1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_agp.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/agpio.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/rwlock.h> 45 46 #include <dev/agp/agppriv.h> 47 #include <dev/agp/agpvar.h> 48 #include <dev/agp/agpreg.h> 49 #include <dev/pci/pcivar.h> 50 #include <dev/pci/pcireg.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_param.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_page.h> 56 #include <vm/vm_pageout.h> 57 #include <vm/pmap.h> 58 59 #include <machine/bus.h> 60 #include <machine/resource.h> 61 #include <sys/rman.h> 62 63 MODULE_VERSION(agp, 1); 64 65 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 66 67 /* agp_drv.c */ 68 static d_open_t agp_open; 69 static d_close_t agp_close; 70 static d_ioctl_t agp_ioctl; 71 static d_mmap_t agp_mmap; 72 73 static struct cdevsw agp_cdevsw = { 74 .d_version = D_VERSION, 75 .d_flags = D_NEEDGIANT, 76 .d_open = agp_open, 77 .d_close = agp_close, 78 .d_ioctl = agp_ioctl, 79 .d_mmap = agp_mmap, 80 .d_name = "agp", 81 }; 82 83 static devclass_t agp_devclass; 84 85 /* Helper functions for implementing chipset mini drivers. */ 86 87 void 88 agp_flush_cache() 89 { 90 #if defined(__i386__) || defined(__amd64__) 91 wbinvd(); 92 #endif 93 } 94 95 u_int8_t 96 agp_find_caps(device_t dev) 97 { 98 int capreg; 99 100 101 if (pci_find_cap(dev, PCIY_AGP, &capreg) != 0) 102 capreg = 0; 103 return (capreg); 104 } 105 106 /* 107 * Find an AGP display device (if any). 108 */ 109 static device_t 110 agp_find_display(void) 111 { 112 devclass_t pci = devclass_find("pci"); 113 device_t bus, dev = 0; 114 device_t *kids; 115 int busnum, numkids, i; 116 117 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 118 bus = devclass_get_device(pci, busnum); 119 if (!bus) 120 continue; 121 if (device_get_children(bus, &kids, &numkids) != 0) 122 continue; 123 for (i = 0; i < numkids; i++) { 124 dev = kids[i]; 125 if (pci_get_class(dev) == PCIC_DISPLAY 126 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 127 if (agp_find_caps(dev)) { 128 free(kids, M_TEMP); 129 return dev; 130 } 131 132 } 133 free(kids, M_TEMP); 134 } 135 136 return 0; 137 } 138 139 struct agp_gatt * 140 agp_alloc_gatt(device_t dev) 141 { 142 u_int32_t apsize = AGP_GET_APERTURE(dev); 143 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 144 struct agp_gatt *gatt; 145 146 if (bootverbose) 147 device_printf(dev, 148 "allocating GATT for aperture of size %dM\n", 149 apsize / (1024*1024)); 150 151 if (entries == 0) { 152 device_printf(dev, "bad aperture size\n"); 153 return NULL; 154 } 155 156 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 157 if (!gatt) 158 return 0; 159 160 gatt->ag_entries = entries; 161 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 162 0, ~0, PAGE_SIZE, 0); 163 if (!gatt->ag_virtual) { 164 if (bootverbose) 165 device_printf(dev, "contiguous allocation failed\n"); 166 free(gatt, M_AGP); 167 return 0; 168 } 169 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 170 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 171 agp_flush_cache(); 172 173 return gatt; 174 } 175 176 void 177 agp_free_gatt(struct agp_gatt *gatt) 178 { 179 contigfree(gatt->ag_virtual, 180 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 181 free(gatt, M_AGP); 182 } 183 184 static u_int agp_max[][2] = { 185 {0, 0}, 186 {32, 4}, 187 {64, 28}, 188 {128, 96}, 189 {256, 204}, 190 {512, 440}, 191 {1024, 942}, 192 {2048, 1920}, 193 {4096, 3932} 194 }; 195 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 196 197 /** 198 * Sets the PCI resource which represents the AGP aperture. 199 * 200 * If not called, the default AGP aperture resource of AGP_APBASE will 201 * be used. Must be called before agp_generic_attach(). 202 */ 203 void 204 agp_set_aperture_resource(device_t dev, int rid) 205 { 206 struct agp_softc *sc = device_get_softc(dev); 207 208 sc->as_aperture_rid = rid; 209 } 210 211 int 212 agp_generic_attach(device_t dev) 213 { 214 struct agp_softc *sc = device_get_softc(dev); 215 int i; 216 u_int memsize; 217 218 /* 219 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE 220 * because the kernel doesn't need to map it. 221 */ 222 223 if (sc->as_aperture_rid != -1) { 224 if (sc->as_aperture_rid == 0) 225 sc->as_aperture_rid = AGP_APBASE; 226 227 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 228 &sc->as_aperture_rid, RF_SHAREABLE); 229 if (!sc->as_aperture) 230 return ENOMEM; 231 } 232 233 /* 234 * Work out an upper bound for agp memory allocation. This 235 * uses a heurisitc table from the Linux driver. 236 */ 237 memsize = ptoa(realmem) >> 20; 238 for (i = 0; i < agp_max_size; i++) { 239 if (memsize <= agp_max[i][0]) 240 break; 241 } 242 if (i == agp_max_size) 243 i = agp_max_size - 1; 244 sc->as_maxmem = agp_max[i][1] << 20U; 245 246 /* 247 * The lock is used to prevent re-entry to 248 * agp_generic_bind_memory() since that function can sleep. 249 */ 250 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 251 252 /* 253 * Initialise stuff for the userland device. 254 */ 255 agp_devclass = devclass_find("agp"); 256 TAILQ_INIT(&sc->as_memory); 257 sc->as_nextid = 1; 258 259 sc->as_devnode = make_dev(&agp_cdevsw, 260 0, UID_ROOT, GID_WHEEL, 0600, "agpgart"); 261 sc->as_devnode->si_drv1 = dev; 262 263 return 0; 264 } 265 266 void 267 agp_free_cdev(device_t dev) 268 { 269 struct agp_softc *sc = device_get_softc(dev); 270 271 destroy_dev(sc->as_devnode); 272 } 273 274 void 275 agp_free_res(device_t dev) 276 { 277 struct agp_softc *sc = device_get_softc(dev); 278 279 if (sc->as_aperture != NULL) 280 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, 281 sc->as_aperture); 282 mtx_destroy(&sc->as_lock); 283 agp_flush_cache(); 284 } 285 286 int 287 agp_generic_detach(device_t dev) 288 { 289 290 agp_free_cdev(dev); 291 agp_free_res(dev); 292 return 0; 293 } 294 295 /** 296 * Default AGP aperture size detection which simply returns the size of 297 * the aperture's PCI resource. 298 */ 299 u_int32_t 300 agp_generic_get_aperture(device_t dev) 301 { 302 struct agp_softc *sc = device_get_softc(dev); 303 304 return rman_get_size(sc->as_aperture); 305 } 306 307 /** 308 * Default AGP aperture size setting function, which simply doesn't allow 309 * changes to resource size. 310 */ 311 int 312 agp_generic_set_aperture(device_t dev, u_int32_t aperture) 313 { 314 u_int32_t current_aperture; 315 316 current_aperture = AGP_GET_APERTURE(dev); 317 if (current_aperture != aperture) 318 return EINVAL; 319 else 320 return 0; 321 } 322 323 /* 324 * This does the enable logic for v3, with the same topology 325 * restrictions as in place for v2 -- one bus, one device on the bus. 326 */ 327 static int 328 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 329 { 330 u_int32_t tstatus, mstatus; 331 u_int32_t command; 332 int rq, sba, fw, rate, arqsz, cal; 333 334 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 335 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 336 337 /* Set RQ to the min of mode, tstatus and mstatus */ 338 rq = AGP_MODE_GET_RQ(mode); 339 if (AGP_MODE_GET_RQ(tstatus) < rq) 340 rq = AGP_MODE_GET_RQ(tstatus); 341 if (AGP_MODE_GET_RQ(mstatus) < rq) 342 rq = AGP_MODE_GET_RQ(mstatus); 343 344 /* 345 * ARQSZ - Set the value to the maximum one. 346 * Don't allow the mode register to override values. 347 */ 348 arqsz = AGP_MODE_GET_ARQSZ(mode); 349 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 350 rq = AGP_MODE_GET_ARQSZ(tstatus); 351 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 352 rq = AGP_MODE_GET_ARQSZ(mstatus); 353 354 /* Calibration cycle - don't allow override by mode register */ 355 cal = AGP_MODE_GET_CAL(tstatus); 356 if (AGP_MODE_GET_CAL(mstatus) < cal) 357 cal = AGP_MODE_GET_CAL(mstatus); 358 359 /* SBA must be supported for AGP v3. */ 360 sba = 1; 361 362 /* Set FW if all three support it. */ 363 fw = (AGP_MODE_GET_FW(tstatus) 364 & AGP_MODE_GET_FW(mstatus) 365 & AGP_MODE_GET_FW(mode)); 366 367 /* Figure out the max rate */ 368 rate = (AGP_MODE_GET_RATE(tstatus) 369 & AGP_MODE_GET_RATE(mstatus) 370 & AGP_MODE_GET_RATE(mode)); 371 if (rate & AGP_MODE_V3_RATE_8x) 372 rate = AGP_MODE_V3_RATE_8x; 373 else 374 rate = AGP_MODE_V3_RATE_4x; 375 if (bootverbose) 376 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 377 378 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 379 380 /* Construct the new mode word and tell the hardware */ 381 command = 0; 382 command = AGP_MODE_SET_RQ(0, rq); 383 command = AGP_MODE_SET_ARQSZ(command, arqsz); 384 command = AGP_MODE_SET_CAL(command, cal); 385 command = AGP_MODE_SET_SBA(command, sba); 386 command = AGP_MODE_SET_FW(command, fw); 387 command = AGP_MODE_SET_RATE(command, rate); 388 command = AGP_MODE_SET_MODE_3(command, 1); 389 command = AGP_MODE_SET_AGP(command, 1); 390 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 391 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 392 393 return 0; 394 } 395 396 static int 397 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 398 { 399 u_int32_t tstatus, mstatus; 400 u_int32_t command; 401 int rq, sba, fw, rate; 402 403 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 404 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 405 406 /* Set RQ to the min of mode, tstatus and mstatus */ 407 rq = AGP_MODE_GET_RQ(mode); 408 if (AGP_MODE_GET_RQ(tstatus) < rq) 409 rq = AGP_MODE_GET_RQ(tstatus); 410 if (AGP_MODE_GET_RQ(mstatus) < rq) 411 rq = AGP_MODE_GET_RQ(mstatus); 412 413 /* Set SBA if all three can deal with SBA */ 414 sba = (AGP_MODE_GET_SBA(tstatus) 415 & AGP_MODE_GET_SBA(mstatus) 416 & AGP_MODE_GET_SBA(mode)); 417 418 /* Similar for FW */ 419 fw = (AGP_MODE_GET_FW(tstatus) 420 & AGP_MODE_GET_FW(mstatus) 421 & AGP_MODE_GET_FW(mode)); 422 423 /* Figure out the max rate */ 424 rate = (AGP_MODE_GET_RATE(tstatus) 425 & AGP_MODE_GET_RATE(mstatus) 426 & AGP_MODE_GET_RATE(mode)); 427 if (rate & AGP_MODE_V2_RATE_4x) 428 rate = AGP_MODE_V2_RATE_4x; 429 else if (rate & AGP_MODE_V2_RATE_2x) 430 rate = AGP_MODE_V2_RATE_2x; 431 else 432 rate = AGP_MODE_V2_RATE_1x; 433 if (bootverbose) 434 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 435 436 /* Construct the new mode word and tell the hardware */ 437 command = 0; 438 command = AGP_MODE_SET_RQ(0, rq); 439 command = AGP_MODE_SET_SBA(command, sba); 440 command = AGP_MODE_SET_FW(command, fw); 441 command = AGP_MODE_SET_RATE(command, rate); 442 command = AGP_MODE_SET_AGP(command, 1); 443 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 444 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 445 446 return 0; 447 } 448 449 int 450 agp_generic_enable(device_t dev, u_int32_t mode) 451 { 452 device_t mdev = agp_find_display(); 453 u_int32_t tstatus, mstatus; 454 455 if (!mdev) { 456 AGP_DPF("can't find display\n"); 457 return ENXIO; 458 } 459 460 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 461 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 462 463 /* 464 * Check display and bridge for AGP v3 support. AGP v3 allows 465 * more variety in topology than v2, e.g. multiple AGP devices 466 * attached to one bridge, or multiple AGP bridges in one 467 * system. This doesn't attempt to address those situations, 468 * but should work fine for a classic single AGP slot system 469 * with AGP v3. 470 */ 471 if (AGP_MODE_GET_MODE_3(mode) && 472 AGP_MODE_GET_MODE_3(tstatus) && 473 AGP_MODE_GET_MODE_3(mstatus)) 474 return (agp_v3_enable(dev, mdev, mode)); 475 else 476 return (agp_v2_enable(dev, mdev, mode)); 477 } 478 479 struct agp_memory * 480 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 481 { 482 struct agp_softc *sc = device_get_softc(dev); 483 struct agp_memory *mem; 484 485 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 486 return 0; 487 488 if (sc->as_allocated + size > sc->as_maxmem) 489 return 0; 490 491 if (type != 0) { 492 printf("agp_generic_alloc_memory: unsupported type %d\n", 493 type); 494 return 0; 495 } 496 497 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 498 mem->am_id = sc->as_nextid++; 499 mem->am_size = size; 500 mem->am_type = 0; 501 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 502 mem->am_physical = 0; 503 mem->am_offset = 0; 504 mem->am_is_bound = 0; 505 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 506 sc->as_allocated += size; 507 508 return mem; 509 } 510 511 int 512 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 513 { 514 struct agp_softc *sc = device_get_softc(dev); 515 516 if (mem->am_is_bound) 517 return EBUSY; 518 519 sc->as_allocated -= mem->am_size; 520 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 521 vm_object_deallocate(mem->am_obj); 522 free(mem, M_AGP); 523 return 0; 524 } 525 526 int 527 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 528 vm_offset_t offset) 529 { 530 struct agp_softc *sc = device_get_softc(dev); 531 vm_offset_t i, j, k; 532 vm_page_t m; 533 int error; 534 535 /* Do some sanity checks first. */ 536 if ((offset & (AGP_PAGE_SIZE - 1)) != 0 || 537 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 538 device_printf(dev, "binding memory at bad offset %#x\n", 539 (int)offset); 540 return EINVAL; 541 } 542 543 /* 544 * Allocate the pages early, before acquiring the lock, 545 * because vm_page_grab() may sleep and we can't hold a mutex 546 * while sleeping. 547 */ 548 VM_OBJECT_WLOCK(mem->am_obj); 549 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 550 /* 551 * Find a page from the object and wire it 552 * down. This page will be mapped using one or more 553 * entries in the GATT (assuming that PAGE_SIZE >= 554 * AGP_PAGE_SIZE. If this is the first call to bind, 555 * the pages will be allocated and zeroed. 556 */ 557 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 558 VM_ALLOC_WIRED | VM_ALLOC_ZERO); 559 AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m)); 560 } 561 VM_OBJECT_WUNLOCK(mem->am_obj); 562 563 mtx_lock(&sc->as_lock); 564 565 if (mem->am_is_bound) { 566 device_printf(dev, "memory already bound\n"); 567 error = EINVAL; 568 VM_OBJECT_WLOCK(mem->am_obj); 569 i = 0; 570 goto bad; 571 } 572 573 /* 574 * Bind the individual pages and flush the chipset's 575 * TLB. 576 */ 577 VM_OBJECT_WLOCK(mem->am_obj); 578 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 579 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 580 581 /* 582 * Install entries in the GATT, making sure that if 583 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 584 * aligned to PAGE_SIZE, we don't modify too many GATT 585 * entries. 586 */ 587 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 588 j += AGP_PAGE_SIZE) { 589 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 590 AGP_DPF("binding offset %#jx to pa %#jx\n", 591 (uintmax_t)offset + i + j, (uintmax_t)pa); 592 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 593 if (error) { 594 /* 595 * Bail out. Reverse all the mappings 596 * and unwire the pages. 597 */ 598 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 599 AGP_UNBIND_PAGE(dev, offset + k); 600 goto bad; 601 } 602 } 603 vm_page_xunbusy(m); 604 } 605 VM_OBJECT_WUNLOCK(mem->am_obj); 606 607 /* 608 * Flush the cpu cache since we are providing a new mapping 609 * for these pages. 610 */ 611 agp_flush_cache(); 612 613 /* 614 * Make sure the chipset gets the new mappings. 615 */ 616 AGP_FLUSH_TLB(dev); 617 618 mem->am_offset = offset; 619 mem->am_is_bound = 1; 620 621 mtx_unlock(&sc->as_lock); 622 623 return 0; 624 bad: 625 mtx_unlock(&sc->as_lock); 626 VM_OBJECT_ASSERT_WLOCKED(mem->am_obj); 627 for (k = 0; k < mem->am_size; k += PAGE_SIZE) { 628 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(k)); 629 if (k >= i) 630 vm_page_xunbusy(m); 631 vm_page_lock(m); 632 vm_page_unwire(m, 0); 633 vm_page_unlock(m); 634 } 635 VM_OBJECT_WUNLOCK(mem->am_obj); 636 637 return error; 638 } 639 640 int 641 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 642 { 643 struct agp_softc *sc = device_get_softc(dev); 644 vm_page_t m; 645 int i; 646 647 mtx_lock(&sc->as_lock); 648 649 if (!mem->am_is_bound) { 650 device_printf(dev, "memory is not bound\n"); 651 mtx_unlock(&sc->as_lock); 652 return EINVAL; 653 } 654 655 656 /* 657 * Unbind the individual pages and flush the chipset's 658 * TLB. Unwire the pages so they can be swapped. 659 */ 660 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 661 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 662 VM_OBJECT_WLOCK(mem->am_obj); 663 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 664 m = vm_page_lookup(mem->am_obj, atop(i)); 665 vm_page_lock(m); 666 vm_page_unwire(m, 0); 667 vm_page_unlock(m); 668 } 669 VM_OBJECT_WUNLOCK(mem->am_obj); 670 671 agp_flush_cache(); 672 AGP_FLUSH_TLB(dev); 673 674 mem->am_offset = 0; 675 mem->am_is_bound = 0; 676 677 mtx_unlock(&sc->as_lock); 678 679 return 0; 680 } 681 682 /* Helper functions for implementing user/kernel api */ 683 684 static int 685 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 686 { 687 struct agp_softc *sc = device_get_softc(dev); 688 689 if (sc->as_state != AGP_ACQUIRE_FREE) 690 return EBUSY; 691 sc->as_state = state; 692 693 return 0; 694 } 695 696 static int 697 agp_release_helper(device_t dev, enum agp_acquire_state state) 698 { 699 struct agp_softc *sc = device_get_softc(dev); 700 701 if (sc->as_state == AGP_ACQUIRE_FREE) 702 return 0; 703 704 if (sc->as_state != state) 705 return EBUSY; 706 707 sc->as_state = AGP_ACQUIRE_FREE; 708 return 0; 709 } 710 711 static struct agp_memory * 712 agp_find_memory(device_t dev, int id) 713 { 714 struct agp_softc *sc = device_get_softc(dev); 715 struct agp_memory *mem; 716 717 AGP_DPF("searching for memory block %d\n", id); 718 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 719 AGP_DPF("considering memory block %d\n", mem->am_id); 720 if (mem->am_id == id) 721 return mem; 722 } 723 return 0; 724 } 725 726 /* Implementation of the userland ioctl api */ 727 728 static int 729 agp_info_user(device_t dev, agp_info *info) 730 { 731 struct agp_softc *sc = device_get_softc(dev); 732 733 bzero(info, sizeof *info); 734 info->bridge_id = pci_get_devid(dev); 735 info->agp_mode = 736 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 737 if (sc->as_aperture) 738 info->aper_base = rman_get_start(sc->as_aperture); 739 else 740 info->aper_base = 0; 741 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 742 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 743 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 744 745 return 0; 746 } 747 748 static int 749 agp_setup_user(device_t dev, agp_setup *setup) 750 { 751 return AGP_ENABLE(dev, setup->agp_mode); 752 } 753 754 static int 755 agp_allocate_user(device_t dev, agp_allocate *alloc) 756 { 757 struct agp_memory *mem; 758 759 mem = AGP_ALLOC_MEMORY(dev, 760 alloc->type, 761 alloc->pg_count << AGP_PAGE_SHIFT); 762 if (mem) { 763 alloc->key = mem->am_id; 764 alloc->physical = mem->am_physical; 765 return 0; 766 } else { 767 return ENOMEM; 768 } 769 } 770 771 static int 772 agp_deallocate_user(device_t dev, int id) 773 { 774 struct agp_memory *mem = agp_find_memory(dev, id); 775 776 if (mem) { 777 AGP_FREE_MEMORY(dev, mem); 778 return 0; 779 } else { 780 return ENOENT; 781 } 782 } 783 784 static int 785 agp_bind_user(device_t dev, agp_bind *bind) 786 { 787 struct agp_memory *mem = agp_find_memory(dev, bind->key); 788 789 if (!mem) 790 return ENOENT; 791 792 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 793 } 794 795 static int 796 agp_unbind_user(device_t dev, agp_unbind *unbind) 797 { 798 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 799 800 if (!mem) 801 return ENOENT; 802 803 return AGP_UNBIND_MEMORY(dev, mem); 804 } 805 806 static int 807 agp_chipset_flush(device_t dev) 808 { 809 810 return (AGP_CHIPSET_FLUSH(dev)); 811 } 812 813 static int 814 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 815 { 816 device_t dev = kdev->si_drv1; 817 struct agp_softc *sc = device_get_softc(dev); 818 819 if (!sc->as_isopen) { 820 sc->as_isopen = 1; 821 device_busy(dev); 822 } 823 824 return 0; 825 } 826 827 static int 828 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 829 { 830 device_t dev = kdev->si_drv1; 831 struct agp_softc *sc = device_get_softc(dev); 832 struct agp_memory *mem; 833 834 /* 835 * Clear the GATT and force release on last close 836 */ 837 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 838 if (mem->am_is_bound) 839 AGP_UNBIND_MEMORY(dev, mem); 840 AGP_FREE_MEMORY(dev, mem); 841 } 842 if (sc->as_state == AGP_ACQUIRE_USER) 843 agp_release_helper(dev, AGP_ACQUIRE_USER); 844 sc->as_isopen = 0; 845 device_unbusy(dev); 846 847 return 0; 848 } 849 850 static int 851 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 852 { 853 device_t dev = kdev->si_drv1; 854 855 switch (cmd) { 856 case AGPIOC_INFO: 857 return agp_info_user(dev, (agp_info *) data); 858 859 case AGPIOC_ACQUIRE: 860 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 861 862 case AGPIOC_RELEASE: 863 return agp_release_helper(dev, AGP_ACQUIRE_USER); 864 865 case AGPIOC_SETUP: 866 return agp_setup_user(dev, (agp_setup *)data); 867 868 case AGPIOC_ALLOCATE: 869 return agp_allocate_user(dev, (agp_allocate *)data); 870 871 case AGPIOC_DEALLOCATE: 872 return agp_deallocate_user(dev, *(int *) data); 873 874 case AGPIOC_BIND: 875 return agp_bind_user(dev, (agp_bind *)data); 876 877 case AGPIOC_UNBIND: 878 return agp_unbind_user(dev, (agp_unbind *)data); 879 880 case AGPIOC_CHIPSET_FLUSH: 881 return agp_chipset_flush(dev); 882 } 883 884 return EINVAL; 885 } 886 887 static int 888 agp_mmap(struct cdev *kdev, vm_ooffset_t offset, vm_paddr_t *paddr, 889 int prot, vm_memattr_t *memattr) 890 { 891 device_t dev = kdev->si_drv1; 892 struct agp_softc *sc = device_get_softc(dev); 893 894 if (offset > AGP_GET_APERTURE(dev)) 895 return -1; 896 if (sc->as_aperture == NULL) 897 return -1; 898 *paddr = rman_get_start(sc->as_aperture) + offset; 899 return 0; 900 } 901 902 /* Implementation of the kernel api */ 903 904 device_t 905 agp_find_device() 906 { 907 device_t *children, child; 908 int i, count; 909 910 if (!agp_devclass) 911 return NULL; 912 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 913 return NULL; 914 child = NULL; 915 for (i = 0; i < count; i++) { 916 if (device_is_attached(children[i])) { 917 child = children[i]; 918 break; 919 } 920 } 921 free(children, M_TEMP); 922 return child; 923 } 924 925 enum agp_acquire_state 926 agp_state(device_t dev) 927 { 928 struct agp_softc *sc = device_get_softc(dev); 929 return sc->as_state; 930 } 931 932 void 933 agp_get_info(device_t dev, struct agp_info *info) 934 { 935 struct agp_softc *sc = device_get_softc(dev); 936 937 info->ai_mode = 938 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 939 if (sc->as_aperture != NULL) 940 info->ai_aperture_base = rman_get_start(sc->as_aperture); 941 else 942 info->ai_aperture_base = 0; 943 info->ai_aperture_size = AGP_GET_APERTURE(dev); 944 info->ai_memory_allowed = sc->as_maxmem; 945 info->ai_memory_used = sc->as_allocated; 946 } 947 948 int 949 agp_acquire(device_t dev) 950 { 951 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 952 } 953 954 int 955 agp_release(device_t dev) 956 { 957 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 958 } 959 960 int 961 agp_enable(device_t dev, u_int32_t mode) 962 { 963 return AGP_ENABLE(dev, mode); 964 } 965 966 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 967 { 968 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 969 } 970 971 void agp_free_memory(device_t dev, void *handle) 972 { 973 struct agp_memory *mem = (struct agp_memory *) handle; 974 AGP_FREE_MEMORY(dev, mem); 975 } 976 977 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 978 { 979 struct agp_memory *mem = (struct agp_memory *) handle; 980 return AGP_BIND_MEMORY(dev, mem, offset); 981 } 982 983 int agp_unbind_memory(device_t dev, void *handle) 984 { 985 struct agp_memory *mem = (struct agp_memory *) handle; 986 return AGP_UNBIND_MEMORY(dev, mem); 987 } 988 989 void agp_memory_info(device_t dev, void *handle, struct 990 agp_memory_info *mi) 991 { 992 struct agp_memory *mem = (struct agp_memory *) handle; 993 994 mi->ami_size = mem->am_size; 995 mi->ami_physical = mem->am_physical; 996 mi->ami_offset = mem->am_offset; 997 mi->ami_is_bound = mem->am_is_bound; 998 } 999