1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/agpio.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 45 #include <dev/pci/pcivar.h> 46 #include <dev/pci/pcireg.h> 47 #include <pci/agppriv.h> 48 #include <pci/agpvar.h> 49 #include <pci/agpreg.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_pageout.h> 55 #include <vm/pmap.h> 56 57 #include <machine/md_var.h> 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 MODULE_VERSION(agp, 1); 63 64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 65 66 /* agp_drv.c */ 67 static d_open_t agp_open; 68 static d_close_t agp_close; 69 static d_ioctl_t agp_ioctl; 70 static d_mmap_t agp_mmap; 71 72 static struct cdevsw agp_cdevsw = { 73 .d_version = D_VERSION, 74 .d_flags = D_NEEDGIANT, 75 .d_open = agp_open, 76 .d_close = agp_close, 77 .d_ioctl = agp_ioctl, 78 .d_mmap = agp_mmap, 79 .d_name = "agp", 80 }; 81 82 static devclass_t agp_devclass; 83 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev)) 84 85 /* Helper functions for implementing chipset mini drivers. */ 86 87 void 88 agp_flush_cache() 89 { 90 #if defined(__i386__) || defined(__amd64__) 91 wbinvd(); 92 #endif 93 } 94 95 u_int8_t 96 agp_find_caps(device_t dev) 97 { 98 int capreg; 99 100 101 if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0) 102 capreg = 0; 103 return (capreg); 104 } 105 106 /* 107 * Find an AGP display device (if any). 108 */ 109 static device_t 110 agp_find_display(void) 111 { 112 devclass_t pci = devclass_find("pci"); 113 device_t bus, dev = 0; 114 device_t *kids; 115 int busnum, numkids, i; 116 117 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 118 bus = devclass_get_device(pci, busnum); 119 if (!bus) 120 continue; 121 device_get_children(bus, &kids, &numkids); 122 for (i = 0; i < numkids; i++) { 123 dev = kids[i]; 124 if (pci_get_class(dev) == PCIC_DISPLAY 125 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 126 if (agp_find_caps(dev)) { 127 free(kids, M_TEMP); 128 return dev; 129 } 130 131 } 132 free(kids, M_TEMP); 133 } 134 135 return 0; 136 } 137 138 struct agp_gatt * 139 agp_alloc_gatt(device_t dev) 140 { 141 u_int32_t apsize = AGP_GET_APERTURE(dev); 142 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 143 struct agp_gatt *gatt; 144 145 if (bootverbose) 146 device_printf(dev, 147 "allocating GATT for aperture of size %dM\n", 148 apsize / (1024*1024)); 149 150 if (entries == 0) { 151 device_printf(dev, "bad aperture size\n"); 152 return NULL; 153 } 154 155 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 156 if (!gatt) 157 return 0; 158 159 gatt->ag_entries = entries; 160 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 161 0, ~0, PAGE_SIZE, 0); 162 if (!gatt->ag_virtual) { 163 if (bootverbose) 164 device_printf(dev, "contiguous allocation failed\n"); 165 free(gatt, M_AGP); 166 return 0; 167 } 168 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 169 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 170 agp_flush_cache(); 171 172 return gatt; 173 } 174 175 void 176 agp_free_gatt(struct agp_gatt *gatt) 177 { 178 contigfree(gatt->ag_virtual, 179 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 180 free(gatt, M_AGP); 181 } 182 183 static u_int agp_max[][2] = { 184 {0, 0}, 185 {32, 4}, 186 {64, 28}, 187 {128, 96}, 188 {256, 204}, 189 {512, 440}, 190 {1024, 942}, 191 {2048, 1920}, 192 {4096, 3932} 193 }; 194 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 195 196 int 197 agp_generic_attach(device_t dev) 198 { 199 struct agp_softc *sc = device_get_softc(dev); 200 int rid, i; 201 u_int memsize; 202 203 /* 204 * Find and map the aperture. 205 */ 206 rid = AGP_APBASE; 207 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 0); 208 if (!sc->as_aperture) 209 return ENOMEM; 210 211 /* 212 * Work out an upper bound for agp memory allocation. This 213 * uses a heurisitc table from the Linux driver. 214 */ 215 memsize = ptoa(Maxmem) >> 20; 216 for (i = 0; i < agp_max_size; i++) { 217 if (memsize <= agp_max[i][0]) 218 break; 219 } 220 if (i == agp_max_size) i = agp_max_size - 1; 221 sc->as_maxmem = agp_max[i][1] << 20U; 222 223 /* 224 * The lock is used to prevent re-entry to 225 * agp_generic_bind_memory() since that function can sleep. 226 */ 227 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 228 229 /* 230 * Initialise stuff for the userland device. 231 */ 232 agp_devclass = devclass_find("agp"); 233 TAILQ_INIT(&sc->as_memory); 234 sc->as_nextid = 1; 235 236 sc->as_devnode = make_dev(&agp_cdevsw, 237 device_get_unit(dev), 238 UID_ROOT, 239 GID_WHEEL, 240 0600, 241 "agpgart"); 242 243 return 0; 244 } 245 246 int 247 agp_generic_detach(device_t dev) 248 { 249 struct agp_softc *sc = device_get_softc(dev); 250 251 destroy_dev(sc->as_devnode); 252 bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture); 253 mtx_destroy(&sc->as_lock); 254 agp_flush_cache(); 255 return 0; 256 } 257 258 /* 259 * This does the enable logic for v3, with the same topology 260 * restrictions as in place for v2 -- one bus, one device on the bus. 261 */ 262 static int 263 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 264 { 265 u_int32_t tstatus, mstatus; 266 u_int32_t command; 267 int rq, sba, fw, rate, arqsz, cal; 268 269 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 270 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 271 272 /* Set RQ to the min of mode, tstatus and mstatus */ 273 rq = AGP_MODE_GET_RQ(mode); 274 if (AGP_MODE_GET_RQ(tstatus) < rq) 275 rq = AGP_MODE_GET_RQ(tstatus); 276 if (AGP_MODE_GET_RQ(mstatus) < rq) 277 rq = AGP_MODE_GET_RQ(mstatus); 278 279 /* 280 * ARQSZ - Set the value to the maximum one. 281 * Don't allow the mode register to override values. 282 */ 283 arqsz = AGP_MODE_GET_ARQSZ(mode); 284 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 285 rq = AGP_MODE_GET_ARQSZ(tstatus); 286 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 287 rq = AGP_MODE_GET_ARQSZ(mstatus); 288 289 /* Calibration cycle - don't allow override by mode register */ 290 cal = AGP_MODE_GET_CAL(tstatus); 291 if (AGP_MODE_GET_CAL(mstatus) < cal) 292 cal = AGP_MODE_GET_CAL(mstatus); 293 294 /* SBA must be supported for AGP v3. */ 295 sba = 1; 296 297 /* Set FW if all three support it. */ 298 fw = (AGP_MODE_GET_FW(tstatus) 299 & AGP_MODE_GET_FW(mstatus) 300 & AGP_MODE_GET_FW(mode)); 301 302 /* Figure out the max rate */ 303 rate = (AGP_MODE_GET_RATE(tstatus) 304 & AGP_MODE_GET_RATE(mstatus) 305 & AGP_MODE_GET_RATE(mode)); 306 if (rate & AGP_MODE_V3_RATE_8x) 307 rate = AGP_MODE_V3_RATE_8x; 308 else 309 rate = AGP_MODE_V3_RATE_4x; 310 if (bootverbose) 311 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 312 313 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 314 315 /* Construct the new mode word and tell the hardware */ 316 command = 0; 317 command = AGP_MODE_SET_RQ(0, rq); 318 command = AGP_MODE_SET_ARQSZ(command, arqsz); 319 command = AGP_MODE_SET_CAL(command, cal); 320 command = AGP_MODE_SET_SBA(command, sba); 321 command = AGP_MODE_SET_FW(command, fw); 322 command = AGP_MODE_SET_RATE(command, rate); 323 command = AGP_MODE_SET_MODE_3(command, 1); 324 command = AGP_MODE_SET_AGP(command, 1); 325 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 326 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 327 328 return 0; 329 } 330 331 static int 332 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 333 { 334 u_int32_t tstatus, mstatus; 335 u_int32_t command; 336 int rq, sba, fw, rate; 337 338 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 339 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 340 341 /* Set RQ to the min of mode, tstatus and mstatus */ 342 rq = AGP_MODE_GET_RQ(mode); 343 if (AGP_MODE_GET_RQ(tstatus) < rq) 344 rq = AGP_MODE_GET_RQ(tstatus); 345 if (AGP_MODE_GET_RQ(mstatus) < rq) 346 rq = AGP_MODE_GET_RQ(mstatus); 347 348 /* Set SBA if all three can deal with SBA */ 349 sba = (AGP_MODE_GET_SBA(tstatus) 350 & AGP_MODE_GET_SBA(mstatus) 351 & AGP_MODE_GET_SBA(mode)); 352 353 /* Similar for FW */ 354 fw = (AGP_MODE_GET_FW(tstatus) 355 & AGP_MODE_GET_FW(mstatus) 356 & AGP_MODE_GET_FW(mode)); 357 358 /* Figure out the max rate */ 359 rate = (AGP_MODE_GET_RATE(tstatus) 360 & AGP_MODE_GET_RATE(mstatus) 361 & AGP_MODE_GET_RATE(mode)); 362 if (rate & AGP_MODE_V2_RATE_4x) 363 rate = AGP_MODE_V2_RATE_4x; 364 else if (rate & AGP_MODE_V2_RATE_2x) 365 rate = AGP_MODE_V2_RATE_2x; 366 else 367 rate = AGP_MODE_V2_RATE_1x; 368 if (bootverbose) 369 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 370 371 /* Construct the new mode word and tell the hardware */ 372 command = 0; 373 command = AGP_MODE_SET_RQ(0, rq); 374 command = AGP_MODE_SET_SBA(command, sba); 375 command = AGP_MODE_SET_FW(command, fw); 376 command = AGP_MODE_SET_RATE(command, rate); 377 command = AGP_MODE_SET_AGP(command, 1); 378 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 379 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 380 381 return 0; 382 } 383 384 int 385 agp_generic_enable(device_t dev, u_int32_t mode) 386 { 387 device_t mdev = agp_find_display(); 388 u_int32_t tstatus, mstatus; 389 390 if (!mdev) { 391 AGP_DPF("can't find display\n"); 392 return ENXIO; 393 } 394 395 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 396 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 397 398 /* 399 * Check display and bridge for AGP v3 support. AGP v3 allows 400 * more variety in topology than v2, e.g. multiple AGP devices 401 * attached to one bridge, or multiple AGP bridges in one 402 * system. This doesn't attempt to address those situations, 403 * but should work fine for a classic single AGP slot system 404 * with AGP v3. 405 */ 406 if (AGP_MODE_GET_MODE_3(mode) && 407 AGP_MODE_GET_MODE_3(tstatus) && 408 AGP_MODE_GET_MODE_3(mstatus)) 409 return (agp_v3_enable(dev, mdev, mode)); 410 else 411 return (agp_v2_enable(dev, mdev, mode)); 412 } 413 414 struct agp_memory * 415 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 416 { 417 struct agp_softc *sc = device_get_softc(dev); 418 struct agp_memory *mem; 419 420 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 421 return 0; 422 423 if (sc->as_allocated + size > sc->as_maxmem) 424 return 0; 425 426 if (type != 0) { 427 printf("agp_generic_alloc_memory: unsupported type %d\n", 428 type); 429 return 0; 430 } 431 432 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 433 mem->am_id = sc->as_nextid++; 434 mem->am_size = size; 435 mem->am_type = 0; 436 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 437 mem->am_physical = 0; 438 mem->am_offset = 0; 439 mem->am_is_bound = 0; 440 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 441 sc->as_allocated += size; 442 443 return mem; 444 } 445 446 int 447 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 448 { 449 struct agp_softc *sc = device_get_softc(dev); 450 451 if (mem->am_is_bound) 452 return EBUSY; 453 454 sc->as_allocated -= mem->am_size; 455 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 456 vm_object_deallocate(mem->am_obj); 457 free(mem, M_AGP); 458 return 0; 459 } 460 461 int 462 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 463 vm_offset_t offset) 464 { 465 struct agp_softc *sc = device_get_softc(dev); 466 vm_offset_t i, j, k; 467 vm_page_t m; 468 int error; 469 470 /* Do some sanity checks first. */ 471 if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 || 472 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 473 device_printf(dev, "binding memory at bad offset %#x\n", 474 (int)offset); 475 return EINVAL; 476 } 477 478 /* 479 * Allocate the pages early, before acquiring the lock, 480 * because vm_page_grab() used with VM_ALLOC_RETRY may 481 * block and we can't hold a mutex while blocking. 482 */ 483 VM_OBJECT_LOCK(mem->am_obj); 484 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 485 /* 486 * Find a page from the object and wire it 487 * down. This page will be mapped using one or more 488 * entries in the GATT (assuming that PAGE_SIZE >= 489 * AGP_PAGE_SIZE. If this is the first call to bind, 490 * the pages will be allocated and zeroed. 491 */ 492 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 493 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 494 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m)); 495 } 496 VM_OBJECT_UNLOCK(mem->am_obj); 497 498 mtx_lock(&sc->as_lock); 499 500 if (mem->am_is_bound) { 501 device_printf(dev, "memory already bound\n"); 502 error = EINVAL; 503 VM_OBJECT_LOCK(mem->am_obj); 504 goto bad; 505 } 506 507 /* 508 * Bind the individual pages and flush the chipset's 509 * TLB. 510 */ 511 VM_OBJECT_LOCK(mem->am_obj); 512 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 513 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 514 515 /* 516 * Install entries in the GATT, making sure that if 517 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 518 * aligned to PAGE_SIZE, we don't modify too many GATT 519 * entries. 520 */ 521 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 522 j += AGP_PAGE_SIZE) { 523 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 524 AGP_DPF("binding offset %#x to pa %#x\n", 525 offset + i + j, pa); 526 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 527 if (error) { 528 /* 529 * Bail out. Reverse all the mappings 530 * and unwire the pages. 531 */ 532 vm_page_lock_queues(); 533 vm_page_wakeup(m); 534 vm_page_unlock_queues(); 535 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 536 AGP_UNBIND_PAGE(dev, offset + k); 537 goto bad; 538 } 539 } 540 vm_page_lock_queues(); 541 vm_page_wakeup(m); 542 vm_page_unlock_queues(); 543 } 544 VM_OBJECT_UNLOCK(mem->am_obj); 545 546 /* 547 * Flush the cpu cache since we are providing a new mapping 548 * for these pages. 549 */ 550 agp_flush_cache(); 551 552 /* 553 * Make sure the chipset gets the new mappings. 554 */ 555 AGP_FLUSH_TLB(dev); 556 557 mem->am_offset = offset; 558 mem->am_is_bound = 1; 559 560 mtx_unlock(&sc->as_lock); 561 562 return 0; 563 bad: 564 mtx_unlock(&sc->as_lock); 565 VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED); 566 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 567 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 568 vm_page_lock_queues(); 569 vm_page_unwire(m, 0); 570 vm_page_unlock_queues(); 571 } 572 VM_OBJECT_UNLOCK(mem->am_obj); 573 574 return error; 575 } 576 577 int 578 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 579 { 580 struct agp_softc *sc = device_get_softc(dev); 581 vm_page_t m; 582 int i; 583 584 mtx_lock(&sc->as_lock); 585 586 if (!mem->am_is_bound) { 587 device_printf(dev, "memory is not bound\n"); 588 mtx_unlock(&sc->as_lock); 589 return EINVAL; 590 } 591 592 593 /* 594 * Unbind the individual pages and flush the chipset's 595 * TLB. Unwire the pages so they can be swapped. 596 */ 597 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 598 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 599 VM_OBJECT_LOCK(mem->am_obj); 600 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 601 m = vm_page_lookup(mem->am_obj, atop(i)); 602 vm_page_lock_queues(); 603 vm_page_unwire(m, 0); 604 vm_page_unlock_queues(); 605 } 606 VM_OBJECT_UNLOCK(mem->am_obj); 607 608 agp_flush_cache(); 609 AGP_FLUSH_TLB(dev); 610 611 mem->am_offset = 0; 612 mem->am_is_bound = 0; 613 614 mtx_unlock(&sc->as_lock); 615 616 return 0; 617 } 618 619 /* Helper functions for implementing user/kernel api */ 620 621 static int 622 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 623 { 624 struct agp_softc *sc = device_get_softc(dev); 625 626 if (sc->as_state != AGP_ACQUIRE_FREE) 627 return EBUSY; 628 sc->as_state = state; 629 630 return 0; 631 } 632 633 static int 634 agp_release_helper(device_t dev, enum agp_acquire_state state) 635 { 636 struct agp_softc *sc = device_get_softc(dev); 637 638 if (sc->as_state == AGP_ACQUIRE_FREE) 639 return 0; 640 641 if (sc->as_state != state) 642 return EBUSY; 643 644 sc->as_state = AGP_ACQUIRE_FREE; 645 return 0; 646 } 647 648 static struct agp_memory * 649 agp_find_memory(device_t dev, int id) 650 { 651 struct agp_softc *sc = device_get_softc(dev); 652 struct agp_memory *mem; 653 654 AGP_DPF("searching for memory block %d\n", id); 655 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 656 AGP_DPF("considering memory block %d\n", mem->am_id); 657 if (mem->am_id == id) 658 return mem; 659 } 660 return 0; 661 } 662 663 /* Implementation of the userland ioctl api */ 664 665 static int 666 agp_info_user(device_t dev, agp_info *info) 667 { 668 struct agp_softc *sc = device_get_softc(dev); 669 670 bzero(info, sizeof *info); 671 info->bridge_id = pci_get_devid(dev); 672 info->agp_mode = 673 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 674 info->aper_base = rman_get_start(sc->as_aperture); 675 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 676 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 677 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 678 679 return 0; 680 } 681 682 static int 683 agp_setup_user(device_t dev, agp_setup *setup) 684 { 685 return AGP_ENABLE(dev, setup->agp_mode); 686 } 687 688 static int 689 agp_allocate_user(device_t dev, agp_allocate *alloc) 690 { 691 struct agp_memory *mem; 692 693 mem = AGP_ALLOC_MEMORY(dev, 694 alloc->type, 695 alloc->pg_count << AGP_PAGE_SHIFT); 696 if (mem) { 697 alloc->key = mem->am_id; 698 alloc->physical = mem->am_physical; 699 return 0; 700 } else { 701 return ENOMEM; 702 } 703 } 704 705 static int 706 agp_deallocate_user(device_t dev, int id) 707 { 708 struct agp_memory *mem = agp_find_memory(dev, id);; 709 710 if (mem) { 711 AGP_FREE_MEMORY(dev, mem); 712 return 0; 713 } else { 714 return ENOENT; 715 } 716 } 717 718 static int 719 agp_bind_user(device_t dev, agp_bind *bind) 720 { 721 struct agp_memory *mem = agp_find_memory(dev, bind->key); 722 723 if (!mem) 724 return ENOENT; 725 726 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 727 } 728 729 static int 730 agp_unbind_user(device_t dev, agp_unbind *unbind) 731 { 732 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 733 734 if (!mem) 735 return ENOENT; 736 737 return AGP_UNBIND_MEMORY(dev, mem); 738 } 739 740 static int 741 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 742 { 743 device_t dev = KDEV2DEV(kdev); 744 struct agp_softc *sc = device_get_softc(dev); 745 746 if (!sc->as_isopen) { 747 sc->as_isopen = 1; 748 device_busy(dev); 749 } 750 751 return 0; 752 } 753 754 static int 755 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 756 { 757 device_t dev = KDEV2DEV(kdev); 758 struct agp_softc *sc = device_get_softc(dev); 759 struct agp_memory *mem; 760 761 /* 762 * Clear the GATT and force release on last close 763 */ 764 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 765 if (mem->am_is_bound) 766 AGP_UNBIND_MEMORY(dev, mem); 767 AGP_FREE_MEMORY(dev, mem); 768 } 769 if (sc->as_state == AGP_ACQUIRE_USER) 770 agp_release_helper(dev, AGP_ACQUIRE_USER); 771 sc->as_isopen = 0; 772 device_unbusy(dev); 773 774 return 0; 775 } 776 777 static int 778 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 779 { 780 device_t dev = KDEV2DEV(kdev); 781 782 switch (cmd) { 783 case AGPIOC_INFO: 784 return agp_info_user(dev, (agp_info *) data); 785 786 case AGPIOC_ACQUIRE: 787 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 788 789 case AGPIOC_RELEASE: 790 return agp_release_helper(dev, AGP_ACQUIRE_USER); 791 792 case AGPIOC_SETUP: 793 return agp_setup_user(dev, (agp_setup *)data); 794 795 case AGPIOC_ALLOCATE: 796 return agp_allocate_user(dev, (agp_allocate *)data); 797 798 case AGPIOC_DEALLOCATE: 799 return agp_deallocate_user(dev, *(int *) data); 800 801 case AGPIOC_BIND: 802 return agp_bind_user(dev, (agp_bind *)data); 803 804 case AGPIOC_UNBIND: 805 return agp_unbind_user(dev, (agp_unbind *)data); 806 807 } 808 809 return EINVAL; 810 } 811 812 static int 813 agp_mmap(struct cdev *kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot) 814 { 815 device_t dev = KDEV2DEV(kdev); 816 struct agp_softc *sc = device_get_softc(dev); 817 818 if (offset > AGP_GET_APERTURE(dev)) 819 return -1; 820 *paddr = rman_get_start(sc->as_aperture) + offset; 821 return 0; 822 } 823 824 /* Implementation of the kernel api */ 825 826 device_t 827 agp_find_device() 828 { 829 device_t *children, child; 830 int i, count; 831 832 if (!agp_devclass) 833 return NULL; 834 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 835 return NULL; 836 child = NULL; 837 for (i = 0; i < count; i++) { 838 if (device_is_attached(children[i])) { 839 child = children[i]; 840 break; 841 } 842 } 843 free(children, M_TEMP); 844 return child; 845 } 846 847 enum agp_acquire_state 848 agp_state(device_t dev) 849 { 850 struct agp_softc *sc = device_get_softc(dev); 851 return sc->as_state; 852 } 853 854 void 855 agp_get_info(device_t dev, struct agp_info *info) 856 { 857 struct agp_softc *sc = device_get_softc(dev); 858 859 info->ai_mode = 860 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 861 info->ai_aperture_base = rman_get_start(sc->as_aperture); 862 info->ai_aperture_size = rman_get_size(sc->as_aperture); 863 info->ai_memory_allowed = sc->as_maxmem; 864 info->ai_memory_used = sc->as_allocated; 865 } 866 867 int 868 agp_acquire(device_t dev) 869 { 870 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 871 } 872 873 int 874 agp_release(device_t dev) 875 { 876 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 877 } 878 879 int 880 agp_enable(device_t dev, u_int32_t mode) 881 { 882 return AGP_ENABLE(dev, mode); 883 } 884 885 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 886 { 887 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 888 } 889 890 void agp_free_memory(device_t dev, void *handle) 891 { 892 struct agp_memory *mem = (struct agp_memory *) handle; 893 AGP_FREE_MEMORY(dev, mem); 894 } 895 896 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 897 { 898 struct agp_memory *mem = (struct agp_memory *) handle; 899 return AGP_BIND_MEMORY(dev, mem, offset); 900 } 901 902 int agp_unbind_memory(device_t dev, void *handle) 903 { 904 struct agp_memory *mem = (struct agp_memory *) handle; 905 return AGP_UNBIND_MEMORY(dev, mem); 906 } 907 908 void agp_memory_info(device_t dev, void *handle, struct 909 agp_memory_info *mi) 910 { 911 struct agp_memory *mem = (struct agp_memory *) handle; 912 913 mi->ami_size = mem->am_size; 914 mi->ami_physical = mem->am_physical; 915 mi->ami_offset = mem->am_offset; 916 mi->ami_is_bound = mem->am_is_bound; 917 } 918