1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include "opt_bus.h" 30 #include "opt_pci.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/bus.h> 37 #include <sys/conf.h> 38 #include <sys/ioccom.h> 39 #include <sys/agpio.h> 40 #include <sys/lock.h> 41 #include <sys/proc.h> 42 43 #include <pci/pcivar.h> 44 #include <pci/pcireg.h> 45 #include <pci/agppriv.h> 46 #include <pci/agpvar.h> 47 #include <pci/agpreg.h> 48 49 #include <vm/vm.h> 50 #include <vm/vm_object.h> 51 #include <vm/vm_page.h> 52 #include <vm/vm_pageout.h> 53 #include <vm/pmap.h> 54 55 #include <machine/md_var.h> 56 #include <machine/bus.h> 57 #include <machine/resource.h> 58 #include <sys/rman.h> 59 60 MODULE_VERSION(agp, 1); 61 62 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 63 64 #define CDEV_MAJOR 148 65 /* agp_drv.c */ 66 static d_open_t agp_open; 67 static d_close_t agp_close; 68 static d_ioctl_t agp_ioctl; 69 static d_mmap_t agp_mmap; 70 71 static struct cdevsw agp_cdevsw = { 72 /* open */ agp_open, 73 /* close */ agp_close, 74 /* read */ noread, 75 /* write */ nowrite, 76 /* ioctl */ agp_ioctl, 77 /* poll */ nopoll, 78 /* mmap */ agp_mmap, 79 /* strategy */ nostrategy, 80 /* name */ "agp", 81 /* maj */ CDEV_MAJOR, 82 /* dump */ nodump, 83 /* psize */ nopsize, 84 /* flags */ D_TTY, 85 /* bmaj */ -1 86 }; 87 88 static devclass_t agp_devclass; 89 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev)) 90 91 /* Helper functions for implementing chipset mini drivers. */ 92 93 void 94 agp_flush_cache() 95 { 96 #ifdef __i386__ 97 wbinvd(); 98 #endif 99 } 100 101 u_int8_t 102 agp_find_caps(device_t dev) 103 { 104 u_int32_t status; 105 u_int8_t ptr, next; 106 107 /* 108 * Check the CAP_LIST bit of the PCI status register first. 109 */ 110 status = pci_read_config(dev, PCIR_STATUS, 2); 111 if (!(status & 0x10)) 112 return 0; 113 114 /* 115 * Traverse the capabilities list. 116 */ 117 for (ptr = pci_read_config(dev, AGP_CAPPTR, 1); 118 ptr != 0; 119 ptr = next) { 120 u_int32_t capid = pci_read_config(dev, ptr, 4); 121 next = AGP_CAPID_GET_NEXT_PTR(capid); 122 123 /* 124 * If this capability entry ID is 2, then we are done. 125 */ 126 if (AGP_CAPID_GET_CAP_ID(capid) == 2) 127 return ptr; 128 } 129 130 return 0; 131 } 132 133 /* 134 * Find an AGP display device (if any). 135 */ 136 static device_t 137 agp_find_display(void) 138 { 139 devclass_t pci = devclass_find("pci"); 140 device_t bus, dev = 0; 141 device_t *kids; 142 int busnum, numkids, i; 143 144 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 145 bus = devclass_get_device(pci, busnum); 146 if (!bus) 147 continue; 148 device_get_children(bus, &kids, &numkids); 149 for (i = 0; i < numkids; i++) { 150 dev = kids[i]; 151 if (pci_get_class(dev) == PCIC_DISPLAY 152 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 153 if (agp_find_caps(dev)) { 154 free(kids, M_TEMP); 155 return dev; 156 } 157 158 } 159 free(kids, M_TEMP); 160 } 161 162 return 0; 163 } 164 165 struct agp_gatt * 166 agp_alloc_gatt(device_t dev) 167 { 168 u_int32_t apsize = AGP_GET_APERTURE(dev); 169 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 170 struct agp_gatt *gatt; 171 172 if (bootverbose) 173 device_printf(dev, 174 "allocating GATT for aperture of size %dM\n", 175 apsize / (1024*1024)); 176 177 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 178 if (!gatt) 179 return 0; 180 181 gatt->ag_entries = entries; 182 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 183 0, ~0, PAGE_SIZE, 0); 184 if (!gatt->ag_virtual) { 185 if (bootverbose) 186 device_printf(dev, "contiguous allocation failed\n"); 187 free(gatt, M_AGP); 188 return 0; 189 } 190 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 191 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 192 agp_flush_cache(); 193 194 return gatt; 195 } 196 197 void 198 agp_free_gatt(struct agp_gatt *gatt) 199 { 200 contigfree(gatt->ag_virtual, 201 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 202 free(gatt, M_AGP); 203 } 204 205 static int agp_max[][2] = { 206 {0, 0}, 207 {32, 4}, 208 {64, 28}, 209 {128, 96}, 210 {256, 204}, 211 {512, 440}, 212 {1024, 942}, 213 {2048, 1920}, 214 {4096, 3932} 215 }; 216 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 217 218 int 219 agp_generic_attach(device_t dev) 220 { 221 struct agp_softc *sc = device_get_softc(dev); 222 int rid, memsize, i; 223 224 /* 225 * Find and map the aperture. 226 */ 227 rid = AGP_APBASE; 228 sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 229 0, ~0, 1, RF_ACTIVE); 230 if (!sc->as_aperture) 231 return ENOMEM; 232 233 /* 234 * Work out an upper bound for agp memory allocation. This 235 * uses a heurisitc table from the Linux driver. 236 */ 237 memsize = ptoa(Maxmem) >> 20; 238 for (i = 0; i < agp_max_size; i++) { 239 if (memsize <= agp_max[i][0]) 240 break; 241 } 242 if (i == agp_max_size) i = agp_max_size - 1; 243 sc->as_maxmem = agp_max[i][1] << 20U; 244 245 /* 246 * The lock is used to prevent re-entry to 247 * agp_generic_bind_memory() since that function can sleep. 248 */ 249 lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0); 250 251 /* 252 * Initialise stuff for the userland device. 253 */ 254 agp_devclass = devclass_find("agp"); 255 TAILQ_INIT(&sc->as_memory); 256 sc->as_nextid = 1; 257 258 sc->as_devnode = make_dev(&agp_cdevsw, 259 device_get_unit(dev), 260 UID_ROOT, 261 GID_WHEEL, 262 0600, 263 "agpgart"); 264 265 return 0; 266 } 267 268 int 269 agp_generic_detach(device_t dev) 270 { 271 struct agp_softc *sc = device_get_softc(dev); 272 bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture); 273 lockmgr(&sc->as_lock, LK_DRAIN, 0, curproc); 274 destroy_dev(sc->as_devnode); 275 agp_flush_cache(); 276 return 0; 277 } 278 279 int 280 agp_generic_enable(device_t dev, u_int32_t mode) 281 { 282 device_t mdev = agp_find_display(); 283 u_int32_t tstatus, mstatus; 284 u_int32_t command; 285 int rq, sba, fw, rate;; 286 287 if (!mdev) { 288 AGP_DPF("can't find display\n"); 289 return ENXIO; 290 } 291 292 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 293 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 294 295 /* Set RQ to the min of mode, tstatus and mstatus */ 296 rq = AGP_MODE_GET_RQ(mode); 297 if (AGP_MODE_GET_RQ(tstatus) < rq) 298 rq = AGP_MODE_GET_RQ(tstatus); 299 if (AGP_MODE_GET_RQ(mstatus) < rq) 300 rq = AGP_MODE_GET_RQ(mstatus); 301 302 /* Set SBA if all three can deal with SBA */ 303 sba = (AGP_MODE_GET_SBA(tstatus) 304 & AGP_MODE_GET_SBA(mstatus) 305 & AGP_MODE_GET_SBA(mode)); 306 307 /* Similar for FW */ 308 fw = (AGP_MODE_GET_FW(tstatus) 309 & AGP_MODE_GET_FW(mstatus) 310 & AGP_MODE_GET_FW(mode)); 311 312 /* Figure out the max rate */ 313 rate = (AGP_MODE_GET_RATE(tstatus) 314 & AGP_MODE_GET_RATE(mstatus) 315 & AGP_MODE_GET_RATE(mode)); 316 if (rate & AGP_MODE_RATE_4x) 317 rate = AGP_MODE_RATE_4x; 318 else if (rate & AGP_MODE_RATE_2x) 319 rate = AGP_MODE_RATE_2x; 320 else 321 rate = AGP_MODE_RATE_1x; 322 323 /* Construct the new mode word and tell the hardware */ 324 command = AGP_MODE_SET_RQ(0, rq); 325 command = AGP_MODE_SET_SBA(command, sba); 326 command = AGP_MODE_SET_FW(command, fw); 327 command = AGP_MODE_SET_RATE(command, rate); 328 command = AGP_MODE_SET_AGP(command, 1); 329 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 330 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 331 332 return 0; 333 } 334 335 struct agp_memory * 336 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 337 { 338 struct agp_softc *sc = device_get_softc(dev); 339 struct agp_memory *mem; 340 341 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 342 return 0; 343 344 if (sc->as_allocated + size > sc->as_maxmem) 345 return 0; 346 347 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 348 mem->am_id = sc->as_nextid++; 349 mem->am_size = size; 350 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 351 mem->am_physical = 0; 352 mem->am_offset = 0; 353 mem->am_is_bound = 0; 354 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 355 sc->as_allocated += size; 356 357 return mem; 358 } 359 360 int 361 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 362 { 363 struct agp_softc *sc = device_get_softc(dev); 364 365 if (mem->am_is_bound) 366 return EBUSY; 367 368 sc->as_allocated -= mem->am_size; 369 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 370 vm_object_deallocate(mem->am_obj); 371 free(mem, M_AGP); 372 return 0; 373 } 374 375 int 376 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 377 vm_offset_t offset) 378 { 379 struct agp_softc *sc = device_get_softc(dev); 380 vm_offset_t i, j, k; 381 vm_page_t m; 382 int error; 383 384 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curproc); 385 386 if (mem->am_is_bound) { 387 device_printf(dev, "memory already bound\n"); 388 return EINVAL; 389 } 390 391 if (offset < 0 392 || (offset & (AGP_PAGE_SIZE - 1)) != 0 393 || offset + mem->am_size > AGP_GET_APERTURE(dev)) { 394 device_printf(dev, "binding memory at bad offset %#x\n", 395 (int) offset); 396 return EINVAL; 397 } 398 399 /* 400 * Bind the individual pages and flush the chipset's 401 * TLB. 402 * 403 * XXX Presumably, this needs to be the pci address on alpha 404 * (i.e. use alpha_XXX_dmamap()). I don't have access to any 405 * alpha AGP hardware to check. 406 */ 407 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 408 /* 409 * Find a page from the object and wire it 410 * down. This page will be mapped using one or more 411 * entries in the GATT (assuming that PAGE_SIZE >= 412 * AGP_PAGE_SIZE. If this is the first call to bind, 413 * the pages will be allocated and zeroed. 414 */ 415 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 416 VM_ALLOC_ZERO | VM_ALLOC_RETRY); 417 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m)); 418 vm_page_wire(m); 419 420 /* 421 * Install entries in the GATT, making sure that if 422 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 423 * aligned to PAGE_SIZE, we don't modify too many GATT 424 * entries. 425 */ 426 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 427 j += AGP_PAGE_SIZE) { 428 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 429 AGP_DPF("binding offset %#x to pa %#x\n", 430 offset + i + j, pa); 431 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 432 if (error) { 433 /* 434 * Bail out. Reverse all the mappings 435 * and unwire the pages. 436 */ 437 vm_page_wakeup(m); 438 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 439 AGP_UNBIND_PAGE(dev, offset + k); 440 for (k = 0; k <= i; k += PAGE_SIZE) { 441 m = vm_page_lookup(mem->am_obj, 442 OFF_TO_IDX(k)); 443 vm_page_unwire(m, 0); 444 } 445 lockmgr(&sc->as_lock, LK_RELEASE, 0, curproc); 446 return error; 447 } 448 } 449 vm_page_wakeup(m); 450 } 451 452 /* 453 * Flush the cpu cache since we are providing a new mapping 454 * for these pages. 455 */ 456 agp_flush_cache(); 457 458 /* 459 * Make sure the chipset gets the new mappings. 460 */ 461 AGP_FLUSH_TLB(dev); 462 463 mem->am_offset = offset; 464 mem->am_is_bound = 1; 465 466 lockmgr(&sc->as_lock, LK_RELEASE, 0, curproc); 467 468 return 0; 469 } 470 471 int 472 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 473 { 474 struct agp_softc *sc = device_get_softc(dev); 475 vm_page_t m; 476 int i; 477 478 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curproc); 479 480 if (!mem->am_is_bound) { 481 device_printf(dev, "memory is not bound\n"); 482 return EINVAL; 483 } 484 485 486 /* 487 * Unbind the individual pages and flush the chipset's 488 * TLB. Unwire the pages so they can be swapped. 489 */ 490 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 491 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 492 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 493 m = vm_page_lookup(mem->am_obj, atop(i)); 494 vm_page_unwire(m, 0); 495 } 496 497 agp_flush_cache(); 498 AGP_FLUSH_TLB(dev); 499 500 mem->am_offset = 0; 501 mem->am_is_bound = 0; 502 503 lockmgr(&sc->as_lock, LK_RELEASE, 0, curproc); 504 505 return 0; 506 } 507 508 /* Helper functions for implementing user/kernel api */ 509 510 static int 511 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 512 { 513 struct agp_softc *sc = device_get_softc(dev); 514 515 if (sc->as_state != AGP_ACQUIRE_FREE) 516 return EBUSY; 517 sc->as_state = state; 518 519 return 0; 520 } 521 522 static int 523 agp_release_helper(device_t dev, enum agp_acquire_state state) 524 { 525 struct agp_softc *sc = device_get_softc(dev); 526 struct agp_memory *mem; 527 528 if (sc->as_state == AGP_ACQUIRE_FREE) 529 return 0; 530 531 if (sc->as_state != state) 532 return EBUSY; 533 534 /* 535 * Clear out the aperture and free any outstanding memory blocks. 536 */ 537 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 538 if (mem->am_is_bound) 539 AGP_UNBIND_MEMORY(dev, mem); 540 AGP_FREE_MEMORY(dev, mem); 541 } 542 543 sc->as_state = AGP_ACQUIRE_FREE; 544 return 0; 545 } 546 547 static struct agp_memory * 548 agp_find_memory(device_t dev, int id) 549 { 550 struct agp_softc *sc = device_get_softc(dev); 551 struct agp_memory *mem; 552 553 AGP_DPF("searching for memory block %d\n", id); 554 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 555 AGP_DPF("considering memory block %d\n", mem->am_id); 556 if (mem->am_id == id) 557 return mem; 558 } 559 return 0; 560 } 561 562 /* Implementation of the userland ioctl api */ 563 564 static int 565 agp_info_user(device_t dev, agp_info *info) 566 { 567 struct agp_softc *sc = device_get_softc(dev); 568 569 bzero(info, sizeof *info); 570 info->bridge_id = pci_get_devid(dev); 571 info->agp_mode = 572 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 573 info->aper_base = rman_get_start(sc->as_aperture); 574 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 575 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 576 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 577 578 return 0; 579 } 580 581 static int 582 agp_setup_user(device_t dev, agp_setup *setup) 583 { 584 return AGP_ENABLE(dev, setup->agp_mode); 585 } 586 587 static int 588 agp_allocate_user(device_t dev, agp_allocate *alloc) 589 { 590 struct agp_memory *mem; 591 592 mem = AGP_ALLOC_MEMORY(dev, 593 alloc->type, 594 alloc->pg_count << AGP_PAGE_SHIFT); 595 alloc->key = mem->am_id; 596 alloc->physical = mem->am_physical; 597 598 return 0; 599 } 600 601 static int 602 agp_deallocate_user(device_t dev, int id) 603 { 604 struct agp_memory *mem = agp_find_memory(dev, id);; 605 606 if (mem) { 607 AGP_FREE_MEMORY(dev, mem); 608 return 0; 609 } else { 610 return ENOENT; 611 } 612 } 613 614 static int 615 agp_bind_user(device_t dev, agp_bind *bind) 616 { 617 struct agp_memory *mem = agp_find_memory(dev, bind->key); 618 619 if (!mem) 620 return ENOENT; 621 622 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 623 } 624 625 static int 626 agp_unbind_user(device_t dev, agp_unbind *unbind) 627 { 628 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 629 630 if (!mem) 631 return ENOENT; 632 633 return AGP_UNBIND_MEMORY(dev, mem); 634 } 635 636 static int 637 agp_open(dev_t kdev, int oflags, int devtype, struct proc *p) 638 { 639 device_t dev = KDEV2DEV(kdev); 640 struct agp_softc *sc = device_get_softc(dev); 641 642 if (!sc->as_isopen) { 643 sc->as_isopen = 1; 644 device_busy(dev); 645 } 646 647 return 0; 648 } 649 650 static int 651 agp_close(dev_t kdev, int fflag, int devtype, struct proc *p) 652 { 653 device_t dev = KDEV2DEV(kdev); 654 struct agp_softc *sc = device_get_softc(dev); 655 656 /* 657 * Clear the GATT and force release on last close 658 */ 659 if (sc->as_state == AGP_ACQUIRE_USER) 660 agp_release_helper(dev, AGP_ACQUIRE_USER); 661 sc->as_isopen = 0; 662 device_unbusy(dev); 663 664 return 0; 665 } 666 667 static int 668 agp_ioctl(dev_t kdev, u_long cmd, caddr_t data, int fflag, struct proc *p) 669 { 670 device_t dev = KDEV2DEV(kdev); 671 672 switch (cmd) { 673 case AGPIOC_INFO: 674 return agp_info_user(dev, (agp_info *) data); 675 676 case AGPIOC_ACQUIRE: 677 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 678 679 case AGPIOC_RELEASE: 680 return agp_release_helper(dev, AGP_ACQUIRE_USER); 681 682 case AGPIOC_SETUP: 683 return agp_setup_user(dev, (agp_setup *)data); 684 685 case AGPIOC_ALLOCATE: 686 return agp_allocate_user(dev, (agp_allocate *)data); 687 688 case AGPIOC_DEALLOCATE: 689 return agp_deallocate_user(dev, *(int *) data); 690 691 case AGPIOC_BIND: 692 return agp_bind_user(dev, (agp_bind *)data); 693 694 case AGPIOC_UNBIND: 695 return agp_unbind_user(dev, (agp_unbind *)data); 696 697 } 698 699 return EINVAL; 700 } 701 702 static int 703 agp_mmap(dev_t kdev, vm_offset_t offset, int prot) 704 { 705 device_t dev = KDEV2DEV(kdev); 706 struct agp_softc *sc = device_get_softc(dev); 707 708 if (offset > AGP_GET_APERTURE(dev)) 709 return -1; 710 return atop(rman_get_start(sc->as_aperture) + offset); 711 } 712 713 /* Implementation of the kernel api */ 714 715 device_t 716 agp_find_device() 717 { 718 if (!agp_devclass) 719 return 0; 720 return devclass_get_device(agp_devclass, 0); 721 } 722 723 enum agp_acquire_state 724 agp_state(device_t dev) 725 { 726 struct agp_softc *sc = device_get_softc(dev); 727 return sc->as_state; 728 } 729 730 void 731 agp_get_info(device_t dev, struct agp_info *info) 732 { 733 struct agp_softc *sc = device_get_softc(dev); 734 735 info->ai_mode = 736 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 737 info->ai_aperture_base = rman_get_start(sc->as_aperture); 738 info->ai_aperture_size = (rman_get_end(sc->as_aperture) 739 - rman_get_start(sc->as_aperture)) + 1; 740 info->ai_memory_allowed = sc->as_maxmem; 741 info->ai_memory_used = sc->as_allocated; 742 } 743 744 int 745 agp_acquire(device_t dev) 746 { 747 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 748 } 749 750 int 751 agp_release(device_t dev) 752 { 753 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 754 } 755 756 int 757 agp_enable(device_t dev, u_int32_t mode) 758 { 759 return AGP_ENABLE(dev, mode); 760 } 761 762 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 763 { 764 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 765 } 766 767 void agp_free_memory(device_t dev, void *handle) 768 { 769 struct agp_memory *mem = (struct agp_memory *) handle; 770 AGP_FREE_MEMORY(dev, mem); 771 } 772 773 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 774 { 775 struct agp_memory *mem = (struct agp_memory *) handle; 776 return AGP_BIND_MEMORY(dev, mem, offset); 777 } 778 779 int agp_unbind_memory(device_t dev, void *handle) 780 { 781 struct agp_memory *mem = (struct agp_memory *) handle; 782 return AGP_UNBIND_MEMORY(dev, mem); 783 } 784 785 void agp_memory_info(device_t dev, void *handle, struct 786 agp_memory_info *mi) 787 { 788 struct agp_memory *mem = (struct agp_memory *) handle; 789 790 mi->ami_size = mem->am_size; 791 mi->ami_physical = mem->am_physical; 792 mi->ami_offset = mem->am_offset; 793 mi->ami_is_bound = mem->am_is_bound; 794 } 795