1/* 2 * Adaptec U320 device driver firmware for Linux and FreeBSD. 3 * 4 * Copyright (c) 1994-2001 Justin T. Gibbs. 5 * Copyright (c) 2000-2002 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 * 40 * $FreeBSD$ 41 */ 42 43VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#78 $" 44PATCH_ARG_LIST = "struct ahd_softc *ahd" 45PREFIX = "ahd_" 46 47#include "aic79xx.reg" 48#include "scsi_message.h" 49 50restart: 51if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 52 test SEQINTCODE, 0xFF jz idle_loop; 53 SET_SEQINTCODE(NO_SEQINT) 54} 55 56idle_loop: 57 58 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 59 /* 60 * Convert ERROR status into a sequencer 61 * interrupt to handle the case of an 62 * interrupt collision on the hardware 63 * setting of HWERR. 64 */ 65 test ERROR, 0xFF jz no_error_set; 66 SET_SEQINTCODE(SAW_HWERR) 67no_error_set: 68 } 69 SET_MODE(M_SCSI, M_SCSI) 70 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 71 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus; 72 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 73 /* 74 * ENSELO is cleared by a SELDO, so we must test for SELDO 75 * one last time. 76 */ 77BEGIN_CRITICAL; 78 test SSTAT0, SELDO jnz select_out; 79END_CRITICAL; 80 call start_selection; 81idle_loop_checkbus: 82BEGIN_CRITICAL; 83 test SSTAT0, SELDO jnz select_out; 84END_CRITICAL; 85 test SSTAT0, SELDI jnz select_in; 86 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 87 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 88 call unexpected_nonpkt_phase_find_ctxt; 89idle_loop_check_nonpackreq: 90 test SSTAT2, NONPACKREQ jz . + 2; 91 call unexpected_nonpkt_phase_find_ctxt; 92 call idle_loop_gsfifo_in_scsi_mode; 93 call idle_loop_service_fifos; 94 call idle_loop_cchan; 95 jmp idle_loop; 96 97BEGIN_CRITICAL; 98idle_loop_gsfifo: 99 SET_MODE(M_SCSI, M_SCSI) 100idle_loop_gsfifo_in_scsi_mode: 101 test LQISTAT2, LQIGSAVAIL jz return; 102 /* 103 * We have received good status for this transaction. There may 104 * still be data in our FIFOs draining to the host. Setup 105 * monitoring of the draining process or complete the SCB. 106 */ 107good_status_IU_done: 108 bmov SCBPTR, GSFIFO, 2; 109 clr SCB_SCSI_STATUS; 110 /* 111 * If a command completed before an attempted task management 112 * function completed, notify the host after disabling any 113 * pending select-outs. 114 */ 115 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally; 116 test SSTAT0, SELDO|SELINGO jnz . + 2; 117 and SCSISEQ0, ~ENSELO; 118 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 119gsfifo_complete_normally: 120 or SCB_CONTROL, STATUS_RCVD; 121 122 /* 123 * Since this status did not consume a FIFO, we have to 124 * be a bit more dilligent in how we check for FIFOs pertaining 125 * to this transaction. There are three states that a FIFO still 126 * transferring data may be in. 127 * 128 * 1) Configured and draining to the host, with a pending CLRCHN. 129 * 2) Configured and draining to the host, no pending CLRCHN. 130 * 3) Pending cfg4data, fifo not empty. 131 * 132 * Cases 1 and 2 can be detected by noticing that a longjmp is 133 * active for the FIFO and LONGJMP_SCB matches our SCB. In this 134 * case, we allow the routine servicing the FIFO to complete the SCB. 135 * 136 * Case 3 implies either a pending or yet to occur save data 137 * pointers for this same context in the other FIFO. So, if 138 * we detect case 2, we will properly defer the post of the SCB 139 * and achieve the desired result. The pending cfg4data will 140 * notice that status has been received and complete the SCB. 141 */ 142 test SCB_SGPTR, SG_LIST_NULL jz good_status_check_fifos; 143 /* 144 * All segments have been loaded (or no data transfer), so 145 * it is safe to complete the command. Since this was a 146 * cheap command to check for completion, loop to see if 147 * more entries can be removed from the GSFIFO. 148 */ 149 call complete; 150END_CRITICAL; 151 jmp idle_loop_gsfifo_in_scsi_mode; 152BEGIN_CRITICAL; 153good_status_check_fifos: 154 clc; 155 bmov ARG_1, SCBPTR, 2; 156 SET_MODE(M_DFF0, M_DFF0) 157 call check_fifo; 158 jc return; 159 SET_MODE(M_DFF1, M_DFF1) 160 call check_fifo; 161 jc return; 162 SET_MODE(M_SCSI, M_SCSI) 163 jmp queue_scb_completion; 164END_CRITICAL; 165 166idle_loop_service_fifos: 167 SET_MODE(M_DFF0, M_DFF0) 168 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 169 call longjmp; 170idle_loop_next_fifo: 171 SET_MODE(M_DFF1, M_DFF1) 172 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp; 173 ret; 174 175idle_loop_cchan: 176 SET_MODE(M_CCHAN, M_CCHAN) 177 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty; 178 mov LOCAL_HS_MAILBOX, HS_MAILBOX; 179 or QOFF_CTLSTA, HS_MAILBOX_ACT; 180hs_mailbox_empty: 181BEGIN_CRITICAL; 182 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 183 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 184 test CCSCBCTL, CCSCBDONE jz return; 185END_CRITICAL; 186 /* FALLTHROUGH */ 187scbdma_tohost_done: 188 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 189 /* 190 * A complete SCB upload requires no intervention. 191 * The SCB is already on the COMPLETE_SCB list 192 * and its completion notification will now be 193 * handled just like any other SCB. 194 */ 195 and CCSCBCTL, ~(CCARREN|CCSCBEN) ret; 196fill_qoutfifo_dmadone: 197 and CCSCBCTL, ~(CCARREN|CCSCBEN); 198 call qoutfifo_updated; 199 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 200 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 201 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 202 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; 203 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; 204 205qoutfifo_updated: 206 /* 207 * If there are more commands waiting to be dma'ed 208 * to the host, always coaless. Otherwise honor the 209 * host's wishes. 210 */ 211 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coaless_by_count; 212 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coaless_by_count; 213 test LOCAL_HS_MAILBOX, ENINT_COALESS jz issue_cmdcmplt; 214 215 /* 216 * If we have relatively few commands outstanding, don't 217 * bother waiting for another command to complete. 218 */ 219 test CMDS_PENDING[1], 0xFF jnz coaless_by_count; 220 /* Add -1 so that jnc means <= not just < */ 221 add A, -1, INT_COALESSING_MINCMDS; 222 add NONE, A, CMDS_PENDING; 223 jnc issue_cmdcmplt; 224 225 /* 226 * If coalessing, only coaless up to the limit 227 * provided by the host driver. 228 */ 229coaless_by_count: 230 mov A, INT_COALESSING_MAXCMDS; 231 add NONE, A, INT_COALESSING_CMDCOUNT; 232 jc issue_cmdcmplt; 233 /* 234 * If the timer is not currently active, 235 * fire it up. 236 */ 237 test INTCTL, SWTMINTMASK jz return; 238 bmov SWTIMER, INT_COALESSING_TIMER, 2; 239 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 240 or INTCTL, SWTMINTEN|SWTIMER_START; 241 and INTCTL, ~SWTMINTMASK ret; 242 243issue_cmdcmplt: 244 mvi INTSTAT, CMDCMPLT; 245 clr INT_COALESSING_CMDCOUNT; 246 or INTCTL, SWTMINTMASK ret; 247 248BEGIN_CRITICAL; 249fetch_new_scb_inprog: 250 test CCSCBCTL, ARRDONE jz return; 251fetch_new_scb_done: 252 and CCSCBCTL, ~(CCARREN|CCSCBEN); 253 bmov REG0, SCBPTR, 2; 254 clr A; 255 add CMDS_PENDING, 1; 256 adc CMDS_PENDING[1], A; 257 /* Update the next SCB address to download. */ 258 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 259 mvi SCB_NEXT[1], SCB_LIST_NULL; 260 mvi SCB_NEXT2[1], SCB_LIST_NULL; 261 /* Increment our position in the QINFIFO. */ 262 mov NONE, SNSCB_QOFF; 263 /* 264 * SCBs that want to send messages are always 265 * queued independently. This ensures that they 266 * are at the head of the SCB list to select out 267 * to a target and we will see the MK_MESSAGE flag. 268 */ 269 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb; 270 shr SINDEX, 3, SCB_SCSIID; 271 and SINDEX, ~0x1; 272 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 273 bmov DINDEX, SINDEX, 2; 274 bmov SCBPTR, SINDIR, 2; 275 bmov DINDIR, REG0, 2; 276 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 277 bmov SCB_NEXT, REG0, 2 ret; 278first_new_target_scb: 279 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 280 bmov SCBPTR, WAITING_TID_TAIL, 2; 281 bmov SCB_NEXT2, REG0, 2; 282 bmov WAITING_TID_TAIL, REG0, 2 ret; 283first_new_scb: 284 bmov WAITING_TID_HEAD, REG0, 2; 285 bmov WAITING_TID_TAIL, REG0, 2 ret; 286END_CRITICAL; 287 288scbdma_idle: 289 /* 290 * Give precedence to downloading new SCBs to execute 291 * unless select-outs are currently frozen. 292 */ 293 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2; 294BEGIN_CRITICAL; 295 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 296 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 297 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 298 /* FALLTHROUGH */ 299fill_qoutfifo: 300 /* 301 * Keep track of the SCBs we are dmaing just 302 * in case the DMA fails or is aborted. 303 */ 304 mov A, QOUTFIFO_ENTRY_VALID_TAG; 305 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 306 mvi CCSCBCTL, CCSCBRESET; 307 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 308 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 309fill_qoutfifo_loop: 310 mov CCSCBRAM, SCBPTR; 311 or CCSCBRAM, A, SCBPTR[1]; 312 mov NONE, SDSCB_QOFF; 313 inc INT_COALESSING_CMDCOUNT; 314 add CMDS_PENDING, -1; 315 adc CMDS_PENDING[1], -1; 316 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 317 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 318 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done; 319 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 320 jmp fill_qoutfifo_loop; 321fill_qoutfifo_done: 322 mov SCBHCNT, CCSCBADDR; 323 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 324 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 325 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 326 327fetch_new_scb: 328 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 329 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 330dma_complete_scb: 331 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 332 bmov SCBHADDR, SCB_BUSADDR, 4; 333 mvi CCARREN|CCSCBEN|CCSCBRESET call dma_scb; 334 /* 335 * Now that we've started the DMA, push us onto 336 * the normal completion queue to have our SCBID 337 * posted to the kernel. 338 */ 339 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 340 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 341 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 342END_CRITICAL; 343 344/* 345 * Either post or fetch an SCB from host memory. The caller 346 * is responsible for polling for transfer completion. 347 * 348 * Prerequisits: Mode == M_CCHAN 349 * SINDEX contains CCSCBCTL flags 350 * SCBHADDR set to Host SCB address 351 * SCBPTR set to SCB src location on "push" operations 352 */ 353SET_SRC_MODE M_CCHAN; 354SET_DST_MODE M_CCHAN; 355dma_scb: 356 mvi SCBHCNT, SCB_TRANSFER_SIZE; 357 mov CCSCBCTL, SINDEX ret; 358 359BEGIN_CRITICAL; 360setjmp_setscb: 361 bmov LONGJMP_SCB, SCBPTR, 2; 362setjmp: 363 bmov LONGJMP_ADDR, STACK, 2 ret; 364setjmp_inline: 365 bmov LONGJMP_ADDR, STACK, 2; 366longjmp: 367 bmov STACK, LONGJMP_ADDR, 2 ret; 368END_CRITICAL; 369 370/*************************** Chip Bug Work Arounds ****************************/ 371/* 372 * Must disable interrupts when setting the mode pointer 373 * register as an interrupt occurring mid update will 374 * fail to store the new mode value for restoration on 375 * an iret. 376 */ 377if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 378set_mode_work_around: 379 mvi SEQINTCTL, INTVEC1DSL; 380 mov MODE_PTR, SINDEX; 381 clr SEQINTCTL ret; 382 383toggle_dff_mode_work_around: 384 mvi SEQINTCTL, INTVEC1DSL; 385 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 386 clr SEQINTCTL ret; 387} 388 389 390if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 391set_seqint_work_around: 392 mov SEQINTCODE, SINDEX; 393 mvi SEQINTCODE, NO_SEQINT ret; 394} 395 396/************************ Packetized LongJmp Routines *************************/ 397SET_SRC_MODE M_SCSI; 398SET_DST_MODE M_SCSI; 399start_selection: 400BEGIN_CRITICAL; 401 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 402 /* 403 * Razor #494 404 * Rev A hardware fails to update LAST/CURR/NEXTSCB 405 * correctly after a packetized selection in several 406 * situations: 407 * 408 * 1) If only one command existed in the queue, the 409 * LAST/CURR/NEXTSCB are unchanged. 410 * 411 * 2) In a non QAS, protocol allowed phase change, 412 * the queue is shifted 1 too far. LASTSCB is 413 * the last SCB that was correctly processed. 414 * 415 * 3) In the QAS case, if the full list of commands 416 * was successfully sent, NEXTSCB is NULL and neither 417 * CURRSCB nor LASTSCB can be trusted. We must 418 * manually walk the list counting MAXCMDCNT elements 419 * to find the last SCB that was sent correctly. 420 * 421 * To simplify the workaround for this bug in SELDO 422 * handling, we initialize LASTSCB prior to enabling 423 * selection so we can rely on it even for case #1 above. 424 */ 425 bmov LASTSCB, WAITING_TID_HEAD, 2; 426 } 427 bmov CURRSCB, WAITING_TID_HEAD, 2; 428 bmov SCBPTR, WAITING_TID_HEAD, 2; 429 shr SELOID, 4, SCB_SCSIID; 430 /* 431 * If we want to send a message to the device, ensure 432 * we are selecting with atn irregardless of our packetized 433 * agreement. Since SPI4 only allows target reset or PPR 434 * messages if this is a packetized connection, the change 435 * to our negotiation table entry for this selection will 436 * be cleared when the message is acted on. 437 */ 438 test SCB_CONTROL, MK_MESSAGE jz . + 3; 439 mov NEGOADDR, SELOID; 440 or NEGCONOPTS, ENAUTOATNO; 441 or SCSISEQ0, ENSELO ret; 442END_CRITICAL; 443 444/* 445 * Allocate a FIFO for a non-packetized transaction. 446 * In RevA hardware, both FIFOs must be free before we 447 * can allocate a FIFO for a non-packetized transaction. 448 */ 449allocate_fifo_loop: 450 /* 451 * Do whatever work is required to free a FIFO. 452 */ 453 call idle_loop_service_fifos; 454 SET_MODE(M_SCSI, M_SCSI) 455allocate_fifo: 456 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) { 457 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 458 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 459 } else { 460 test DFFSTAT, FIFO1FREE jnz allocate_fifo1; 461 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop; 462 mvi DFFSTAT, B_CURRFIFO_0; 463 SET_MODE(M_DFF0, M_DFF0) 464 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 465 } 466SET_SRC_MODE M_SCSI; 467SET_DST_MODE M_SCSI; 468allocate_fifo1: 469 mvi DFFSTAT, CURRFIFO_1; 470 SET_MODE(M_DFF1, M_DFF1) 471 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 472 473/* 474 * We have been reselected as an initiator 475 * or selected as a target. 476 */ 477SET_SRC_MODE M_SCSI; 478SET_DST_MODE M_SCSI; 479select_in: 480 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 481 /* 482 * This exposes a window whereby a 483 * busfree just after a selection will 484 * be missed, but there is no other safe 485 * way to enable busfree detection if 486 * the busfreerev function is broken. 487 */ 488 mvi CLRSINT1,CLRBUSFREE; 489 or SIMODE1, ENBUSFREE; 490 } 491 or SXFRCTL0, SPIOEN; 492 and SAVED_SCSIID, SELID_MASK, SELID; 493 and A, OID, IOWNID; 494 or SAVED_SCSIID, A; 495 mvi CLRSINT0, CLRSELDI; 496 jmp ITloop; 497 498/* 499 * We have successfully selected out. 500 * 501 * Clear SELDO. 502 * Dequeue all SCBs sent from the waiting queue 503 * Requeue all SCBs *not* sent to the tail of the waiting queue 504 * Take Razor #494 into account for above. 505 * 506 * In Packetized Mode: 507 * Return to the idle loop. Our interrupt handler will take 508 * care of any incoming L_Qs. 509 * 510 * In Non-Packetize Mode: 511 * Continue to our normal state machine. 512 */ 513SET_SRC_MODE M_SCSI; 514SET_DST_MODE M_SCSI; 515select_out: 516BEGIN_CRITICAL; 517 /* Clear out all SCBs that have been successfully sent. */ 518 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 519 /* 520 * For packetized, the LQO manager clears ENSELO on 521 * the assertion of SELDO. If we are non-packetized, 522 * LASTSCB and CURRSCB are acuate. 523 */ 524 test SCSISEQ0, ENSELO jnz use_lastscb; 525 526 /* 527 * The update is correct for LQOSTAT1 errors. All 528 * but LQOBUSFREE are handled by kernel interrupts. 529 * If we see LQOBUSFREE, return to the idle loop. 530 * Once we are out of the select_out critical section, 531 * the kernel will cleanup the LQOBUSFREE and we will 532 * eventually restart the selection if appropriate. 533 */ 534 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 535 536 /* 537 * On a phase change oustside of packet boundaries, 538 * LASTSCB points to the currently active SCB context 539 * on the bus. 540 */ 541 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 542 543 /* 544 * If the hardware has traversed the whole list, NEXTSCB 545 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 546 * but MAXCMDCNT is accurate. If we stop part way through 547 * the list or only had one command to issue, NEXTSCB[1] is 548 * not NULL and LASTSCB is the last command to go out. 549 */ 550 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 551 552 /* 553 * Brute force walk. 554 */ 555 bmov SCBPTR, WAITING_TID_HEAD, 2; 556 mvi SEQINTCTL, INTVEC1DSL; 557 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 558 mov A, MAXCMDCNT; 559 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 560 clr SEQINTCTL; 561find_lastscb_loop: 562 dec A; 563 test A, 0xFF jz found_last_sent_scb; 564 bmov SCBPTR, SCB_NEXT, 2; 565 jmp find_lastscb_loop; 566use_lastscb: 567 bmov SCBPTR, LASTSCB, 2; 568found_last_sent_scb: 569 bmov CURRSCB, SCBPTR, 2; 570curscb_ww_done: 571 } else { 572 /* 573 * Untested - Verify with Rev B. 574 */ 575 bmov SCBPTR, CURRSCB, 2; 576 } 577 578 /* 579 * Requeue any SCBs not sent, to the tail of the waiting Q. 580 */ 581 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done; 582 583 /* 584 * We know that neither the per-TID list nor the list of 585 * TIDs is empty. Use this knowledge to our advantage. 586 */ 587 bmov REG0, SCB_NEXT, 2; 588 bmov SCBPTR, WAITING_TID_TAIL, 2; 589 bmov SCB_NEXT2, REG0, 2; 590 bmov WAITING_TID_TAIL, REG0, 2; 591 jmp select_out_inc_tid_q; 592 593select_out_list_done: 594 /* 595 * The whole list made it. Just clear our TID's tail pointer 596 * unless we were queued independently due to our need to 597 * send a message. 598 */ 599 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q; 600 shr DINDEX, 3, SCB_SCSIID; 601 or DINDEX, 1; /* Want only the second byte */ 602 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 603 mvi DINDIR, SCB_LIST_NULL; 604select_out_inc_tid_q: 605 bmov SCBPTR, WAITING_TID_HEAD, 2; 606 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 607 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 608 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 609 bmov SCBPTR, CURRSCB, 2; 610 mvi CLRSINT0, CLRSELDO; 611 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase; 612 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase; 613 614 /* 615 * If this is a packetized connection, return to our 616 * idle_loop and let our interrupt handler deal with 617 * any connection setup/teardown issues. The only 618 * exceptions are the case of MK_MESSAGE and task management 619 * SCBs. 620 */ 621 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 622 /* 623 * In the A, the LQO manager transitions to LQOSTOP0 even if 624 * we have selected out with ATN asserted and the target 625 * REQs in a non-packet phase. 626 */ 627 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 628 test SCSISIGO, ATNO jnz select_out_non_packetized; 629select_out_no_message: 630 } 631 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized; 632 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop; 633 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE) 634 jmp idle_loop; 635 636select_out_non_packetized: 637 /* Non packetized request. */ 638 and SCSISEQ0, ~ENSELO; 639 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 640 /* 641 * This exposes a window whereby a 642 * busfree just after a selection will 643 * be missed, but there is no other safe 644 * way to enable busfree detection if 645 * the busfreerev function is broken. 646 */ 647 mvi CLRSINT1,CLRBUSFREE; 648 or SIMODE1, ENBUSFREE; 649 } 650 mov SAVED_SCSIID, SCB_SCSIID; 651 mov SAVED_LUN, SCB_LUN; 652 mvi SEQ_FLAGS, NO_CDB_SENT; 653END_CRITICAL; 654 or SXFRCTL0, SPIOEN; 655 656 /* 657 * As soon as we get a successful selection, the target 658 * should go into the message out phase since we have ATN 659 * asserted. 660 */ 661 mvi MSG_OUT, MSG_IDENTIFYFLAG; 662 663 /* 664 * Main loop for information transfer phases. Wait for the 665 * target to assert REQ before checking MSG, C/D and I/O for 666 * the bus phase. 667 */ 668mesgin_phasemis: 669ITloop: 670 call phase_lock; 671 672 mov A, LASTPHASE; 673 674 test A, ~P_DATAIN_DT jz p_data; 675 cmp A,P_COMMAND je p_command; 676 cmp A,P_MESGOUT je p_mesgout; 677 cmp A,P_STATUS je p_status; 678 cmp A,P_MESGIN je p_mesgin; 679 680 SET_SEQINTCODE(BAD_PHASE) 681 jmp ITloop; /* Try reading the bus again. */ 682 683/* 684 * Command phase. Set up the DMA registers and let 'er rip. 685 */ 686p_command: 687 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay; 688 SET_SEQINTCODE(PROTO_VIOLATION) 689p_command_okay: 690 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 691 jnz p_command_allocate_fifo; 692 /* 693 * Command retry. Free our current FIFO and 694 * re-allocate a FIFO so transfer state is 695 * reset. 696 */ 697SET_SRC_MODE M_DFF1; 698SET_DST_MODE M_DFF1; 699 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 700 SET_MODE(M_SCSI, M_SCSI) 701p_command_allocate_fifo: 702 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 703 call allocate_fifo; 704SET_SRC_MODE M_DFF1; 705SET_DST_MODE M_DFF1; 706 add NONE, -17, SCB_CDB_LEN; 707 jnc p_command_embedded; 708p_command_from_host: 709 bmov HADDR[0], SCB_CDB_PTR, 11; 710 mvi SG_CACHE_PRE, LAST_SEG; 711 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 712 jmp p_command_xfer; 713p_command_embedded: 714 bmov SHCNT[0], SCB_CDB_LEN, 1; 715 bmov DFDAT, SCB_CDB_STORE, 16; 716 mvi DFCNTRL, SCSIEN; 717p_command_xfer: 718 and SEQ_FLAGS, ~NO_CDB_SENT; 719 test DFCNTRL, SCSIEN jnz .; 720 /* 721 * DMA Channel automatically disabled. 722 * Don't allow a data phase if the command 723 * was not fully transferred. 724 */ 725 test SSTAT2, SDONE jnz ITloop; 726 or SEQ_FLAGS, NO_CDB_SENT; 727 jmp ITloop; 728 729 730/* 731 * Status phase. Wait for the data byte to appear, then read it 732 * and store it into the SCB. 733 */ 734SET_SRC_MODE M_SCSI; 735SET_DST_MODE M_SCSI; 736p_status: 737 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation; 738p_status_okay: 739 mov SCB_SCSI_STATUS, SCSIDAT; 740 or SCB_CONTROL, STATUS_RCVD; 741 jmp ITloop; 742 743/* 744 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 745 * indentify message sequence and send it to the target. The host may 746 * override this behavior by setting the MK_MESSAGE bit in the SCB 747 * control byte. This will cause us to interrupt the host and allow 748 * it to handle the message phase completely on its own. If the bit 749 * associated with this target is set, we will also interrupt the host, 750 * thereby allowing it to send a message on the next selection regardless 751 * of the transaction being sent. 752 * 753 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 754 * This is done to allow the host to send messages outside of an identify 755 * sequence while protecting the seqencer from testing the MK_MESSAGE bit 756 * on an SCB that might not be for the current nexus. (For example, a 757 * BDR message in responce to a bad reselection would leave us pointed to 758 * an SCB that doesn't have anything to do with the current target). 759 * 760 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 761 * bus device reset). 762 * 763 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 764 * in case the target decides to put us in this phase for some strange 765 * reason. 766 */ 767p_mesgout_retry: 768 /* Turn on ATN for the retry */ 769 mvi SCSISIGO, ATNO; 770p_mesgout: 771 mov SINDEX, MSG_OUT; 772 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 773 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 774p_mesgout_identify: 775 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 776 test SCB_CONTROL, DISCENB jnz . + 2; 777 and SINDEX, ~DISCENB; 778/* 779 * Send a tag message if TAG_ENB is set in the SCB control block. 780 * Use SCB_NONPACKET_TAG as the tag value. 781 */ 782p_mesgout_tag: 783 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 784 mov SCSIDAT, SINDEX; /* Send the identify message */ 785 call phase_lock; 786 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 787 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 788 call phase_lock; 789 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 790 mov SCBPTR jmp p_mesgout_onebyte; 791/* 792 * Interrupt the driver, and allow it to handle this message 793 * phase and any required retries. 794 */ 795p_mesgout_from_host: 796 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 797 jmp host_message_loop; 798 799p_mesgout_onebyte: 800 mvi CLRSINT1, CLRATNO; 801 mov SCSIDAT, SINDEX; 802 803/* 804 * If the next bus phase after ATN drops is message out, it means 805 * that the target is requesting that the last message(s) be resent. 806 */ 807 call phase_lock; 808 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 809 810p_mesgout_done: 811 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 812 mov LAST_MSG, MSG_OUT; 813 mvi MSG_OUT, MSG_NOOP; /* No message left */ 814 jmp ITloop; 815 816/* 817 * Message in phase. Bytes are read using Automatic PIO mode. 818 */ 819p_mesgin: 820 /* read the 1st message byte */ 821 mvi ACCUM call inb_first; 822 823 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 824 cmp A,MSG_DISCONNECT je mesgin_disconnect; 825 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 826 cmp ALLZEROS,A je mesgin_complete; 827 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 828 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 829 cmp A,MSG_NOOP je mesgin_done; 830 831/* 832 * Pushed message loop to allow the kernel to 833 * run it's own message state engine. To avoid an 834 * extra nop instruction after signaling the kernel, 835 * we perform the phase_lock before checking to see 836 * if we should exit the loop and skip the phase_lock 837 * in the ITloop. Performing back to back phase_locks 838 * shouldn't hurt, but why do it twice... 839 */ 840host_message_loop: 841 call phase_lock; /* Benign the first time through. */ 842 SET_SEQINTCODE(HOST_MSG_LOOP) 843 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 844 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 845 mov SCSIDAT, RETURN_2; 846 jmp host_message_loop; 847 /* Must be CONT_MSG_LOOP_READ */ 848 mov NONE, SCSIDAT; /* ACK Byte */ 849 jmp host_message_loop; 850 851mesgin_ign_wide_residue: 852 mov SAVED_MODE, MODE_PTR; 853 SET_MODE(M_SCSI, M_SCSI) 854 shr NEGOADDR, 4, SAVED_SCSIID; 855 mov A, NEGCONOPTS; 856 RESTORE_MODE(SAVED_MODE) 857 test A, WIDEXFER jz mesgin_reject; 858 /* Pull the residue byte */ 859 mvi REG0 call inb_next; 860 cmp REG0, 0x01 jne mesgin_reject; 861 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 862 test DATA_COUNT_ODD, 0x1 jz mesgin_done; 863 jmp mesgin_done; 864 865mesgin_proto_violation: 866 SET_SEQINTCODE(PROTO_VIOLATION) 867 jmp mesgin_done; 868mesgin_reject: 869 mvi MSG_MESSAGE_REJECT call mk_mesg; 870mesgin_done: 871 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 872 jmp ITloop; 873 874#define INDEX_DISC_LIST(scsiid, lun) \ 875 and A, 0xC0, scsiid; \ 876 or SCBPTR, A, lun; \ 877 clr SCBPTR[1]; \ 878 and SINDEX, 0x30, scsiid; \ 879 shr SINDEX, 3; /* Multiply by 2 */ \ 880 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 881 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 882 883mesgin_identify: 884 /* 885 * Determine whether a target is using tagged or non-tagged 886 * transactions by first looking at the transaction stored in 887 * the per-device, disconnected array. If there is no untagged 888 * transaction for this target, this must be a tagged transaction. 889 */ 890 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 891 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 892 bmov DINDEX, SINDEX, 2; 893 bmov REG0, SINDIR, 2; 894 cmp REG0[1], SCB_LIST_NULL je snoop_tag; 895 /* Untagged. Clear the busy table entry and setup the SCB. */ 896 bmov DINDIR, ALLONES, 2; 897 bmov SCBPTR, REG0, 2; 898 jmp setup_SCB; 899 900/* 901 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 902 * If we get one, we use the tag returned to find the proper 903 * SCB. After receiving the tag, look for the SCB at SCB locations tag and 904 * tag + 256. 905 */ 906snoop_tag: 907 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 908 or SEQ_FLAGS, 0x80; 909 } 910 mov NONE, SCSIDAT; /* ACK Identify MSG */ 911 call phase_lock; 912 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 913 or SEQ_FLAGS, 0x1; 914 } 915 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 916 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 917 or SEQ_FLAGS, 0x2; 918 } 919 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 920get_tag: 921 clr SCBPTR[1]; 922 mvi SCBPTR call inb_next; /* tag value */ 923verify_scb: 924 test SCB_CONTROL,DISCONNECTED jz verify_other_scb; 925 mov A, SAVED_SCSIID; 926 cmp SCB_SCSIID, A jne verify_other_scb; 927 mov A, SAVED_LUN; 928 cmp SCB_LUN, A je setup_SCB_disconnected; 929verify_other_scb: 930 xor SCBPTR[1], 1; 931 test SCBPTR[1], 0xFF jnz verify_scb; 932 jmp not_found; 933 934/* 935 * Ensure that the SCB the tag points to is for 936 * an SCB transaction to the reconnecting target. 937 */ 938setup_SCB: 939 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 940 or SEQ_FLAGS, 0x10; 941 } 942 test SCB_CONTROL,DISCONNECTED jz not_found; 943setup_SCB_disconnected: 944 and SCB_CONTROL,~DISCONNECTED; 945 clr SEQ_FLAGS; /* make note of IDENTIFY */ 946 test SCB_SGPTR, SG_LIST_NULL jnz . + 3; 947 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 948 call allocate_fifo; 949 /* See if the host wants to send a message upon reconnection */ 950 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 951 mvi HOST_MSG call mk_mesg; 952 jmp mesgin_done; 953 954not_found: 955 SET_SEQINTCODE(NO_MATCH) 956 jmp mesgin_done; 957 958not_found_ITloop: 959 SET_SEQINTCODE(NO_MATCH) 960 jmp ITloop; 961 962/* 963 * We received a "command complete" message. Put the SCB on the complete 964 * queue and trigger a completion interrupt via the idle loop. Before doing 965 * so, check to see if there 966 * is a residual or the status byte is something other than STATUS_GOOD (0). 967 * In either of these conditions, we upload the SCB back to the host so it can 968 * process this information. In the case of a non zero status byte, we 969 * additionally interrupt the kernel driver synchronously, allowing it to 970 * decide if sense should be retrieved. If the kernel driver wishes to request 971 * sense, it will fill the kernel SCB with a request sense command, requeue 972 * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting 973 * RETURN_1 to SEND_SENSE. 974 */ 975mesgin_complete: 976 977 /* 978 * If ATN is raised, we still want to give the target a message. 979 * Perhaps there was a parity error on this last message byte. 980 * Either way, the target should take us to message out phase 981 * and then attempt to complete the command again. We should use a 982 * critical section here to guard against a timeout triggering 983 * for this command and setting ATN while we are still processing 984 * the completion. 985 test SCSISIGI, ATNI jnz mesgin_done; 986 */ 987 988 /* 989 * If we are identified and have successfully sent the CDB, 990 * any status will do. Optimize this fast path. 991 */ 992 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation; 993 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted; 994 995 /* 996 * If the target never sent an identify message but instead went 997 * to mesgin to give an invalid message, let the host abort us. 998 */ 999 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation; 1000 1001 /* 1002 * If we recevied good status but never successfully sent the 1003 * cdb, abort the command. 1004 */ 1005 test SCB_SCSI_STATUS,0xff jnz complete_accepted; 1006 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation; 1007complete_accepted: 1008 1009 /* 1010 * See if we attempted to deliver a message but the target ingnored us. 1011 */ 1012 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg; 1013 SET_SEQINTCODE(MKMSG_FAILED) 1014complete_nomsg: 1015 call queue_scb_completion; 1016 jmp await_busfree; 1017 1018freeze_queue: 1019 /* Cancel any pending select-out. */ 1020 test SSTAT0, SELDO|SELINGO jnz . + 2; 1021 and SCSISEQ0, ~ENSELO; 1022 mov ACCUM_SAVE, A; 1023 clr A; 1024 add QFREEZE_COUNT, 1; 1025 adc QFREEZE_COUNT[1], A; 1026 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 1027 mov A, ACCUM_SAVE ret; 1028 1029queue_arg1_scb_completion: 1030 SET_MODE(M_SCSI, M_SCSI) 1031 bmov SCBPTR, ARG_1, 2; 1032queue_scb_completion: 1033 if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0) { 1034 /* 1035 * Set MK_MESSAGE to trigger an abort should this SCB 1036 * be referenced by a target even though it is not currently 1037 * active. 1038 */ 1039 or SCB_CONTROL, MK_MESSAGE; 1040 } 1041 test SCB_SCSI_STATUS,0xff jnz bad_status; 1042 /* 1043 * Check for residuals 1044 */ 1045 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 1046 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 1047 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 1048complete: 1049 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 1050 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 1051bad_status: 1052 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 1053 call freeze_queue; 1054upload_scb: 1055 bmov SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2; 1056 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 1057 or SCB_SGPTR, SG_STATUS_VALID ret; 1058 1059/* 1060 * Is it a disconnect message? Set a flag in the SCB to remind us 1061 * and await the bus going free. If this is an untagged transaction 1062 * store the SCB id for it in our untagged target table for lookup on 1063 * a reselction. 1064 */ 1065mesgin_disconnect: 1066 /* 1067 * If ATN is raised, we still want to give the target a message. 1068 * Perhaps there was a parity error on this last message byte 1069 * or we want to abort this command. Either way, the target 1070 * should take us to message out phase and then attempt to 1071 * disconnect again. 1072 * XXX - Wait for more testing. 1073 test SCSISIGI, ATNI jnz mesgin_done; 1074 */ 1075 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT 1076 jnz mesgin_proto_violation; 1077 or SCB_CONTROL,DISCONNECTED; 1078 test SCB_CONTROL, TAG_ENB jnz await_busfree; 1079queue_disc_scb: 1080 bmov REG0, SCBPTR, 2; 1081 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1082 bmov DINDEX, SINDEX, 2; 1083 bmov DINDIR, REG0, 2; 1084 bmov SCBPTR, REG0, 2; 1085 /* FALLTHROUGH */ 1086await_busfree: 1087 and SIMODE1, ~ENBUSFREE; 1088 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) { 1089 /* 1090 * In the BUSFREEREV_BUG case, the 1091 * busfree status was cleared at the 1092 * beginning of the connection. 1093 */ 1094 mvi CLRSINT1,CLRBUSFREE; 1095 } 1096 mov NONE, SCSIDAT; /* Ack the last byte */ 1097 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1098 jnz await_busfree_not_m_dff; 1099SET_SRC_MODE M_DFF1; 1100SET_DST_MODE M_DFF1; 1101await_busfree_clrchn: 1102 mvi DFFSXFRCTL, CLRCHN; 1103await_busfree_not_m_dff: 1104 call clear_target_state; 1105 test SSTAT1,REQINIT|BUSFREE jz .; 1106 test SSTAT1, BUSFREE jnz idle_loop; 1107 SET_SEQINTCODE(MISSED_BUSFREE) 1108 1109 1110/* 1111 * Save data pointers message: 1112 * Copying RAM values back to SCB, for Save Data Pointers message, but 1113 * only if we've actually been into a data phase to change them. This 1114 * protects against bogus data in scratch ram and the residual counts 1115 * since they are only initialized when we go into data_in or data_out. 1116 * Ack the message as soon as possible. 1117 */ 1118SET_SRC_MODE M_DFF1; 1119SET_DST_MODE M_DFF1; 1120mesgin_sdptrs: 1121 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1122 test SEQ_FLAGS, DPHASE jz ITloop; 1123 call save_pointers; 1124 jmp ITloop; 1125 1126save_pointers: 1127 /* 1128 * If we are asked to save our position at the end of the 1129 * transfer, just mark us at the end rather than perform a 1130 * full save. 1131 */ 1132 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1133 or SCB_SGPTR, SG_LIST_NULL ret; 1134 1135save_pointers_full: 1136 /* 1137 * The SCB_DATAPTR becomes the current SHADDR. 1138 * All other information comes directly from our residual 1139 * state. 1140 */ 1141 bmov SCB_DATAPTR, SHADDR, 8; 1142 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1143 1144/* 1145 * Restore pointers message? Data pointers are recopied from the 1146 * SCB anytime we enter a data phase for the first time, so all 1147 * we need to do is clear the DPHASE flag and let the data phase 1148 * code do the rest. We also reset/reallocate the FIFO to make 1149 * sure we have a clean start for the next data or command phase. 1150 */ 1151mesgin_rdptrs: 1152 and SEQ_FLAGS, ~DPHASE; 1153 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1154 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1155 SET_MODE(M_SCSI, M_SCSI) 1156msgin_rdptrs_get_fifo: 1157 call allocate_fifo; 1158 jmp mesgin_done; 1159 1160clear_target_state: 1161 mvi LASTPHASE, P_BUSFREE; 1162 /* clear target specific flags */ 1163 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret; 1164 1165phase_lock: 1166 test SCSIPHASE, 0xFF jz .; 1167 test SSTAT1, SCSIPERR jnz phase_lock; 1168phase_lock_latch_phase: 1169 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1170 1171/* 1172 * Functions to read data in Automatic PIO mode. 1173 * 1174 * An ACK is not sent on input from the target until SCSIDATL is read from. 1175 * So we wait until SCSIDATL is latched (the usual way), then read the data 1176 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1177 * line, or we just want to acknowledge the byte, then we do a dummy read 1178 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1179 * data byte on the bus until we send our ACK. 1180 * 1181 * The assumption here is that these are called in a particular sequence, 1182 * and that REQ is already set when inb_first is called. inb_{first,next} 1183 * use the same calling convention as inb. 1184 */ 1185inb_next: 1186 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1187inb_next_wait: 1188 /* 1189 * If there is a parity error, wait for the kernel to 1190 * see the interrupt and prepare our message response 1191 * before continuing. 1192 */ 1193 test SCSIPHASE, 0xFF jz .; 1194 test SSTAT1, SCSIPERR jnz inb_next_wait; 1195inb_next_check_phase: 1196 and LASTPHASE, PHASE_MASK, SCSISIGI; 1197 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1198inb_first: 1199 clr DINDEX[1]; 1200 mov DINDEX,SINDEX; 1201 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1202inb_last: 1203 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1204 1205mk_mesg: 1206 mvi SCSISIGO, ATNO; 1207 mov MSG_OUT,SINDEX ret; 1208 1209SET_SRC_MODE M_DFF1; 1210SET_DST_MODE M_DFF1; 1211disable_ccsgen: 1212 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; 1213 clr CCSGCTL; 1214disable_ccsgen_fetch_done: 1215 clr SG_STATE ret; 1216 1217service_fifo: 1218 /* 1219 * Do we have any prefetch left??? 1220 */ 1221 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1222 1223 /* 1224 * Can this FIFO have access to the S/G cache yet? 1225 */ 1226 test CCSGCTL, SG_CACHE_AVAIL jz return; 1227 1228 /* Did we just finish fetching segs? */ 1229 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete; 1230 1231 /* Are we actively fetching segments? */ 1232 test CCSGCTL, CCSGENACK jnz return; 1233 1234 /* 1235 * We fetch a "cacheline aligned" and sized amount of data 1236 * so we don't end up referencing a non-existant page. 1237 * Cacheline aligned is in quotes because the kernel will 1238 * set the prefetch amount to a reasonable level if the 1239 * cacheline size is unknown. 1240 */ 1241 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4; 1242 mvi SGHCNT, SG_PREFETCH_CNT; 1243 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) { 1244 /* 1245 * Need two instruction between "touches" of SGHADDR. 1246 */ 1247 nop; 1248 } 1249 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1250 mvi CCSGCTL, CCSGEN|SG_CACHE_AVAIL|CCSGRESET; 1251 or SG_STATE, FETCH_INPROG ret; 1252idle_sgfetch_complete: 1253 /* 1254 * Guard against SG_CACHE_AVAIL activating during sg fetch 1255 * request in the other FIFO. 1256 */ 1257 test SG_STATE, FETCH_INPROG jz return; 1258 clr CCSGCTL; 1259 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1260 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1261idle_sg_avail: 1262 /* Does the hardware have space for another SG entry? */ 1263 test DFSTATUS, PRELOAD_AVAIL jz return; 1264 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1265 bmov HADDR, CCSGRAM, 8; 1266 } else { 1267 bmov HADDR, CCSGRAM, 4; 1268 } 1269 bmov HCNT, CCSGRAM, 3; 1270 test HCNT[0], 0x1 jz . + 2; 1271 xor DATA_COUNT_ODD, 0x1; 1272 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1273 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1274 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1275 } 1276 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1277 /* Skip 4 bytes of pad. */ 1278 add CCSGADDR, 4; 1279 } 1280sg_advance: 1281 clr A; /* add sizeof(struct scatter) */ 1282 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1283 adc SCB_RESIDUAL_SGPTR[1],A; 1284 adc SCB_RESIDUAL_SGPTR[2],A; 1285 adc SCB_RESIDUAL_SGPTR[3],A; 1286 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1287 test DATA_COUNT_ODD, 0x1 jz . + 2; 1288 or SINDEX, ODD_SEG; 1289 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1290 or SINDEX, LAST_SEG; 1291 clr SG_STATE; 1292 mov SG_CACHE_PRE, SINDEX; 1293 /* 1294 * Load the segment. Or in HDMAEN here too 1295 * just in case HDMAENACK has not come true 1296 * by the time this segment is loaded. If 1297 * HDMAENACK is not true, this or will disable 1298 * HDMAEN mid-transfer. We do not want to simply 1299 * mvi our original settings as SCSIEN automatically 1300 * de-asserts and we don't want to accidentally 1301 * re-enable it. 1302 */ 1303 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { 1304 /* 1305 * Use SCSIENWRDIS so that SCSIEN is never 1306 * modified by this operation. 1307 */ 1308 or DFCNTRL, PRELOADEN|SCSIENWRDIS|HDMAEN; 1309 } else { 1310 or DFCNTRL, PRELOADEN|HDMAEN; 1311 } 1312 /* 1313 * Do we have another segment in the cache? 1314 */ 1315 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1316 jnc return; 1317 and SG_STATE, ~SEGS_AVAIL ret; 1318 1319/* 1320 * Initialize the DMA address and counter from the SCB. 1321 */ 1322load_first_seg: 1323 bmov HADDR, SCB_DATAPTR, 11; 1324 and DATA_COUNT_ODD, 0x1, SCB_DATACNT[0]; 1325 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0]; 1326 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1327 or REG_ISR, LAST_SEG; 1328 test DATA_COUNT_ODD, 0x1 jz . + 2; 1329 or REG_ISR, ODD_SEG; 1330 mov SG_CACHE_PRE, REG_ISR; 1331 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1332 /* 1333 * Since we've are entering a data phase, we will 1334 * rely on the SCB_RESID* fields. Initialize the 1335 * residual and clear the full residual flag. 1336 */ 1337 and SCB_SGPTR[0], ~SG_FULL_RESID; 1338 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1339 /* If we need more S/G elements, tell the idle loop */ 1340 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1341 mvi SG_STATE, LOADING_NEEDED ret; 1342 clr SG_STATE ret; 1343 1344p_data_handle_xfer: 1345 call setjmp_setscb; 1346 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1347p_data_clear_handler: 1348 or LONGJMP_ADDR[1], INVALID_ADDR ret; 1349 1350p_data: 1351 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1352 SET_SEQINTCODE(PROTO_VIOLATION) 1353p_data_allowed: 1354 1355 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1356 1357 /* 1358 * If we re-enter the data phase after going through another 1359 * phase, our transfer location has almost certainly been 1360 * corrupted by the interveining, non-data, transfers. Ask 1361 * the host driver to fix us up based on the transfer residual 1362 * unless we already know that we should be bitbucketing. 1363 */ 1364 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1365 SET_SEQINTCODE(PDATA_REINIT) 1366 jmp data_phase_inbounds; 1367 1368p_data_bitbucket: 1369 /* 1370 * Turn on `Bit Bucket' mode, wait until the target takes 1371 * us to another phase, and then notify the host. 1372 */ 1373 mov SAVED_MODE, MODE_PTR; 1374 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1375 jnz bitbucket_not_m_dff; 1376 /* 1377 * Ensure that any FIFO contents are cleared out and the 1378 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1379 * doesn't discard data already in the FIFO. 1380 */ 1381 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1382 SET_MODE(M_SCSI, M_SCSI) 1383bitbucket_not_m_dff: 1384 or SXFRCTL1,BITBUCKET; 1385 /* Wait for non-data phase. */ 1386 test SCSIPHASE, ~DATA_PHASE_MASK jz .; 1387 and SXFRCTL1, ~BITBUCKET; 1388 RESTORE_MODE(SAVED_MODE) 1389SET_SRC_MODE M_DFF1; 1390SET_DST_MODE M_DFF1; 1391 SET_SEQINTCODE(DATA_OVERRUN) 1392 jmp ITloop; 1393 1394data_phase_initialize: 1395 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1396 call load_first_seg; 1397data_phase_inbounds: 1398 /* We have seen a data phase at least once. */ 1399 or SEQ_FLAGS, DPHASE; 1400 mov SAVED_MODE, MODE_PTR; 1401 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop; 1402 call p_data_handle_xfer; 1403data_group_dma_loop: 1404 /* 1405 * The transfer is complete if either the last segment 1406 * completes or the target changes phase. Both conditions 1407 * will clear SCSIEN. 1408 */ 1409 call idle_loop_service_fifos; 1410 call idle_loop_cchan; 1411 call idle_loop_gsfifo; 1412 RESTORE_MODE(SAVED_MODE) 1413 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1414 1415data_group_dmafinish: 1416 /* 1417 * The transfer has terminated either due to a phase 1418 * change, and/or the completion of the last segment. 1419 * We have two goals here. Do as much other work 1420 * as possible while the data fifo drains on a read 1421 * and respond as quickly as possible to the standard 1422 * messages (save data pointers/disconnect and command 1423 * complete) that usually follow a data phase. 1424 */ 1425 call calc_residual; 1426 1427 /* 1428 * Go ahead and shut down the DMA engine now. 1429 */ 1430 test DFCNTRL, DIRECTION jnz data_phase_finish; 1431data_group_fifoflush: 1432 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1433 or DFCNTRL, FIFOFLUSH; 1434 } 1435 /* 1436 * We have enabled the auto-ack feature. This means 1437 * that the controller may have already transferred 1438 * some overrun bytes into the data FIFO and acked them 1439 * on the bus. The only way to detect this situation is 1440 * to wait for LAST_SEG_DONE to come true on a completed 1441 * transfer and then test to see if the data FIFO is 1442 * non-empty. We know there is more data yet to transfer 1443 * if SG_LIST_NULL is not yet set, thus there cannot be 1444 * an overrun. 1445 */ 1446 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1447 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1448 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1449 /* Overrun */ 1450 jmp p_data; 1451data_phase_finish: 1452 /* 1453 * If the target has left us in data phase, loop through 1454 * the dma code again. We will only loop if there is a 1455 * data overrun. 1456 */ 1457 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1458 test SSTAT0, TARGET jnz data_phase_done; 1459 } 1460 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1461 test SSTAT1, REQINIT jz .; 1462 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1463 } 1464 1465data_phase_done: 1466 /* Kill off any pending prefetch */ 1467 call disable_ccsgen; 1468 or LONGJMP_ADDR[1], INVALID_ADDR; 1469 1470 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1471 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1472 /* 1473 and SEQ_FLAGS, ~DPHASE_PENDING; 1474 * For data-in phases, wait for any pending acks from the 1475 * initiator before changing phase. We only need to 1476 * send Ignore Wide Residue messages for data-in phases. 1477 test DFCNTRL, DIRECTION jz target_ITloop; 1478 test SSTAT1, REQINIT jnz .; 1479 test DATA_COUNT_ODD, 0x1 jz target_ITloop; 1480 SET_MODE(M_SCSI, M_SCSI) 1481 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1482 */ 1483 /* 1484 * Issue an Ignore Wide Residue Message. 1485 mvi P_MESGIN|BSYO call change_phase; 1486 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1487 mvi 1 call target_outb; 1488 jmp target_ITloop; 1489 */ 1490 } else { 1491 jmp ITloop; 1492 } 1493 1494/* 1495 * We assume that, even though data may still be 1496 * transferring to the host, that the SCSI side of 1497 * the DMA engine is now in a static state. This 1498 * allows us to update our notion of where we are 1499 * in this transfer. 1500 * 1501 * If, by chance, we stopped before being able 1502 * to fetch additional segments for this transfer, 1503 * yet the last S/G was completely exhausted, 1504 * call our idle loop until it is able to load 1505 * another segment. This will allow us to immediately 1506 * pickup on the next segment on the next data phase. 1507 * 1508 * If we happened to stop on the last segment, then 1509 * our residual information is still correct from 1510 * the idle loop and there is no need to perform 1511 * any fixups. 1512 */ 1513calc_residual: 1514 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1515 /* Record if we've consumed all S/G entries */ 1516 test MDFFSTAT, SHVALID jz . + 2; 1517 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1518 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1519residual_before_last_seg: 1520 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1521 /* 1522 * Can never happen from an interrupt as the packetized 1523 * hardware will only interrupt us once SHVALID or 1524 * LAST_SEG_DONE. 1525 */ 1526 call idle_loop_service_fifos; 1527 RESTORE_MODE(SAVED_MODE) 1528 jmp calc_residual; 1529 1530sgptr_fixup: 1531 /* 1532 * Fixup the residual next S/G pointer. The S/G preload 1533 * feature of the chip allows us to load two elements 1534 * in addition to the currently active element. We 1535 * store the bottom byte of the next S/G pointer in 1536 * the SG_CACHE_PTR register so we can restore the 1537 * correct value when the DMA completes. If the next 1538 * sg ptr value has advanced to the point where higher 1539 * bytes in the address have been affected, fix them 1540 * too. 1541 */ 1542 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1543 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1544 add SCB_RESIDUAL_SGPTR[1], -1; 1545 adc SCB_RESIDUAL_SGPTR[2], -1; 1546 adc SCB_RESIDUAL_SGPTR[3], -1; 1547sgptr_fixup_done: 1548 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1549 clr DATA_COUNT_ODD; 1550 test SG_CACHE_SHADOW, ODD_SEG jz . + 2; 1551 or DATA_COUNT_ODD, 0x1; 1552 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1553 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1554 1555export timer_isr: 1556 call issue_cmdcmplt; 1557 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 1558 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 1559 /* 1560 * In H2A4, the mode pointer is not saved 1561 * for intvec2, but is restored on iret. 1562 * This can lead to the restoration of a 1563 * bogus mode ptr. Manually clear the 1564 * intmask bits and do a normal return 1565 * to compensate. 1566 */ 1567 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret; 1568 } else { 1569 or SEQINTCTL, IRET ret; 1570 } 1571 1572export seq_isr: 1573 nop; /* Jumps in the first ISR instruction fail on Rev A. */ 1574 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1575 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1576 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1577 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1578 SET_SEQINTCODE(INVALID_SEQINT) 1579 1580/* 1581 * There are two types of save pointers interrupts: 1582 * The first is a snapshot save pointers where the current FIFO is not 1583 * active and contains a snapshot of the current poniter information. 1584 * This happens between packets in a stream for a single L_Q. Since we 1585 * are not performing a pointer save, we can safely clear the channel 1586 * so it can be used for other transactions. 1587 * 1588 * The second case is a save pointers on an active FIFO which occurs 1589 * if the target changes to a new L_Q or busfrees/QAS' and the transfer 1590 * has a residual. This should occur coincident with a ctxtdone. We 1591 * disable the interrupt and allow our active routine to handle the 1592 * save. 1593 */ 1594saveptr_intr: 1595 test DFCNTRL, HDMAENACK jz snapshot_saveptr; 1596 and SEQIMODE, ~ENSAVEPTRS; 1597 or SEQINTCTL, IRET ret; 1598snapshot_saveptr: 1599 mvi DFFSXFRCTL, CLRCHN; 1600 or SEQINTCTL, IRET ret; 1601 1602cfg4data_intr: 1603 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun; 1604 call load_first_seg; 1605 call pkt_handle_xfer; 1606 or SEQINTCTL, IRET ret; 1607 1608cfg4istat_intr: 1609 call freeze_queue; 1610 add NONE, -13, SCB_CDB_LEN; 1611 jnc cfg4istat_have_sense_addr; 1612 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1613 /* 1614 * Host sets up address/count and enables transfer. 1615 */ 1616 SET_SEQINTCODE(CFG4ISTAT_INTR) 1617 jmp cfg4istat_setup_handler; 1618cfg4istat_have_sense_addr: 1619 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1620 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1621 mvi SG_CACHE_PRE, LAST_SEG; 1622 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1623cfg4istat_setup_handler: 1624 /* 1625 * Status pkt is transferring to host. 1626 * Wait in idle loop for transfer to complete. 1627 * If a command completed before an attempted 1628 * task management function completed, notify the host. 1629 */ 1630 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func; 1631 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 1632cfg4istat_no_taskmgmt_func: 1633 call pkt_handle_status; 1634 or SEQINTCTL, IRET ret; 1635 1636/* 1637 * See if the target has gone on in this context creating an 1638 * overrun condition. For the write case, the hardware cannot 1639 * ack bytes until data are provided. So, if the target begins 1640 * another packet without changing contexts, implying we are 1641 * not sitting on a packet boundary, we are in an overrun 1642 * situation. For the read case, the hardware will continue to 1643 * ack bytes into the FIFO, and may even ack the last overrun packet 1644 * into the FIFO. If the FIFO should become non-empty, we are in 1645 * a read overrun case. 1646 */ 1647#define check_overrun \ 1648 /* Not on a packet boundary. */ \ 1649 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1650 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1651 1652pkt_handle_xfer: 1653 bmov LONGJMP_SCB, SCBPTR, 2; 1654 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1655 call setjmp; 1656 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1657 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1658 test SCSISIGO, ATNO jnz . + 2; 1659 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 1660 /* 1661 * Defer handling of this NONPACKREQ until we 1662 * can be sure it pertains to this FIFO. SAVEPTRS 1663 * will not be asserted if the NONPACKREQ is for us, 1664 * so we must simulate it if shaddow is valid. If 1665 * shaddow is not valid, keep running this FIFO until we 1666 * have satisfied the transfer by loading segments and 1667 * waiting for either shaddow valid or last_seg_done. 1668 */ 1669 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 1670pkt_service_fifo: 1671 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1672pkt_last_seg: 1673 call setjmp; 1674 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 1675 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz last_pkt_done; 1676 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 1677 test SCSISIGO, ATNO jnz . + 2; 1678 test SSTAT2, NONPACKREQ jz return; 1679 test MDFFSTAT, SHVALID jz return; 1680 /* FALLTHROUGH */ 1681 1682/* 1683 * Either a SAVEPTRS interrupt condition is pending for this FIFO 1684 * or we have a pending nonpackreq for this FIFO. We differentiate 1685 * between the two by capturing the state of the SAVEPTRS interrupt 1686 * prior to clearing this status and executing the common code for 1687 * these two cases. 1688 */ 1689pkt_saveptrs: 1690BEGIN_CRITICAL; 1691 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1692 or DFCNTRL, FIFOFLUSH; 1693 } 1694 mov REG0, SEQINTSRC; 1695 call calc_residual; 1696 call save_pointers; 1697 mvi CLRSEQINTSRC, CLRSAVEPTRS; 1698 call disable_ccsgen; 1699 or SEQIMODE, ENSAVEPTRS; 1700 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status; 1701 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status; 1702 /* 1703 * Keep a handler around for this FIFO until it drains 1704 * to the host to guarantee that we don't complete the 1705 * command to the host before the data arrives. 1706 */ 1707pkt_saveptrs_wait_fifoemp: 1708 call setjmp; 1709 test DFSTATUS, FIFOEMP jz return; 1710pkt_saveptrs_check_status: 1711 or LONGJMP_ADDR[1], INVALID_ADDR; 1712 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 1713 test SCB_CONTROL, STATUS_RCVD jz pkt_saveptrs_clrchn; 1714 jmp last_pkt_complete; 1715pkt_saveptrs_clrchn: 1716 mvi DFFSXFRCTL, CLRCHN ret; 1717END_CRITICAL; 1718 1719last_pkt_done: 1720BEGIN_CRITICAL; 1721 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1722 or DFCNTRL, FIFOFLUSH; 1723 } 1724 test SCB_CONTROL, STATUS_RCVD jz wait_pkt_end; 1725 check_overrun; 1726 or SCB_SGPTR, SG_LIST_NULL; 1727 /* 1728 * It is safe to skip the other FIFO check since 1729 * we defer CLRCHN on SAVEPTRS until all data in 1730 * the FIFO are seen by the host and a CFG4DATA 1731 * in this FIFO for the same context is held off 1732 * by hardware. 1733 */ 1734last_pkt_queue_scb: 1735 or LONGJMP_ADDR[1], INVALID_ADDR; 1736 bmov ARG_1, SCBPTR, 2; 1737 mvi DFFSXFRCTL, CLRCHN; 1738 jmp queue_arg1_scb_completion; 1739 1740last_pkt_complete: 1741 bmov ARG_1, SCBPTR, 2; 1742 mvi DFFSXFRCTL, CLRCHN; 1743check_other_fifo: 1744 clc; 1745 TOGGLE_DFF_MODE 1746 call check_fifo; 1747 jnc queue_arg1_scb_completion; 1748return: 1749 ret; 1750 1751wait_pkt_end: 1752 call setjmp; 1753END_CRITICAL; 1754wait_pkt_end_loop: 1755 test SEQINTSRC, CTXTDONE jnz pkt_end; 1756 check_overrun; 1757 test SSTAT2, NONPACKREQ jz return; 1758 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1759pkt_end: 1760BEGIN_CRITICAL; 1761 check_overrun; 1762 or LONGJMP_ADDR[1], INVALID_ADDR; 1763 or SCB_SGPTR, SG_LIST_NULL; 1764 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_complete; 1765 mvi DFFSXFRCTL, CLRCHN ret; 1766END_CRITICAL; 1767 1768check_status_overrun: 1769 test SHCNT[2], 0xFF jz status_IU_done; 1770 SET_SEQINTCODE(STATUS_OVERRUN) 1771 jmp status_IU_done; 1772pkt_handle_status: 1773 call setjmp_setscb; 1774 test MDFFSTAT, LASTSDONE jnz check_status_overrun; 1775 test SEQINTSRC, CTXTDONE jz return; 1776status_IU_done: 1777BEGIN_CRITICAL; 1778 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1779 or DFCNTRL, FIFOFLUSH; 1780 } 1781 or LONGJMP_ADDR[1], INVALID_ADDR; 1782 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 1783 or SCB_CONTROL, STATUS_RCVD; 1784 jmp last_pkt_complete; 1785END_CRITICAL; 1786 1787SET_SRC_MODE M_DFF0; 1788SET_DST_MODE M_DFF0; 1789BEGIN_CRITICAL; 1790check_fifo: 1791 test LONGJMP_ADDR[1], INVALID_ADDR jnz return; 1792 mov A, ARG_2; 1793 cmp LONGJMP_SCB[1], A jne return; 1794 mov A, ARG_1; 1795 cmp LONGJMP_SCB[0], A jne return; 1796 stc ret; 1797END_CRITICAL; 1798 1799/* 1800 * Nonpackreq is a polled status. It can come true in three situations: 1801 * we have received an L_Q, we have sent one or more L_Qs, or there is no 1802 * L_Q context associated with this REQ (REQ occurs immediately after a 1803 * (re)selection). Routines that know that the context responsible for this 1804 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 1805 * top level idle loop, we exhaust all active contexts prior to determining that 1806 * we simply do not have the full I_T_L_Q for this phase. 1807 */ 1808unexpected_nonpkt_phase_find_ctxt: 1809 /* 1810 * This nonpackreq is most likely associated with one of the tags 1811 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 1812 * nonpackreq if we've cleared out the FIFOs and handled any 1813 * pending SELDO. 1814 */ 1815SET_SRC_MODE M_SCSI; 1816SET_DST_MODE M_SCSI; 1817 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 1818 cmp A, FIFO1FREE|FIFO0FREE jne return; 1819 test SSTAT0, SELDO jnz return; 1820 mvi SCBPTR[1], SCB_LIST_NULL; 1821unexpected_nonpkt_phase: 1822 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz . + 3; 1823SET_SRC_MODE M_DFF0; 1824SET_DST_MODE M_DFF0; 1825 or LONGJMP_ADDR[1], INVALID_ADDR; 1826 mvi DFFSXFRCTL, CLRCHN; 1827 mvi CLRSINT2, CLRNONPACKREQ; 1828 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 1829 SET_SEQINTCODE(ENTERING_NONPACK) 1830 jmp ITloop; 1831 1832illegal_phase: 1833 SET_SEQINTCODE(ILLEGAL_PHASE) 1834 jmp ITloop; 1835 1836/* 1837 * We have entered an overrun situation. If we have working 1838 * BITBUCKET, flip that on and let the hardware eat any overrun 1839 * data. Otherwise use an overrun buffer in the host to simulate 1840 * BITBUCKET. 1841 */ 1842pkt_handle_overrun: 1843 SET_SEQINTCODE(CFG4OVERRUN) 1844 call freeze_queue; 1845 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 1846 or DFFSXFRCTL, DFFBITBUCKET; 1847SET_SRC_MODE M_DFF1; 1848SET_DST_MODE M_DFF1; 1849 } else { 1850 call load_overrun_buf; 1851 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 1852 } 1853 call setjmp; 1854 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1855 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done; 1856 call load_overrun_buf; 1857 or DFCNTRL, PRELOADEN; 1858overrun_load_done: 1859 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 1860 } else { 1861 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end; 1862 } 1863 test SSTAT2, NONPACKREQ jz return; 1864pkt_overrun_end: 1865 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 1866 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 1867 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_queue_scb; 1868 mvi DFFSXFRCTL, CLRCHN ret; 1869 1870if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 1871load_overrun_buf: 1872 /* 1873 * Load a dummy segment if preload space is available. 1874 */ 1875 mov HADDR[0], SHARED_DATA_ADDR; 1876 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 1877 mov ACCUM_SAVE, A; 1878 clr A; 1879 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 1880 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 1881 mov A, ACCUM_SAVE; 1882 bmov HADDR[4], ALLZEROS, 4; 1883 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 1884 clr HCNT[0]; 1885 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 1886 clr HCNT[2] ret; 1887} 1888 1889cfg4icmd_intr: 1890