xref: /freebsd/sys/dev/agp/agp.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_agp.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/ioccom.h>
40 #include <sys/agpio.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/rwlock.h>
45 
46 #include <dev/agp/agppriv.h>
47 #include <dev/agp/agpvar.h>
48 #include <dev/agp/agpreg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcireg.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_param.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_page.h>
56 #include <vm/vm_pageout.h>
57 #include <vm/pmap.h>
58 
59 #include <machine/bus.h>
60 #include <machine/resource.h>
61 #include <sys/rman.h>
62 
63 MODULE_VERSION(agp, 1);
64 
65 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
66 
67 				/* agp_drv.c */
68 static d_open_t agp_open;
69 static d_close_t agp_close;
70 static d_ioctl_t agp_ioctl;
71 static d_mmap_t agp_mmap;
72 
73 static struct cdevsw agp_cdevsw = {
74 	.d_version =	D_VERSION,
75 	.d_flags =	D_NEEDGIANT,
76 	.d_open =	agp_open,
77 	.d_close =	agp_close,
78 	.d_ioctl =	agp_ioctl,
79 	.d_mmap =	agp_mmap,
80 	.d_name =	"agp",
81 };
82 
83 static devclass_t agp_devclass;
84 
85 /* Helper functions for implementing chipset mini drivers. */
86 
87 void
88 agp_flush_cache()
89 {
90 #if defined(__i386__) || defined(__amd64__)
91 	wbinvd();
92 #endif
93 }
94 
95 u_int8_t
96 agp_find_caps(device_t dev)
97 {
98 	int capreg;
99 
100 
101 	if (pci_find_cap(dev, PCIY_AGP, &capreg) != 0)
102 		capreg = 0;
103 	return (capreg);
104 }
105 
106 /*
107  * Find an AGP display device (if any).
108  */
109 static device_t
110 agp_find_display(void)
111 {
112 	devclass_t pci = devclass_find("pci");
113 	device_t bus, dev = 0;
114 	device_t *kids;
115 	int busnum, numkids, i;
116 
117 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
118 		bus = devclass_get_device(pci, busnum);
119 		if (!bus)
120 			continue;
121 		if (device_get_children(bus, &kids, &numkids) != 0)
122 			continue;
123 		for (i = 0; i < numkids; i++) {
124 			dev = kids[i];
125 			if (pci_get_class(dev) == PCIC_DISPLAY
126 			    && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
127 				if (agp_find_caps(dev)) {
128 					free(kids, M_TEMP);
129 					return dev;
130 				}
131 
132 		}
133 		free(kids, M_TEMP);
134 	}
135 
136 	return 0;
137 }
138 
139 struct agp_gatt *
140 agp_alloc_gatt(device_t dev)
141 {
142 	u_int32_t apsize = AGP_GET_APERTURE(dev);
143 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
144 	struct agp_gatt *gatt;
145 
146 	if (bootverbose)
147 		device_printf(dev,
148 			      "allocating GATT for aperture of size %dM\n",
149 			      apsize / (1024*1024));
150 
151 	if (entries == 0) {
152 		device_printf(dev, "bad aperture size\n");
153 		return NULL;
154 	}
155 
156 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
157 	if (!gatt)
158 		return 0;
159 
160 	gatt->ag_entries = entries;
161 	gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0,
162 					0, ~0, PAGE_SIZE, 0);
163 	if (!gatt->ag_virtual) {
164 		if (bootverbose)
165 			device_printf(dev, "contiguous allocation failed\n");
166 		free(gatt, M_AGP);
167 		return 0;
168 	}
169 	bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
170 	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
171 	agp_flush_cache();
172 
173 	return gatt;
174 }
175 
176 void
177 agp_free_gatt(struct agp_gatt *gatt)
178 {
179 	contigfree(gatt->ag_virtual,
180 		   gatt->ag_entries * sizeof(u_int32_t), M_AGP);
181 	free(gatt, M_AGP);
182 }
183 
184 static u_int agp_max[][2] = {
185 	{0,	0},
186 	{32,	4},
187 	{64,	28},
188 	{128,	96},
189 	{256,	204},
190 	{512,	440},
191 	{1024,	942},
192 	{2048,	1920},
193 	{4096,	3932}
194 };
195 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
196 
197 /**
198  * Sets the PCI resource which represents the AGP aperture.
199  *
200  * If not called, the default AGP aperture resource of AGP_APBASE will
201  * be used.  Must be called before agp_generic_attach().
202  */
203 void
204 agp_set_aperture_resource(device_t dev, int rid)
205 {
206 	struct agp_softc *sc = device_get_softc(dev);
207 
208 	sc->as_aperture_rid = rid;
209 }
210 
211 int
212 agp_generic_attach(device_t dev)
213 {
214 	struct agp_softc *sc = device_get_softc(dev);
215 	int i;
216 	u_int memsize;
217 
218 	/*
219 	 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE
220 	 * because the kernel doesn't need to map it.
221 	 */
222 
223 	if (sc->as_aperture_rid != -1) {
224 		if (sc->as_aperture_rid == 0)
225 			sc->as_aperture_rid = AGP_APBASE;
226 
227 		sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
228 		    &sc->as_aperture_rid, RF_SHAREABLE);
229 		if (!sc->as_aperture)
230 			return ENOMEM;
231 	}
232 
233 	/*
234 	 * Work out an upper bound for agp memory allocation. This
235 	 * uses a heurisitc table from the Linux driver.
236 	 */
237 	memsize = ptoa(realmem) >> 20;
238 	for (i = 0; i < agp_max_size; i++) {
239 		if (memsize <= agp_max[i][0])
240 			break;
241 	}
242 	if (i == agp_max_size)
243 		i = agp_max_size - 1;
244 	sc->as_maxmem = agp_max[i][1] << 20U;
245 
246 	/*
247 	 * The lock is used to prevent re-entry to
248 	 * agp_generic_bind_memory() since that function can sleep.
249 	 */
250 	mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF);
251 
252 	/*
253 	 * Initialise stuff for the userland device.
254 	 */
255 	agp_devclass = devclass_find("agp");
256 	TAILQ_INIT(&sc->as_memory);
257 	sc->as_nextid = 1;
258 
259 	sc->as_devnode = make_dev(&agp_cdevsw,
260 	    0, UID_ROOT, GID_WHEEL, 0600, "agpgart");
261 	sc->as_devnode->si_drv1 = dev;
262 
263 	return 0;
264 }
265 
266 void
267 agp_free_cdev(device_t dev)
268 {
269 	struct agp_softc *sc = device_get_softc(dev);
270 
271 	destroy_dev(sc->as_devnode);
272 }
273 
274 void
275 agp_free_res(device_t dev)
276 {
277 	struct agp_softc *sc = device_get_softc(dev);
278 
279 	if (sc->as_aperture != NULL)
280 		bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid,
281 		    sc->as_aperture);
282 	mtx_destroy(&sc->as_lock);
283 	agp_flush_cache();
284 }
285 
286 int
287 agp_generic_detach(device_t dev)
288 {
289 
290 	agp_free_cdev(dev);
291 	agp_free_res(dev);
292 	return 0;
293 }
294 
295 /**
296  * Default AGP aperture size detection which simply returns the size of
297  * the aperture's PCI resource.
298  */
299 u_int32_t
300 agp_generic_get_aperture(device_t dev)
301 {
302 	struct agp_softc *sc = device_get_softc(dev);
303 
304 	return rman_get_size(sc->as_aperture);
305 }
306 
307 /**
308  * Default AGP aperture size setting function, which simply doesn't allow
309  * changes to resource size.
310  */
311 int
312 agp_generic_set_aperture(device_t dev, u_int32_t aperture)
313 {
314 	u_int32_t current_aperture;
315 
316 	current_aperture = AGP_GET_APERTURE(dev);
317 	if (current_aperture != aperture)
318 		return EINVAL;
319 	else
320 		return 0;
321 }
322 
323 /*
324  * This does the enable logic for v3, with the same topology
325  * restrictions as in place for v2 -- one bus, one device on the bus.
326  */
327 static int
328 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
329 {
330 	u_int32_t tstatus, mstatus;
331 	u_int32_t command;
332 	int rq, sba, fw, rate, arqsz, cal;
333 
334 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
335 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
336 
337 	/* Set RQ to the min of mode, tstatus and mstatus */
338 	rq = AGP_MODE_GET_RQ(mode);
339 	if (AGP_MODE_GET_RQ(tstatus) < rq)
340 		rq = AGP_MODE_GET_RQ(tstatus);
341 	if (AGP_MODE_GET_RQ(mstatus) < rq)
342 		rq = AGP_MODE_GET_RQ(mstatus);
343 
344 	/*
345 	 * ARQSZ - Set the value to the maximum one.
346 	 * Don't allow the mode register to override values.
347 	 */
348 	arqsz = AGP_MODE_GET_ARQSZ(mode);
349 	if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
350 		rq = AGP_MODE_GET_ARQSZ(tstatus);
351 	if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
352 		rq = AGP_MODE_GET_ARQSZ(mstatus);
353 
354 	/* Calibration cycle - don't allow override by mode register */
355 	cal = AGP_MODE_GET_CAL(tstatus);
356 	if (AGP_MODE_GET_CAL(mstatus) < cal)
357 		cal = AGP_MODE_GET_CAL(mstatus);
358 
359 	/* SBA must be supported for AGP v3. */
360 	sba = 1;
361 
362 	/* Set FW if all three support it. */
363 	fw = (AGP_MODE_GET_FW(tstatus)
364 	       & AGP_MODE_GET_FW(mstatus)
365 	       & AGP_MODE_GET_FW(mode));
366 
367 	/* Figure out the max rate */
368 	rate = (AGP_MODE_GET_RATE(tstatus)
369 		& AGP_MODE_GET_RATE(mstatus)
370 		& AGP_MODE_GET_RATE(mode));
371 	if (rate & AGP_MODE_V3_RATE_8x)
372 		rate = AGP_MODE_V3_RATE_8x;
373 	else
374 		rate = AGP_MODE_V3_RATE_4x;
375 	if (bootverbose)
376 		device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
377 
378 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
379 
380 	/* Construct the new mode word and tell the hardware */
381 	command = 0;
382 	command = AGP_MODE_SET_RQ(0, rq);
383 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
384 	command = AGP_MODE_SET_CAL(command, cal);
385 	command = AGP_MODE_SET_SBA(command, sba);
386 	command = AGP_MODE_SET_FW(command, fw);
387 	command = AGP_MODE_SET_RATE(command, rate);
388 	command = AGP_MODE_SET_MODE_3(command, 1);
389 	command = AGP_MODE_SET_AGP(command, 1);
390 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
391 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
392 
393 	return 0;
394 }
395 
396 static int
397 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
398 {
399 	u_int32_t tstatus, mstatus;
400 	u_int32_t command;
401 	int rq, sba, fw, rate;
402 
403 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
404 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
405 
406 	/* Set RQ to the min of mode, tstatus and mstatus */
407 	rq = AGP_MODE_GET_RQ(mode);
408 	if (AGP_MODE_GET_RQ(tstatus) < rq)
409 		rq = AGP_MODE_GET_RQ(tstatus);
410 	if (AGP_MODE_GET_RQ(mstatus) < rq)
411 		rq = AGP_MODE_GET_RQ(mstatus);
412 
413 	/* Set SBA if all three can deal with SBA */
414 	sba = (AGP_MODE_GET_SBA(tstatus)
415 	       & AGP_MODE_GET_SBA(mstatus)
416 	       & AGP_MODE_GET_SBA(mode));
417 
418 	/* Similar for FW */
419 	fw = (AGP_MODE_GET_FW(tstatus)
420 	       & AGP_MODE_GET_FW(mstatus)
421 	       & AGP_MODE_GET_FW(mode));
422 
423 	/* Figure out the max rate */
424 	rate = (AGP_MODE_GET_RATE(tstatus)
425 		& AGP_MODE_GET_RATE(mstatus)
426 		& AGP_MODE_GET_RATE(mode));
427 	if (rate & AGP_MODE_V2_RATE_4x)
428 		rate = AGP_MODE_V2_RATE_4x;
429 	else if (rate & AGP_MODE_V2_RATE_2x)
430 		rate = AGP_MODE_V2_RATE_2x;
431 	else
432 		rate = AGP_MODE_V2_RATE_1x;
433 	if (bootverbose)
434 		device_printf(dev, "Setting AGP v2 mode %d\n", rate);
435 
436 	/* Construct the new mode word and tell the hardware */
437 	command = 0;
438 	command = AGP_MODE_SET_RQ(0, rq);
439 	command = AGP_MODE_SET_SBA(command, sba);
440 	command = AGP_MODE_SET_FW(command, fw);
441 	command = AGP_MODE_SET_RATE(command, rate);
442 	command = AGP_MODE_SET_AGP(command, 1);
443 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
444 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
445 
446 	return 0;
447 }
448 
449 int
450 agp_generic_enable(device_t dev, u_int32_t mode)
451 {
452 	device_t mdev = agp_find_display();
453 	u_int32_t tstatus, mstatus;
454 
455 	if (!mdev) {
456 		AGP_DPF("can't find display\n");
457 		return ENXIO;
458 	}
459 
460 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
461 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
462 
463 	/*
464 	 * Check display and bridge for AGP v3 support.  AGP v3 allows
465 	 * more variety in topology than v2, e.g. multiple AGP devices
466 	 * attached to one bridge, or multiple AGP bridges in one
467 	 * system.  This doesn't attempt to address those situations,
468 	 * but should work fine for a classic single AGP slot system
469 	 * with AGP v3.
470 	 */
471 	if (AGP_MODE_GET_MODE_3(mode) &&
472 	    AGP_MODE_GET_MODE_3(tstatus) &&
473 	    AGP_MODE_GET_MODE_3(mstatus))
474 		return (agp_v3_enable(dev, mdev, mode));
475 	else
476 		return (agp_v2_enable(dev, mdev, mode));
477 }
478 
479 struct agp_memory *
480 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
481 {
482 	struct agp_softc *sc = device_get_softc(dev);
483 	struct agp_memory *mem;
484 
485 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
486 		return 0;
487 
488 	if (sc->as_allocated + size > sc->as_maxmem)
489 		return 0;
490 
491 	if (type != 0) {
492 		printf("agp_generic_alloc_memory: unsupported type %d\n",
493 		       type);
494 		return 0;
495 	}
496 
497 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
498 	mem->am_id = sc->as_nextid++;
499 	mem->am_size = size;
500 	mem->am_type = 0;
501 	mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
502 	mem->am_physical = 0;
503 	mem->am_offset = 0;
504 	mem->am_is_bound = 0;
505 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
506 	sc->as_allocated += size;
507 
508 	return mem;
509 }
510 
511 int
512 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
513 {
514 	struct agp_softc *sc = device_get_softc(dev);
515 
516 	if (mem->am_is_bound)
517 		return EBUSY;
518 
519 	sc->as_allocated -= mem->am_size;
520 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
521 	vm_object_deallocate(mem->am_obj);
522 	free(mem, M_AGP);
523 	return 0;
524 }
525 
526 int
527 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
528 			vm_offset_t offset)
529 {
530 	struct agp_softc *sc = device_get_softc(dev);
531 	vm_offset_t i, j, k;
532 	vm_page_t m;
533 	int error;
534 
535 	/* Do some sanity checks first. */
536 	if ((offset & (AGP_PAGE_SIZE - 1)) != 0 ||
537 	    offset + mem->am_size > AGP_GET_APERTURE(dev)) {
538 		device_printf(dev, "binding memory at bad offset %#x\n",
539 		    (int)offset);
540 		return EINVAL;
541 	}
542 
543 	/*
544 	 * Allocate the pages early, before acquiring the lock,
545 	 * because vm_page_grab() may sleep and we can't hold a mutex
546 	 * while sleeping.
547 	 */
548 	VM_OBJECT_WLOCK(mem->am_obj);
549 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
550 		/*
551 		 * Find a page from the object and wire it
552 		 * down. This page will be mapped using one or more
553 		 * entries in the GATT (assuming that PAGE_SIZE >=
554 		 * AGP_PAGE_SIZE. If this is the first call to bind,
555 		 * the pages will be allocated and zeroed.
556 		 */
557 		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
558 		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
559 		AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m));
560 	}
561 	VM_OBJECT_WUNLOCK(mem->am_obj);
562 
563 	mtx_lock(&sc->as_lock);
564 
565 	if (mem->am_is_bound) {
566 		device_printf(dev, "memory already bound\n");
567 		error = EINVAL;
568 		VM_OBJECT_WLOCK(mem->am_obj);
569 		i = 0;
570 		goto bad;
571 	}
572 
573 	/*
574 	 * Bind the individual pages and flush the chipset's
575 	 * TLB.
576 	 */
577 	VM_OBJECT_WLOCK(mem->am_obj);
578 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
579 		m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i));
580 
581 		/*
582 		 * Install entries in the GATT, making sure that if
583 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
584 		 * aligned to PAGE_SIZE, we don't modify too many GATT
585 		 * entries.
586 		 */
587 		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
588 		     j += AGP_PAGE_SIZE) {
589 			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
590 			AGP_DPF("binding offset %#jx to pa %#jx\n",
591 				(uintmax_t)offset + i + j, (uintmax_t)pa);
592 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
593 			if (error) {
594 				/*
595 				 * Bail out. Reverse all the mappings
596 				 * and unwire the pages.
597 				 */
598 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
599 					AGP_UNBIND_PAGE(dev, offset + k);
600 				goto bad;
601 			}
602 		}
603 		vm_page_xunbusy(m);
604 	}
605 	VM_OBJECT_WUNLOCK(mem->am_obj);
606 
607 	/*
608 	 * Flush the cpu cache since we are providing a new mapping
609 	 * for these pages.
610 	 */
611 	agp_flush_cache();
612 
613 	/*
614 	 * Make sure the chipset gets the new mappings.
615 	 */
616 	AGP_FLUSH_TLB(dev);
617 
618 	mem->am_offset = offset;
619 	mem->am_is_bound = 1;
620 
621 	mtx_unlock(&sc->as_lock);
622 
623 	return 0;
624 bad:
625 	mtx_unlock(&sc->as_lock);
626 	VM_OBJECT_ASSERT_WLOCKED(mem->am_obj);
627 	for (k = 0; k < mem->am_size; k += PAGE_SIZE) {
628 		m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(k));
629 		if (k >= i)
630 			vm_page_xunbusy(m);
631 		vm_page_lock(m);
632 		vm_page_unwire(m, 0);
633 		vm_page_unlock(m);
634 	}
635 	VM_OBJECT_WUNLOCK(mem->am_obj);
636 
637 	return error;
638 }
639 
640 int
641 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
642 {
643 	struct agp_softc *sc = device_get_softc(dev);
644 	vm_page_t m;
645 	int i;
646 
647 	mtx_lock(&sc->as_lock);
648 
649 	if (!mem->am_is_bound) {
650 		device_printf(dev, "memory is not bound\n");
651 		mtx_unlock(&sc->as_lock);
652 		return EINVAL;
653 	}
654 
655 
656 	/*
657 	 * Unbind the individual pages and flush the chipset's
658 	 * TLB. Unwire the pages so they can be swapped.
659 	 */
660 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
661 		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
662 	VM_OBJECT_WLOCK(mem->am_obj);
663 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
664 		m = vm_page_lookup(mem->am_obj, atop(i));
665 		vm_page_lock(m);
666 		vm_page_unwire(m, 0);
667 		vm_page_unlock(m);
668 	}
669 	VM_OBJECT_WUNLOCK(mem->am_obj);
670 
671 	agp_flush_cache();
672 	AGP_FLUSH_TLB(dev);
673 
674 	mem->am_offset = 0;
675 	mem->am_is_bound = 0;
676 
677 	mtx_unlock(&sc->as_lock);
678 
679 	return 0;
680 }
681 
682 /* Helper functions for implementing user/kernel api */
683 
684 static int
685 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
686 {
687 	struct agp_softc *sc = device_get_softc(dev);
688 
689 	if (sc->as_state != AGP_ACQUIRE_FREE)
690 		return EBUSY;
691 	sc->as_state = state;
692 
693 	return 0;
694 }
695 
696 static int
697 agp_release_helper(device_t dev, enum agp_acquire_state state)
698 {
699 	struct agp_softc *sc = device_get_softc(dev);
700 
701 	if (sc->as_state == AGP_ACQUIRE_FREE)
702 		return 0;
703 
704 	if (sc->as_state != state)
705 		return EBUSY;
706 
707 	sc->as_state = AGP_ACQUIRE_FREE;
708 	return 0;
709 }
710 
711 static struct agp_memory *
712 agp_find_memory(device_t dev, int id)
713 {
714 	struct agp_softc *sc = device_get_softc(dev);
715 	struct agp_memory *mem;
716 
717 	AGP_DPF("searching for memory block %d\n", id);
718 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
719 		AGP_DPF("considering memory block %d\n", mem->am_id);
720 		if (mem->am_id == id)
721 			return mem;
722 	}
723 	return 0;
724 }
725 
726 /* Implementation of the userland ioctl api */
727 
728 static int
729 agp_info_user(device_t dev, agp_info *info)
730 {
731 	struct agp_softc *sc = device_get_softc(dev);
732 
733 	bzero(info, sizeof *info);
734 	info->bridge_id = pci_get_devid(dev);
735 	info->agp_mode =
736 	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
737 	if (sc->as_aperture)
738 		info->aper_base = rman_get_start(sc->as_aperture);
739 	else
740 		info->aper_base = 0;
741 	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
742 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
743 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
744 
745 	return 0;
746 }
747 
748 static int
749 agp_setup_user(device_t dev, agp_setup *setup)
750 {
751 	return AGP_ENABLE(dev, setup->agp_mode);
752 }
753 
754 static int
755 agp_allocate_user(device_t dev, agp_allocate *alloc)
756 {
757 	struct agp_memory *mem;
758 
759 	mem = AGP_ALLOC_MEMORY(dev,
760 			       alloc->type,
761 			       alloc->pg_count << AGP_PAGE_SHIFT);
762 	if (mem) {
763 		alloc->key = mem->am_id;
764 		alloc->physical = mem->am_physical;
765 		return 0;
766 	} else {
767 		return ENOMEM;
768 	}
769 }
770 
771 static int
772 agp_deallocate_user(device_t dev, int id)
773 {
774 	struct agp_memory *mem = agp_find_memory(dev, id);
775 
776 	if (mem) {
777 		AGP_FREE_MEMORY(dev, mem);
778 		return 0;
779 	} else {
780 		return ENOENT;
781 	}
782 }
783 
784 static int
785 agp_bind_user(device_t dev, agp_bind *bind)
786 {
787 	struct agp_memory *mem = agp_find_memory(dev, bind->key);
788 
789 	if (!mem)
790 		return ENOENT;
791 
792 	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
793 }
794 
795 static int
796 agp_unbind_user(device_t dev, agp_unbind *unbind)
797 {
798 	struct agp_memory *mem = agp_find_memory(dev, unbind->key);
799 
800 	if (!mem)
801 		return ENOENT;
802 
803 	return AGP_UNBIND_MEMORY(dev, mem);
804 }
805 
806 static int
807 agp_chipset_flush(device_t dev)
808 {
809 
810 	return (AGP_CHIPSET_FLUSH(dev));
811 }
812 
813 static int
814 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td)
815 {
816 	device_t dev = kdev->si_drv1;
817 	struct agp_softc *sc = device_get_softc(dev);
818 
819 	if (!sc->as_isopen) {
820 		sc->as_isopen = 1;
821 		device_busy(dev);
822 	}
823 
824 	return 0;
825 }
826 
827 static int
828 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td)
829 {
830 	device_t dev = kdev->si_drv1;
831 	struct agp_softc *sc = device_get_softc(dev);
832 	struct agp_memory *mem;
833 
834 	/*
835 	 * Clear the GATT and force release on last close
836 	 */
837 	while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
838 		if (mem->am_is_bound)
839 			AGP_UNBIND_MEMORY(dev, mem);
840 		AGP_FREE_MEMORY(dev, mem);
841 	}
842 	if (sc->as_state == AGP_ACQUIRE_USER)
843 		agp_release_helper(dev, AGP_ACQUIRE_USER);
844 	sc->as_isopen = 0;
845 	device_unbusy(dev);
846 
847 	return 0;
848 }
849 
850 static int
851 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
852 {
853 	device_t dev = kdev->si_drv1;
854 
855 	switch (cmd) {
856 	case AGPIOC_INFO:
857 		return agp_info_user(dev, (agp_info *) data);
858 
859 	case AGPIOC_ACQUIRE:
860 		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
861 
862 	case AGPIOC_RELEASE:
863 		return agp_release_helper(dev, AGP_ACQUIRE_USER);
864 
865 	case AGPIOC_SETUP:
866 		return agp_setup_user(dev, (agp_setup *)data);
867 
868 	case AGPIOC_ALLOCATE:
869 		return agp_allocate_user(dev, (agp_allocate *)data);
870 
871 	case AGPIOC_DEALLOCATE:
872 		return agp_deallocate_user(dev, *(int *) data);
873 
874 	case AGPIOC_BIND:
875 		return agp_bind_user(dev, (agp_bind *)data);
876 
877 	case AGPIOC_UNBIND:
878 		return agp_unbind_user(dev, (agp_unbind *)data);
879 
880 	case AGPIOC_CHIPSET_FLUSH:
881 		return agp_chipset_flush(dev);
882 	}
883 
884 	return EINVAL;
885 }
886 
887 static int
888 agp_mmap(struct cdev *kdev, vm_ooffset_t offset, vm_paddr_t *paddr,
889     int prot, vm_memattr_t *memattr)
890 {
891 	device_t dev = kdev->si_drv1;
892 	struct agp_softc *sc = device_get_softc(dev);
893 
894 	if (offset > AGP_GET_APERTURE(dev))
895 		return -1;
896 	if (sc->as_aperture == NULL)
897 		return -1;
898 	*paddr = rman_get_start(sc->as_aperture) + offset;
899 	return 0;
900 }
901 
902 /* Implementation of the kernel api */
903 
904 device_t
905 agp_find_device()
906 {
907 	device_t *children, child;
908 	int i, count;
909 
910 	if (!agp_devclass)
911 		return NULL;
912 	if (devclass_get_devices(agp_devclass, &children, &count) != 0)
913 		return NULL;
914 	child = NULL;
915 	for (i = 0; i < count; i++) {
916 		if (device_is_attached(children[i])) {
917 			child = children[i];
918 			break;
919 		}
920 	}
921 	free(children, M_TEMP);
922 	return child;
923 }
924 
925 enum agp_acquire_state
926 agp_state(device_t dev)
927 {
928 	struct agp_softc *sc = device_get_softc(dev);
929 	return sc->as_state;
930 }
931 
932 void
933 agp_get_info(device_t dev, struct agp_info *info)
934 {
935 	struct agp_softc *sc = device_get_softc(dev);
936 
937 	info->ai_mode =
938 		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
939 	if (sc->as_aperture != NULL)
940 		info->ai_aperture_base = rman_get_start(sc->as_aperture);
941 	else
942 		info->ai_aperture_base = 0;
943 	info->ai_aperture_size = AGP_GET_APERTURE(dev);
944 	info->ai_memory_allowed = sc->as_maxmem;
945 	info->ai_memory_used = sc->as_allocated;
946 }
947 
948 int
949 agp_acquire(device_t dev)
950 {
951 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
952 }
953 
954 int
955 agp_release(device_t dev)
956 {
957 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
958 }
959 
960 int
961 agp_enable(device_t dev, u_int32_t mode)
962 {
963 	return AGP_ENABLE(dev, mode);
964 }
965 
966 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
967 {
968 	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
969 }
970 
971 void agp_free_memory(device_t dev, void *handle)
972 {
973 	struct agp_memory *mem = (struct agp_memory *) handle;
974 	AGP_FREE_MEMORY(dev, mem);
975 }
976 
977 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
978 {
979 	struct agp_memory *mem = (struct agp_memory *) handle;
980 	return AGP_BIND_MEMORY(dev, mem, offset);
981 }
982 
983 int agp_unbind_memory(device_t dev, void *handle)
984 {
985 	struct agp_memory *mem = (struct agp_memory *) handle;
986 	return AGP_UNBIND_MEMORY(dev, mem);
987 }
988 
989 void agp_memory_info(device_t dev, void *handle, struct
990 		     agp_memory_info *mi)
991 {
992 	struct agp_memory *mem = (struct agp_memory *) handle;
993 
994 	mi->ami_size = mem->am_size;
995 	mi->ami_physical = mem->am_physical;
996 	mi->ami_offset = mem->am_offset;
997 	mi->ami_is_bound = mem->am_is_bound;
998 }
999