1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/agpio.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 45 #include <dev/pci/pcivar.h> 46 #include <dev/pci/pcireg.h> 47 #include <pci/agppriv.h> 48 #include <pci/agpvar.h> 49 #include <pci/agpreg.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_pageout.h> 55 #include <vm/pmap.h> 56 57 #include <machine/md_var.h> 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 MODULE_VERSION(agp, 1); 63 64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 65 66 /* agp_drv.c */ 67 static d_open_t agp_open; 68 static d_close_t agp_close; 69 static d_ioctl_t agp_ioctl; 70 static d_mmap_t agp_mmap; 71 72 static struct cdevsw agp_cdevsw = { 73 .d_version = D_VERSION, 74 .d_flags = D_NEEDGIANT, 75 .d_open = agp_open, 76 .d_close = agp_close, 77 .d_ioctl = agp_ioctl, 78 .d_mmap = agp_mmap, 79 .d_name = "agp", 80 }; 81 82 static devclass_t agp_devclass; 83 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev)) 84 85 /* Helper functions for implementing chipset mini drivers. */ 86 87 void 88 agp_flush_cache() 89 { 90 #if defined(__i386__) || defined(__amd64__) 91 wbinvd(); 92 #endif 93 } 94 95 u_int8_t 96 agp_find_caps(device_t dev) 97 { 98 int capreg; 99 100 101 if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0) 102 capreg = 0; 103 return (capreg); 104 } 105 106 /* 107 * Find an AGP display device (if any). 108 */ 109 static device_t 110 agp_find_display(void) 111 { 112 devclass_t pci = devclass_find("pci"); 113 device_t bus, dev = 0; 114 device_t *kids; 115 int busnum, numkids, i; 116 117 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 118 bus = devclass_get_device(pci, busnum); 119 if (!bus) 120 continue; 121 device_get_children(bus, &kids, &numkids); 122 for (i = 0; i < numkids; i++) { 123 dev = kids[i]; 124 if (pci_get_class(dev) == PCIC_DISPLAY 125 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 126 if (agp_find_caps(dev)) { 127 free(kids, M_TEMP); 128 return dev; 129 } 130 131 } 132 free(kids, M_TEMP); 133 } 134 135 return 0; 136 } 137 138 struct agp_gatt * 139 agp_alloc_gatt(device_t dev) 140 { 141 u_int32_t apsize = AGP_GET_APERTURE(dev); 142 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 143 struct agp_gatt *gatt; 144 145 if (bootverbose) 146 device_printf(dev, 147 "allocating GATT for aperture of size %dM\n", 148 apsize / (1024*1024)); 149 150 if (entries == 0) { 151 device_printf(dev, "bad aperture size\n"); 152 return NULL; 153 } 154 155 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 156 if (!gatt) 157 return 0; 158 159 gatt->ag_entries = entries; 160 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 161 0, ~0, PAGE_SIZE, 0); 162 if (!gatt->ag_virtual) { 163 if (bootverbose) 164 device_printf(dev, "contiguous allocation failed\n"); 165 free(gatt, M_AGP); 166 return 0; 167 } 168 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 169 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 170 agp_flush_cache(); 171 172 return gatt; 173 } 174 175 void 176 agp_free_gatt(struct agp_gatt *gatt) 177 { 178 contigfree(gatt->ag_virtual, 179 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 180 free(gatt, M_AGP); 181 } 182 183 static u_int agp_max[][2] = { 184 {0, 0}, 185 {32, 4}, 186 {64, 28}, 187 {128, 96}, 188 {256, 204}, 189 {512, 440}, 190 {1024, 942}, 191 {2048, 1920}, 192 {4096, 3932} 193 }; 194 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 195 196 int 197 agp_generic_attach(device_t dev) 198 { 199 struct agp_softc *sc = device_get_softc(dev); 200 int rid, i; 201 u_int memsize; 202 203 /* 204 * Find and map the aperture. 205 */ 206 rid = AGP_APBASE; 207 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 0); 208 if (!sc->as_aperture) 209 return ENOMEM; 210 211 /* 212 * Work out an upper bound for agp memory allocation. This 213 * uses a heurisitc table from the Linux driver. 214 */ 215 memsize = ptoa(Maxmem) >> 20; 216 for (i = 0; i < agp_max_size; i++) { 217 if (memsize <= agp_max[i][0]) 218 break; 219 } 220 if (i == agp_max_size) i = agp_max_size - 1; 221 sc->as_maxmem = agp_max[i][1] << 20U; 222 223 /* 224 * The lock is used to prevent re-entry to 225 * agp_generic_bind_memory() since that function can sleep. 226 */ 227 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 228 229 /* 230 * Initialise stuff for the userland device. 231 */ 232 agp_devclass = devclass_find("agp"); 233 TAILQ_INIT(&sc->as_memory); 234 sc->as_nextid = 1; 235 236 sc->as_devnode = make_dev(&agp_cdevsw, 237 device_get_unit(dev), 238 UID_ROOT, 239 GID_WHEEL, 240 0600, 241 "agpgart"); 242 243 return 0; 244 } 245 246 int 247 agp_generic_detach(device_t dev) 248 { 249 struct agp_softc *sc = device_get_softc(dev); 250 251 destroy_dev(sc->as_devnode); 252 bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture); 253 mtx_destroy(&sc->as_lock); 254 agp_flush_cache(); 255 return 0; 256 } 257 258 /* 259 * This does the enable logic for v3, with the same topology 260 * restrictions as in place for v2 -- one bus, one device on the bus. 261 */ 262 static int 263 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 264 { 265 u_int32_t tstatus, mstatus; 266 u_int32_t command; 267 int rq, sba, fw, rate, arqsz, cal; 268 269 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 270 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 271 272 /* Set RQ to the min of mode, tstatus and mstatus */ 273 rq = AGP_MODE_GET_RQ(mode); 274 if (AGP_MODE_GET_RQ(tstatus) < rq) 275 rq = AGP_MODE_GET_RQ(tstatus); 276 if (AGP_MODE_GET_RQ(mstatus) < rq) 277 rq = AGP_MODE_GET_RQ(mstatus); 278 279 /* 280 * ARQSZ - Set the value to the maximum one. 281 * Don't allow the mode register to override values. 282 */ 283 arqsz = AGP_MODE_GET_ARQSZ(mode); 284 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 285 rq = AGP_MODE_GET_ARQSZ(tstatus); 286 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 287 rq = AGP_MODE_GET_ARQSZ(mstatus); 288 289 /* Calibration cycle - don't allow override by mode register */ 290 cal = AGP_MODE_GET_CAL(tstatus); 291 if (AGP_MODE_GET_CAL(mstatus) < cal) 292 cal = AGP_MODE_GET_CAL(mstatus); 293 294 /* SBA must be supported for AGP v3. */ 295 sba = 1; 296 297 /* Set FW if all three support it. */ 298 fw = (AGP_MODE_GET_FW(tstatus) 299 & AGP_MODE_GET_FW(mstatus) 300 & AGP_MODE_GET_FW(mode)); 301 302 /* Figure out the max rate */ 303 rate = (AGP_MODE_GET_RATE(tstatus) 304 & AGP_MODE_GET_RATE(mstatus) 305 & AGP_MODE_GET_RATE(mode)); 306 if (rate & AGP_MODE_V3_RATE_8x) 307 rate = AGP_MODE_V3_RATE_8x; 308 else 309 rate = AGP_MODE_V3_RATE_4x; 310 if (bootverbose) 311 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 312 313 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 314 315 /* Construct the new mode word and tell the hardware */ 316 command = 0; 317 command = AGP_MODE_SET_RQ(0, rq); 318 command = AGP_MODE_SET_ARQSZ(command, arqsz); 319 command = AGP_MODE_SET_CAL(command, cal); 320 command = AGP_MODE_SET_SBA(command, sba); 321 command = AGP_MODE_SET_FW(command, fw); 322 command = AGP_MODE_SET_RATE(command, rate); 323 command = AGP_MODE_SET_MODE_3(command, 1); 324 command = AGP_MODE_SET_AGP(command, 1); 325 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 326 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 327 328 return 0; 329 } 330 331 static int 332 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 333 { 334 u_int32_t tstatus, mstatus; 335 u_int32_t command; 336 int rq, sba, fw, rate; 337 338 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 339 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 340 341 /* Set RQ to the min of mode, tstatus and mstatus */ 342 rq = AGP_MODE_GET_RQ(mode); 343 if (AGP_MODE_GET_RQ(tstatus) < rq) 344 rq = AGP_MODE_GET_RQ(tstatus); 345 if (AGP_MODE_GET_RQ(mstatus) < rq) 346 rq = AGP_MODE_GET_RQ(mstatus); 347 348 /* Set SBA if all three can deal with SBA */ 349 sba = (AGP_MODE_GET_SBA(tstatus) 350 & AGP_MODE_GET_SBA(mstatus) 351 & AGP_MODE_GET_SBA(mode)); 352 353 /* Similar for FW */ 354 fw = (AGP_MODE_GET_FW(tstatus) 355 & AGP_MODE_GET_FW(mstatus) 356 & AGP_MODE_GET_FW(mode)); 357 358 /* Figure out the max rate */ 359 rate = (AGP_MODE_GET_RATE(tstatus) 360 & AGP_MODE_GET_RATE(mstatus) 361 & AGP_MODE_GET_RATE(mode)); 362 if (rate & AGP_MODE_V2_RATE_4x) 363 rate = AGP_MODE_V2_RATE_4x; 364 else if (rate & AGP_MODE_V2_RATE_2x) 365 rate = AGP_MODE_V2_RATE_2x; 366 else 367 rate = AGP_MODE_V2_RATE_1x; 368 if (bootverbose) 369 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 370 371 /* Construct the new mode word and tell the hardware */ 372 command = 0; 373 command = AGP_MODE_SET_RQ(0, rq); 374 command = AGP_MODE_SET_SBA(command, sba); 375 command = AGP_MODE_SET_FW(command, fw); 376 command = AGP_MODE_SET_RATE(command, rate); 377 command = AGP_MODE_SET_AGP(command, 1); 378 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 379 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 380 381 return 0; 382 } 383 384 int 385 agp_generic_enable(device_t dev, u_int32_t mode) 386 { 387 device_t mdev = agp_find_display(); 388 u_int32_t tstatus, mstatus; 389 390 if (!mdev) { 391 AGP_DPF("can't find display\n"); 392 return ENXIO; 393 } 394 395 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 396 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 397 398 /* 399 * Check display and bridge for AGP v3 support. AGP v3 allows 400 * more variety in topology than v2, e.g. multiple AGP devices 401 * attached to one bridge, or multiple AGP bridges in one 402 * system. This doesn't attempt to address those situations, 403 * but should work fine for a classic single AGP slot system 404 * with AGP v3. 405 */ 406 if (AGP_MODE_GET_MODE_3(mode) && 407 AGP_MODE_GET_MODE_3(tstatus) && 408 AGP_MODE_GET_MODE_3(mstatus)) 409 return (agp_v3_enable(dev, mdev, mode)); 410 else 411 return (agp_v2_enable(dev, mdev, mode)); 412 } 413 414 struct agp_memory * 415 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 416 { 417 struct agp_softc *sc = device_get_softc(dev); 418 struct agp_memory *mem; 419 420 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 421 return 0; 422 423 if (sc->as_allocated + size > sc->as_maxmem) 424 return 0; 425 426 if (type != 0) { 427 printf("agp_generic_alloc_memory: unsupported type %d\n", 428 type); 429 return 0; 430 } 431 432 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 433 mem->am_id = sc->as_nextid++; 434 mem->am_size = size; 435 mem->am_type = 0; 436 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 437 mem->am_physical = 0; 438 mem->am_offset = 0; 439 mem->am_is_bound = 0; 440 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 441 sc->as_allocated += size; 442 443 return mem; 444 } 445 446 int 447 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 448 { 449 struct agp_softc *sc = device_get_softc(dev); 450 451 if (mem->am_is_bound) 452 return EBUSY; 453 454 sc->as_allocated -= mem->am_size; 455 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 456 vm_object_deallocate(mem->am_obj); 457 free(mem, M_AGP); 458 return 0; 459 } 460 461 int 462 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 463 vm_offset_t offset) 464 { 465 struct agp_softc *sc = device_get_softc(dev); 466 vm_offset_t i, j, k; 467 vm_page_t m; 468 int error; 469 470 /* Do some sanity checks first. */ 471 if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 || 472 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 473 device_printf(dev, "binding memory at bad offset %#x\n", 474 (int)offset); 475 return EINVAL; 476 } 477 478 /* 479 * Allocate the pages early, before acquiring the lock, 480 * because vm_page_grab() used with VM_ALLOC_RETRY may 481 * block and we can't hold a mutex while blocking. 482 */ 483 VM_OBJECT_LOCK(mem->am_obj); 484 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 485 /* 486 * Find a page from the object and wire it 487 * down. This page will be mapped using one or more 488 * entries in the GATT (assuming that PAGE_SIZE >= 489 * AGP_PAGE_SIZE. If this is the first call to bind, 490 * the pages will be allocated and zeroed. 491 */ 492 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 493 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 494 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m)); 495 } 496 VM_OBJECT_UNLOCK(mem->am_obj); 497 498 mtx_lock(&sc->as_lock); 499 500 if (mem->am_is_bound) { 501 device_printf(dev, "memory already bound\n"); 502 error = EINVAL; 503 VM_OBJECT_LOCK(mem->am_obj); 504 goto bad; 505 } 506 507 /* 508 * Bind the individual pages and flush the chipset's 509 * TLB. 510 */ 511 VM_OBJECT_LOCK(mem->am_obj); 512 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 513 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 514 515 /* 516 * Install entries in the GATT, making sure that if 517 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 518 * aligned to PAGE_SIZE, we don't modify too many GATT 519 * entries. 520 */ 521 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 522 j += AGP_PAGE_SIZE) { 523 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 524 AGP_DPF("binding offset %#x to pa %#x\n", 525 offset + i + j, pa); 526 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 527 if (error) { 528 /* 529 * Bail out. Reverse all the mappings 530 * and unwire the pages. 531 */ 532 vm_page_wakeup(m); 533 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 534 AGP_UNBIND_PAGE(dev, offset + k); 535 goto bad; 536 } 537 } 538 vm_page_wakeup(m); 539 } 540 VM_OBJECT_UNLOCK(mem->am_obj); 541 542 /* 543 * Flush the cpu cache since we are providing a new mapping 544 * for these pages. 545 */ 546 agp_flush_cache(); 547 548 /* 549 * Make sure the chipset gets the new mappings. 550 */ 551 AGP_FLUSH_TLB(dev); 552 553 mem->am_offset = offset; 554 mem->am_is_bound = 1; 555 556 mtx_unlock(&sc->as_lock); 557 558 return 0; 559 bad: 560 mtx_unlock(&sc->as_lock); 561 VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED); 562 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 563 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 564 vm_page_lock_queues(); 565 vm_page_unwire(m, 0); 566 vm_page_unlock_queues(); 567 } 568 VM_OBJECT_UNLOCK(mem->am_obj); 569 570 return error; 571 } 572 573 int 574 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 575 { 576 struct agp_softc *sc = device_get_softc(dev); 577 vm_page_t m; 578 int i; 579 580 mtx_lock(&sc->as_lock); 581 582 if (!mem->am_is_bound) { 583 device_printf(dev, "memory is not bound\n"); 584 mtx_unlock(&sc->as_lock); 585 return EINVAL; 586 } 587 588 589 /* 590 * Unbind the individual pages and flush the chipset's 591 * TLB. Unwire the pages so they can be swapped. 592 */ 593 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 594 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 595 VM_OBJECT_LOCK(mem->am_obj); 596 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 597 m = vm_page_lookup(mem->am_obj, atop(i)); 598 vm_page_lock_queues(); 599 vm_page_unwire(m, 0); 600 vm_page_unlock_queues(); 601 } 602 VM_OBJECT_UNLOCK(mem->am_obj); 603 604 agp_flush_cache(); 605 AGP_FLUSH_TLB(dev); 606 607 mem->am_offset = 0; 608 mem->am_is_bound = 0; 609 610 mtx_unlock(&sc->as_lock); 611 612 return 0; 613 } 614 615 /* Helper functions for implementing user/kernel api */ 616 617 static int 618 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 619 { 620 struct agp_softc *sc = device_get_softc(dev); 621 622 if (sc->as_state != AGP_ACQUIRE_FREE) 623 return EBUSY; 624 sc->as_state = state; 625 626 return 0; 627 } 628 629 static int 630 agp_release_helper(device_t dev, enum agp_acquire_state state) 631 { 632 struct agp_softc *sc = device_get_softc(dev); 633 634 if (sc->as_state == AGP_ACQUIRE_FREE) 635 return 0; 636 637 if (sc->as_state != state) 638 return EBUSY; 639 640 sc->as_state = AGP_ACQUIRE_FREE; 641 return 0; 642 } 643 644 static struct agp_memory * 645 agp_find_memory(device_t dev, int id) 646 { 647 struct agp_softc *sc = device_get_softc(dev); 648 struct agp_memory *mem; 649 650 AGP_DPF("searching for memory block %d\n", id); 651 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 652 AGP_DPF("considering memory block %d\n", mem->am_id); 653 if (mem->am_id == id) 654 return mem; 655 } 656 return 0; 657 } 658 659 /* Implementation of the userland ioctl api */ 660 661 static int 662 agp_info_user(device_t dev, agp_info *info) 663 { 664 struct agp_softc *sc = device_get_softc(dev); 665 666 bzero(info, sizeof *info); 667 info->bridge_id = pci_get_devid(dev); 668 info->agp_mode = 669 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 670 info->aper_base = rman_get_start(sc->as_aperture); 671 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 672 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 673 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 674 675 return 0; 676 } 677 678 static int 679 agp_setup_user(device_t dev, agp_setup *setup) 680 { 681 return AGP_ENABLE(dev, setup->agp_mode); 682 } 683 684 static int 685 agp_allocate_user(device_t dev, agp_allocate *alloc) 686 { 687 struct agp_memory *mem; 688 689 mem = AGP_ALLOC_MEMORY(dev, 690 alloc->type, 691 alloc->pg_count << AGP_PAGE_SHIFT); 692 if (mem) { 693 alloc->key = mem->am_id; 694 alloc->physical = mem->am_physical; 695 return 0; 696 } else { 697 return ENOMEM; 698 } 699 } 700 701 static int 702 agp_deallocate_user(device_t dev, int id) 703 { 704 struct agp_memory *mem = agp_find_memory(dev, id);; 705 706 if (mem) { 707 AGP_FREE_MEMORY(dev, mem); 708 return 0; 709 } else { 710 return ENOENT; 711 } 712 } 713 714 static int 715 agp_bind_user(device_t dev, agp_bind *bind) 716 { 717 struct agp_memory *mem = agp_find_memory(dev, bind->key); 718 719 if (!mem) 720 return ENOENT; 721 722 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 723 } 724 725 static int 726 agp_unbind_user(device_t dev, agp_unbind *unbind) 727 { 728 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 729 730 if (!mem) 731 return ENOENT; 732 733 return AGP_UNBIND_MEMORY(dev, mem); 734 } 735 736 static int 737 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 738 { 739 device_t dev = KDEV2DEV(kdev); 740 struct agp_softc *sc = device_get_softc(dev); 741 742 if (!sc->as_isopen) { 743 sc->as_isopen = 1; 744 device_busy(dev); 745 } 746 747 return 0; 748 } 749 750 static int 751 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 752 { 753 device_t dev = KDEV2DEV(kdev); 754 struct agp_softc *sc = device_get_softc(dev); 755 struct agp_memory *mem; 756 757 /* 758 * Clear the GATT and force release on last close 759 */ 760 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 761 if (mem->am_is_bound) 762 AGP_UNBIND_MEMORY(dev, mem); 763 AGP_FREE_MEMORY(dev, mem); 764 } 765 if (sc->as_state == AGP_ACQUIRE_USER) 766 agp_release_helper(dev, AGP_ACQUIRE_USER); 767 sc->as_isopen = 0; 768 device_unbusy(dev); 769 770 return 0; 771 } 772 773 static int 774 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 775 { 776 device_t dev = KDEV2DEV(kdev); 777 778 switch (cmd) { 779 case AGPIOC_INFO: 780 return agp_info_user(dev, (agp_info *) data); 781 782 case AGPIOC_ACQUIRE: 783 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 784 785 case AGPIOC_RELEASE: 786 return agp_release_helper(dev, AGP_ACQUIRE_USER); 787 788 case AGPIOC_SETUP: 789 return agp_setup_user(dev, (agp_setup *)data); 790 791 case AGPIOC_ALLOCATE: 792 return agp_allocate_user(dev, (agp_allocate *)data); 793 794 case AGPIOC_DEALLOCATE: 795 return agp_deallocate_user(dev, *(int *) data); 796 797 case AGPIOC_BIND: 798 return agp_bind_user(dev, (agp_bind *)data); 799 800 case AGPIOC_UNBIND: 801 return agp_unbind_user(dev, (agp_unbind *)data); 802 803 } 804 805 return EINVAL; 806 } 807 808 static int 809 agp_mmap(struct cdev *kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot) 810 { 811 device_t dev = KDEV2DEV(kdev); 812 struct agp_softc *sc = device_get_softc(dev); 813 814 if (offset > AGP_GET_APERTURE(dev)) 815 return -1; 816 *paddr = rman_get_start(sc->as_aperture) + offset; 817 return 0; 818 } 819 820 /* Implementation of the kernel api */ 821 822 device_t 823 agp_find_device() 824 { 825 device_t *children, child; 826 int i, count; 827 828 if (!agp_devclass) 829 return NULL; 830 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 831 return NULL; 832 child = NULL; 833 for (i = 0; i < count; i++) { 834 if (device_is_attached(children[i])) { 835 child = children[i]; 836 break; 837 } 838 } 839 free(children, M_TEMP); 840 return child; 841 } 842 843 enum agp_acquire_state 844 agp_state(device_t dev) 845 { 846 struct agp_softc *sc = device_get_softc(dev); 847 return sc->as_state; 848 } 849 850 void 851 agp_get_info(device_t dev, struct agp_info *info) 852 { 853 struct agp_softc *sc = device_get_softc(dev); 854 855 info->ai_mode = 856 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 857 info->ai_aperture_base = rman_get_start(sc->as_aperture); 858 info->ai_aperture_size = rman_get_size(sc->as_aperture); 859 info->ai_memory_allowed = sc->as_maxmem; 860 info->ai_memory_used = sc->as_allocated; 861 } 862 863 int 864 agp_acquire(device_t dev) 865 { 866 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 867 } 868 869 int 870 agp_release(device_t dev) 871 { 872 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 873 } 874 875 int 876 agp_enable(device_t dev, u_int32_t mode) 877 { 878 return AGP_ENABLE(dev, mode); 879 } 880 881 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 882 { 883 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 884 } 885 886 void agp_free_memory(device_t dev, void *handle) 887 { 888 struct agp_memory *mem = (struct agp_memory *) handle; 889 AGP_FREE_MEMORY(dev, mem); 890 } 891 892 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 893 { 894 struct agp_memory *mem = (struct agp_memory *) handle; 895 return AGP_BIND_MEMORY(dev, mem, offset); 896 } 897 898 int agp_unbind_memory(device_t dev, void *handle) 899 { 900 struct agp_memory *mem = (struct agp_memory *) handle; 901 return AGP_UNBIND_MEMORY(dev, mem); 902 } 903 904 void agp_memory_info(device_t dev, void *handle, struct 905 agp_memory_info *mi) 906 { 907 struct agp_memory *mem = (struct agp_memory *) handle; 908 909 mi->ami_size = mem->am_size; 910 mi->ami_physical = mem->am_physical; 911 mi->ami_offset = mem->am_offset; 912 mi->ami_is_bound = mem->am_is_bound; 913 } 914