1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include "opt_bus.h" 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/malloc.h> 34 #include <sys/kernel.h> 35 #include <sys/bus.h> 36 #include <sys/conf.h> 37 #include <sys/ioccom.h> 38 #include <sys/agpio.h> 39 #include <sys/lock.h> 40 #include <sys/lockmgr.h> 41 #include <sys/mutex.h> 42 #include <sys/proc.h> 43 44 #include <pci/pcivar.h> 45 #include <pci/pcireg.h> 46 #include <pci/agppriv.h> 47 #include <pci/agpvar.h> 48 #include <pci/agpreg.h> 49 50 #include <vm/vm.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_pageout.h> 54 #include <vm/pmap.h> 55 56 #include <machine/md_var.h> 57 #include <machine/bus.h> 58 #include <machine/resource.h> 59 #include <sys/rman.h> 60 61 MODULE_VERSION(agp, 1); 62 63 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 64 65 #define CDEV_MAJOR 148 66 /* agp_drv.c */ 67 static d_open_t agp_open; 68 static d_close_t agp_close; 69 static d_ioctl_t agp_ioctl; 70 static d_mmap_t agp_mmap; 71 72 static struct cdevsw agp_cdevsw = { 73 .d_open = agp_open, 74 .d_close = agp_close, 75 .d_ioctl = agp_ioctl, 76 .d_mmap = agp_mmap, 77 .d_name = "agp", 78 .d_maj = CDEV_MAJOR, 79 .d_flags = D_TTY, 80 }; 81 82 static devclass_t agp_devclass; 83 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev)) 84 85 /* Helper functions for implementing chipset mini drivers. */ 86 87 void 88 agp_flush_cache() 89 { 90 #ifdef __i386__ 91 wbinvd(); 92 #endif 93 #ifdef __alpha__ 94 /* FIXME: This is most likely not correct as it doesn't flush CPU 95 * write caches, but we don't have a facility to do that and 96 * this is all linux does, too */ 97 alpha_mb(); 98 #endif 99 } 100 101 u_int8_t 102 agp_find_caps(device_t dev) 103 { 104 u_int32_t status; 105 u_int8_t ptr, next; 106 107 /* 108 * Check the CAP_LIST bit of the PCI status register first. 109 */ 110 status = pci_read_config(dev, PCIR_STATUS, 2); 111 if (!(status & 0x10)) 112 return 0; 113 114 /* 115 * Traverse the capabilities list. 116 */ 117 for (ptr = pci_read_config(dev, AGP_CAPPTR, 1); 118 ptr != 0; 119 ptr = next) { 120 u_int32_t capid = pci_read_config(dev, ptr, 4); 121 next = AGP_CAPID_GET_NEXT_PTR(capid); 122 123 /* 124 * If this capability entry ID is 2, then we are done. 125 */ 126 if (AGP_CAPID_GET_CAP_ID(capid) == 2) 127 return ptr; 128 } 129 130 return 0; 131 } 132 133 /* 134 * Find an AGP display device (if any). 135 */ 136 static device_t 137 agp_find_display(void) 138 { 139 devclass_t pci = devclass_find("pci"); 140 device_t bus, dev = 0; 141 device_t *kids; 142 int busnum, numkids, i; 143 144 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 145 bus = devclass_get_device(pci, busnum); 146 if (!bus) 147 continue; 148 device_get_children(bus, &kids, &numkids); 149 for (i = 0; i < numkids; i++) { 150 dev = kids[i]; 151 if (pci_get_class(dev) == PCIC_DISPLAY 152 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 153 if (agp_find_caps(dev)) { 154 free(kids, M_TEMP); 155 return dev; 156 } 157 158 } 159 free(kids, M_TEMP); 160 } 161 162 return 0; 163 } 164 165 struct agp_gatt * 166 agp_alloc_gatt(device_t dev) 167 { 168 u_int32_t apsize = AGP_GET_APERTURE(dev); 169 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 170 struct agp_gatt *gatt; 171 172 if (bootverbose) 173 device_printf(dev, 174 "allocating GATT for aperture of size %dM\n", 175 apsize / (1024*1024)); 176 177 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 178 if (!gatt) 179 return 0; 180 181 gatt->ag_entries = entries; 182 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 183 0, ~0, PAGE_SIZE, 0); 184 if (!gatt->ag_virtual) { 185 if (bootverbose) 186 device_printf(dev, "contiguous allocation failed\n"); 187 free(gatt, M_AGP); 188 return 0; 189 } 190 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 191 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 192 agp_flush_cache(); 193 194 return gatt; 195 } 196 197 void 198 agp_free_gatt(struct agp_gatt *gatt) 199 { 200 contigfree(gatt->ag_virtual, 201 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 202 free(gatt, M_AGP); 203 } 204 205 static int agp_max[][2] = { 206 {0, 0}, 207 {32, 4}, 208 {64, 28}, 209 {128, 96}, 210 {256, 204}, 211 {512, 440}, 212 {1024, 942}, 213 {2048, 1920}, 214 {4096, 3932} 215 }; 216 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 217 218 int 219 agp_generic_attach(device_t dev) 220 { 221 struct agp_softc *sc = device_get_softc(dev); 222 int rid, memsize, i; 223 224 /* 225 * Find and map the aperture. 226 */ 227 rid = AGP_APBASE; 228 sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 229 0, ~0, 1, RF_ACTIVE); 230 if (!sc->as_aperture) 231 return ENOMEM; 232 233 /* 234 * Work out an upper bound for agp memory allocation. This 235 * uses a heurisitc table from the Linux driver. 236 */ 237 memsize = ptoa(Maxmem) >> 20; 238 for (i = 0; i < agp_max_size; i++) { 239 if (memsize <= agp_max[i][0]) 240 break; 241 } 242 if (i == agp_max_size) i = agp_max_size - 1; 243 sc->as_maxmem = agp_max[i][1] << 20U; 244 245 /* 246 * The lock is used to prevent re-entry to 247 * agp_generic_bind_memory() since that function can sleep. 248 */ 249 lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0); 250 251 /* 252 * Initialise stuff for the userland device. 253 */ 254 agp_devclass = devclass_find("agp"); 255 TAILQ_INIT(&sc->as_memory); 256 sc->as_nextid = 1; 257 258 sc->as_devnode = make_dev(&agp_cdevsw, 259 device_get_unit(dev), 260 UID_ROOT, 261 GID_WHEEL, 262 0600, 263 "agpgart"); 264 265 return 0; 266 } 267 268 int 269 agp_generic_detach(device_t dev) 270 { 271 struct agp_softc *sc = device_get_softc(dev); 272 bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture); 273 lockmgr(&sc->as_lock, LK_DRAIN, 0, curthread); 274 lockdestroy(&sc->as_lock); 275 destroy_dev(sc->as_devnode); 276 agp_flush_cache(); 277 return 0; 278 } 279 280 int 281 agp_generic_enable(device_t dev, u_int32_t mode) 282 { 283 device_t mdev = agp_find_display(); 284 u_int32_t tstatus, mstatus; 285 u_int32_t command; 286 int rq, sba, fw, rate;; 287 288 if (!mdev) { 289 AGP_DPF("can't find display\n"); 290 return ENXIO; 291 } 292 293 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 294 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 295 296 /* Set RQ to the min of mode, tstatus and mstatus */ 297 rq = AGP_MODE_GET_RQ(mode); 298 if (AGP_MODE_GET_RQ(tstatus) < rq) 299 rq = AGP_MODE_GET_RQ(tstatus); 300 if (AGP_MODE_GET_RQ(mstatus) < rq) 301 rq = AGP_MODE_GET_RQ(mstatus); 302 303 /* Set SBA if all three can deal with SBA */ 304 sba = (AGP_MODE_GET_SBA(tstatus) 305 & AGP_MODE_GET_SBA(mstatus) 306 & AGP_MODE_GET_SBA(mode)); 307 308 /* Similar for FW */ 309 fw = (AGP_MODE_GET_FW(tstatus) 310 & AGP_MODE_GET_FW(mstatus) 311 & AGP_MODE_GET_FW(mode)); 312 313 /* Figure out the max rate */ 314 rate = (AGP_MODE_GET_RATE(tstatus) 315 & AGP_MODE_GET_RATE(mstatus) 316 & AGP_MODE_GET_RATE(mode)); 317 if (rate & AGP_MODE_RATE_4x) 318 rate = AGP_MODE_RATE_4x; 319 else if (rate & AGP_MODE_RATE_2x) 320 rate = AGP_MODE_RATE_2x; 321 else 322 rate = AGP_MODE_RATE_1x; 323 324 /* Construct the new mode word and tell the hardware */ 325 command = AGP_MODE_SET_RQ(0, rq); 326 command = AGP_MODE_SET_SBA(command, sba); 327 command = AGP_MODE_SET_FW(command, fw); 328 command = AGP_MODE_SET_RATE(command, rate); 329 command = AGP_MODE_SET_AGP(command, 1); 330 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 331 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 332 333 return 0; 334 } 335 336 struct agp_memory * 337 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 338 { 339 struct agp_softc *sc = device_get_softc(dev); 340 struct agp_memory *mem; 341 342 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 343 return 0; 344 345 if (sc->as_allocated + size > sc->as_maxmem) 346 return 0; 347 348 if (type != 0) { 349 printf("agp_generic_alloc_memory: unsupported type %d\n", 350 type); 351 return 0; 352 } 353 354 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 355 mem->am_id = sc->as_nextid++; 356 mem->am_size = size; 357 mem->am_type = 0; 358 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 359 mem->am_physical = 0; 360 mem->am_offset = 0; 361 mem->am_is_bound = 0; 362 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 363 sc->as_allocated += size; 364 365 return mem; 366 } 367 368 int 369 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 370 { 371 struct agp_softc *sc = device_get_softc(dev); 372 373 if (mem->am_is_bound) 374 return EBUSY; 375 376 sc->as_allocated -= mem->am_size; 377 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 378 vm_object_deallocate(mem->am_obj); 379 free(mem, M_AGP); 380 return 0; 381 } 382 383 int 384 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 385 vm_offset_t offset) 386 { 387 struct agp_softc *sc = device_get_softc(dev); 388 vm_offset_t i, j, k; 389 vm_page_t m; 390 int error; 391 392 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread); 393 394 if (mem->am_is_bound) { 395 device_printf(dev, "memory already bound\n"); 396 return EINVAL; 397 } 398 399 if (offset < 0 400 || (offset & (AGP_PAGE_SIZE - 1)) != 0 401 || offset + mem->am_size > AGP_GET_APERTURE(dev)) { 402 device_printf(dev, "binding memory at bad offset %#x\n", 403 (int) offset); 404 return EINVAL; 405 } 406 407 /* 408 * Bind the individual pages and flush the chipset's 409 * TLB. 410 * 411 * XXX Presumably, this needs to be the pci address on alpha 412 * (i.e. use alpha_XXX_dmamap()). I don't have access to any 413 * alpha AGP hardware to check. 414 */ 415 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 416 /* 417 * Find a page from the object and wire it 418 * down. This page will be mapped using one or more 419 * entries in the GATT (assuming that PAGE_SIZE >= 420 * AGP_PAGE_SIZE. If this is the first call to bind, 421 * the pages will be allocated and zeroed. 422 */ 423 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 424 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 425 if ((m->flags & PG_ZERO) == 0) 426 pmap_zero_page(m); 427 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m)); 428 429 /* 430 * Install entries in the GATT, making sure that if 431 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 432 * aligned to PAGE_SIZE, we don't modify too many GATT 433 * entries. 434 */ 435 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 436 j += AGP_PAGE_SIZE) { 437 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 438 AGP_DPF("binding offset %#x to pa %#x\n", 439 offset + i + j, pa); 440 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 441 if (error) { 442 /* 443 * Bail out. Reverse all the mappings 444 * and unwire the pages. 445 */ 446 vm_page_lock_queues(); 447 vm_page_wakeup(m); 448 vm_page_unlock_queues(); 449 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 450 AGP_UNBIND_PAGE(dev, offset + k); 451 for (k = 0; k <= i; k += PAGE_SIZE) { 452 m = vm_page_lookup(mem->am_obj, 453 OFF_TO_IDX(k)); 454 vm_page_lock_queues(); 455 vm_page_unwire(m, 0); 456 vm_page_unlock_queues(); 457 } 458 lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread); 459 return error; 460 } 461 } 462 vm_page_lock_queues(); 463 vm_page_wakeup(m); 464 vm_page_unlock_queues(); 465 } 466 467 /* 468 * Flush the cpu cache since we are providing a new mapping 469 * for these pages. 470 */ 471 agp_flush_cache(); 472 473 /* 474 * Make sure the chipset gets the new mappings. 475 */ 476 AGP_FLUSH_TLB(dev); 477 478 mem->am_offset = offset; 479 mem->am_is_bound = 1; 480 481 lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread); 482 483 return 0; 484 } 485 486 int 487 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 488 { 489 struct agp_softc *sc = device_get_softc(dev); 490 vm_page_t m; 491 int i; 492 493 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread); 494 495 if (!mem->am_is_bound) { 496 device_printf(dev, "memory is not bound\n"); 497 return EINVAL; 498 } 499 500 501 /* 502 * Unbind the individual pages and flush the chipset's 503 * TLB. Unwire the pages so they can be swapped. 504 */ 505 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 506 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 507 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 508 m = vm_page_lookup(mem->am_obj, atop(i)); 509 vm_page_lock_queues(); 510 vm_page_unwire(m, 0); 511 vm_page_unlock_queues(); 512 } 513 514 agp_flush_cache(); 515 AGP_FLUSH_TLB(dev); 516 517 mem->am_offset = 0; 518 mem->am_is_bound = 0; 519 520 lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread); 521 522 return 0; 523 } 524 525 /* Helper functions for implementing user/kernel api */ 526 527 static int 528 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 529 { 530 struct agp_softc *sc = device_get_softc(dev); 531 532 if (sc->as_state != AGP_ACQUIRE_FREE) 533 return EBUSY; 534 sc->as_state = state; 535 536 return 0; 537 } 538 539 static int 540 agp_release_helper(device_t dev, enum agp_acquire_state state) 541 { 542 struct agp_softc *sc = device_get_softc(dev); 543 544 if (sc->as_state == AGP_ACQUIRE_FREE) 545 return 0; 546 547 if (sc->as_state != state) 548 return EBUSY; 549 550 sc->as_state = AGP_ACQUIRE_FREE; 551 return 0; 552 } 553 554 static struct agp_memory * 555 agp_find_memory(device_t dev, int id) 556 { 557 struct agp_softc *sc = device_get_softc(dev); 558 struct agp_memory *mem; 559 560 AGP_DPF("searching for memory block %d\n", id); 561 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 562 AGP_DPF("considering memory block %d\n", mem->am_id); 563 if (mem->am_id == id) 564 return mem; 565 } 566 return 0; 567 } 568 569 /* Implementation of the userland ioctl api */ 570 571 static int 572 agp_info_user(device_t dev, agp_info *info) 573 { 574 struct agp_softc *sc = device_get_softc(dev); 575 576 bzero(info, sizeof *info); 577 info->bridge_id = pci_get_devid(dev); 578 info->agp_mode = 579 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 580 info->aper_base = rman_get_start(sc->as_aperture); 581 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 582 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 583 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 584 585 return 0; 586 } 587 588 static int 589 agp_setup_user(device_t dev, agp_setup *setup) 590 { 591 return AGP_ENABLE(dev, setup->agp_mode); 592 } 593 594 static int 595 agp_allocate_user(device_t dev, agp_allocate *alloc) 596 { 597 struct agp_memory *mem; 598 599 mem = AGP_ALLOC_MEMORY(dev, 600 alloc->type, 601 alloc->pg_count << AGP_PAGE_SHIFT); 602 if (mem) { 603 alloc->key = mem->am_id; 604 alloc->physical = mem->am_physical; 605 return 0; 606 } else { 607 return ENOMEM; 608 } 609 } 610 611 static int 612 agp_deallocate_user(device_t dev, int id) 613 { 614 struct agp_memory *mem = agp_find_memory(dev, id);; 615 616 if (mem) { 617 AGP_FREE_MEMORY(dev, mem); 618 return 0; 619 } else { 620 return ENOENT; 621 } 622 } 623 624 static int 625 agp_bind_user(device_t dev, agp_bind *bind) 626 { 627 struct agp_memory *mem = agp_find_memory(dev, bind->key); 628 629 if (!mem) 630 return ENOENT; 631 632 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 633 } 634 635 static int 636 agp_unbind_user(device_t dev, agp_unbind *unbind) 637 { 638 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 639 640 if (!mem) 641 return ENOENT; 642 643 return AGP_UNBIND_MEMORY(dev, mem); 644 } 645 646 static int 647 agp_open(dev_t kdev, int oflags, int devtype, struct thread *td) 648 { 649 device_t dev = KDEV2DEV(kdev); 650 struct agp_softc *sc = device_get_softc(dev); 651 652 if (!sc->as_isopen) { 653 sc->as_isopen = 1; 654 device_busy(dev); 655 } 656 657 return 0; 658 } 659 660 static int 661 agp_close(dev_t kdev, int fflag, int devtype, struct thread *td) 662 { 663 device_t dev = KDEV2DEV(kdev); 664 struct agp_softc *sc = device_get_softc(dev); 665 struct agp_memory *mem; 666 667 /* 668 * Clear the GATT and force release on last close 669 */ 670 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 671 if (mem->am_is_bound) 672 AGP_UNBIND_MEMORY(dev, mem); 673 AGP_FREE_MEMORY(dev, mem); 674 } 675 if (sc->as_state == AGP_ACQUIRE_USER) 676 agp_release_helper(dev, AGP_ACQUIRE_USER); 677 sc->as_isopen = 0; 678 device_unbusy(dev); 679 680 return 0; 681 } 682 683 static int 684 agp_ioctl(dev_t kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 685 { 686 device_t dev = KDEV2DEV(kdev); 687 688 switch (cmd) { 689 case AGPIOC_INFO: 690 return agp_info_user(dev, (agp_info *) data); 691 692 case AGPIOC_ACQUIRE: 693 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 694 695 case AGPIOC_RELEASE: 696 return agp_release_helper(dev, AGP_ACQUIRE_USER); 697 698 case AGPIOC_SETUP: 699 return agp_setup_user(dev, (agp_setup *)data); 700 701 case AGPIOC_ALLOCATE: 702 return agp_allocate_user(dev, (agp_allocate *)data); 703 704 case AGPIOC_DEALLOCATE: 705 return agp_deallocate_user(dev, *(int *) data); 706 707 case AGPIOC_BIND: 708 return agp_bind_user(dev, (agp_bind *)data); 709 710 case AGPIOC_UNBIND: 711 return agp_unbind_user(dev, (agp_unbind *)data); 712 713 } 714 715 return EINVAL; 716 } 717 718 static int 719 agp_mmap(dev_t kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot) 720 { 721 device_t dev = KDEV2DEV(kdev); 722 struct agp_softc *sc = device_get_softc(dev); 723 724 if (offset > AGP_GET_APERTURE(dev)) 725 return -1; 726 *paddr = rman_get_start(sc->as_aperture) + offset; 727 return 0; 728 } 729 730 /* Implementation of the kernel api */ 731 732 device_t 733 agp_find_device() 734 { 735 if (!agp_devclass) 736 return 0; 737 return devclass_get_device(agp_devclass, 0); 738 } 739 740 enum agp_acquire_state 741 agp_state(device_t dev) 742 { 743 struct agp_softc *sc = device_get_softc(dev); 744 return sc->as_state; 745 } 746 747 void 748 agp_get_info(device_t dev, struct agp_info *info) 749 { 750 struct agp_softc *sc = device_get_softc(dev); 751 752 info->ai_mode = 753 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 754 info->ai_aperture_base = rman_get_start(sc->as_aperture); 755 info->ai_aperture_size = rman_get_size(sc->as_aperture); 756 info->ai_aperture_va = (vm_offset_t) rman_get_virtual(sc->as_aperture); 757 info->ai_memory_allowed = sc->as_maxmem; 758 info->ai_memory_used = sc->as_allocated; 759 } 760 761 int 762 agp_acquire(device_t dev) 763 { 764 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 765 } 766 767 int 768 agp_release(device_t dev) 769 { 770 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 771 } 772 773 int 774 agp_enable(device_t dev, u_int32_t mode) 775 { 776 return AGP_ENABLE(dev, mode); 777 } 778 779 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 780 { 781 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 782 } 783 784 void agp_free_memory(device_t dev, void *handle) 785 { 786 struct agp_memory *mem = (struct agp_memory *) handle; 787 AGP_FREE_MEMORY(dev, mem); 788 } 789 790 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 791 { 792 struct agp_memory *mem = (struct agp_memory *) handle; 793 return AGP_BIND_MEMORY(dev, mem, offset); 794 } 795 796 int agp_unbind_memory(device_t dev, void *handle) 797 { 798 struct agp_memory *mem = (struct agp_memory *) handle; 799 return AGP_UNBIND_MEMORY(dev, mem); 800 } 801 802 void agp_memory_info(device_t dev, void *handle, struct 803 agp_memory_info *mi) 804 { 805 struct agp_memory *mem = (struct agp_memory *) handle; 806 807 mi->ami_size = mem->am_size; 808 mi->ami_physical = mem->am_physical; 809 mi->ami_offset = mem->am_offset; 810 mi->ami_is_bound = mem->am_is_bound; 811 } 812