1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/agpio.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 45 #include <dev/pci/pcivar.h> 46 #include <dev/pci/pcireg.h> 47 #include <pci/agppriv.h> 48 #include <pci/agpvar.h> 49 #include <pci/agpreg.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_pageout.h> 55 #include <vm/pmap.h> 56 57 #include <machine/md_var.h> 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 MODULE_VERSION(agp, 1); 63 64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 65 66 /* agp_drv.c */ 67 static d_open_t agp_open; 68 static d_close_t agp_close; 69 static d_ioctl_t agp_ioctl; 70 static d_mmap_t agp_mmap; 71 72 static struct cdevsw agp_cdevsw = { 73 .d_version = D_VERSION, 74 .d_flags = D_NEEDGIANT, 75 .d_open = agp_open, 76 .d_close = agp_close, 77 .d_ioctl = agp_ioctl, 78 .d_mmap = agp_mmap, 79 .d_name = "agp", 80 }; 81 82 static devclass_t agp_devclass; 83 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev)) 84 85 /* Helper functions for implementing chipset mini drivers. */ 86 87 void 88 agp_flush_cache() 89 { 90 #if defined(__i386__) || defined(__amd64__) 91 wbinvd(); 92 #endif 93 #ifdef __alpha__ 94 /* FIXME: This is most likely not correct as it doesn't flush CPU 95 * write caches, but we don't have a facility to do that and 96 * this is all linux does, too */ 97 alpha_mb(); 98 #endif 99 } 100 101 u_int8_t 102 agp_find_caps(device_t dev) 103 { 104 int capreg; 105 106 107 if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0) 108 capreg = 0; 109 return (capreg); 110 } 111 112 /* 113 * Find an AGP display device (if any). 114 */ 115 static device_t 116 agp_find_display(void) 117 { 118 devclass_t pci = devclass_find("pci"); 119 device_t bus, dev = 0; 120 device_t *kids; 121 int busnum, numkids, i; 122 123 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 124 bus = devclass_get_device(pci, busnum); 125 if (!bus) 126 continue; 127 device_get_children(bus, &kids, &numkids); 128 for (i = 0; i < numkids; i++) { 129 dev = kids[i]; 130 if (pci_get_class(dev) == PCIC_DISPLAY 131 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 132 if (agp_find_caps(dev)) { 133 free(kids, M_TEMP); 134 return dev; 135 } 136 137 } 138 free(kids, M_TEMP); 139 } 140 141 return 0; 142 } 143 144 struct agp_gatt * 145 agp_alloc_gatt(device_t dev) 146 { 147 u_int32_t apsize = AGP_GET_APERTURE(dev); 148 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 149 struct agp_gatt *gatt; 150 151 if (bootverbose) 152 device_printf(dev, 153 "allocating GATT for aperture of size %dM\n", 154 apsize / (1024*1024)); 155 156 if (entries == 0) { 157 device_printf(dev, "bad aperture size\n"); 158 return NULL; 159 } 160 161 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 162 if (!gatt) 163 return 0; 164 165 gatt->ag_entries = entries; 166 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 167 0, ~0, PAGE_SIZE, 0); 168 if (!gatt->ag_virtual) { 169 if (bootverbose) 170 device_printf(dev, "contiguous allocation failed\n"); 171 free(gatt, M_AGP); 172 return 0; 173 } 174 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 175 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 176 agp_flush_cache(); 177 178 return gatt; 179 } 180 181 void 182 agp_free_gatt(struct agp_gatt *gatt) 183 { 184 contigfree(gatt->ag_virtual, 185 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 186 free(gatt, M_AGP); 187 } 188 189 static int agp_max[][2] = { 190 {0, 0}, 191 {32, 4}, 192 {64, 28}, 193 {128, 96}, 194 {256, 204}, 195 {512, 440}, 196 {1024, 942}, 197 {2048, 1920}, 198 {4096, 3932} 199 }; 200 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 201 202 int 203 agp_generic_attach(device_t dev) 204 { 205 struct agp_softc *sc = device_get_softc(dev); 206 int rid, memsize, i; 207 208 /* 209 * Find and map the aperture. 210 */ 211 rid = AGP_APBASE; 212 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 0); 213 if (!sc->as_aperture) 214 return ENOMEM; 215 216 /* 217 * Work out an upper bound for agp memory allocation. This 218 * uses a heurisitc table from the Linux driver. 219 */ 220 memsize = ptoa(Maxmem) >> 20; 221 for (i = 0; i < agp_max_size; i++) { 222 if (memsize <= agp_max[i][0]) 223 break; 224 } 225 if (i == agp_max_size) i = agp_max_size - 1; 226 sc->as_maxmem = agp_max[i][1] << 20U; 227 228 /* 229 * The lock is used to prevent re-entry to 230 * agp_generic_bind_memory() since that function can sleep. 231 */ 232 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 233 234 /* 235 * Initialise stuff for the userland device. 236 */ 237 agp_devclass = devclass_find("agp"); 238 TAILQ_INIT(&sc->as_memory); 239 sc->as_nextid = 1; 240 241 sc->as_devnode = make_dev(&agp_cdevsw, 242 device_get_unit(dev), 243 UID_ROOT, 244 GID_WHEEL, 245 0600, 246 "agpgart"); 247 248 return 0; 249 } 250 251 int 252 agp_generic_detach(device_t dev) 253 { 254 struct agp_softc *sc = device_get_softc(dev); 255 256 destroy_dev(sc->as_devnode); 257 bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture); 258 mtx_destroy(&sc->as_lock); 259 agp_flush_cache(); 260 return 0; 261 } 262 263 /* 264 * This does the enable logic for v3, with the same topology 265 * restrictions as in place for v2 -- one bus, one device on the bus. 266 */ 267 static int 268 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 269 { 270 u_int32_t tstatus, mstatus; 271 u_int32_t command; 272 int rq, sba, fw, rate, arqsz, cal; 273 274 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 275 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 276 277 /* Set RQ to the min of mode, tstatus and mstatus */ 278 rq = AGP_MODE_GET_RQ(mode); 279 if (AGP_MODE_GET_RQ(tstatus) < rq) 280 rq = AGP_MODE_GET_RQ(tstatus); 281 if (AGP_MODE_GET_RQ(mstatus) < rq) 282 rq = AGP_MODE_GET_RQ(mstatus); 283 284 /* 285 * ARQSZ - Set the value to the maximum one. 286 * Don't allow the mode register to override values. 287 */ 288 arqsz = AGP_MODE_GET_ARQSZ(mode); 289 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 290 rq = AGP_MODE_GET_ARQSZ(tstatus); 291 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 292 rq = AGP_MODE_GET_ARQSZ(mstatus); 293 294 /* Calibration cycle - don't allow override by mode register */ 295 cal = AGP_MODE_GET_CAL(tstatus); 296 if (AGP_MODE_GET_CAL(mstatus) < cal) 297 cal = AGP_MODE_GET_CAL(mstatus); 298 299 /* SBA must be supported for AGP v3. */ 300 sba = 1; 301 302 /* Set FW if all three support it. */ 303 fw = (AGP_MODE_GET_FW(tstatus) 304 & AGP_MODE_GET_FW(mstatus) 305 & AGP_MODE_GET_FW(mode)); 306 307 /* Figure out the max rate */ 308 rate = (AGP_MODE_GET_RATE(tstatus) 309 & AGP_MODE_GET_RATE(mstatus) 310 & AGP_MODE_GET_RATE(mode)); 311 if (rate & AGP_MODE_V3_RATE_8x) 312 rate = AGP_MODE_V3_RATE_8x; 313 else 314 rate = AGP_MODE_V3_RATE_4x; 315 if (bootverbose) 316 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 317 318 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 319 320 /* Construct the new mode word and tell the hardware */ 321 command = AGP_MODE_SET_RQ(0, rq); 322 command = AGP_MODE_SET_ARQSZ(command, arqsz); 323 command = AGP_MODE_SET_CAL(command, cal); 324 command = AGP_MODE_SET_SBA(command, sba); 325 command = AGP_MODE_SET_FW(command, fw); 326 command = AGP_MODE_SET_RATE(command, rate); 327 command = AGP_MODE_SET_AGP(command, 1); 328 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 329 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 330 331 return 0; 332 } 333 334 static int 335 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 336 { 337 u_int32_t tstatus, mstatus; 338 u_int32_t command; 339 int rq, sba, fw, rate; 340 341 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 342 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 343 344 /* Set RQ to the min of mode, tstatus and mstatus */ 345 rq = AGP_MODE_GET_RQ(mode); 346 if (AGP_MODE_GET_RQ(tstatus) < rq) 347 rq = AGP_MODE_GET_RQ(tstatus); 348 if (AGP_MODE_GET_RQ(mstatus) < rq) 349 rq = AGP_MODE_GET_RQ(mstatus); 350 351 /* Set SBA if all three can deal with SBA */ 352 sba = (AGP_MODE_GET_SBA(tstatus) 353 & AGP_MODE_GET_SBA(mstatus) 354 & AGP_MODE_GET_SBA(mode)); 355 356 /* Similar for FW */ 357 fw = (AGP_MODE_GET_FW(tstatus) 358 & AGP_MODE_GET_FW(mstatus) 359 & AGP_MODE_GET_FW(mode)); 360 361 /* Figure out the max rate */ 362 rate = (AGP_MODE_GET_RATE(tstatus) 363 & AGP_MODE_GET_RATE(mstatus) 364 & AGP_MODE_GET_RATE(mode)); 365 if (rate & AGP_MODE_V2_RATE_4x) 366 rate = AGP_MODE_V2_RATE_4x; 367 else if (rate & AGP_MODE_V2_RATE_2x) 368 rate = AGP_MODE_V2_RATE_2x; 369 else 370 rate = AGP_MODE_V2_RATE_1x; 371 if (bootverbose) 372 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 373 374 /* Construct the new mode word and tell the hardware */ 375 command = AGP_MODE_SET_RQ(0, rq); 376 command = AGP_MODE_SET_SBA(command, sba); 377 command = AGP_MODE_SET_FW(command, fw); 378 command = AGP_MODE_SET_RATE(command, rate); 379 command = AGP_MODE_SET_AGP(command, 1); 380 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 381 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 382 383 return 0; 384 } 385 386 int 387 agp_generic_enable(device_t dev, u_int32_t mode) 388 { 389 device_t mdev = agp_find_display(); 390 u_int32_t tstatus, mstatus; 391 392 if (!mdev) { 393 AGP_DPF("can't find display\n"); 394 return ENXIO; 395 } 396 397 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 398 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 399 400 /* 401 * Check display and bridge for AGP v3 support. AGP v3 allows 402 * more variety in topology than v2, e.g. multiple AGP devices 403 * attached to one bridge, or multiple AGP bridges in one 404 * system. This doesn't attempt to address those situations, 405 * but should work fine for a classic single AGP slot system 406 * with AGP v3. 407 */ 408 if (AGP_MODE_GET_MODE_3(tstatus) && AGP_MODE_GET_MODE_3(mstatus)) 409 return (agp_v3_enable(dev, mdev, mode)); 410 else 411 return (agp_v2_enable(dev, mdev, mode)); 412 } 413 414 struct agp_memory * 415 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 416 { 417 struct agp_softc *sc = device_get_softc(dev); 418 struct agp_memory *mem; 419 420 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 421 return 0; 422 423 if (sc->as_allocated + size > sc->as_maxmem) 424 return 0; 425 426 if (type != 0) { 427 printf("agp_generic_alloc_memory: unsupported type %d\n", 428 type); 429 return 0; 430 } 431 432 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 433 mem->am_id = sc->as_nextid++; 434 mem->am_size = size; 435 mem->am_type = 0; 436 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 437 mem->am_physical = 0; 438 mem->am_offset = 0; 439 mem->am_is_bound = 0; 440 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 441 sc->as_allocated += size; 442 443 return mem; 444 } 445 446 int 447 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 448 { 449 struct agp_softc *sc = device_get_softc(dev); 450 451 if (mem->am_is_bound) 452 return EBUSY; 453 454 sc->as_allocated -= mem->am_size; 455 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 456 vm_object_deallocate(mem->am_obj); 457 free(mem, M_AGP); 458 return 0; 459 } 460 461 int 462 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 463 vm_offset_t offset) 464 { 465 struct agp_softc *sc = device_get_softc(dev); 466 vm_offset_t i, j, k; 467 vm_page_t m; 468 int error; 469 470 /* Do some sanity checks first. */ 471 if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 || 472 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 473 device_printf(dev, "binding memory at bad offset %#x\n", 474 (int)offset); 475 return EINVAL; 476 } 477 478 /* 479 * Allocate the pages early, before acquiring the lock, 480 * because vm_page_grab() used with VM_ALLOC_RETRY may 481 * block and we can't hold a mutex while blocking. 482 */ 483 VM_OBJECT_LOCK(mem->am_obj); 484 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 485 /* 486 * Find a page from the object and wire it 487 * down. This page will be mapped using one or more 488 * entries in the GATT (assuming that PAGE_SIZE >= 489 * AGP_PAGE_SIZE. If this is the first call to bind, 490 * the pages will be allocated and zeroed. 491 */ 492 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 493 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 494 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m)); 495 } 496 VM_OBJECT_UNLOCK(mem->am_obj); 497 498 mtx_lock(&sc->as_lock); 499 500 if (mem->am_is_bound) { 501 device_printf(dev, "memory already bound\n"); 502 error = EINVAL; 503 VM_OBJECT_LOCK(mem->am_obj); 504 goto bad; 505 } 506 507 /* 508 * Bind the individual pages and flush the chipset's 509 * TLB. 510 * 511 * XXX Presumably, this needs to be the pci address on alpha 512 * (i.e. use alpha_XXX_dmamap()). I don't have access to any 513 * alpha AGP hardware to check. 514 */ 515 VM_OBJECT_LOCK(mem->am_obj); 516 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 517 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 518 519 /* 520 * Install entries in the GATT, making sure that if 521 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 522 * aligned to PAGE_SIZE, we don't modify too many GATT 523 * entries. 524 */ 525 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 526 j += AGP_PAGE_SIZE) { 527 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 528 AGP_DPF("binding offset %#x to pa %#x\n", 529 offset + i + j, pa); 530 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 531 if (error) { 532 /* 533 * Bail out. Reverse all the mappings 534 * and unwire the pages. 535 */ 536 vm_page_lock_queues(); 537 vm_page_wakeup(m); 538 vm_page_unlock_queues(); 539 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 540 AGP_UNBIND_PAGE(dev, offset + k); 541 goto bad; 542 } 543 } 544 vm_page_lock_queues(); 545 vm_page_wakeup(m); 546 vm_page_unlock_queues(); 547 } 548 VM_OBJECT_UNLOCK(mem->am_obj); 549 550 /* 551 * Flush the cpu cache since we are providing a new mapping 552 * for these pages. 553 */ 554 agp_flush_cache(); 555 556 /* 557 * Make sure the chipset gets the new mappings. 558 */ 559 AGP_FLUSH_TLB(dev); 560 561 mem->am_offset = offset; 562 mem->am_is_bound = 1; 563 564 mtx_unlock(&sc->as_lock); 565 566 return 0; 567 bad: 568 mtx_unlock(&sc->as_lock); 569 VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED); 570 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 571 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 572 vm_page_lock_queues(); 573 vm_page_unwire(m, 0); 574 vm_page_unlock_queues(); 575 } 576 VM_OBJECT_UNLOCK(mem->am_obj); 577 578 return error; 579 } 580 581 int 582 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 583 { 584 struct agp_softc *sc = device_get_softc(dev); 585 vm_page_t m; 586 int i; 587 588 mtx_lock(&sc->as_lock); 589 590 if (!mem->am_is_bound) { 591 device_printf(dev, "memory is not bound\n"); 592 mtx_unlock(&sc->as_lock); 593 return EINVAL; 594 } 595 596 597 /* 598 * Unbind the individual pages and flush the chipset's 599 * TLB. Unwire the pages so they can be swapped. 600 */ 601 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 602 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 603 VM_OBJECT_LOCK(mem->am_obj); 604 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 605 m = vm_page_lookup(mem->am_obj, atop(i)); 606 vm_page_lock_queues(); 607 vm_page_unwire(m, 0); 608 vm_page_unlock_queues(); 609 } 610 VM_OBJECT_UNLOCK(mem->am_obj); 611 612 agp_flush_cache(); 613 AGP_FLUSH_TLB(dev); 614 615 mem->am_offset = 0; 616 mem->am_is_bound = 0; 617 618 mtx_unlock(&sc->as_lock); 619 620 return 0; 621 } 622 623 /* Helper functions for implementing user/kernel api */ 624 625 static int 626 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 627 { 628 struct agp_softc *sc = device_get_softc(dev); 629 630 if (sc->as_state != AGP_ACQUIRE_FREE) 631 return EBUSY; 632 sc->as_state = state; 633 634 return 0; 635 } 636 637 static int 638 agp_release_helper(device_t dev, enum agp_acquire_state state) 639 { 640 struct agp_softc *sc = device_get_softc(dev); 641 642 if (sc->as_state == AGP_ACQUIRE_FREE) 643 return 0; 644 645 if (sc->as_state != state) 646 return EBUSY; 647 648 sc->as_state = AGP_ACQUIRE_FREE; 649 return 0; 650 } 651 652 static struct agp_memory * 653 agp_find_memory(device_t dev, int id) 654 { 655 struct agp_softc *sc = device_get_softc(dev); 656 struct agp_memory *mem; 657 658 AGP_DPF("searching for memory block %d\n", id); 659 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 660 AGP_DPF("considering memory block %d\n", mem->am_id); 661 if (mem->am_id == id) 662 return mem; 663 } 664 return 0; 665 } 666 667 /* Implementation of the userland ioctl api */ 668 669 static int 670 agp_info_user(device_t dev, agp_info *info) 671 { 672 struct agp_softc *sc = device_get_softc(dev); 673 674 bzero(info, sizeof *info); 675 info->bridge_id = pci_get_devid(dev); 676 info->agp_mode = 677 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 678 info->aper_base = rman_get_start(sc->as_aperture); 679 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 680 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 681 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 682 683 return 0; 684 } 685 686 static int 687 agp_setup_user(device_t dev, agp_setup *setup) 688 { 689 return AGP_ENABLE(dev, setup->agp_mode); 690 } 691 692 static int 693 agp_allocate_user(device_t dev, agp_allocate *alloc) 694 { 695 struct agp_memory *mem; 696 697 mem = AGP_ALLOC_MEMORY(dev, 698 alloc->type, 699 alloc->pg_count << AGP_PAGE_SHIFT); 700 if (mem) { 701 alloc->key = mem->am_id; 702 alloc->physical = mem->am_physical; 703 return 0; 704 } else { 705 return ENOMEM; 706 } 707 } 708 709 static int 710 agp_deallocate_user(device_t dev, int id) 711 { 712 struct agp_memory *mem = agp_find_memory(dev, id);; 713 714 if (mem) { 715 AGP_FREE_MEMORY(dev, mem); 716 return 0; 717 } else { 718 return ENOENT; 719 } 720 } 721 722 static int 723 agp_bind_user(device_t dev, agp_bind *bind) 724 { 725 struct agp_memory *mem = agp_find_memory(dev, bind->key); 726 727 if (!mem) 728 return ENOENT; 729 730 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 731 } 732 733 static int 734 agp_unbind_user(device_t dev, agp_unbind *unbind) 735 { 736 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 737 738 if (!mem) 739 return ENOENT; 740 741 return AGP_UNBIND_MEMORY(dev, mem); 742 } 743 744 static int 745 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 746 { 747 device_t dev = KDEV2DEV(kdev); 748 struct agp_softc *sc = device_get_softc(dev); 749 750 if (!sc->as_isopen) { 751 sc->as_isopen = 1; 752 device_busy(dev); 753 } 754 755 return 0; 756 } 757 758 static int 759 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 760 { 761 device_t dev = KDEV2DEV(kdev); 762 struct agp_softc *sc = device_get_softc(dev); 763 struct agp_memory *mem; 764 765 /* 766 * Clear the GATT and force release on last close 767 */ 768 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 769 if (mem->am_is_bound) 770 AGP_UNBIND_MEMORY(dev, mem); 771 AGP_FREE_MEMORY(dev, mem); 772 } 773 if (sc->as_state == AGP_ACQUIRE_USER) 774 agp_release_helper(dev, AGP_ACQUIRE_USER); 775 sc->as_isopen = 0; 776 device_unbusy(dev); 777 778 return 0; 779 } 780 781 static int 782 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 783 { 784 device_t dev = KDEV2DEV(kdev); 785 786 switch (cmd) { 787 case AGPIOC_INFO: 788 return agp_info_user(dev, (agp_info *) data); 789 790 case AGPIOC_ACQUIRE: 791 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 792 793 case AGPIOC_RELEASE: 794 return agp_release_helper(dev, AGP_ACQUIRE_USER); 795 796 case AGPIOC_SETUP: 797 return agp_setup_user(dev, (agp_setup *)data); 798 799 case AGPIOC_ALLOCATE: 800 return agp_allocate_user(dev, (agp_allocate *)data); 801 802 case AGPIOC_DEALLOCATE: 803 return agp_deallocate_user(dev, *(int *) data); 804 805 case AGPIOC_BIND: 806 return agp_bind_user(dev, (agp_bind *)data); 807 808 case AGPIOC_UNBIND: 809 return agp_unbind_user(dev, (agp_unbind *)data); 810 811 } 812 813 return EINVAL; 814 } 815 816 static int 817 agp_mmap(struct cdev *kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot) 818 { 819 device_t dev = KDEV2DEV(kdev); 820 struct agp_softc *sc = device_get_softc(dev); 821 822 if (offset > AGP_GET_APERTURE(dev)) 823 return -1; 824 *paddr = rman_get_start(sc->as_aperture) + offset; 825 return 0; 826 } 827 828 /* Implementation of the kernel api */ 829 830 device_t 831 agp_find_device() 832 { 833 device_t *children, child; 834 int i, count; 835 836 if (!agp_devclass) 837 return NULL; 838 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 839 return NULL; 840 child = NULL; 841 for (i = 0; i < count; i++) { 842 if (device_is_attached(children[i])) { 843 child = children[i]; 844 break; 845 } 846 } 847 free(children, M_TEMP); 848 return child; 849 } 850 851 enum agp_acquire_state 852 agp_state(device_t dev) 853 { 854 struct agp_softc *sc = device_get_softc(dev); 855 return sc->as_state; 856 } 857 858 void 859 agp_get_info(device_t dev, struct agp_info *info) 860 { 861 struct agp_softc *sc = device_get_softc(dev); 862 863 info->ai_mode = 864 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 865 info->ai_aperture_base = rman_get_start(sc->as_aperture); 866 info->ai_aperture_size = rman_get_size(sc->as_aperture); 867 info->ai_memory_allowed = sc->as_maxmem; 868 info->ai_memory_used = sc->as_allocated; 869 } 870 871 int 872 agp_acquire(device_t dev) 873 { 874 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 875 } 876 877 int 878 agp_release(device_t dev) 879 { 880 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 881 } 882 883 int 884 agp_enable(device_t dev, u_int32_t mode) 885 { 886 return AGP_ENABLE(dev, mode); 887 } 888 889 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 890 { 891 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 892 } 893 894 void agp_free_memory(device_t dev, void *handle) 895 { 896 struct agp_memory *mem = (struct agp_memory *) handle; 897 AGP_FREE_MEMORY(dev, mem); 898 } 899 900 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 901 { 902 struct agp_memory *mem = (struct agp_memory *) handle; 903 return AGP_BIND_MEMORY(dev, mem, offset); 904 } 905 906 int agp_unbind_memory(device_t dev, void *handle) 907 { 908 struct agp_memory *mem = (struct agp_memory *) handle; 909 return AGP_UNBIND_MEMORY(dev, mem); 910 } 911 912 void agp_memory_info(device_t dev, void *handle, struct 913 agp_memory_info *mi) 914 { 915 struct agp_memory *mem = (struct agp_memory *) handle; 916 917 mi->ami_size = mem->am_size; 918 mi->ami_physical = mem->am_physical; 919 mi->ami_offset = mem->am_offset; 920 mi->ami_is_bound = mem->am_is_bound; 921 } 922