1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_agp.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/agpio.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/rwlock.h> 45 46 #include <dev/agp/agppriv.h> 47 #include <dev/agp/agpvar.h> 48 #include <dev/agp/agpreg.h> 49 #include <dev/pci/pcivar.h> 50 #include <dev/pci/pcireg.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_extern.h> 54 #include <vm/vm_kern.h> 55 #include <vm/vm_param.h> 56 #include <vm/vm_object.h> 57 #include <vm/vm_page.h> 58 #include <vm/vm_pageout.h> 59 #include <vm/pmap.h> 60 61 #include <machine/bus.h> 62 #include <machine/resource.h> 63 #include <sys/rman.h> 64 65 MODULE_VERSION(agp, 1); 66 67 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 68 69 /* agp_drv.c */ 70 static d_open_t agp_open; 71 static d_close_t agp_close; 72 static d_ioctl_t agp_ioctl; 73 static d_mmap_t agp_mmap; 74 75 static struct cdevsw agp_cdevsw = { 76 .d_version = D_VERSION, 77 .d_flags = D_NEEDGIANT, 78 .d_open = agp_open, 79 .d_close = agp_close, 80 .d_ioctl = agp_ioctl, 81 .d_mmap = agp_mmap, 82 .d_name = "agp", 83 }; 84 85 static devclass_t agp_devclass; 86 87 /* Helper functions for implementing chipset mini drivers. */ 88 89 u_int8_t 90 agp_find_caps(device_t dev) 91 { 92 int capreg; 93 94 if (pci_find_cap(dev, PCIY_AGP, &capreg) != 0) 95 capreg = 0; 96 return (capreg); 97 } 98 99 /* 100 * Find an AGP display device (if any). 101 */ 102 static device_t 103 agp_find_display(void) 104 { 105 devclass_t pci = devclass_find("pci"); 106 device_t bus, dev = 0; 107 device_t *kids; 108 int busnum, numkids, i; 109 110 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 111 bus = devclass_get_device(pci, busnum); 112 if (!bus) 113 continue; 114 if (device_get_children(bus, &kids, &numkids) != 0) 115 continue; 116 for (i = 0; i < numkids; i++) { 117 dev = kids[i]; 118 if (pci_get_class(dev) == PCIC_DISPLAY 119 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 120 if (agp_find_caps(dev)) { 121 free(kids, M_TEMP); 122 return dev; 123 } 124 125 } 126 free(kids, M_TEMP); 127 } 128 129 return 0; 130 } 131 132 struct agp_gatt * 133 agp_alloc_gatt(device_t dev) 134 { 135 u_int32_t apsize = AGP_GET_APERTURE(dev); 136 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 137 struct agp_gatt *gatt; 138 139 if (bootverbose) 140 device_printf(dev, 141 "allocating GATT for aperture of size %dM\n", 142 apsize / (1024*1024)); 143 144 if (entries == 0) { 145 device_printf(dev, "bad aperture size\n"); 146 return NULL; 147 } 148 149 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 150 if (!gatt) 151 return 0; 152 153 gatt->ag_entries = entries; 154 gatt->ag_virtual = kmem_alloc_contig(entries * sizeof(uint32_t), 155 M_NOWAIT | M_ZERO, 0, ~0, PAGE_SIZE, 0, VM_MEMATTR_WRITE_COMBINING); 156 if (!gatt->ag_virtual) { 157 if (bootverbose) 158 device_printf(dev, "contiguous allocation failed\n"); 159 free(gatt, M_AGP); 160 return 0; 161 } 162 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 163 164 return gatt; 165 } 166 167 void 168 agp_free_gatt(struct agp_gatt *gatt) 169 { 170 kmem_free(gatt->ag_virtual, gatt->ag_entries * sizeof(uint32_t)); 171 free(gatt, M_AGP); 172 } 173 174 static u_int agp_max[][2] = { 175 {0, 0}, 176 {32, 4}, 177 {64, 28}, 178 {128, 96}, 179 {256, 204}, 180 {512, 440}, 181 {1024, 942}, 182 {2048, 1920}, 183 {4096, 3932} 184 }; 185 #define AGP_MAX_SIZE nitems(agp_max) 186 187 /** 188 * Sets the PCI resource which represents the AGP aperture. 189 * 190 * If not called, the default AGP aperture resource of AGP_APBASE will 191 * be used. Must be called before agp_generic_attach(). 192 */ 193 void 194 agp_set_aperture_resource(device_t dev, int rid) 195 { 196 struct agp_softc *sc = device_get_softc(dev); 197 198 sc->as_aperture_rid = rid; 199 } 200 201 int 202 agp_generic_attach(device_t dev) 203 { 204 struct make_dev_args mdargs; 205 struct agp_softc *sc = device_get_softc(dev); 206 int error, i, unit; 207 u_int memsize; 208 209 /* 210 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE 211 * because the kernel doesn't need to map it. 212 */ 213 214 if (sc->as_aperture_rid != -1) { 215 if (sc->as_aperture_rid == 0) 216 sc->as_aperture_rid = AGP_APBASE; 217 218 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 219 &sc->as_aperture_rid, RF_SHAREABLE); 220 if (!sc->as_aperture) 221 return ENOMEM; 222 } 223 224 /* 225 * Work out an upper bound for agp memory allocation. This 226 * uses a heurisitc table from the Linux driver. 227 */ 228 memsize = ptoa(realmem) >> 20; 229 for (i = 0; i < AGP_MAX_SIZE; i++) { 230 if (memsize <= agp_max[i][0]) 231 break; 232 } 233 if (i == AGP_MAX_SIZE) 234 i = AGP_MAX_SIZE - 1; 235 sc->as_maxmem = agp_max[i][1] << 20U; 236 237 /* 238 * The lock is used to prevent re-entry to 239 * agp_generic_bind_memory() since that function can sleep. 240 */ 241 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 242 243 /* 244 * Initialise stuff for the userland device. 245 */ 246 agp_devclass = devclass_find("agp"); 247 TAILQ_INIT(&sc->as_memory); 248 sc->as_nextid = 1; 249 250 sc->as_devalias = NULL; 251 252 make_dev_args_init(&mdargs); 253 mdargs.mda_devsw = &agp_cdevsw; 254 mdargs.mda_uid = UID_ROOT; 255 mdargs.mda_gid = GID_WHEEL; 256 mdargs.mda_mode = 0600; 257 mdargs.mda_si_drv1 = dev; 258 mdargs.mda_si_drv2 = NULL; 259 260 unit = device_get_unit(dev); 261 error = make_dev_s(&mdargs, &sc->as_devnode, "agpgart%d", unit); 262 if (error == 0) { 263 /* 264 * Create an alias for the first device that shows up. 265 */ 266 if (unit == 0) { 267 (void)make_dev_alias_p(MAKEDEV_CHECKNAME, 268 &sc->as_devalias, sc->as_devnode, "agpgart"); 269 } 270 } else { 271 agp_free_res(dev); 272 } 273 274 return error; 275 } 276 277 void 278 agp_free_cdev(device_t dev) 279 { 280 struct agp_softc *sc = device_get_softc(dev); 281 282 destroy_dev(sc->as_devnode); 283 if (sc->as_devalias != NULL) 284 destroy_dev(sc->as_devalias); 285 } 286 287 void 288 agp_free_res(device_t dev) 289 { 290 struct agp_softc *sc = device_get_softc(dev); 291 292 if (sc->as_aperture != NULL) 293 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, 294 sc->as_aperture); 295 mtx_destroy(&sc->as_lock); 296 } 297 298 int 299 agp_generic_detach(device_t dev) 300 { 301 302 agp_free_cdev(dev); 303 agp_free_res(dev); 304 return 0; 305 } 306 307 /** 308 * Default AGP aperture size detection which simply returns the size of 309 * the aperture's PCI resource. 310 */ 311 u_int32_t 312 agp_generic_get_aperture(device_t dev) 313 { 314 struct agp_softc *sc = device_get_softc(dev); 315 316 return rman_get_size(sc->as_aperture); 317 } 318 319 /** 320 * Default AGP aperture size setting function, which simply doesn't allow 321 * changes to resource size. 322 */ 323 int 324 agp_generic_set_aperture(device_t dev, u_int32_t aperture) 325 { 326 u_int32_t current_aperture; 327 328 current_aperture = AGP_GET_APERTURE(dev); 329 if (current_aperture != aperture) 330 return EINVAL; 331 else 332 return 0; 333 } 334 335 /* 336 * This does the enable logic for v3, with the same topology 337 * restrictions as in place for v2 -- one bus, one device on the bus. 338 */ 339 static int 340 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 341 { 342 u_int32_t tstatus, mstatus; 343 u_int32_t command; 344 int rq, sba, fw, rate, arqsz, cal; 345 346 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 347 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 348 349 /* Set RQ to the min of mode, tstatus and mstatus */ 350 rq = AGP_MODE_GET_RQ(mode); 351 if (AGP_MODE_GET_RQ(tstatus) < rq) 352 rq = AGP_MODE_GET_RQ(tstatus); 353 if (AGP_MODE_GET_RQ(mstatus) < rq) 354 rq = AGP_MODE_GET_RQ(mstatus); 355 356 /* 357 * ARQSZ - Set the value to the maximum one. 358 * Don't allow the mode register to override values. 359 */ 360 arqsz = AGP_MODE_GET_ARQSZ(mode); 361 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 362 rq = AGP_MODE_GET_ARQSZ(tstatus); 363 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 364 rq = AGP_MODE_GET_ARQSZ(mstatus); 365 366 /* Calibration cycle - don't allow override by mode register */ 367 cal = AGP_MODE_GET_CAL(tstatus); 368 if (AGP_MODE_GET_CAL(mstatus) < cal) 369 cal = AGP_MODE_GET_CAL(mstatus); 370 371 /* SBA must be supported for AGP v3. */ 372 sba = 1; 373 374 /* Set FW if all three support it. */ 375 fw = (AGP_MODE_GET_FW(tstatus) 376 & AGP_MODE_GET_FW(mstatus) 377 & AGP_MODE_GET_FW(mode)); 378 379 /* Figure out the max rate */ 380 rate = (AGP_MODE_GET_RATE(tstatus) 381 & AGP_MODE_GET_RATE(mstatus) 382 & AGP_MODE_GET_RATE(mode)); 383 if (rate & AGP_MODE_V3_RATE_8x) 384 rate = AGP_MODE_V3_RATE_8x; 385 else 386 rate = AGP_MODE_V3_RATE_4x; 387 if (bootverbose) 388 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 389 390 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 391 392 /* Construct the new mode word and tell the hardware */ 393 command = 0; 394 command = AGP_MODE_SET_RQ(0, rq); 395 command = AGP_MODE_SET_ARQSZ(command, arqsz); 396 command = AGP_MODE_SET_CAL(command, cal); 397 command = AGP_MODE_SET_SBA(command, sba); 398 command = AGP_MODE_SET_FW(command, fw); 399 command = AGP_MODE_SET_RATE(command, rate); 400 command = AGP_MODE_SET_MODE_3(command, 1); 401 command = AGP_MODE_SET_AGP(command, 1); 402 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 403 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 404 405 return 0; 406 } 407 408 static int 409 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 410 { 411 u_int32_t tstatus, mstatus; 412 u_int32_t command; 413 int rq, sba, fw, rate; 414 415 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 416 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 417 418 /* Set RQ to the min of mode, tstatus and mstatus */ 419 rq = AGP_MODE_GET_RQ(mode); 420 if (AGP_MODE_GET_RQ(tstatus) < rq) 421 rq = AGP_MODE_GET_RQ(tstatus); 422 if (AGP_MODE_GET_RQ(mstatus) < rq) 423 rq = AGP_MODE_GET_RQ(mstatus); 424 425 /* Set SBA if all three can deal with SBA */ 426 sba = (AGP_MODE_GET_SBA(tstatus) 427 & AGP_MODE_GET_SBA(mstatus) 428 & AGP_MODE_GET_SBA(mode)); 429 430 /* Similar for FW */ 431 fw = (AGP_MODE_GET_FW(tstatus) 432 & AGP_MODE_GET_FW(mstatus) 433 & AGP_MODE_GET_FW(mode)); 434 435 /* Figure out the max rate */ 436 rate = (AGP_MODE_GET_RATE(tstatus) 437 & AGP_MODE_GET_RATE(mstatus) 438 & AGP_MODE_GET_RATE(mode)); 439 if (rate & AGP_MODE_V2_RATE_4x) 440 rate = AGP_MODE_V2_RATE_4x; 441 else if (rate & AGP_MODE_V2_RATE_2x) 442 rate = AGP_MODE_V2_RATE_2x; 443 else 444 rate = AGP_MODE_V2_RATE_1x; 445 if (bootverbose) 446 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 447 448 /* Construct the new mode word and tell the hardware */ 449 command = 0; 450 command = AGP_MODE_SET_RQ(0, rq); 451 command = AGP_MODE_SET_SBA(command, sba); 452 command = AGP_MODE_SET_FW(command, fw); 453 command = AGP_MODE_SET_RATE(command, rate); 454 command = AGP_MODE_SET_AGP(command, 1); 455 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 456 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 457 458 return 0; 459 } 460 461 int 462 agp_generic_enable(device_t dev, u_int32_t mode) 463 { 464 device_t mdev = agp_find_display(); 465 u_int32_t tstatus, mstatus; 466 467 if (!mdev) { 468 AGP_DPF("can't find display\n"); 469 return ENXIO; 470 } 471 472 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 473 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 474 475 /* 476 * Check display and bridge for AGP v3 support. AGP v3 allows 477 * more variety in topology than v2, e.g. multiple AGP devices 478 * attached to one bridge, or multiple AGP bridges in one 479 * system. This doesn't attempt to address those situations, 480 * but should work fine for a classic single AGP slot system 481 * with AGP v3. 482 */ 483 if (AGP_MODE_GET_MODE_3(mode) && 484 AGP_MODE_GET_MODE_3(tstatus) && 485 AGP_MODE_GET_MODE_3(mstatus)) 486 return (agp_v3_enable(dev, mdev, mode)); 487 else 488 return (agp_v2_enable(dev, mdev, mode)); 489 } 490 491 struct agp_memory * 492 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 493 { 494 struct agp_softc *sc = device_get_softc(dev); 495 struct agp_memory *mem; 496 497 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 498 return 0; 499 500 if (size > sc->as_maxmem - sc->as_allocated) 501 return 0; 502 503 if (type != 0) { 504 printf("agp_generic_alloc_memory: unsupported type %d\n", 505 type); 506 return 0; 507 } 508 509 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 510 mem->am_id = sc->as_nextid++; 511 mem->am_size = size; 512 mem->am_type = 0; 513 mem->am_obj = vm_object_allocate(OBJT_SWAP, atop(round_page(size))); 514 mem->am_physical = 0; 515 mem->am_offset = 0; 516 mem->am_is_bound = 0; 517 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 518 sc->as_allocated += size; 519 520 return mem; 521 } 522 523 int 524 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 525 { 526 struct agp_softc *sc = device_get_softc(dev); 527 528 if (mem->am_is_bound) 529 return EBUSY; 530 531 sc->as_allocated -= mem->am_size; 532 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 533 vm_object_deallocate(mem->am_obj); 534 free(mem, M_AGP); 535 return 0; 536 } 537 538 int 539 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 540 vm_offset_t offset) 541 { 542 struct agp_softc *sc = device_get_softc(dev); 543 vm_offset_t i, j, k; 544 vm_page_t m; 545 int error; 546 547 /* Do some sanity checks first. */ 548 if ((offset & (AGP_PAGE_SIZE - 1)) != 0 || 549 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 550 device_printf(dev, "binding memory at bad offset %#x\n", 551 (int)offset); 552 return EINVAL; 553 } 554 555 /* 556 * Allocate the pages early, before acquiring the lock, 557 * because vm_page_grab() may sleep and we can't hold a mutex 558 * while sleeping. 559 */ 560 VM_OBJECT_WLOCK(mem->am_obj); 561 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 562 /* 563 * Find a page from the object and wire it 564 * down. This page will be mapped using one or more 565 * entries in the GATT (assuming that PAGE_SIZE >= 566 * AGP_PAGE_SIZE. If this is the first call to bind, 567 * the pages will be allocated and zeroed. 568 */ 569 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 570 VM_ALLOC_WIRED | VM_ALLOC_ZERO); 571 AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m)); 572 } 573 VM_OBJECT_WUNLOCK(mem->am_obj); 574 575 mtx_lock(&sc->as_lock); 576 577 if (mem->am_is_bound) { 578 device_printf(dev, "memory already bound\n"); 579 error = EINVAL; 580 VM_OBJECT_WLOCK(mem->am_obj); 581 i = 0; 582 goto bad; 583 } 584 585 /* 586 * Bind the individual pages and flush the chipset's 587 * TLB. 588 */ 589 VM_OBJECT_WLOCK(mem->am_obj); 590 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 591 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 592 593 /* 594 * Install entries in the GATT, making sure that if 595 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 596 * aligned to PAGE_SIZE, we don't modify too many GATT 597 * entries. 598 */ 599 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 600 j += AGP_PAGE_SIZE) { 601 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 602 AGP_DPF("binding offset %#jx to pa %#jx\n", 603 (uintmax_t)offset + i + j, (uintmax_t)pa); 604 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 605 if (error) { 606 /* 607 * Bail out. Reverse all the mappings 608 * and unwire the pages. 609 */ 610 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 611 AGP_UNBIND_PAGE(dev, offset + k); 612 goto bad; 613 } 614 } 615 vm_page_xunbusy(m); 616 } 617 VM_OBJECT_WUNLOCK(mem->am_obj); 618 619 /* 620 * Make sure the chipset gets the new mappings. 621 */ 622 AGP_FLUSH_TLB(dev); 623 624 mem->am_offset = offset; 625 mem->am_is_bound = 1; 626 627 mtx_unlock(&sc->as_lock); 628 629 return 0; 630 bad: 631 mtx_unlock(&sc->as_lock); 632 VM_OBJECT_ASSERT_WLOCKED(mem->am_obj); 633 for (k = 0; k < mem->am_size; k += PAGE_SIZE) { 634 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(k)); 635 if (k >= i) 636 vm_page_xunbusy(m); 637 vm_page_unwire(m, PQ_INACTIVE); 638 } 639 VM_OBJECT_WUNLOCK(mem->am_obj); 640 641 return error; 642 } 643 644 int 645 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 646 { 647 struct agp_softc *sc = device_get_softc(dev); 648 vm_page_t m; 649 int i; 650 651 mtx_lock(&sc->as_lock); 652 653 if (!mem->am_is_bound) { 654 device_printf(dev, "memory is not bound\n"); 655 mtx_unlock(&sc->as_lock); 656 return EINVAL; 657 } 658 659 /* 660 * Unbind the individual pages and flush the chipset's 661 * TLB. Unwire the pages so they can be swapped. 662 */ 663 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 664 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 665 666 AGP_FLUSH_TLB(dev); 667 668 VM_OBJECT_WLOCK(mem->am_obj); 669 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 670 m = vm_page_lookup(mem->am_obj, atop(i)); 671 vm_page_unwire(m, PQ_INACTIVE); 672 } 673 VM_OBJECT_WUNLOCK(mem->am_obj); 674 675 mem->am_offset = 0; 676 mem->am_is_bound = 0; 677 678 mtx_unlock(&sc->as_lock); 679 680 return 0; 681 } 682 683 /* Helper functions for implementing user/kernel api */ 684 685 static int 686 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 687 { 688 struct agp_softc *sc = device_get_softc(dev); 689 690 if (sc->as_state != AGP_ACQUIRE_FREE) 691 return EBUSY; 692 sc->as_state = state; 693 694 return 0; 695 } 696 697 static int 698 agp_release_helper(device_t dev, enum agp_acquire_state state) 699 { 700 struct agp_softc *sc = device_get_softc(dev); 701 702 if (sc->as_state == AGP_ACQUIRE_FREE) 703 return 0; 704 705 if (sc->as_state != state) 706 return EBUSY; 707 708 sc->as_state = AGP_ACQUIRE_FREE; 709 return 0; 710 } 711 712 static struct agp_memory * 713 agp_find_memory(device_t dev, int id) 714 { 715 struct agp_softc *sc = device_get_softc(dev); 716 struct agp_memory *mem; 717 718 AGP_DPF("searching for memory block %d\n", id); 719 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 720 AGP_DPF("considering memory block %d\n", mem->am_id); 721 if (mem->am_id == id) 722 return mem; 723 } 724 return 0; 725 } 726 727 /* Implementation of the userland ioctl api */ 728 729 static int 730 agp_info_user(device_t dev, agp_info *info) 731 { 732 struct agp_softc *sc = device_get_softc(dev); 733 734 bzero(info, sizeof *info); 735 info->bridge_id = pci_get_devid(dev); 736 info->agp_mode = 737 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 738 if (sc->as_aperture) 739 info->aper_base = rman_get_start(sc->as_aperture); 740 else 741 info->aper_base = 0; 742 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 743 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 744 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 745 746 return 0; 747 } 748 749 static int 750 agp_setup_user(device_t dev, agp_setup *setup) 751 { 752 return AGP_ENABLE(dev, setup->agp_mode); 753 } 754 755 static int 756 agp_allocate_user(device_t dev, agp_allocate *alloc) 757 { 758 struct agp_memory *mem; 759 760 mem = AGP_ALLOC_MEMORY(dev, 761 alloc->type, 762 alloc->pg_count << AGP_PAGE_SHIFT); 763 if (mem) { 764 alloc->key = mem->am_id; 765 alloc->physical = mem->am_physical; 766 return 0; 767 } else { 768 return ENOMEM; 769 } 770 } 771 772 static int 773 agp_deallocate_user(device_t dev, int id) 774 { 775 struct agp_memory *mem = agp_find_memory(dev, id); 776 777 if (mem) { 778 AGP_FREE_MEMORY(dev, mem); 779 return 0; 780 } else { 781 return ENOENT; 782 } 783 } 784 785 static int 786 agp_bind_user(device_t dev, agp_bind *bind) 787 { 788 struct agp_memory *mem = agp_find_memory(dev, bind->key); 789 790 if (!mem) 791 return ENOENT; 792 793 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 794 } 795 796 static int 797 agp_unbind_user(device_t dev, agp_unbind *unbind) 798 { 799 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 800 801 if (!mem) 802 return ENOENT; 803 804 return AGP_UNBIND_MEMORY(dev, mem); 805 } 806 807 static int 808 agp_chipset_flush(device_t dev) 809 { 810 811 return (AGP_CHIPSET_FLUSH(dev)); 812 } 813 814 static int 815 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 816 { 817 device_t dev = kdev->si_drv1; 818 struct agp_softc *sc = device_get_softc(dev); 819 820 if (!sc->as_isopen) { 821 sc->as_isopen = 1; 822 device_busy(dev); 823 } 824 825 return 0; 826 } 827 828 static int 829 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 830 { 831 device_t dev = kdev->si_drv1; 832 struct agp_softc *sc = device_get_softc(dev); 833 struct agp_memory *mem; 834 835 /* 836 * Clear the GATT and force release on last close 837 */ 838 while ((mem = TAILQ_FIRST(&sc->as_memory)) != NULL) { 839 if (mem->am_is_bound) 840 AGP_UNBIND_MEMORY(dev, mem); 841 AGP_FREE_MEMORY(dev, mem); 842 } 843 if (sc->as_state == AGP_ACQUIRE_USER) 844 agp_release_helper(dev, AGP_ACQUIRE_USER); 845 sc->as_isopen = 0; 846 device_unbusy(dev); 847 848 return 0; 849 } 850 851 static int 852 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 853 { 854 device_t dev = kdev->si_drv1; 855 856 switch (cmd) { 857 case AGPIOC_INFO: 858 return agp_info_user(dev, (agp_info *) data); 859 860 case AGPIOC_ACQUIRE: 861 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 862 863 case AGPIOC_RELEASE: 864 return agp_release_helper(dev, AGP_ACQUIRE_USER); 865 866 case AGPIOC_SETUP: 867 return agp_setup_user(dev, (agp_setup *)data); 868 869 case AGPIOC_ALLOCATE: 870 return agp_allocate_user(dev, (agp_allocate *)data); 871 872 case AGPIOC_DEALLOCATE: 873 return agp_deallocate_user(dev, *(int *) data); 874 875 case AGPIOC_BIND: 876 return agp_bind_user(dev, (agp_bind *)data); 877 878 case AGPIOC_UNBIND: 879 return agp_unbind_user(dev, (agp_unbind *)data); 880 881 case AGPIOC_CHIPSET_FLUSH: 882 return agp_chipset_flush(dev); 883 } 884 885 return EINVAL; 886 } 887 888 static int 889 agp_mmap(struct cdev *kdev, vm_ooffset_t offset, vm_paddr_t *paddr, 890 int prot, vm_memattr_t *memattr) 891 { 892 device_t dev = kdev->si_drv1; 893 struct agp_softc *sc = device_get_softc(dev); 894 895 if (offset > AGP_GET_APERTURE(dev)) 896 return -1; 897 if (sc->as_aperture == NULL) 898 return -1; 899 *paddr = rman_get_start(sc->as_aperture) + offset; 900 return 0; 901 } 902 903 /* Implementation of the kernel api */ 904 905 device_t 906 agp_find_device(void) 907 { 908 device_t *children, child; 909 int i, count; 910 911 if (!agp_devclass) 912 return NULL; 913 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 914 return NULL; 915 child = NULL; 916 for (i = 0; i < count; i++) { 917 if (device_is_attached(children[i])) { 918 child = children[i]; 919 break; 920 } 921 } 922 free(children, M_TEMP); 923 return child; 924 } 925 926 enum agp_acquire_state 927 agp_state(device_t dev) 928 { 929 struct agp_softc *sc = device_get_softc(dev); 930 return sc->as_state; 931 } 932 933 void 934 agp_get_info(device_t dev, struct agp_info *info) 935 { 936 struct agp_softc *sc = device_get_softc(dev); 937 938 info->ai_mode = 939 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 940 if (sc->as_aperture != NULL) 941 info->ai_aperture_base = rman_get_start(sc->as_aperture); 942 else 943 info->ai_aperture_base = 0; 944 info->ai_aperture_size = AGP_GET_APERTURE(dev); 945 info->ai_memory_allowed = sc->as_maxmem; 946 info->ai_memory_used = sc->as_allocated; 947 } 948 949 int 950 agp_acquire(device_t dev) 951 { 952 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 953 } 954 955 int 956 agp_release(device_t dev) 957 { 958 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 959 } 960 961 int 962 agp_enable(device_t dev, u_int32_t mode) 963 { 964 return AGP_ENABLE(dev, mode); 965 } 966 967 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 968 { 969 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 970 } 971 972 void agp_free_memory(device_t dev, void *handle) 973 { 974 struct agp_memory *mem = (struct agp_memory *) handle; 975 AGP_FREE_MEMORY(dev, mem); 976 } 977 978 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 979 { 980 struct agp_memory *mem = (struct agp_memory *) handle; 981 return AGP_BIND_MEMORY(dev, mem, offset); 982 } 983 984 int agp_unbind_memory(device_t dev, void *handle) 985 { 986 struct agp_memory *mem = (struct agp_memory *) handle; 987 return AGP_UNBIND_MEMORY(dev, mem); 988 } 989 990 void agp_memory_info(device_t dev, void *handle, struct 991 agp_memory_info *mi) 992 { 993 struct agp_memory *mem = (struct agp_memory *) handle; 994 995 mi->ami_size = mem->am_size; 996 mi->ami_physical = mem->am_physical; 997 mi->ami_offset = mem->am_offset; 998 mi->ami_is_bound = mem->am_is_bound; 999 } 1000 1001 int 1002 agp_bind_pages(device_t dev, vm_page_t *pages, vm_size_t size, 1003 vm_offset_t offset) 1004 { 1005 struct agp_softc *sc; 1006 vm_offset_t i, j, k, pa; 1007 vm_page_t m; 1008 int error; 1009 1010 if ((size & (AGP_PAGE_SIZE - 1)) != 0 || 1011 (offset & (AGP_PAGE_SIZE - 1)) != 0) 1012 return (EINVAL); 1013 1014 sc = device_get_softc(dev); 1015 1016 mtx_lock(&sc->as_lock); 1017 for (i = 0; i < size; i += PAGE_SIZE) { 1018 m = pages[OFF_TO_IDX(i)]; 1019 KASSERT(vm_page_wired(m), 1020 ("agp_bind_pages: page %p hasn't been wired", m)); 1021 1022 /* 1023 * Install entries in the GATT, making sure that if 1024 * AGP_PAGE_SIZE < PAGE_SIZE and size is not 1025 * aligned to PAGE_SIZE, we don't modify too many GATT 1026 * entries. 1027 */ 1028 for (j = 0; j < PAGE_SIZE && i + j < size; j += AGP_PAGE_SIZE) { 1029 pa = VM_PAGE_TO_PHYS(m) + j; 1030 AGP_DPF("binding offset %#jx to pa %#jx\n", 1031 (uintmax_t)offset + i + j, (uintmax_t)pa); 1032 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 1033 if (error) { 1034 /* 1035 * Bail out. Reverse all the mappings. 1036 */ 1037 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 1038 AGP_UNBIND_PAGE(dev, offset + k); 1039 1040 mtx_unlock(&sc->as_lock); 1041 return (error); 1042 } 1043 } 1044 } 1045 1046 AGP_FLUSH_TLB(dev); 1047 1048 mtx_unlock(&sc->as_lock); 1049 return (0); 1050 } 1051 1052 int 1053 agp_unbind_pages(device_t dev, vm_size_t size, vm_offset_t offset) 1054 { 1055 struct agp_softc *sc; 1056 vm_offset_t i; 1057 1058 if ((size & (AGP_PAGE_SIZE - 1)) != 0 || 1059 (offset & (AGP_PAGE_SIZE - 1)) != 0) 1060 return (EINVAL); 1061 1062 sc = device_get_softc(dev); 1063 1064 mtx_lock(&sc->as_lock); 1065 for (i = 0; i < size; i += AGP_PAGE_SIZE) 1066 AGP_UNBIND_PAGE(dev, offset + i); 1067 1068 AGP_FLUSH_TLB(dev); 1069 1070 mtx_unlock(&sc->as_lock); 1071 return (0); 1072 } 1073