1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/agpio.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 45 #include <dev/agp/agppriv.h> 46 #include <dev/agp/agpvar.h> 47 #include <dev/agp/agpreg.h> 48 #include <dev/pci/pcivar.h> 49 #include <dev/pci/pcireg.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_pageout.h> 55 #include <vm/pmap.h> 56 57 #include <machine/md_var.h> 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 MODULE_VERSION(agp, 1); 63 64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 65 66 /* agp_drv.c */ 67 static d_open_t agp_open; 68 static d_close_t agp_close; 69 static d_ioctl_t agp_ioctl; 70 static d_mmap_t agp_mmap; 71 72 static struct cdevsw agp_cdevsw = { 73 .d_version = D_VERSION, 74 .d_flags = D_NEEDGIANT, 75 .d_open = agp_open, 76 .d_close = agp_close, 77 .d_ioctl = agp_ioctl, 78 .d_mmap = agp_mmap, 79 .d_name = "agp", 80 }; 81 82 static devclass_t agp_devclass; 83 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, dev2unit(kdev)) 84 85 /* Helper functions for implementing chipset mini drivers. */ 86 87 void 88 agp_flush_cache() 89 { 90 #if defined(__i386__) || defined(__amd64__) 91 wbinvd(); 92 #endif 93 } 94 95 u_int8_t 96 agp_find_caps(device_t dev) 97 { 98 int capreg; 99 100 101 if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0) 102 capreg = 0; 103 return (capreg); 104 } 105 106 /* 107 * Find an AGP display device (if any). 108 */ 109 static device_t 110 agp_find_display(void) 111 { 112 devclass_t pci = devclass_find("pci"); 113 device_t bus, dev = 0; 114 device_t *kids; 115 int busnum, numkids, i; 116 117 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 118 bus = devclass_get_device(pci, busnum); 119 if (!bus) 120 continue; 121 if (device_get_children(bus, &kids, &numkids) != 0) 122 continue; 123 for (i = 0; i < numkids; i++) { 124 dev = kids[i]; 125 if (pci_get_class(dev) == PCIC_DISPLAY 126 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 127 if (agp_find_caps(dev)) { 128 free(kids, M_TEMP); 129 return dev; 130 } 131 132 } 133 free(kids, M_TEMP); 134 } 135 136 return 0; 137 } 138 139 struct agp_gatt * 140 agp_alloc_gatt(device_t dev) 141 { 142 u_int32_t apsize = AGP_GET_APERTURE(dev); 143 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 144 struct agp_gatt *gatt; 145 146 if (bootverbose) 147 device_printf(dev, 148 "allocating GATT for aperture of size %dM\n", 149 apsize / (1024*1024)); 150 151 if (entries == 0) { 152 device_printf(dev, "bad aperture size\n"); 153 return NULL; 154 } 155 156 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 157 if (!gatt) 158 return 0; 159 160 gatt->ag_entries = entries; 161 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 162 0, ~0, PAGE_SIZE, 0); 163 if (!gatt->ag_virtual) { 164 if (bootverbose) 165 device_printf(dev, "contiguous allocation failed\n"); 166 free(gatt, M_AGP); 167 return 0; 168 } 169 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 170 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 171 agp_flush_cache(); 172 173 return gatt; 174 } 175 176 void 177 agp_free_gatt(struct agp_gatt *gatt) 178 { 179 contigfree(gatt->ag_virtual, 180 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 181 free(gatt, M_AGP); 182 } 183 184 static u_int agp_max[][2] = { 185 {0, 0}, 186 {32, 4}, 187 {64, 28}, 188 {128, 96}, 189 {256, 204}, 190 {512, 440}, 191 {1024, 942}, 192 {2048, 1920}, 193 {4096, 3932} 194 }; 195 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 196 197 /** 198 * Sets the PCI resource which represents the AGP aperture. 199 * 200 * If not called, the default AGP aperture resource of AGP_APBASE will 201 * be used. Must be called before agp_generic_attach(). 202 */ 203 void 204 agp_set_aperture_resource(device_t dev, int rid) 205 { 206 struct agp_softc *sc = device_get_softc(dev); 207 208 sc->as_aperture_rid = rid; 209 } 210 211 int 212 agp_generic_attach(device_t dev) 213 { 214 struct agp_softc *sc = device_get_softc(dev); 215 int i; 216 u_int memsize; 217 218 /* 219 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE 220 * because the kernel doesn't need to map it. 221 */ 222 if (sc->as_aperture_rid == 0) 223 sc->as_aperture_rid = AGP_APBASE; 224 225 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 226 &sc->as_aperture_rid, RF_SHAREABLE); 227 if (!sc->as_aperture) 228 return ENOMEM; 229 230 /* 231 * Work out an upper bound for agp memory allocation. This 232 * uses a heurisitc table from the Linux driver. 233 */ 234 memsize = ptoa(Maxmem) >> 20; 235 for (i = 0; i < agp_max_size; i++) { 236 if (memsize <= agp_max[i][0]) 237 break; 238 } 239 if (i == agp_max_size) i = agp_max_size - 1; 240 sc->as_maxmem = agp_max[i][1] << 20U; 241 242 /* 243 * The lock is used to prevent re-entry to 244 * agp_generic_bind_memory() since that function can sleep. 245 */ 246 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 247 248 /* 249 * Initialise stuff for the userland device. 250 */ 251 agp_devclass = devclass_find("agp"); 252 TAILQ_INIT(&sc->as_memory); 253 sc->as_nextid = 1; 254 255 sc->as_devnode = make_dev(&agp_cdevsw, 256 device_get_unit(dev), 257 UID_ROOT, 258 GID_WHEEL, 259 0600, 260 "agpgart"); 261 262 return 0; 263 } 264 265 void 266 agp_free_cdev(device_t dev) 267 { 268 struct agp_softc *sc = device_get_softc(dev); 269 270 destroy_dev(sc->as_devnode); 271 } 272 273 void 274 agp_free_res(device_t dev) 275 { 276 struct agp_softc *sc = device_get_softc(dev); 277 278 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, 279 sc->as_aperture); 280 mtx_destroy(&sc->as_lock); 281 agp_flush_cache(); 282 } 283 284 int 285 agp_generic_detach(device_t dev) 286 { 287 288 agp_free_cdev(dev); 289 agp_free_res(dev); 290 return 0; 291 } 292 293 /** 294 * Default AGP aperture size detection which simply returns the size of 295 * the aperture's PCI resource. 296 */ 297 int 298 agp_generic_get_aperture(device_t dev) 299 { 300 struct agp_softc *sc = device_get_softc(dev); 301 302 return rman_get_size(sc->as_aperture); 303 } 304 305 /** 306 * Default AGP aperture size setting function, which simply doesn't allow 307 * changes to resource size. 308 */ 309 int 310 agp_generic_set_aperture(device_t dev, u_int32_t aperture) 311 { 312 u_int32_t current_aperture; 313 314 current_aperture = AGP_GET_APERTURE(dev); 315 if (current_aperture != aperture) 316 return EINVAL; 317 else 318 return 0; 319 } 320 321 /* 322 * This does the enable logic for v3, with the same topology 323 * restrictions as in place for v2 -- one bus, one device on the bus. 324 */ 325 static int 326 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 327 { 328 u_int32_t tstatus, mstatus; 329 u_int32_t command; 330 int rq, sba, fw, rate, arqsz, cal; 331 332 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 333 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 334 335 /* Set RQ to the min of mode, tstatus and mstatus */ 336 rq = AGP_MODE_GET_RQ(mode); 337 if (AGP_MODE_GET_RQ(tstatus) < rq) 338 rq = AGP_MODE_GET_RQ(tstatus); 339 if (AGP_MODE_GET_RQ(mstatus) < rq) 340 rq = AGP_MODE_GET_RQ(mstatus); 341 342 /* 343 * ARQSZ - Set the value to the maximum one. 344 * Don't allow the mode register to override values. 345 */ 346 arqsz = AGP_MODE_GET_ARQSZ(mode); 347 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 348 rq = AGP_MODE_GET_ARQSZ(tstatus); 349 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 350 rq = AGP_MODE_GET_ARQSZ(mstatus); 351 352 /* Calibration cycle - don't allow override by mode register */ 353 cal = AGP_MODE_GET_CAL(tstatus); 354 if (AGP_MODE_GET_CAL(mstatus) < cal) 355 cal = AGP_MODE_GET_CAL(mstatus); 356 357 /* SBA must be supported for AGP v3. */ 358 sba = 1; 359 360 /* Set FW if all three support it. */ 361 fw = (AGP_MODE_GET_FW(tstatus) 362 & AGP_MODE_GET_FW(mstatus) 363 & AGP_MODE_GET_FW(mode)); 364 365 /* Figure out the max rate */ 366 rate = (AGP_MODE_GET_RATE(tstatus) 367 & AGP_MODE_GET_RATE(mstatus) 368 & AGP_MODE_GET_RATE(mode)); 369 if (rate & AGP_MODE_V3_RATE_8x) 370 rate = AGP_MODE_V3_RATE_8x; 371 else 372 rate = AGP_MODE_V3_RATE_4x; 373 if (bootverbose) 374 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 375 376 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 377 378 /* Construct the new mode word and tell the hardware */ 379 command = 0; 380 command = AGP_MODE_SET_RQ(0, rq); 381 command = AGP_MODE_SET_ARQSZ(command, arqsz); 382 command = AGP_MODE_SET_CAL(command, cal); 383 command = AGP_MODE_SET_SBA(command, sba); 384 command = AGP_MODE_SET_FW(command, fw); 385 command = AGP_MODE_SET_RATE(command, rate); 386 command = AGP_MODE_SET_MODE_3(command, 1); 387 command = AGP_MODE_SET_AGP(command, 1); 388 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 389 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 390 391 return 0; 392 } 393 394 static int 395 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 396 { 397 u_int32_t tstatus, mstatus; 398 u_int32_t command; 399 int rq, sba, fw, rate; 400 401 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 402 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 403 404 /* Set RQ to the min of mode, tstatus and mstatus */ 405 rq = AGP_MODE_GET_RQ(mode); 406 if (AGP_MODE_GET_RQ(tstatus) < rq) 407 rq = AGP_MODE_GET_RQ(tstatus); 408 if (AGP_MODE_GET_RQ(mstatus) < rq) 409 rq = AGP_MODE_GET_RQ(mstatus); 410 411 /* Set SBA if all three can deal with SBA */ 412 sba = (AGP_MODE_GET_SBA(tstatus) 413 & AGP_MODE_GET_SBA(mstatus) 414 & AGP_MODE_GET_SBA(mode)); 415 416 /* Similar for FW */ 417 fw = (AGP_MODE_GET_FW(tstatus) 418 & AGP_MODE_GET_FW(mstatus) 419 & AGP_MODE_GET_FW(mode)); 420 421 /* Figure out the max rate */ 422 rate = (AGP_MODE_GET_RATE(tstatus) 423 & AGP_MODE_GET_RATE(mstatus) 424 & AGP_MODE_GET_RATE(mode)); 425 if (rate & AGP_MODE_V2_RATE_4x) 426 rate = AGP_MODE_V2_RATE_4x; 427 else if (rate & AGP_MODE_V2_RATE_2x) 428 rate = AGP_MODE_V2_RATE_2x; 429 else 430 rate = AGP_MODE_V2_RATE_1x; 431 if (bootverbose) 432 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 433 434 /* Construct the new mode word and tell the hardware */ 435 command = 0; 436 command = AGP_MODE_SET_RQ(0, rq); 437 command = AGP_MODE_SET_SBA(command, sba); 438 command = AGP_MODE_SET_FW(command, fw); 439 command = AGP_MODE_SET_RATE(command, rate); 440 command = AGP_MODE_SET_AGP(command, 1); 441 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 442 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 443 444 return 0; 445 } 446 447 int 448 agp_generic_enable(device_t dev, u_int32_t mode) 449 { 450 device_t mdev = agp_find_display(); 451 u_int32_t tstatus, mstatus; 452 453 if (!mdev) { 454 AGP_DPF("can't find display\n"); 455 return ENXIO; 456 } 457 458 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 459 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 460 461 /* 462 * Check display and bridge for AGP v3 support. AGP v3 allows 463 * more variety in topology than v2, e.g. multiple AGP devices 464 * attached to one bridge, or multiple AGP bridges in one 465 * system. This doesn't attempt to address those situations, 466 * but should work fine for a classic single AGP slot system 467 * with AGP v3. 468 */ 469 if (AGP_MODE_GET_MODE_3(mode) && 470 AGP_MODE_GET_MODE_3(tstatus) && 471 AGP_MODE_GET_MODE_3(mstatus)) 472 return (agp_v3_enable(dev, mdev, mode)); 473 else 474 return (agp_v2_enable(dev, mdev, mode)); 475 } 476 477 struct agp_memory * 478 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 479 { 480 struct agp_softc *sc = device_get_softc(dev); 481 struct agp_memory *mem; 482 483 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 484 return 0; 485 486 if (sc->as_allocated + size > sc->as_maxmem) 487 return 0; 488 489 if (type != 0) { 490 printf("agp_generic_alloc_memory: unsupported type %d\n", 491 type); 492 return 0; 493 } 494 495 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 496 mem->am_id = sc->as_nextid++; 497 mem->am_size = size; 498 mem->am_type = 0; 499 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 500 mem->am_physical = 0; 501 mem->am_offset = 0; 502 mem->am_is_bound = 0; 503 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 504 sc->as_allocated += size; 505 506 return mem; 507 } 508 509 int 510 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 511 { 512 struct agp_softc *sc = device_get_softc(dev); 513 514 if (mem->am_is_bound) 515 return EBUSY; 516 517 sc->as_allocated -= mem->am_size; 518 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 519 vm_object_deallocate(mem->am_obj); 520 free(mem, M_AGP); 521 return 0; 522 } 523 524 int 525 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 526 vm_offset_t offset) 527 { 528 struct agp_softc *sc = device_get_softc(dev); 529 vm_offset_t i, j, k; 530 vm_page_t m; 531 int error; 532 533 /* Do some sanity checks first. */ 534 if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 || 535 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 536 device_printf(dev, "binding memory at bad offset %#x\n", 537 (int)offset); 538 return EINVAL; 539 } 540 541 /* 542 * Allocate the pages early, before acquiring the lock, 543 * because vm_page_grab() used with VM_ALLOC_RETRY may 544 * block and we can't hold a mutex while blocking. 545 */ 546 VM_OBJECT_LOCK(mem->am_obj); 547 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 548 /* 549 * Find a page from the object and wire it 550 * down. This page will be mapped using one or more 551 * entries in the GATT (assuming that PAGE_SIZE >= 552 * AGP_PAGE_SIZE. If this is the first call to bind, 553 * the pages will be allocated and zeroed. 554 */ 555 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 556 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 557 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m)); 558 } 559 VM_OBJECT_UNLOCK(mem->am_obj); 560 561 mtx_lock(&sc->as_lock); 562 563 if (mem->am_is_bound) { 564 device_printf(dev, "memory already bound\n"); 565 error = EINVAL; 566 VM_OBJECT_LOCK(mem->am_obj); 567 goto bad; 568 } 569 570 /* 571 * Bind the individual pages and flush the chipset's 572 * TLB. 573 */ 574 VM_OBJECT_LOCK(mem->am_obj); 575 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 576 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 577 578 /* 579 * Install entries in the GATT, making sure that if 580 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 581 * aligned to PAGE_SIZE, we don't modify too many GATT 582 * entries. 583 */ 584 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 585 j += AGP_PAGE_SIZE) { 586 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 587 AGP_DPF("binding offset %#x to pa %#x\n", 588 offset + i + j, pa); 589 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 590 if (error) { 591 /* 592 * Bail out. Reverse all the mappings 593 * and unwire the pages. 594 */ 595 vm_page_wakeup(m); 596 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 597 AGP_UNBIND_PAGE(dev, offset + k); 598 goto bad; 599 } 600 } 601 vm_page_wakeup(m); 602 } 603 VM_OBJECT_UNLOCK(mem->am_obj); 604 605 /* 606 * Flush the cpu cache since we are providing a new mapping 607 * for these pages. 608 */ 609 agp_flush_cache(); 610 611 /* 612 * Make sure the chipset gets the new mappings. 613 */ 614 AGP_FLUSH_TLB(dev); 615 616 mem->am_offset = offset; 617 mem->am_is_bound = 1; 618 619 mtx_unlock(&sc->as_lock); 620 621 return 0; 622 bad: 623 mtx_unlock(&sc->as_lock); 624 VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED); 625 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 626 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 627 vm_page_lock_queues(); 628 vm_page_unwire(m, 0); 629 vm_page_unlock_queues(); 630 } 631 VM_OBJECT_UNLOCK(mem->am_obj); 632 633 return error; 634 } 635 636 int 637 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 638 { 639 struct agp_softc *sc = device_get_softc(dev); 640 vm_page_t m; 641 int i; 642 643 mtx_lock(&sc->as_lock); 644 645 if (!mem->am_is_bound) { 646 device_printf(dev, "memory is not bound\n"); 647 mtx_unlock(&sc->as_lock); 648 return EINVAL; 649 } 650 651 652 /* 653 * Unbind the individual pages and flush the chipset's 654 * TLB. Unwire the pages so they can be swapped. 655 */ 656 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 657 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 658 VM_OBJECT_LOCK(mem->am_obj); 659 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 660 m = vm_page_lookup(mem->am_obj, atop(i)); 661 vm_page_lock_queues(); 662 vm_page_unwire(m, 0); 663 vm_page_unlock_queues(); 664 } 665 VM_OBJECT_UNLOCK(mem->am_obj); 666 667 agp_flush_cache(); 668 AGP_FLUSH_TLB(dev); 669 670 mem->am_offset = 0; 671 mem->am_is_bound = 0; 672 673 mtx_unlock(&sc->as_lock); 674 675 return 0; 676 } 677 678 /* Helper functions for implementing user/kernel api */ 679 680 static int 681 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 682 { 683 struct agp_softc *sc = device_get_softc(dev); 684 685 if (sc->as_state != AGP_ACQUIRE_FREE) 686 return EBUSY; 687 sc->as_state = state; 688 689 return 0; 690 } 691 692 static int 693 agp_release_helper(device_t dev, enum agp_acquire_state state) 694 { 695 struct agp_softc *sc = device_get_softc(dev); 696 697 if (sc->as_state == AGP_ACQUIRE_FREE) 698 return 0; 699 700 if (sc->as_state != state) 701 return EBUSY; 702 703 sc->as_state = AGP_ACQUIRE_FREE; 704 return 0; 705 } 706 707 static struct agp_memory * 708 agp_find_memory(device_t dev, int id) 709 { 710 struct agp_softc *sc = device_get_softc(dev); 711 struct agp_memory *mem; 712 713 AGP_DPF("searching for memory block %d\n", id); 714 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 715 AGP_DPF("considering memory block %d\n", mem->am_id); 716 if (mem->am_id == id) 717 return mem; 718 } 719 return 0; 720 } 721 722 /* Implementation of the userland ioctl api */ 723 724 static int 725 agp_info_user(device_t dev, agp_info *info) 726 { 727 struct agp_softc *sc = device_get_softc(dev); 728 729 bzero(info, sizeof *info); 730 info->bridge_id = pci_get_devid(dev); 731 info->agp_mode = 732 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 733 info->aper_base = rman_get_start(sc->as_aperture); 734 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 735 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 736 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 737 738 return 0; 739 } 740 741 static int 742 agp_setup_user(device_t dev, agp_setup *setup) 743 { 744 return AGP_ENABLE(dev, setup->agp_mode); 745 } 746 747 static int 748 agp_allocate_user(device_t dev, agp_allocate *alloc) 749 { 750 struct agp_memory *mem; 751 752 mem = AGP_ALLOC_MEMORY(dev, 753 alloc->type, 754 alloc->pg_count << AGP_PAGE_SHIFT); 755 if (mem) { 756 alloc->key = mem->am_id; 757 alloc->physical = mem->am_physical; 758 return 0; 759 } else { 760 return ENOMEM; 761 } 762 } 763 764 static int 765 agp_deallocate_user(device_t dev, int id) 766 { 767 struct agp_memory *mem = agp_find_memory(dev, id);; 768 769 if (mem) { 770 AGP_FREE_MEMORY(dev, mem); 771 return 0; 772 } else { 773 return ENOENT; 774 } 775 } 776 777 static int 778 agp_bind_user(device_t dev, agp_bind *bind) 779 { 780 struct agp_memory *mem = agp_find_memory(dev, bind->key); 781 782 if (!mem) 783 return ENOENT; 784 785 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 786 } 787 788 static int 789 agp_unbind_user(device_t dev, agp_unbind *unbind) 790 { 791 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 792 793 if (!mem) 794 return ENOENT; 795 796 return AGP_UNBIND_MEMORY(dev, mem); 797 } 798 799 static int 800 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 801 { 802 device_t dev = KDEV2DEV(kdev); 803 struct agp_softc *sc = device_get_softc(dev); 804 805 if (!sc->as_isopen) { 806 sc->as_isopen = 1; 807 device_busy(dev); 808 } 809 810 return 0; 811 } 812 813 static int 814 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 815 { 816 device_t dev = KDEV2DEV(kdev); 817 struct agp_softc *sc = device_get_softc(dev); 818 struct agp_memory *mem; 819 820 /* 821 * Clear the GATT and force release on last close 822 */ 823 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 824 if (mem->am_is_bound) 825 AGP_UNBIND_MEMORY(dev, mem); 826 AGP_FREE_MEMORY(dev, mem); 827 } 828 if (sc->as_state == AGP_ACQUIRE_USER) 829 agp_release_helper(dev, AGP_ACQUIRE_USER); 830 sc->as_isopen = 0; 831 device_unbusy(dev); 832 833 return 0; 834 } 835 836 static int 837 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 838 { 839 device_t dev = KDEV2DEV(kdev); 840 841 switch (cmd) { 842 case AGPIOC_INFO: 843 return agp_info_user(dev, (agp_info *) data); 844 845 case AGPIOC_ACQUIRE: 846 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 847 848 case AGPIOC_RELEASE: 849 return agp_release_helper(dev, AGP_ACQUIRE_USER); 850 851 case AGPIOC_SETUP: 852 return agp_setup_user(dev, (agp_setup *)data); 853 854 case AGPIOC_ALLOCATE: 855 return agp_allocate_user(dev, (agp_allocate *)data); 856 857 case AGPIOC_DEALLOCATE: 858 return agp_deallocate_user(dev, *(int *) data); 859 860 case AGPIOC_BIND: 861 return agp_bind_user(dev, (agp_bind *)data); 862 863 case AGPIOC_UNBIND: 864 return agp_unbind_user(dev, (agp_unbind *)data); 865 866 } 867 868 return EINVAL; 869 } 870 871 static int 872 agp_mmap(struct cdev *kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot) 873 { 874 device_t dev = KDEV2DEV(kdev); 875 struct agp_softc *sc = device_get_softc(dev); 876 877 if (offset > AGP_GET_APERTURE(dev)) 878 return -1; 879 *paddr = rman_get_start(sc->as_aperture) + offset; 880 return 0; 881 } 882 883 /* Implementation of the kernel api */ 884 885 device_t 886 agp_find_device() 887 { 888 device_t *children, child; 889 int i, count; 890 891 if (!agp_devclass) 892 return NULL; 893 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 894 return NULL; 895 child = NULL; 896 for (i = 0; i < count; i++) { 897 if (device_is_attached(children[i])) { 898 child = children[i]; 899 break; 900 } 901 } 902 free(children, M_TEMP); 903 return child; 904 } 905 906 enum agp_acquire_state 907 agp_state(device_t dev) 908 { 909 struct agp_softc *sc = device_get_softc(dev); 910 return sc->as_state; 911 } 912 913 void 914 agp_get_info(device_t dev, struct agp_info *info) 915 { 916 struct agp_softc *sc = device_get_softc(dev); 917 918 info->ai_mode = 919 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 920 info->ai_aperture_base = rman_get_start(sc->as_aperture); 921 info->ai_aperture_size = rman_get_size(sc->as_aperture); 922 info->ai_memory_allowed = sc->as_maxmem; 923 info->ai_memory_used = sc->as_allocated; 924 } 925 926 int 927 agp_acquire(device_t dev) 928 { 929 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 930 } 931 932 int 933 agp_release(device_t dev) 934 { 935 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 936 } 937 938 int 939 agp_enable(device_t dev, u_int32_t mode) 940 { 941 return AGP_ENABLE(dev, mode); 942 } 943 944 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 945 { 946 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 947 } 948 949 void agp_free_memory(device_t dev, void *handle) 950 { 951 struct agp_memory *mem = (struct agp_memory *) handle; 952 AGP_FREE_MEMORY(dev, mem); 953 } 954 955 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 956 { 957 struct agp_memory *mem = (struct agp_memory *) handle; 958 return AGP_BIND_MEMORY(dev, mem, offset); 959 } 960 961 int agp_unbind_memory(device_t dev, void *handle) 962 { 963 struct agp_memory *mem = (struct agp_memory *) handle; 964 return AGP_UNBIND_MEMORY(dev, mem); 965 } 966 967 void agp_memory_info(device_t dev, void *handle, struct 968 agp_memory_info *mi) 969 { 970 struct agp_memory *mem = (struct agp_memory *) handle; 971 972 mi->ami_size = mem->am_size; 973 mi->ami_physical = mem->am_physical; 974 mi->ami_offset = mem->am_offset; 975 mi->ami_is_bound = mem->am_is_bound; 976 } 977