xref: /freebsd/sys/dev/agp/agp.c (revision a79b71281cd63ad7a6cc43a6d5673a2510b51630)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	$FreeBSD$
27  */
28 
29 #include "opt_bus.h"
30 #include "opt_pci.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/ioccom.h>
39 #include <sys/agpio.h>
40 #include <sys/lock.h>
41 #include <sys/proc.h>
42 
43 #include <pci/pcivar.h>
44 #include <pci/pcireg.h>
45 #include <pci/agppriv.h>
46 #include <pci/agpvar.h>
47 #include <pci/agpreg.h>
48 
49 #include <vm/vm.h>
50 #include <vm/vm_object.h>
51 #include <vm/vm_page.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/pmap.h>
54 
55 #include <machine/md_var.h>
56 #include <machine/bus.h>
57 #include <machine/resource.h>
58 #include <sys/rman.h>
59 
60 MODULE_VERSION(agp, 1);
61 
62 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
63 
64 #define CDEV_MAJOR	148
65 				/* agp_drv.c */
66 static d_open_t agp_open;
67 static d_close_t agp_close;
68 static d_ioctl_t agp_ioctl;
69 static d_mmap_t agp_mmap;
70 
71 static struct cdevsw agp_cdevsw = {
72 	/* open */	agp_open,
73 	/* close */	agp_close,
74 	/* read */	noread,
75 	/* write */	nowrite,
76 	/* ioctl */	agp_ioctl,
77 	/* poll */	nopoll,
78 	/* mmap */	agp_mmap,
79 	/* strategy */	nostrategy,
80 	/* name */	"agp",
81 	/* maj */	CDEV_MAJOR,
82 	/* dump */	nodump,
83 	/* psize */	nopsize,
84 	/* flags */	D_TTY,
85 	/* bmaj */	-1
86 };
87 
88 static devclass_t agp_devclass;
89 #define KDEV2DEV(kdev)	devclass_get_device(agp_devclass, minor(kdev))
90 
91 /* Helper functions for implementing chipset mini drivers. */
92 
93 void
94 agp_flush_cache()
95 {
96 #ifdef __i386__
97 	wbinvd();
98 #endif
99 }
100 
101 u_int8_t
102 agp_find_caps(device_t dev)
103 {
104 	u_int32_t status;
105 	u_int8_t ptr, next;
106 
107 	/*
108 	 * Check the CAP_LIST bit of the PCI status register first.
109 	 */
110 	status = pci_read_config(dev, PCIR_STATUS, 2);
111 	if (!(status & 0x10))
112 		return 0;
113 
114 	/*
115 	 * Traverse the capabilities list.
116 	 */
117 	for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
118 	     ptr != 0;
119 	     ptr = next) {
120 		u_int32_t capid = pci_read_config(dev, ptr, 4);
121 		next = AGP_CAPID_GET_NEXT_PTR(capid);
122 
123 		/*
124 		 * If this capability entry ID is 2, then we are done.
125 		 */
126 		if (AGP_CAPID_GET_CAP_ID(capid) == 2)
127 			return ptr;
128 	}
129 
130 	return 0;
131 }
132 
133 /*
134  * Find an AGP display device (if any).
135  */
136 static device_t
137 agp_find_display(void)
138 {
139 	devclass_t pci = devclass_find("pci");
140 	device_t bus, dev = 0;
141 	device_t *kids;
142 	int busnum, numkids, i;
143 
144 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
145 		bus = devclass_get_device(pci, busnum);
146 		if (!bus)
147 			continue;
148 		device_get_children(bus, &kids, &numkids);
149 		for (i = 0; i < numkids; i++) {
150 			dev = kids[i];
151 			if (pci_get_class(dev) == PCIC_DISPLAY
152 			    && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
153 				if (agp_find_caps(dev)) {
154 					free(kids, M_TEMP);
155 					return dev;
156 				}
157 
158 		}
159 		free(kids, M_TEMP);
160 	}
161 
162 	return 0;
163 }
164 
165 struct agp_gatt *
166 agp_alloc_gatt(device_t dev)
167 {
168 	u_int32_t apsize = AGP_GET_APERTURE(dev);
169 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
170 	struct agp_gatt *gatt;
171 
172 	if (bootverbose)
173 		device_printf(dev,
174 			      "allocating GATT for aperture of size %dM\n",
175 			      apsize / (1024*1024));
176 
177 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
178 	if (!gatt)
179 		return 0;
180 
181 	gatt->ag_entries = entries;
182 	gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0,
183 					0, ~0, PAGE_SIZE, 0);
184 	if (!gatt->ag_virtual) {
185 		if (bootverbose)
186 			device_printf(dev, "contiguous allocation failed\n");
187 		free(gatt, M_AGP);
188 		return 0;
189 	}
190 	bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
191 	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
192 	agp_flush_cache();
193 
194 	return gatt;
195 }
196 
197 void
198 agp_free_gatt(struct agp_gatt *gatt)
199 {
200 	contigfree(gatt->ag_virtual,
201 		   gatt->ag_entries * sizeof(u_int32_t), M_AGP);
202 	free(gatt, M_AGP);
203 }
204 
205 static int agp_max[][2] = {
206 	{0,	0},
207 	{32,	4},
208 	{64,	28},
209 	{128,	96},
210 	{256,	204},
211 	{512,	440},
212 	{1024,	942},
213 	{2048,	1920},
214 	{4096,	3932}
215 };
216 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
217 
218 int
219 agp_generic_attach(device_t dev)
220 {
221 	struct agp_softc *sc = device_get_softc(dev);
222 	int rid, memsize, i;
223 
224 	/*
225 	 * Find and map the aperture.
226 	 */
227 	rid = AGP_APBASE;
228 	sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
229 					     0, ~0, 1, RF_ACTIVE);
230 	if (!sc->as_aperture)
231 		return ENOMEM;
232 
233 	/*
234 	 * Work out an upper bound for agp memory allocation. This
235 	 * uses a heurisitc table from the Linux driver.
236 	 */
237 	memsize = ptoa(Maxmem) >> 20;
238 	for (i = 0; i < agp_max_size; i++) {
239 		if (memsize <= agp_max[i][0])
240 			break;
241 	}
242 	if (i == agp_max_size) i = agp_max_size - 1;
243 	sc->as_maxmem = agp_max[i][1] << 20U;
244 
245 	/*
246 	 * The lock is used to prevent re-entry to
247 	 * agp_generic_bind_memory() since that function can sleep.
248 	 */
249 	lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
250 
251 	/*
252 	 * Initialise stuff for the userland device.
253 	 */
254 	agp_devclass = devclass_find("agp");
255 	TAILQ_INIT(&sc->as_memory);
256 	sc->as_nextid = 1;
257 
258 	sc->as_devnode = make_dev(&agp_cdevsw,
259 				  device_get_unit(dev),
260 				  UID_ROOT,
261 				  GID_WHEEL,
262 				  0600,
263 				  "agpgart");
264 
265 	return 0;
266 }
267 
268 int
269 agp_generic_detach(device_t dev)
270 {
271 	struct agp_softc *sc = device_get_softc(dev);
272 	bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture);
273 	lockmgr(&sc->as_lock, LK_DRAIN, 0, curproc);
274 	destroy_dev(sc->as_devnode);
275 	agp_flush_cache();
276 	return 0;
277 }
278 
279 int
280 agp_generic_enable(device_t dev, u_int32_t mode)
281 {
282 	device_t mdev = agp_find_display();
283 	u_int32_t tstatus, mstatus;
284 	u_int32_t command;
285 	int rq, sba, fw, rate;;
286 
287 	if (!mdev) {
288 		AGP_DPF("can't find display\n");
289 		return ENXIO;
290 	}
291 
292 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
293 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
294 
295 	/* Set RQ to the min of mode, tstatus and mstatus */
296 	rq = AGP_MODE_GET_RQ(mode);
297 	if (AGP_MODE_GET_RQ(tstatus) < rq)
298 		rq = AGP_MODE_GET_RQ(tstatus);
299 	if (AGP_MODE_GET_RQ(mstatus) < rq)
300 		rq = AGP_MODE_GET_RQ(mstatus);
301 
302 	/* Set SBA if all three can deal with SBA */
303 	sba = (AGP_MODE_GET_SBA(tstatus)
304 	       & AGP_MODE_GET_SBA(mstatus)
305 	       & AGP_MODE_GET_SBA(mode));
306 
307 	/* Similar for FW */
308 	fw = (AGP_MODE_GET_FW(tstatus)
309 	       & AGP_MODE_GET_FW(mstatus)
310 	       & AGP_MODE_GET_FW(mode));
311 
312 	/* Figure out the max rate */
313 	rate = (AGP_MODE_GET_RATE(tstatus)
314 		& AGP_MODE_GET_RATE(mstatus)
315 		& AGP_MODE_GET_RATE(mode));
316 	if (rate & AGP_MODE_RATE_4x)
317 		rate = AGP_MODE_RATE_4x;
318 	else if (rate & AGP_MODE_RATE_2x)
319 		rate = AGP_MODE_RATE_2x;
320 	else
321 		rate = AGP_MODE_RATE_1x;
322 
323 	/* Construct the new mode word and tell the hardware */
324 	command = AGP_MODE_SET_RQ(0, rq);
325 	command = AGP_MODE_SET_SBA(command, sba);
326 	command = AGP_MODE_SET_FW(command, fw);
327 	command = AGP_MODE_SET_RATE(command, rate);
328 	command = AGP_MODE_SET_AGP(command, 1);
329 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
330 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
331 
332 	return 0;
333 }
334 
335 struct agp_memory *
336 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
337 {
338 	struct agp_softc *sc = device_get_softc(dev);
339 	struct agp_memory *mem;
340 
341 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
342 		return 0;
343 
344 	if (sc->as_allocated + size > sc->as_maxmem)
345 		return 0;
346 
347 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
348 	mem->am_id = sc->as_nextid++;
349 	mem->am_size = size;
350 	mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
351 	mem->am_physical = 0;
352 	mem->am_offset = 0;
353 	mem->am_is_bound = 0;
354 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
355 	sc->as_allocated += size;
356 
357 	return mem;
358 }
359 
360 int
361 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
362 {
363 	struct agp_softc *sc = device_get_softc(dev);
364 
365 	if (mem->am_is_bound)
366 		return EBUSY;
367 
368 	sc->as_allocated -= mem->am_size;
369 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
370 	vm_object_deallocate(mem->am_obj);
371 	free(mem, M_AGP);
372 	return 0;
373 }
374 
375 int
376 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
377 			vm_offset_t offset)
378 {
379 	struct agp_softc *sc = device_get_softc(dev);
380 	vm_offset_t i, j, k;
381 	vm_page_t m;
382 	int error;
383 
384 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curproc);
385 
386 	if (mem->am_is_bound) {
387 		device_printf(dev, "memory already bound\n");
388 		return EINVAL;
389 	}
390 
391 	if (offset < 0
392 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
393 	    || offset + mem->am_size > AGP_GET_APERTURE(dev)) {
394 		device_printf(dev, "binding memory at bad offset %#x\n",
395 			      (int) offset);
396 		return EINVAL;
397 	}
398 
399 	/*
400 	 * Bind the individual pages and flush the chipset's
401 	 * TLB.
402 	 *
403 	 * XXX Presumably, this needs to be the pci address on alpha
404 	 * (i.e. use alpha_XXX_dmamap()). I don't have access to any
405 	 * alpha AGP hardware to check.
406 	 */
407 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
408 		/*
409 		 * Find a page from the object and wire it
410 		 * down. This page will be mapped using one or more
411 		 * entries in the GATT (assuming that PAGE_SIZE >=
412 		 * AGP_PAGE_SIZE. If this is the first call to bind,
413 		 * the pages will be allocated and zeroed.
414 		 */
415 		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
416 				 VM_ALLOC_ZERO | VM_ALLOC_RETRY);
417 		AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
418 		vm_page_wire(m);
419 
420 		/*
421 		 * Install entries in the GATT, making sure that if
422 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
423 		 * aligned to PAGE_SIZE, we don't modify too many GATT
424 		 * entries.
425 		 */
426 		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
427 		     j += AGP_PAGE_SIZE) {
428 			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
429 			AGP_DPF("binding offset %#x to pa %#x\n",
430 				offset + i + j, pa);
431 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
432 			if (error) {
433 				/*
434 				 * Bail out. Reverse all the mappings
435 				 * and unwire the pages.
436 				 */
437 				vm_page_wakeup(m);
438 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
439 					AGP_UNBIND_PAGE(dev, offset + k);
440 				for (k = 0; k <= i; k += PAGE_SIZE) {
441 					m = vm_page_lookup(mem->am_obj,
442 							   OFF_TO_IDX(k));
443 					vm_page_unwire(m, 0);
444 				}
445 				lockmgr(&sc->as_lock, LK_RELEASE, 0, curproc);
446 				return error;
447 			}
448 		}
449 		vm_page_wakeup(m);
450 	}
451 
452 	/*
453 	 * Flush the cpu cache since we are providing a new mapping
454 	 * for these pages.
455 	 */
456 	agp_flush_cache();
457 
458 	/*
459 	 * Make sure the chipset gets the new mappings.
460 	 */
461 	AGP_FLUSH_TLB(dev);
462 
463 	mem->am_offset = offset;
464 	mem->am_is_bound = 1;
465 
466 	lockmgr(&sc->as_lock, LK_RELEASE, 0, curproc);
467 
468 	return 0;
469 }
470 
471 int
472 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
473 {
474 	struct agp_softc *sc = device_get_softc(dev);
475 	vm_page_t m;
476 	int i;
477 
478 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curproc);
479 
480 	if (!mem->am_is_bound) {
481 		device_printf(dev, "memory is not bound\n");
482 		return EINVAL;
483 	}
484 
485 
486 	/*
487 	 * Unbind the individual pages and flush the chipset's
488 	 * TLB. Unwire the pages so they can be swapped.
489 	 */
490 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
491 		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
492 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
493 		m = vm_page_lookup(mem->am_obj, atop(i));
494 		vm_page_unwire(m, 0);
495 	}
496 
497 	agp_flush_cache();
498 	AGP_FLUSH_TLB(dev);
499 
500 	mem->am_offset = 0;
501 	mem->am_is_bound = 0;
502 
503 	lockmgr(&sc->as_lock, LK_RELEASE, 0, curproc);
504 
505 	return 0;
506 }
507 
508 /* Helper functions for implementing user/kernel api */
509 
510 static int
511 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
512 {
513 	struct agp_softc *sc = device_get_softc(dev);
514 
515 	if (sc->as_state != AGP_ACQUIRE_FREE)
516 		return EBUSY;
517 	sc->as_state = state;
518 
519 	return 0;
520 }
521 
522 static int
523 agp_release_helper(device_t dev, enum agp_acquire_state state)
524 {
525 	struct agp_softc *sc = device_get_softc(dev);
526 	struct agp_memory *mem;
527 
528 	if (sc->as_state == AGP_ACQUIRE_FREE)
529 		return 0;
530 
531 	if (sc->as_state != state)
532 		return EBUSY;
533 
534 	/*
535 	 * Clear out the aperture and free any outstanding memory blocks.
536 	 */
537 	while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
538 		if (mem->am_is_bound)
539 			AGP_UNBIND_MEMORY(dev, mem);
540 		AGP_FREE_MEMORY(dev, mem);
541 	}
542 
543 	sc->as_state = AGP_ACQUIRE_FREE;
544 	return 0;
545 }
546 
547 static struct agp_memory *
548 agp_find_memory(device_t dev, int id)
549 {
550 	struct agp_softc *sc = device_get_softc(dev);
551 	struct agp_memory *mem;
552 
553 	AGP_DPF("searching for memory block %d\n", id);
554 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
555 		AGP_DPF("considering memory block %d\n", mem->am_id);
556 		if (mem->am_id == id)
557 			return mem;
558 	}
559 	return 0;
560 }
561 
562 /* Implementation of the userland ioctl api */
563 
564 static int
565 agp_info_user(device_t dev, agp_info *info)
566 {
567 	struct agp_softc *sc = device_get_softc(dev);
568 
569 	bzero(info, sizeof *info);
570 	info->bridge_id = pci_get_devid(dev);
571 	info->agp_mode =
572 	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
573 	info->aper_base = rman_get_start(sc->as_aperture);
574 	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
575 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
576 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
577 
578 	return 0;
579 }
580 
581 static int
582 agp_setup_user(device_t dev, agp_setup *setup)
583 {
584 	return AGP_ENABLE(dev, setup->agp_mode);
585 }
586 
587 static int
588 agp_allocate_user(device_t dev, agp_allocate *alloc)
589 {
590 	struct agp_memory *mem;
591 
592 	mem = AGP_ALLOC_MEMORY(dev,
593 			       alloc->type,
594 			       alloc->pg_count << AGP_PAGE_SHIFT);
595 	alloc->key = mem->am_id;
596 	alloc->physical = mem->am_physical;
597 
598 	return 0;
599 }
600 
601 static int
602 agp_deallocate_user(device_t dev, int id)
603 {
604 	struct agp_memory *mem = agp_find_memory(dev, id);;
605 
606 	if (mem) {
607 		AGP_FREE_MEMORY(dev, mem);
608 		return 0;
609 	} else {
610 		return ENOENT;
611 	}
612 }
613 
614 static int
615 agp_bind_user(device_t dev, agp_bind *bind)
616 {
617 	struct agp_memory *mem = agp_find_memory(dev, bind->key);
618 
619 	if (!mem)
620 		return ENOENT;
621 
622 	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
623 }
624 
625 static int
626 agp_unbind_user(device_t dev, agp_unbind *unbind)
627 {
628 	struct agp_memory *mem = agp_find_memory(dev, unbind->key);
629 
630 	if (!mem)
631 		return ENOENT;
632 
633 	return AGP_UNBIND_MEMORY(dev, mem);
634 }
635 
636 static int
637 agp_open(dev_t kdev, int oflags, int devtype, struct proc *p)
638 {
639 	device_t dev = KDEV2DEV(kdev);
640 	struct agp_softc *sc = device_get_softc(dev);
641 
642 	if (!sc->as_isopen) {
643 		sc->as_isopen = 1;
644 		device_busy(dev);
645 	}
646 
647 	return 0;
648 }
649 
650 static int
651 agp_close(dev_t kdev, int fflag, int devtype, struct proc *p)
652 {
653 	device_t dev = KDEV2DEV(kdev);
654 	struct agp_softc *sc = device_get_softc(dev);
655 
656 	/*
657 	 * Clear the GATT and force release on last close
658 	 */
659 	if (sc->as_state == AGP_ACQUIRE_USER)
660 		agp_release_helper(dev, AGP_ACQUIRE_USER);
661 	sc->as_isopen = 0;
662 	device_unbusy(dev);
663 
664 	return 0;
665 }
666 
667 static int
668 agp_ioctl(dev_t kdev, u_long cmd, caddr_t data, int fflag, struct proc *p)
669 {
670 	device_t dev = KDEV2DEV(kdev);
671 
672 	switch (cmd) {
673 	case AGPIOC_INFO:
674 		return agp_info_user(dev, (agp_info *) data);
675 
676 	case AGPIOC_ACQUIRE:
677 		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
678 
679 	case AGPIOC_RELEASE:
680 		return agp_release_helper(dev, AGP_ACQUIRE_USER);
681 
682 	case AGPIOC_SETUP:
683 		return agp_setup_user(dev, (agp_setup *)data);
684 
685 	case AGPIOC_ALLOCATE:
686 		return agp_allocate_user(dev, (agp_allocate *)data);
687 
688 	case AGPIOC_DEALLOCATE:
689 		return agp_deallocate_user(dev, *(int *) data);
690 
691 	case AGPIOC_BIND:
692 		return agp_bind_user(dev, (agp_bind *)data);
693 
694 	case AGPIOC_UNBIND:
695 		return agp_unbind_user(dev, (agp_unbind *)data);
696 
697 	}
698 
699 	return EINVAL;
700 }
701 
702 static int
703 agp_mmap(dev_t kdev, vm_offset_t offset, int prot)
704 {
705 	device_t dev = KDEV2DEV(kdev);
706 	struct agp_softc *sc = device_get_softc(dev);
707 
708 	if (offset > AGP_GET_APERTURE(dev))
709 		return -1;
710 	return atop(rman_get_start(sc->as_aperture) + offset);
711 }
712 
713 /* Implementation of the kernel api */
714 
715 device_t
716 agp_find_device()
717 {
718 	if (!agp_devclass)
719 		return 0;
720 	return devclass_get_device(agp_devclass, 0);
721 }
722 
723 enum agp_acquire_state
724 agp_state(device_t dev)
725 {
726 	struct agp_softc *sc = device_get_softc(dev);
727 	return sc->as_state;
728 }
729 
730 void
731 agp_get_info(device_t dev, struct agp_info *info)
732 {
733 	struct agp_softc *sc = device_get_softc(dev);
734 
735 	info->ai_mode =
736 		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
737 	info->ai_aperture_base = rman_get_start(sc->as_aperture);
738 	info->ai_aperture_size = (rman_get_end(sc->as_aperture)
739 				  - rman_get_start(sc->as_aperture)) + 1;
740 	info->ai_memory_allowed = sc->as_maxmem;
741 	info->ai_memory_used = sc->as_allocated;
742 }
743 
744 int
745 agp_acquire(device_t dev)
746 {
747 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
748 }
749 
750 int
751 agp_release(device_t dev)
752 {
753 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
754 }
755 
756 int
757 agp_enable(device_t dev, u_int32_t mode)
758 {
759 	return AGP_ENABLE(dev, mode);
760 }
761 
762 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
763 {
764 	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
765 }
766 
767 void agp_free_memory(device_t dev, void *handle)
768 {
769 	struct agp_memory *mem = (struct agp_memory *) handle;
770 	AGP_FREE_MEMORY(dev, mem);
771 }
772 
773 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
774 {
775 	struct agp_memory *mem = (struct agp_memory *) handle;
776 	return AGP_BIND_MEMORY(dev, mem, offset);
777 }
778 
779 int agp_unbind_memory(device_t dev, void *handle)
780 {
781 	struct agp_memory *mem = (struct agp_memory *) handle;
782 	return AGP_UNBIND_MEMORY(dev, mem);
783 }
784 
785 void agp_memory_info(device_t dev, void *handle, struct
786 		     agp_memory_info *mi)
787 {
788 	struct agp_memory *mem = (struct agp_memory *) handle;
789 
790 	mi->ami_size = mem->am_size;
791 	mi->ami_physical = mem->am_physical;
792 	mi->ami_offset = mem->am_offset;
793 	mi->ami_is_bound = mem->am_is_bound;
794 }
795