1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/agpio.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 45 #include <dev/pci/pcivar.h> 46 #include <dev/pci/pcireg.h> 47 #include <pci/agppriv.h> 48 #include <pci/agpvar.h> 49 #include <pci/agpreg.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_pageout.h> 55 #include <vm/pmap.h> 56 57 #include <machine/md_var.h> 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 MODULE_VERSION(agp, 1); 63 64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 65 66 /* agp_drv.c */ 67 static d_open_t agp_open; 68 static d_close_t agp_close; 69 static d_ioctl_t agp_ioctl; 70 static d_mmap_t agp_mmap; 71 72 static struct cdevsw agp_cdevsw = { 73 .d_version = D_VERSION, 74 .d_flags = D_NEEDGIANT, 75 .d_open = agp_open, 76 .d_close = agp_close, 77 .d_ioctl = agp_ioctl, 78 .d_mmap = agp_mmap, 79 .d_name = "agp", 80 }; 81 82 static devclass_t agp_devclass; 83 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev)) 84 85 /* Helper functions for implementing chipset mini drivers. */ 86 87 void 88 agp_flush_cache() 89 { 90 #if defined(__i386__) || defined(__amd64__) 91 wbinvd(); 92 #endif 93 } 94 95 u_int8_t 96 agp_find_caps(device_t dev) 97 { 98 int capreg; 99 100 101 if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0) 102 capreg = 0; 103 return (capreg); 104 } 105 106 /* 107 * Find an AGP display device (if any). 108 */ 109 static device_t 110 agp_find_display(void) 111 { 112 devclass_t pci = devclass_find("pci"); 113 device_t bus, dev = 0; 114 device_t *kids; 115 int busnum, numkids, i; 116 117 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 118 bus = devclass_get_device(pci, busnum); 119 if (!bus) 120 continue; 121 device_get_children(bus, &kids, &numkids); 122 for (i = 0; i < numkids; i++) { 123 dev = kids[i]; 124 if (pci_get_class(dev) == PCIC_DISPLAY 125 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 126 if (agp_find_caps(dev)) { 127 free(kids, M_TEMP); 128 return dev; 129 } 130 131 } 132 free(kids, M_TEMP); 133 } 134 135 return 0; 136 } 137 138 struct agp_gatt * 139 agp_alloc_gatt(device_t dev) 140 { 141 u_int32_t apsize = AGP_GET_APERTURE(dev); 142 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 143 struct agp_gatt *gatt; 144 145 if (bootverbose) 146 device_printf(dev, 147 "allocating GATT for aperture of size %dM\n", 148 apsize / (1024*1024)); 149 150 if (entries == 0) { 151 device_printf(dev, "bad aperture size\n"); 152 return NULL; 153 } 154 155 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 156 if (!gatt) 157 return 0; 158 159 gatt->ag_entries = entries; 160 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 161 0, ~0, PAGE_SIZE, 0); 162 if (!gatt->ag_virtual) { 163 if (bootverbose) 164 device_printf(dev, "contiguous allocation failed\n"); 165 free(gatt, M_AGP); 166 return 0; 167 } 168 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 169 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 170 agp_flush_cache(); 171 172 return gatt; 173 } 174 175 void 176 agp_free_gatt(struct agp_gatt *gatt) 177 { 178 contigfree(gatt->ag_virtual, 179 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 180 free(gatt, M_AGP); 181 } 182 183 static int agp_max[][2] = { 184 {0, 0}, 185 {32, 4}, 186 {64, 28}, 187 {128, 96}, 188 {256, 204}, 189 {512, 440}, 190 {1024, 942}, 191 {2048, 1920}, 192 {4096, 3932} 193 }; 194 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 195 196 int 197 agp_generic_attach(device_t dev) 198 { 199 struct agp_softc *sc = device_get_softc(dev); 200 int rid, memsize, i; 201 202 /* 203 * Find and map the aperture. 204 */ 205 rid = AGP_APBASE; 206 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 0); 207 if (!sc->as_aperture) 208 return ENOMEM; 209 210 /* 211 * Work out an upper bound for agp memory allocation. This 212 * uses a heurisitc table from the Linux driver. 213 */ 214 memsize = ptoa(Maxmem) >> 20; 215 for (i = 0; i < agp_max_size; i++) { 216 if (memsize <= agp_max[i][0]) 217 break; 218 } 219 if (i == agp_max_size) i = agp_max_size - 1; 220 sc->as_maxmem = agp_max[i][1] << 20U; 221 222 /* 223 * The lock is used to prevent re-entry to 224 * agp_generic_bind_memory() since that function can sleep. 225 */ 226 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 227 228 /* 229 * Initialise stuff for the userland device. 230 */ 231 agp_devclass = devclass_find("agp"); 232 TAILQ_INIT(&sc->as_memory); 233 sc->as_nextid = 1; 234 235 sc->as_devnode = make_dev(&agp_cdevsw, 236 device_get_unit(dev), 237 UID_ROOT, 238 GID_WHEEL, 239 0600, 240 "agpgart"); 241 242 return 0; 243 } 244 245 int 246 agp_generic_detach(device_t dev) 247 { 248 struct agp_softc *sc = device_get_softc(dev); 249 250 destroy_dev(sc->as_devnode); 251 bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture); 252 mtx_destroy(&sc->as_lock); 253 agp_flush_cache(); 254 return 0; 255 } 256 257 /* 258 * This does the enable logic for v3, with the same topology 259 * restrictions as in place for v2 -- one bus, one device on the bus. 260 */ 261 static int 262 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 263 { 264 u_int32_t tstatus, mstatus; 265 u_int32_t command; 266 int rq, sba, fw, rate, arqsz, cal; 267 268 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 269 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 270 271 /* Set RQ to the min of mode, tstatus and mstatus */ 272 rq = AGP_MODE_GET_RQ(mode); 273 if (AGP_MODE_GET_RQ(tstatus) < rq) 274 rq = AGP_MODE_GET_RQ(tstatus); 275 if (AGP_MODE_GET_RQ(mstatus) < rq) 276 rq = AGP_MODE_GET_RQ(mstatus); 277 278 /* 279 * ARQSZ - Set the value to the maximum one. 280 * Don't allow the mode register to override values. 281 */ 282 arqsz = AGP_MODE_GET_ARQSZ(mode); 283 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 284 rq = AGP_MODE_GET_ARQSZ(tstatus); 285 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 286 rq = AGP_MODE_GET_ARQSZ(mstatus); 287 288 /* Calibration cycle - don't allow override by mode register */ 289 cal = AGP_MODE_GET_CAL(tstatus); 290 if (AGP_MODE_GET_CAL(mstatus) < cal) 291 cal = AGP_MODE_GET_CAL(mstatus); 292 293 /* SBA must be supported for AGP v3. */ 294 sba = 1; 295 296 /* Set FW if all three support it. */ 297 fw = (AGP_MODE_GET_FW(tstatus) 298 & AGP_MODE_GET_FW(mstatus) 299 & AGP_MODE_GET_FW(mode)); 300 301 /* Figure out the max rate */ 302 rate = (AGP_MODE_GET_RATE(tstatus) 303 & AGP_MODE_GET_RATE(mstatus) 304 & AGP_MODE_GET_RATE(mode)); 305 if (rate & AGP_MODE_V3_RATE_8x) 306 rate = AGP_MODE_V3_RATE_8x; 307 else 308 rate = AGP_MODE_V3_RATE_4x; 309 if (bootverbose) 310 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 311 312 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 313 314 /* Construct the new mode word and tell the hardware */ 315 command = AGP_MODE_SET_RQ(0, rq); 316 command = AGP_MODE_SET_ARQSZ(command, arqsz); 317 command = AGP_MODE_SET_CAL(command, cal); 318 command = AGP_MODE_SET_SBA(command, sba); 319 command = AGP_MODE_SET_FW(command, fw); 320 command = AGP_MODE_SET_RATE(command, rate); 321 command = AGP_MODE_SET_AGP(command, 1); 322 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 323 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 324 325 return 0; 326 } 327 328 static int 329 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 330 { 331 u_int32_t tstatus, mstatus; 332 u_int32_t command; 333 int rq, sba, fw, rate; 334 335 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 336 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 337 338 /* Set RQ to the min of mode, tstatus and mstatus */ 339 rq = AGP_MODE_GET_RQ(mode); 340 if (AGP_MODE_GET_RQ(tstatus) < rq) 341 rq = AGP_MODE_GET_RQ(tstatus); 342 if (AGP_MODE_GET_RQ(mstatus) < rq) 343 rq = AGP_MODE_GET_RQ(mstatus); 344 345 /* Set SBA if all three can deal with SBA */ 346 sba = (AGP_MODE_GET_SBA(tstatus) 347 & AGP_MODE_GET_SBA(mstatus) 348 & AGP_MODE_GET_SBA(mode)); 349 350 /* Similar for FW */ 351 fw = (AGP_MODE_GET_FW(tstatus) 352 & AGP_MODE_GET_FW(mstatus) 353 & AGP_MODE_GET_FW(mode)); 354 355 /* Figure out the max rate */ 356 rate = (AGP_MODE_GET_RATE(tstatus) 357 & AGP_MODE_GET_RATE(mstatus) 358 & AGP_MODE_GET_RATE(mode)); 359 if (rate & AGP_MODE_V2_RATE_4x) 360 rate = AGP_MODE_V2_RATE_4x; 361 else if (rate & AGP_MODE_V2_RATE_2x) 362 rate = AGP_MODE_V2_RATE_2x; 363 else 364 rate = AGP_MODE_V2_RATE_1x; 365 if (bootverbose) 366 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 367 368 /* Construct the new mode word and tell the hardware */ 369 command = AGP_MODE_SET_RQ(0, rq); 370 command = AGP_MODE_SET_SBA(command, sba); 371 command = AGP_MODE_SET_FW(command, fw); 372 command = AGP_MODE_SET_RATE(command, rate); 373 command = AGP_MODE_SET_AGP(command, 1); 374 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 375 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 376 377 return 0; 378 } 379 380 int 381 agp_generic_enable(device_t dev, u_int32_t mode) 382 { 383 device_t mdev = agp_find_display(); 384 u_int32_t tstatus, mstatus; 385 386 if (!mdev) { 387 AGP_DPF("can't find display\n"); 388 return ENXIO; 389 } 390 391 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 392 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 393 394 /* 395 * Check display and bridge for AGP v3 support. AGP v3 allows 396 * more variety in topology than v2, e.g. multiple AGP devices 397 * attached to one bridge, or multiple AGP bridges in one 398 * system. This doesn't attempt to address those situations, 399 * but should work fine for a classic single AGP slot system 400 * with AGP v3. 401 */ 402 if (AGP_MODE_GET_MODE_3(tstatus) && AGP_MODE_GET_MODE_3(mstatus)) 403 return (agp_v3_enable(dev, mdev, mode)); 404 else 405 return (agp_v2_enable(dev, mdev, mode)); 406 } 407 408 struct agp_memory * 409 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 410 { 411 struct agp_softc *sc = device_get_softc(dev); 412 struct agp_memory *mem; 413 414 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 415 return 0; 416 417 if (sc->as_allocated + size > sc->as_maxmem) 418 return 0; 419 420 if (type != 0) { 421 printf("agp_generic_alloc_memory: unsupported type %d\n", 422 type); 423 return 0; 424 } 425 426 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 427 mem->am_id = sc->as_nextid++; 428 mem->am_size = size; 429 mem->am_type = 0; 430 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 431 mem->am_physical = 0; 432 mem->am_offset = 0; 433 mem->am_is_bound = 0; 434 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 435 sc->as_allocated += size; 436 437 return mem; 438 } 439 440 int 441 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 442 { 443 struct agp_softc *sc = device_get_softc(dev); 444 445 if (mem->am_is_bound) 446 return EBUSY; 447 448 sc->as_allocated -= mem->am_size; 449 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 450 vm_object_deallocate(mem->am_obj); 451 free(mem, M_AGP); 452 return 0; 453 } 454 455 int 456 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 457 vm_offset_t offset) 458 { 459 struct agp_softc *sc = device_get_softc(dev); 460 vm_offset_t i, j, k; 461 vm_page_t m; 462 int error; 463 464 /* Do some sanity checks first. */ 465 if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 || 466 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 467 device_printf(dev, "binding memory at bad offset %#x\n", 468 (int)offset); 469 return EINVAL; 470 } 471 472 /* 473 * Allocate the pages early, before acquiring the lock, 474 * because vm_page_grab() used with VM_ALLOC_RETRY may 475 * block and we can't hold a mutex while blocking. 476 */ 477 VM_OBJECT_LOCK(mem->am_obj); 478 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 479 /* 480 * Find a page from the object and wire it 481 * down. This page will be mapped using one or more 482 * entries in the GATT (assuming that PAGE_SIZE >= 483 * AGP_PAGE_SIZE. If this is the first call to bind, 484 * the pages will be allocated and zeroed. 485 */ 486 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 487 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 488 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m)); 489 } 490 VM_OBJECT_UNLOCK(mem->am_obj); 491 492 mtx_lock(&sc->as_lock); 493 494 if (mem->am_is_bound) { 495 device_printf(dev, "memory already bound\n"); 496 error = EINVAL; 497 VM_OBJECT_LOCK(mem->am_obj); 498 goto bad; 499 } 500 501 /* 502 * Bind the individual pages and flush the chipset's 503 * TLB. 504 */ 505 VM_OBJECT_LOCK(mem->am_obj); 506 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 507 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 508 509 /* 510 * Install entries in the GATT, making sure that if 511 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 512 * aligned to PAGE_SIZE, we don't modify too many GATT 513 * entries. 514 */ 515 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 516 j += AGP_PAGE_SIZE) { 517 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 518 AGP_DPF("binding offset %#x to pa %#x\n", 519 offset + i + j, pa); 520 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 521 if (error) { 522 /* 523 * Bail out. Reverse all the mappings 524 * and unwire the pages. 525 */ 526 vm_page_lock_queues(); 527 vm_page_wakeup(m); 528 vm_page_unlock_queues(); 529 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 530 AGP_UNBIND_PAGE(dev, offset + k); 531 goto bad; 532 } 533 } 534 vm_page_lock_queues(); 535 vm_page_wakeup(m); 536 vm_page_unlock_queues(); 537 } 538 VM_OBJECT_UNLOCK(mem->am_obj); 539 540 /* 541 * Flush the cpu cache since we are providing a new mapping 542 * for these pages. 543 */ 544 agp_flush_cache(); 545 546 /* 547 * Make sure the chipset gets the new mappings. 548 */ 549 AGP_FLUSH_TLB(dev); 550 551 mem->am_offset = offset; 552 mem->am_is_bound = 1; 553 554 mtx_unlock(&sc->as_lock); 555 556 return 0; 557 bad: 558 mtx_unlock(&sc->as_lock); 559 VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED); 560 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 561 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 562 vm_page_lock_queues(); 563 vm_page_unwire(m, 0); 564 vm_page_unlock_queues(); 565 } 566 VM_OBJECT_UNLOCK(mem->am_obj); 567 568 return error; 569 } 570 571 int 572 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 573 { 574 struct agp_softc *sc = device_get_softc(dev); 575 vm_page_t m; 576 int i; 577 578 mtx_lock(&sc->as_lock); 579 580 if (!mem->am_is_bound) { 581 device_printf(dev, "memory is not bound\n"); 582 mtx_unlock(&sc->as_lock); 583 return EINVAL; 584 } 585 586 587 /* 588 * Unbind the individual pages and flush the chipset's 589 * TLB. Unwire the pages so they can be swapped. 590 */ 591 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 592 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 593 VM_OBJECT_LOCK(mem->am_obj); 594 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 595 m = vm_page_lookup(mem->am_obj, atop(i)); 596 vm_page_lock_queues(); 597 vm_page_unwire(m, 0); 598 vm_page_unlock_queues(); 599 } 600 VM_OBJECT_UNLOCK(mem->am_obj); 601 602 agp_flush_cache(); 603 AGP_FLUSH_TLB(dev); 604 605 mem->am_offset = 0; 606 mem->am_is_bound = 0; 607 608 mtx_unlock(&sc->as_lock); 609 610 return 0; 611 } 612 613 /* Helper functions for implementing user/kernel api */ 614 615 static int 616 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 617 { 618 struct agp_softc *sc = device_get_softc(dev); 619 620 if (sc->as_state != AGP_ACQUIRE_FREE) 621 return EBUSY; 622 sc->as_state = state; 623 624 return 0; 625 } 626 627 static int 628 agp_release_helper(device_t dev, enum agp_acquire_state state) 629 { 630 struct agp_softc *sc = device_get_softc(dev); 631 632 if (sc->as_state == AGP_ACQUIRE_FREE) 633 return 0; 634 635 if (sc->as_state != state) 636 return EBUSY; 637 638 sc->as_state = AGP_ACQUIRE_FREE; 639 return 0; 640 } 641 642 static struct agp_memory * 643 agp_find_memory(device_t dev, int id) 644 { 645 struct agp_softc *sc = device_get_softc(dev); 646 struct agp_memory *mem; 647 648 AGP_DPF("searching for memory block %d\n", id); 649 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 650 AGP_DPF("considering memory block %d\n", mem->am_id); 651 if (mem->am_id == id) 652 return mem; 653 } 654 return 0; 655 } 656 657 /* Implementation of the userland ioctl api */ 658 659 static int 660 agp_info_user(device_t dev, agp_info *info) 661 { 662 struct agp_softc *sc = device_get_softc(dev); 663 664 bzero(info, sizeof *info); 665 info->bridge_id = pci_get_devid(dev); 666 info->agp_mode = 667 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 668 info->aper_base = rman_get_start(sc->as_aperture); 669 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 670 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 671 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 672 673 return 0; 674 } 675 676 static int 677 agp_setup_user(device_t dev, agp_setup *setup) 678 { 679 return AGP_ENABLE(dev, setup->agp_mode); 680 } 681 682 static int 683 agp_allocate_user(device_t dev, agp_allocate *alloc) 684 { 685 struct agp_memory *mem; 686 687 mem = AGP_ALLOC_MEMORY(dev, 688 alloc->type, 689 alloc->pg_count << AGP_PAGE_SHIFT); 690 if (mem) { 691 alloc->key = mem->am_id; 692 alloc->physical = mem->am_physical; 693 return 0; 694 } else { 695 return ENOMEM; 696 } 697 } 698 699 static int 700 agp_deallocate_user(device_t dev, int id) 701 { 702 struct agp_memory *mem = agp_find_memory(dev, id);; 703 704 if (mem) { 705 AGP_FREE_MEMORY(dev, mem); 706 return 0; 707 } else { 708 return ENOENT; 709 } 710 } 711 712 static int 713 agp_bind_user(device_t dev, agp_bind *bind) 714 { 715 struct agp_memory *mem = agp_find_memory(dev, bind->key); 716 717 if (!mem) 718 return ENOENT; 719 720 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 721 } 722 723 static int 724 agp_unbind_user(device_t dev, agp_unbind *unbind) 725 { 726 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 727 728 if (!mem) 729 return ENOENT; 730 731 return AGP_UNBIND_MEMORY(dev, mem); 732 } 733 734 static int 735 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 736 { 737 device_t dev = KDEV2DEV(kdev); 738 struct agp_softc *sc = device_get_softc(dev); 739 740 if (!sc->as_isopen) { 741 sc->as_isopen = 1; 742 device_busy(dev); 743 } 744 745 return 0; 746 } 747 748 static int 749 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 750 { 751 device_t dev = KDEV2DEV(kdev); 752 struct agp_softc *sc = device_get_softc(dev); 753 struct agp_memory *mem; 754 755 /* 756 * Clear the GATT and force release on last close 757 */ 758 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 759 if (mem->am_is_bound) 760 AGP_UNBIND_MEMORY(dev, mem); 761 AGP_FREE_MEMORY(dev, mem); 762 } 763 if (sc->as_state == AGP_ACQUIRE_USER) 764 agp_release_helper(dev, AGP_ACQUIRE_USER); 765 sc->as_isopen = 0; 766 device_unbusy(dev); 767 768 return 0; 769 } 770 771 static int 772 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 773 { 774 device_t dev = KDEV2DEV(kdev); 775 776 switch (cmd) { 777 case AGPIOC_INFO: 778 return agp_info_user(dev, (agp_info *) data); 779 780 case AGPIOC_ACQUIRE: 781 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 782 783 case AGPIOC_RELEASE: 784 return agp_release_helper(dev, AGP_ACQUIRE_USER); 785 786 case AGPIOC_SETUP: 787 return agp_setup_user(dev, (agp_setup *)data); 788 789 case AGPIOC_ALLOCATE: 790 return agp_allocate_user(dev, (agp_allocate *)data); 791 792 case AGPIOC_DEALLOCATE: 793 return agp_deallocate_user(dev, *(int *) data); 794 795 case AGPIOC_BIND: 796 return agp_bind_user(dev, (agp_bind *)data); 797 798 case AGPIOC_UNBIND: 799 return agp_unbind_user(dev, (agp_unbind *)data); 800 801 } 802 803 return EINVAL; 804 } 805 806 static int 807 agp_mmap(struct cdev *kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot) 808 { 809 device_t dev = KDEV2DEV(kdev); 810 struct agp_softc *sc = device_get_softc(dev); 811 812 if (offset > AGP_GET_APERTURE(dev)) 813 return -1; 814 *paddr = rman_get_start(sc->as_aperture) + offset; 815 return 0; 816 } 817 818 /* Implementation of the kernel api */ 819 820 device_t 821 agp_find_device() 822 { 823 device_t *children, child; 824 int i, count; 825 826 if (!agp_devclass) 827 return NULL; 828 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 829 return NULL; 830 child = NULL; 831 for (i = 0; i < count; i++) { 832 if (device_is_attached(children[i])) { 833 child = children[i]; 834 break; 835 } 836 } 837 free(children, M_TEMP); 838 return child; 839 } 840 841 enum agp_acquire_state 842 agp_state(device_t dev) 843 { 844 struct agp_softc *sc = device_get_softc(dev); 845 return sc->as_state; 846 } 847 848 void 849 agp_get_info(device_t dev, struct agp_info *info) 850 { 851 struct agp_softc *sc = device_get_softc(dev); 852 853 info->ai_mode = 854 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 855 info->ai_aperture_base = rman_get_start(sc->as_aperture); 856 info->ai_aperture_size = rman_get_size(sc->as_aperture); 857 info->ai_memory_allowed = sc->as_maxmem; 858 info->ai_memory_used = sc->as_allocated; 859 } 860 861 int 862 agp_acquire(device_t dev) 863 { 864 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 865 } 866 867 int 868 agp_release(device_t dev) 869 { 870 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 871 } 872 873 int 874 agp_enable(device_t dev, u_int32_t mode) 875 { 876 return AGP_ENABLE(dev, mode); 877 } 878 879 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 880 { 881 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 882 } 883 884 void agp_free_memory(device_t dev, void *handle) 885 { 886 struct agp_memory *mem = (struct agp_memory *) handle; 887 AGP_FREE_MEMORY(dev, mem); 888 } 889 890 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 891 { 892 struct agp_memory *mem = (struct agp_memory *) handle; 893 return AGP_BIND_MEMORY(dev, mem, offset); 894 } 895 896 int agp_unbind_memory(device_t dev, void *handle) 897 { 898 struct agp_memory *mem = (struct agp_memory *) handle; 899 return AGP_UNBIND_MEMORY(dev, mem); 900 } 901 902 void agp_memory_info(device_t dev, void *handle, struct 903 agp_memory_info *mi) 904 { 905 struct agp_memory *mem = (struct agp_memory *) handle; 906 907 mi->ami_size = mem->am_size; 908 mi->ami_physical = mem->am_physical; 909 mi->ami_offset = mem->am_offset; 910 mi->ami_is_bound = mem->am_is_bound; 911 } 912