1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/agpio.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 45 #include <dev/pci/pcivar.h> 46 #include <dev/pci/pcireg.h> 47 #include <pci/agppriv.h> 48 #include <pci/agpvar.h> 49 #include <pci/agpreg.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_pageout.h> 55 #include <vm/pmap.h> 56 57 #include <machine/md_var.h> 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 MODULE_VERSION(agp, 1); 63 64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 65 66 /* agp_drv.c */ 67 static d_open_t agp_open; 68 static d_close_t agp_close; 69 static d_ioctl_t agp_ioctl; 70 static d_mmap_t agp_mmap; 71 72 static struct cdevsw agp_cdevsw = { 73 .d_version = D_VERSION, 74 .d_flags = D_NEEDGIANT, 75 .d_open = agp_open, 76 .d_close = agp_close, 77 .d_ioctl = agp_ioctl, 78 .d_mmap = agp_mmap, 79 .d_name = "agp", 80 }; 81 82 static devclass_t agp_devclass; 83 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev)) 84 85 /* Helper functions for implementing chipset mini drivers. */ 86 87 void 88 agp_flush_cache() 89 { 90 #if defined(__i386__) || defined(__amd64__) 91 wbinvd(); 92 #endif 93 } 94 95 u_int8_t 96 agp_find_caps(device_t dev) 97 { 98 int capreg; 99 100 101 if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0) 102 capreg = 0; 103 return (capreg); 104 } 105 106 /* 107 * Find an AGP display device (if any). 108 */ 109 static device_t 110 agp_find_display(void) 111 { 112 devclass_t pci = devclass_find("pci"); 113 device_t bus, dev = 0; 114 device_t *kids; 115 int busnum, numkids, i; 116 117 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 118 bus = devclass_get_device(pci, busnum); 119 if (!bus) 120 continue; 121 device_get_children(bus, &kids, &numkids); 122 for (i = 0; i < numkids; i++) { 123 dev = kids[i]; 124 if (pci_get_class(dev) == PCIC_DISPLAY 125 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 126 if (agp_find_caps(dev)) { 127 free(kids, M_TEMP); 128 return dev; 129 } 130 131 } 132 free(kids, M_TEMP); 133 } 134 135 return 0; 136 } 137 138 struct agp_gatt * 139 agp_alloc_gatt(device_t dev) 140 { 141 u_int32_t apsize = AGP_GET_APERTURE(dev); 142 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 143 struct agp_gatt *gatt; 144 145 if (bootverbose) 146 device_printf(dev, 147 "allocating GATT for aperture of size %dM\n", 148 apsize / (1024*1024)); 149 150 if (entries == 0) { 151 device_printf(dev, "bad aperture size\n"); 152 return NULL; 153 } 154 155 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 156 if (!gatt) 157 return 0; 158 159 gatt->ag_entries = entries; 160 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 161 0, ~0, PAGE_SIZE, 0); 162 if (!gatt->ag_virtual) { 163 if (bootverbose) 164 device_printf(dev, "contiguous allocation failed\n"); 165 free(gatt, M_AGP); 166 return 0; 167 } 168 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 169 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 170 agp_flush_cache(); 171 172 return gatt; 173 } 174 175 void 176 agp_free_gatt(struct agp_gatt *gatt) 177 { 178 contigfree(gatt->ag_virtual, 179 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 180 free(gatt, M_AGP); 181 } 182 183 static u_int agp_max[][2] = { 184 {0, 0}, 185 {32, 4}, 186 {64, 28}, 187 {128, 96}, 188 {256, 204}, 189 {512, 440}, 190 {1024, 942}, 191 {2048, 1920}, 192 {4096, 3932} 193 }; 194 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 195 196 /** 197 * Sets the PCI resource which represents the AGP aperture. 198 * 199 * If not called, the default AGP aperture resource of AGP_APBASE will 200 * be used. Must be called before agp_generic_attach(). 201 */ 202 void 203 agp_set_aperture_resource(device_t dev, int rid) 204 { 205 struct agp_softc *sc = device_get_softc(dev); 206 207 sc->as_aperture_rid = rid; 208 } 209 210 int 211 agp_generic_attach(device_t dev) 212 { 213 struct agp_softc *sc = device_get_softc(dev); 214 int i; 215 u_int memsize; 216 217 /* 218 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE 219 * because the kernel doesn't need to map it. 220 */ 221 if (sc->as_aperture_rid == 0) 222 sc->as_aperture_rid = AGP_APBASE; 223 224 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 225 &sc->as_aperture_rid, RF_SHAREABLE); 226 if (!sc->as_aperture) 227 return ENOMEM; 228 229 /* 230 * Work out an upper bound for agp memory allocation. This 231 * uses a heurisitc table from the Linux driver. 232 */ 233 memsize = ptoa(Maxmem) >> 20; 234 for (i = 0; i < agp_max_size; i++) { 235 if (memsize <= agp_max[i][0]) 236 break; 237 } 238 if (i == agp_max_size) i = agp_max_size - 1; 239 sc->as_maxmem = agp_max[i][1] << 20U; 240 241 /* 242 * The lock is used to prevent re-entry to 243 * agp_generic_bind_memory() since that function can sleep. 244 */ 245 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 246 247 /* 248 * Initialise stuff for the userland device. 249 */ 250 agp_devclass = devclass_find("agp"); 251 TAILQ_INIT(&sc->as_memory); 252 sc->as_nextid = 1; 253 254 sc->as_devnode = make_dev(&agp_cdevsw, 255 device_get_unit(dev), 256 UID_ROOT, 257 GID_WHEEL, 258 0600, 259 "agpgart"); 260 261 return 0; 262 } 263 264 int 265 agp_generic_detach(device_t dev) 266 { 267 struct agp_softc *sc = device_get_softc(dev); 268 269 destroy_dev(sc->as_devnode); 270 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, 271 sc->as_aperture); 272 mtx_destroy(&sc->as_lock); 273 agp_flush_cache(); 274 return 0; 275 } 276 277 /** 278 * Default AGP aperture size detection which simply returns the size of 279 * the aperture's PCI resource. 280 */ 281 int 282 agp_generic_get_aperture(device_t dev) 283 { 284 struct agp_softc *sc = device_get_softc(dev); 285 286 return rman_get_size(sc->as_aperture); 287 } 288 289 /** 290 * Default AGP aperture size setting function, which simply doesn't allow 291 * changes to resource size. 292 */ 293 int 294 agp_generic_set_aperture(device_t dev, u_int32_t aperture) 295 { 296 u_int32_t current_aperture; 297 298 current_aperture = AGP_GET_APERTURE(dev); 299 if (current_aperture != aperture) 300 return EINVAL; 301 else 302 return 0; 303 } 304 305 /* 306 * This does the enable logic for v3, with the same topology 307 * restrictions as in place for v2 -- one bus, one device on the bus. 308 */ 309 static int 310 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 311 { 312 u_int32_t tstatus, mstatus; 313 u_int32_t command; 314 int rq, sba, fw, rate, arqsz, cal; 315 316 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 317 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 318 319 /* Set RQ to the min of mode, tstatus and mstatus */ 320 rq = AGP_MODE_GET_RQ(mode); 321 if (AGP_MODE_GET_RQ(tstatus) < rq) 322 rq = AGP_MODE_GET_RQ(tstatus); 323 if (AGP_MODE_GET_RQ(mstatus) < rq) 324 rq = AGP_MODE_GET_RQ(mstatus); 325 326 /* 327 * ARQSZ - Set the value to the maximum one. 328 * Don't allow the mode register to override values. 329 */ 330 arqsz = AGP_MODE_GET_ARQSZ(mode); 331 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 332 rq = AGP_MODE_GET_ARQSZ(tstatus); 333 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 334 rq = AGP_MODE_GET_ARQSZ(mstatus); 335 336 /* Calibration cycle - don't allow override by mode register */ 337 cal = AGP_MODE_GET_CAL(tstatus); 338 if (AGP_MODE_GET_CAL(mstatus) < cal) 339 cal = AGP_MODE_GET_CAL(mstatus); 340 341 /* SBA must be supported for AGP v3. */ 342 sba = 1; 343 344 /* Set FW if all three support it. */ 345 fw = (AGP_MODE_GET_FW(tstatus) 346 & AGP_MODE_GET_FW(mstatus) 347 & AGP_MODE_GET_FW(mode)); 348 349 /* Figure out the max rate */ 350 rate = (AGP_MODE_GET_RATE(tstatus) 351 & AGP_MODE_GET_RATE(mstatus) 352 & AGP_MODE_GET_RATE(mode)); 353 if (rate & AGP_MODE_V3_RATE_8x) 354 rate = AGP_MODE_V3_RATE_8x; 355 else 356 rate = AGP_MODE_V3_RATE_4x; 357 if (bootverbose) 358 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 359 360 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 361 362 /* Construct the new mode word and tell the hardware */ 363 command = 0; 364 command = AGP_MODE_SET_RQ(0, rq); 365 command = AGP_MODE_SET_ARQSZ(command, arqsz); 366 command = AGP_MODE_SET_CAL(command, cal); 367 command = AGP_MODE_SET_SBA(command, sba); 368 command = AGP_MODE_SET_FW(command, fw); 369 command = AGP_MODE_SET_RATE(command, rate); 370 command = AGP_MODE_SET_MODE_3(command, 1); 371 command = AGP_MODE_SET_AGP(command, 1); 372 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 373 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 374 375 return 0; 376 } 377 378 static int 379 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 380 { 381 u_int32_t tstatus, mstatus; 382 u_int32_t command; 383 int rq, sba, fw, rate; 384 385 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 386 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 387 388 /* Set RQ to the min of mode, tstatus and mstatus */ 389 rq = AGP_MODE_GET_RQ(mode); 390 if (AGP_MODE_GET_RQ(tstatus) < rq) 391 rq = AGP_MODE_GET_RQ(tstatus); 392 if (AGP_MODE_GET_RQ(mstatus) < rq) 393 rq = AGP_MODE_GET_RQ(mstatus); 394 395 /* Set SBA if all three can deal with SBA */ 396 sba = (AGP_MODE_GET_SBA(tstatus) 397 & AGP_MODE_GET_SBA(mstatus) 398 & AGP_MODE_GET_SBA(mode)); 399 400 /* Similar for FW */ 401 fw = (AGP_MODE_GET_FW(tstatus) 402 & AGP_MODE_GET_FW(mstatus) 403 & AGP_MODE_GET_FW(mode)); 404 405 /* Figure out the max rate */ 406 rate = (AGP_MODE_GET_RATE(tstatus) 407 & AGP_MODE_GET_RATE(mstatus) 408 & AGP_MODE_GET_RATE(mode)); 409 if (rate & AGP_MODE_V2_RATE_4x) 410 rate = AGP_MODE_V2_RATE_4x; 411 else if (rate & AGP_MODE_V2_RATE_2x) 412 rate = AGP_MODE_V2_RATE_2x; 413 else 414 rate = AGP_MODE_V2_RATE_1x; 415 if (bootverbose) 416 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 417 418 /* Construct the new mode word and tell the hardware */ 419 command = 0; 420 command = AGP_MODE_SET_RQ(0, rq); 421 command = AGP_MODE_SET_SBA(command, sba); 422 command = AGP_MODE_SET_FW(command, fw); 423 command = AGP_MODE_SET_RATE(command, rate); 424 command = AGP_MODE_SET_AGP(command, 1); 425 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 426 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 427 428 return 0; 429 } 430 431 int 432 agp_generic_enable(device_t dev, u_int32_t mode) 433 { 434 device_t mdev = agp_find_display(); 435 u_int32_t tstatus, mstatus; 436 437 if (!mdev) { 438 AGP_DPF("can't find display\n"); 439 return ENXIO; 440 } 441 442 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 443 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 444 445 /* 446 * Check display and bridge for AGP v3 support. AGP v3 allows 447 * more variety in topology than v2, e.g. multiple AGP devices 448 * attached to one bridge, or multiple AGP bridges in one 449 * system. This doesn't attempt to address those situations, 450 * but should work fine for a classic single AGP slot system 451 * with AGP v3. 452 */ 453 if (AGP_MODE_GET_MODE_3(mode) && 454 AGP_MODE_GET_MODE_3(tstatus) && 455 AGP_MODE_GET_MODE_3(mstatus)) 456 return (agp_v3_enable(dev, mdev, mode)); 457 else 458 return (agp_v2_enable(dev, mdev, mode)); 459 } 460 461 struct agp_memory * 462 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 463 { 464 struct agp_softc *sc = device_get_softc(dev); 465 struct agp_memory *mem; 466 467 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 468 return 0; 469 470 if (sc->as_allocated + size > sc->as_maxmem) 471 return 0; 472 473 if (type != 0) { 474 printf("agp_generic_alloc_memory: unsupported type %d\n", 475 type); 476 return 0; 477 } 478 479 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 480 mem->am_id = sc->as_nextid++; 481 mem->am_size = size; 482 mem->am_type = 0; 483 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 484 mem->am_physical = 0; 485 mem->am_offset = 0; 486 mem->am_is_bound = 0; 487 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 488 sc->as_allocated += size; 489 490 return mem; 491 } 492 493 int 494 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 495 { 496 struct agp_softc *sc = device_get_softc(dev); 497 498 if (mem->am_is_bound) 499 return EBUSY; 500 501 sc->as_allocated -= mem->am_size; 502 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 503 vm_object_deallocate(mem->am_obj); 504 free(mem, M_AGP); 505 return 0; 506 } 507 508 int 509 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 510 vm_offset_t offset) 511 { 512 struct agp_softc *sc = device_get_softc(dev); 513 vm_offset_t i, j, k; 514 vm_page_t m; 515 int error; 516 517 /* Do some sanity checks first. */ 518 if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 || 519 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 520 device_printf(dev, "binding memory at bad offset %#x\n", 521 (int)offset); 522 return EINVAL; 523 } 524 525 /* 526 * Allocate the pages early, before acquiring the lock, 527 * because vm_page_grab() used with VM_ALLOC_RETRY may 528 * block and we can't hold a mutex while blocking. 529 */ 530 VM_OBJECT_LOCK(mem->am_obj); 531 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 532 /* 533 * Find a page from the object and wire it 534 * down. This page will be mapped using one or more 535 * entries in the GATT (assuming that PAGE_SIZE >= 536 * AGP_PAGE_SIZE. If this is the first call to bind, 537 * the pages will be allocated and zeroed. 538 */ 539 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 540 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 541 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m)); 542 } 543 VM_OBJECT_UNLOCK(mem->am_obj); 544 545 mtx_lock(&sc->as_lock); 546 547 if (mem->am_is_bound) { 548 device_printf(dev, "memory already bound\n"); 549 error = EINVAL; 550 VM_OBJECT_LOCK(mem->am_obj); 551 goto bad; 552 } 553 554 /* 555 * Bind the individual pages and flush the chipset's 556 * TLB. 557 */ 558 VM_OBJECT_LOCK(mem->am_obj); 559 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 560 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 561 562 /* 563 * Install entries in the GATT, making sure that if 564 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 565 * aligned to PAGE_SIZE, we don't modify too many GATT 566 * entries. 567 */ 568 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 569 j += AGP_PAGE_SIZE) { 570 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 571 AGP_DPF("binding offset %#x to pa %#x\n", 572 offset + i + j, pa); 573 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 574 if (error) { 575 /* 576 * Bail out. Reverse all the mappings 577 * and unwire the pages. 578 */ 579 vm_page_wakeup(m); 580 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 581 AGP_UNBIND_PAGE(dev, offset + k); 582 goto bad; 583 } 584 } 585 vm_page_wakeup(m); 586 } 587 VM_OBJECT_UNLOCK(mem->am_obj); 588 589 /* 590 * Flush the cpu cache since we are providing a new mapping 591 * for these pages. 592 */ 593 agp_flush_cache(); 594 595 /* 596 * Make sure the chipset gets the new mappings. 597 */ 598 AGP_FLUSH_TLB(dev); 599 600 mem->am_offset = offset; 601 mem->am_is_bound = 1; 602 603 mtx_unlock(&sc->as_lock); 604 605 return 0; 606 bad: 607 mtx_unlock(&sc->as_lock); 608 VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED); 609 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 610 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 611 vm_page_lock_queues(); 612 vm_page_unwire(m, 0); 613 vm_page_unlock_queues(); 614 } 615 VM_OBJECT_UNLOCK(mem->am_obj); 616 617 return error; 618 } 619 620 int 621 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 622 { 623 struct agp_softc *sc = device_get_softc(dev); 624 vm_page_t m; 625 int i; 626 627 mtx_lock(&sc->as_lock); 628 629 if (!mem->am_is_bound) { 630 device_printf(dev, "memory is not bound\n"); 631 mtx_unlock(&sc->as_lock); 632 return EINVAL; 633 } 634 635 636 /* 637 * Unbind the individual pages and flush the chipset's 638 * TLB. Unwire the pages so they can be swapped. 639 */ 640 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 641 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 642 VM_OBJECT_LOCK(mem->am_obj); 643 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 644 m = vm_page_lookup(mem->am_obj, atop(i)); 645 vm_page_lock_queues(); 646 vm_page_unwire(m, 0); 647 vm_page_unlock_queues(); 648 } 649 VM_OBJECT_UNLOCK(mem->am_obj); 650 651 agp_flush_cache(); 652 AGP_FLUSH_TLB(dev); 653 654 mem->am_offset = 0; 655 mem->am_is_bound = 0; 656 657 mtx_unlock(&sc->as_lock); 658 659 return 0; 660 } 661 662 /* Helper functions for implementing user/kernel api */ 663 664 static int 665 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 666 { 667 struct agp_softc *sc = device_get_softc(dev); 668 669 if (sc->as_state != AGP_ACQUIRE_FREE) 670 return EBUSY; 671 sc->as_state = state; 672 673 return 0; 674 } 675 676 static int 677 agp_release_helper(device_t dev, enum agp_acquire_state state) 678 { 679 struct agp_softc *sc = device_get_softc(dev); 680 681 if (sc->as_state == AGP_ACQUIRE_FREE) 682 return 0; 683 684 if (sc->as_state != state) 685 return EBUSY; 686 687 sc->as_state = AGP_ACQUIRE_FREE; 688 return 0; 689 } 690 691 static struct agp_memory * 692 agp_find_memory(device_t dev, int id) 693 { 694 struct agp_softc *sc = device_get_softc(dev); 695 struct agp_memory *mem; 696 697 AGP_DPF("searching for memory block %d\n", id); 698 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 699 AGP_DPF("considering memory block %d\n", mem->am_id); 700 if (mem->am_id == id) 701 return mem; 702 } 703 return 0; 704 } 705 706 /* Implementation of the userland ioctl api */ 707 708 static int 709 agp_info_user(device_t dev, agp_info *info) 710 { 711 struct agp_softc *sc = device_get_softc(dev); 712 713 bzero(info, sizeof *info); 714 info->bridge_id = pci_get_devid(dev); 715 info->agp_mode = 716 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 717 info->aper_base = rman_get_start(sc->as_aperture); 718 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 719 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 720 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 721 722 return 0; 723 } 724 725 static int 726 agp_setup_user(device_t dev, agp_setup *setup) 727 { 728 return AGP_ENABLE(dev, setup->agp_mode); 729 } 730 731 static int 732 agp_allocate_user(device_t dev, agp_allocate *alloc) 733 { 734 struct agp_memory *mem; 735 736 mem = AGP_ALLOC_MEMORY(dev, 737 alloc->type, 738 alloc->pg_count << AGP_PAGE_SHIFT); 739 if (mem) { 740 alloc->key = mem->am_id; 741 alloc->physical = mem->am_physical; 742 return 0; 743 } else { 744 return ENOMEM; 745 } 746 } 747 748 static int 749 agp_deallocate_user(device_t dev, int id) 750 { 751 struct agp_memory *mem = agp_find_memory(dev, id);; 752 753 if (mem) { 754 AGP_FREE_MEMORY(dev, mem); 755 return 0; 756 } else { 757 return ENOENT; 758 } 759 } 760 761 static int 762 agp_bind_user(device_t dev, agp_bind *bind) 763 { 764 struct agp_memory *mem = agp_find_memory(dev, bind->key); 765 766 if (!mem) 767 return ENOENT; 768 769 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 770 } 771 772 static int 773 agp_unbind_user(device_t dev, agp_unbind *unbind) 774 { 775 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 776 777 if (!mem) 778 return ENOENT; 779 780 return AGP_UNBIND_MEMORY(dev, mem); 781 } 782 783 static int 784 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 785 { 786 device_t dev = KDEV2DEV(kdev); 787 struct agp_softc *sc = device_get_softc(dev); 788 789 if (!sc->as_isopen) { 790 sc->as_isopen = 1; 791 device_busy(dev); 792 } 793 794 return 0; 795 } 796 797 static int 798 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 799 { 800 device_t dev = KDEV2DEV(kdev); 801 struct agp_softc *sc = device_get_softc(dev); 802 struct agp_memory *mem; 803 804 /* 805 * Clear the GATT and force release on last close 806 */ 807 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 808 if (mem->am_is_bound) 809 AGP_UNBIND_MEMORY(dev, mem); 810 AGP_FREE_MEMORY(dev, mem); 811 } 812 if (sc->as_state == AGP_ACQUIRE_USER) 813 agp_release_helper(dev, AGP_ACQUIRE_USER); 814 sc->as_isopen = 0; 815 device_unbusy(dev); 816 817 return 0; 818 } 819 820 static int 821 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 822 { 823 device_t dev = KDEV2DEV(kdev); 824 825 switch (cmd) { 826 case AGPIOC_INFO: 827 return agp_info_user(dev, (agp_info *) data); 828 829 case AGPIOC_ACQUIRE: 830 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 831 832 case AGPIOC_RELEASE: 833 return agp_release_helper(dev, AGP_ACQUIRE_USER); 834 835 case AGPIOC_SETUP: 836 return agp_setup_user(dev, (agp_setup *)data); 837 838 case AGPIOC_ALLOCATE: 839 return agp_allocate_user(dev, (agp_allocate *)data); 840 841 case AGPIOC_DEALLOCATE: 842 return agp_deallocate_user(dev, *(int *) data); 843 844 case AGPIOC_BIND: 845 return agp_bind_user(dev, (agp_bind *)data); 846 847 case AGPIOC_UNBIND: 848 return agp_unbind_user(dev, (agp_unbind *)data); 849 850 } 851 852 return EINVAL; 853 } 854 855 static int 856 agp_mmap(struct cdev *kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot) 857 { 858 device_t dev = KDEV2DEV(kdev); 859 struct agp_softc *sc = device_get_softc(dev); 860 861 if (offset > AGP_GET_APERTURE(dev)) 862 return -1; 863 *paddr = rman_get_start(sc->as_aperture) + offset; 864 return 0; 865 } 866 867 /* Implementation of the kernel api */ 868 869 device_t 870 agp_find_device() 871 { 872 device_t *children, child; 873 int i, count; 874 875 if (!agp_devclass) 876 return NULL; 877 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 878 return NULL; 879 child = NULL; 880 for (i = 0; i < count; i++) { 881 if (device_is_attached(children[i])) { 882 child = children[i]; 883 break; 884 } 885 } 886 free(children, M_TEMP); 887 return child; 888 } 889 890 enum agp_acquire_state 891 agp_state(device_t dev) 892 { 893 struct agp_softc *sc = device_get_softc(dev); 894 return sc->as_state; 895 } 896 897 void 898 agp_get_info(device_t dev, struct agp_info *info) 899 { 900 struct agp_softc *sc = device_get_softc(dev); 901 902 info->ai_mode = 903 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 904 info->ai_aperture_base = rman_get_start(sc->as_aperture); 905 info->ai_aperture_size = rman_get_size(sc->as_aperture); 906 info->ai_memory_allowed = sc->as_maxmem; 907 info->ai_memory_used = sc->as_allocated; 908 } 909 910 int 911 agp_acquire(device_t dev) 912 { 913 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 914 } 915 916 int 917 agp_release(device_t dev) 918 { 919 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 920 } 921 922 int 923 agp_enable(device_t dev, u_int32_t mode) 924 { 925 return AGP_ENABLE(dev, mode); 926 } 927 928 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 929 { 930 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 931 } 932 933 void agp_free_memory(device_t dev, void *handle) 934 { 935 struct agp_memory *mem = (struct agp_memory *) handle; 936 AGP_FREE_MEMORY(dev, mem); 937 } 938 939 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 940 { 941 struct agp_memory *mem = (struct agp_memory *) handle; 942 return AGP_BIND_MEMORY(dev, mem, offset); 943 } 944 945 int agp_unbind_memory(device_t dev, void *handle) 946 { 947 struct agp_memory *mem = (struct agp_memory *) handle; 948 return AGP_UNBIND_MEMORY(dev, mem); 949 } 950 951 void agp_memory_info(device_t dev, void *handle, struct 952 agp_memory_info *mi) 953 { 954 struct agp_memory *mem = (struct agp_memory *) handle; 955 956 mi->ami_size = mem->am_size; 957 mi->ami_physical = mem->am_physical; 958 mi->ami_offset = mem->am_offset; 959 mi->ami_is_bound = mem->am_is_bound; 960 } 961