], INVALID_ADDR; 1617 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 1618 or SCB_CONTROL, STATUS_RCVD; 1619 jmp last_pkt_complete; 1620END_CRITICAL; 1621 1622SET_SRC_MODE M_DFF0; 1623SET_DST_MODE M_DFF0; 1624BEGIN_CRITICAL; 1625check_fifo: 1626 test LONGJMP_ADDR[1], INVALID_ADDR jnz return; 1627 mov A, ARG_2; 1628 cmp LONGJMP_SCB[1], A jne return; 1629 mov A, ARG_1; 1630 cmp LONGJMP_SCB[0], A jne return; 1631 stc ret; 1632END_CRITICAL; 1633 1634/* 1635 * Nonpackreq is a polled status. It can come true in three situations: 1636 * we have received an L_Q, we have sent one or more L_Qs, or there is no 1637 * L_Q context associated with this REQ (REQ occurs immediately after a 1638 * (re)selection). Routines that know that the context responsible for this 1639 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 1640 * top level idle loop, we exhaust all active contexts prior to determining that 1641 * we simply do not have the full I_T_L_Q for this phase. 1642 */ 1643unexpected_nonpkt_phase_find_ctxt: 1644 /* 1645 * This nonpackreq is most likely associated with one of the tags 1646 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 1647 * nonpackreq if we've cleared out the FIFOs and handled any 1648 * pending SELDO. 1649 */ 1650SET_SRC_MODE M_SCSI; 1651SET_DST_MODE M_SCSI; 1652 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 1653 cmp A, FIFO1FREE|FIFO0FREE jne return; 1654 test SSTAT0, SELDO jnz return; 1655 mvi SCBPTR[1], SCB_LIST_NULL; 1656unexpected_nonpkt_phase: 1657 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz . + 3; 1658SET_SRC_MODE M_DFF0; 1659SET_DST_MODE M_DFF0; 1660 or LONGJMP_ADDR[1], INVALID_ADDR; 1661 mvi DFFSXFRCTL, CLRCHN; 1662 mvi CLRSINT2, CLRNONPACKREQ; 1663 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 1664 mvi SEQINTCODE, ENTERING_NONPACK; 1665 jmp ITloop; 1666 1667illegal_phase: 1668 mvi SEQINTCODE, ILLEGAL_PHASE; 1669 jmp ITloop; 1670 1671/* 1672 * We have entered an overrun situation. If we have working 1673 * BITBUCKET, flip that on and let the hardware eat any overrun 1674 * data. Otherwise use an overrun buffer in the host to simulate 1675 * BITBUCKET. 1676 */ 1677pkt_handle_overrun: 1678 mvi SEQINTCODE, CFG4OVERRUN; 1679 call freeze_queue; 1680 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 1681 SET_MODE(M_SCSI, M_SCSI); 1682 or SXFRCTL1,BITBUCKET; 1683SET_SRC_MODE M_DFF1; 1684SET_DST_MODE M_DFF1; 1685 } else { 1686 call load_overrun_buf; 1687 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 1688 } 1689 call setjmp; 1690 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1691 test DFSTATUS, PKT_PRELOAD_AVAIL jz overrun_load_done; 1692 call load_overrun_buf; 1693 or DFCNTRL, PRELOADEN; 1694overrun_load_done: 1695 } 1696 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 1697 test SSTAT2, NONPACKREQ jz return; 1698pkt_overrun_end: 1699 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 1700 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1701 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_queue_scb; 1702 mvi DFFSXFRCTL, CLRCHN ret; 1703 1704if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1705load_overrun_buf: 1706 /* 1707 * Load a dummy segment if preload space is available. 1708 */ 1709 mov HADDR[0], SHARED_DATA_ADDR; 1710 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 1711 mov ACCUM_SAVE, A; 1712 clr A; 1713 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 1714 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 1715 mov A, ACCUM_SAVE; 1716 bmov HADDR[4], ALLZEROS, 4; 1717 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 1718 clr HCNT[0]; 1719 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 1720 clr HCNT[2]; 1721} 1722 1723cfg4icmd_intr: 1724