xref: /freebsd/sys/dev/agp/agp.c (revision 77a0943ded95b9e6438f7db70c4a28e4d93946d4)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	$FreeBSD$
27  */
28 
29 #include "opt_bus.h"
30 #include "opt_pci.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/ioccom.h>
39 #include <sys/agpio.h>
40 #include <sys/lock.h>
41 
42 #include <pci/pcivar.h>
43 #include <pci/pcireg.h>
44 #include <pci/agppriv.h>
45 #include <pci/agpvar.h>
46 #include <pci/agpreg.h>
47 
48 #include <vm/vm.h>
49 #include <vm/vm_object.h>
50 #include <vm/vm_page.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/pmap.h>
53 
54 #include <machine/md_var.h>
55 #include <machine/bus.h>
56 #include <machine/resource.h>
57 #include <sys/rman.h>
58 
59 MODULE_VERSION(agp, 1);
60 
61 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
62 
63 #define CDEV_MAJOR	148
64 				/* agp_drv.c */
65 static d_open_t agp_open;
66 static d_close_t agp_close;
67 static d_ioctl_t agp_ioctl;
68 static d_mmap_t agp_mmap;
69 
70 static struct cdevsw agp_cdevsw = {
71 	/* open */	agp_open,
72 	/* close */	agp_close,
73 	/* read */	noread,
74 	/* write */	nowrite,
75 	/* ioctl */	agp_ioctl,
76 	/* poll */	nopoll,
77 	/* mmap */	agp_mmap,
78 	/* strategy */	nostrategy,
79 	/* name */	"agp",
80 	/* maj */	CDEV_MAJOR,
81 	/* dump */	nodump,
82 	/* psize */	nopsize,
83 	/* flags */	D_TTY,
84 	/* bmaj */	-1
85 };
86 
87 static devclass_t agp_devclass;
88 #define KDEV2DEV(kdev)	devclass_get_device(agp_devclass, minor(kdev))
89 
90 /* Helper functions for implementing chipset mini drivers. */
91 
92 void
93 agp_flush_cache()
94 {
95 #ifdef __i386__
96 	wbinvd();
97 #endif
98 }
99 
100 u_int8_t
101 agp_find_caps(device_t dev)
102 {
103 	u_int32_t status;
104 	u_int8_t ptr, next;
105 
106 	/*
107 	 * Check the CAP_LIST bit of the PCI status register first.
108 	 */
109 	status = pci_read_config(dev, PCIR_STATUS, 2);
110 	if (!(status & 0x10))
111 		return 0;
112 
113 	/*
114 	 * Traverse the capabilities list.
115 	 */
116 	for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
117 	     ptr != 0;
118 	     ptr = next) {
119 		u_int32_t capid = pci_read_config(dev, ptr, 4);
120 		next = AGP_CAPID_GET_NEXT_PTR(capid);
121 
122 		/*
123 		 * If this capability entry ID is 2, then we are done.
124 		 */
125 		if (AGP_CAPID_GET_CAP_ID(capid) == 2)
126 			return ptr;
127 	}
128 
129 	return 0;
130 }
131 
132 /*
133  * Find an AGP display device (if any).
134  */
135 static device_t
136 agp_find_display(void)
137 {
138 	devclass_t pci = devclass_find("pci");
139 	device_t bus, dev = 0;
140 	device_t *kids;
141 	int busnum, numkids, i;
142 
143 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
144 		bus = devclass_get_device(pci, busnum);
145 		if (!bus)
146 			continue;
147 		device_get_children(bus, &kids, &numkids);
148 		for (i = 0; i < numkids; i++) {
149 			dev = kids[i];
150 			if (pci_get_class(dev) == PCIC_DISPLAY
151 			    && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
152 				if (agp_find_caps(dev)) {
153 					free(kids, M_TEMP);
154 					return dev;
155 				}
156 
157 		}
158 		free(kids, M_TEMP);
159 	}
160 
161 	return 0;
162 }
163 
164 struct agp_gatt *
165 agp_alloc_gatt(device_t dev)
166 {
167 	u_int32_t apsize = AGP_GET_APERTURE(dev);
168 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
169 	struct agp_gatt *gatt;
170 
171 	if (bootverbose)
172 		device_printf(dev,
173 			      "allocating GATT for aperture of size %dM\n",
174 			      apsize / (1024*1024));
175 
176 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
177 	if (!gatt)
178 		return 0;
179 
180 	gatt->ag_entries = entries;
181 	gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0,
182 					0, ~0, PAGE_SIZE, 0);
183 	if (!gatt->ag_virtual) {
184 		if (bootverbose)
185 			device_printf(dev, "contiguous allocation failed\n");
186 		free(gatt, M_AGP);
187 		return 0;
188 	}
189 	bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
190 	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
191 	agp_flush_cache();
192 
193 	return gatt;
194 }
195 
196 void
197 agp_free_gatt(struct agp_gatt *gatt)
198 {
199 	contigfree(gatt->ag_virtual,
200 		   gatt->ag_entries * sizeof(u_int32_t), M_AGP);
201 	free(gatt, M_AGP);
202 }
203 
204 static int agp_max[][2] = {
205 	{0,	0},
206 	{32,	4},
207 	{64,	28},
208 	{128,	96},
209 	{256,	204},
210 	{512,	440},
211 	{1024,	942},
212 	{2048,	1920},
213 	{4096,	3932}
214 };
215 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
216 
217 int
218 agp_generic_attach(device_t dev)
219 {
220 	struct agp_softc *sc = device_get_softc(dev);
221 	int rid, memsize, i;
222 
223 	/*
224 	 * Find and map the aperture.
225 	 */
226 	rid = AGP_APBASE;
227 	sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
228 					     0, ~0, 1, RF_ACTIVE);
229 	if (!sc->as_aperture)
230 		return ENOMEM;
231 
232 	/*
233 	 * Work out an upper bound for agp memory allocation. This
234 	 * uses a heurisitc table from the Linux driver.
235 	 */
236 	memsize = ptoa(Maxmem) >> 20;
237 	for (i = 0; i < agp_max_size; i++) {
238 		if (memsize <= agp_max[i][0])
239 			break;
240 	}
241 	if (i == agp_max_size) i = agp_max_size - 1;
242 	sc->as_maxmem = agp_max[i][1] << 20U;
243 
244 	/*
245 	 * The lock is used to prevent re-entry to
246 	 * agp_generic_bind_memory() since that function can sleep.
247 	 */
248 	lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
249 
250 	/*
251 	 * Initialise stuff for the userland device.
252 	 */
253 	agp_devclass = devclass_find("agp");
254 	TAILQ_INIT(&sc->as_memory);
255 	sc->as_nextid = 1;
256 
257 	sc->as_devnode = make_dev(&agp_cdevsw,
258 				  device_get_unit(dev),
259 				  UID_ROOT,
260 				  GID_WHEEL,
261 				  0600,
262 				  "agpgart");
263 
264 	return 0;
265 }
266 
267 int
268 agp_generic_detach(device_t dev)
269 {
270 	struct agp_softc *sc = device_get_softc(dev);
271 	bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture);
272 	lockmgr(&sc->as_lock, LK_DRAIN, 0, curproc);
273 	lockdestroy(&sc->as_lock);
274 	destroy_dev(sc->as_devnode);
275 	agp_flush_cache();
276 	return 0;
277 }
278 
279 int
280 agp_generic_enable(device_t dev, u_int32_t mode)
281 {
282 	device_t mdev = agp_find_display();
283 	u_int32_t tstatus, mstatus;
284 	u_int32_t command;
285 	int rq, sba, fw, rate;;
286 
287 	if (!mdev) {
288 		AGP_DPF("can't find display\n");
289 		return ENXIO;
290 	}
291 
292 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
293 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
294 
295 	/* Set RQ to the min of mode, tstatus and mstatus */
296 	rq = AGP_MODE_GET_RQ(mode);
297 	if (AGP_MODE_GET_RQ(tstatus) < rq)
298 		rq = AGP_MODE_GET_RQ(tstatus);
299 	if (AGP_MODE_GET_RQ(mstatus) < rq)
300 		rq = AGP_MODE_GET_RQ(mstatus);
301 
302 	/* Set SBA if all three can deal with SBA */
303 	sba = (AGP_MODE_GET_SBA(tstatus)
304 	       & AGP_MODE_GET_SBA(mstatus)
305 	       & AGP_MODE_GET_SBA(mode));
306 
307 	/* Similar for FW */
308 	fw = (AGP_MODE_GET_FW(tstatus)
309 	       & AGP_MODE_GET_FW(mstatus)
310 	       & AGP_MODE_GET_FW(mode));
311 
312 	/* Figure out the max rate */
313 	rate = (AGP_MODE_GET_RATE(tstatus)
314 		& AGP_MODE_GET_RATE(mstatus)
315 		& AGP_MODE_GET_RATE(mode));
316 	if (rate & AGP_MODE_RATE_4x)
317 		rate = AGP_MODE_RATE_4x;
318 	else if (rate & AGP_MODE_RATE_2x)
319 		rate = AGP_MODE_RATE_2x;
320 	else
321 		rate = AGP_MODE_RATE_1x;
322 
323 	/* Construct the new mode word and tell the hardware */
324 	command = AGP_MODE_SET_RQ(0, rq);
325 	command = AGP_MODE_SET_SBA(command, sba);
326 	command = AGP_MODE_SET_FW(command, fw);
327 	command = AGP_MODE_SET_RATE(command, rate);
328 	command = AGP_MODE_SET_AGP(command, 1);
329 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
330 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
331 
332 	return 0;
333 }
334 
335 struct agp_memory *
336 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
337 {
338 	struct agp_softc *sc = device_get_softc(dev);
339 	struct agp_memory *mem;
340 
341 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
342 		return 0;
343 
344 	if (sc->as_allocated + size > sc->as_maxmem)
345 		return 0;
346 
347 	if (type != 0) {
348 		printf("agp_generic_alloc_memory: unsupported type %d\n",
349 		       type);
350 		return 0;
351 	}
352 
353 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
354 	mem->am_id = sc->as_nextid++;
355 	mem->am_size = size;
356 	mem->am_type = 0;
357 	mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
358 	mem->am_physical = 0;
359 	mem->am_offset = 0;
360 	mem->am_is_bound = 0;
361 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
362 	sc->as_allocated += size;
363 
364 	return mem;
365 }
366 
367 int
368 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
369 {
370 	struct agp_softc *sc = device_get_softc(dev);
371 
372 	if (mem->am_is_bound)
373 		return EBUSY;
374 
375 	sc->as_allocated -= mem->am_size;
376 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
377 	vm_object_deallocate(mem->am_obj);
378 	free(mem, M_AGP);
379 	return 0;
380 }
381 
382 int
383 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
384 			vm_offset_t offset)
385 {
386 	struct agp_softc *sc = device_get_softc(dev);
387 	vm_offset_t i, j, k;
388 	vm_page_t m;
389 	int error;
390 
391 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curproc);
392 
393 	if (mem->am_is_bound) {
394 		device_printf(dev, "memory already bound\n");
395 		return EINVAL;
396 	}
397 
398 	if (offset < 0
399 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
400 	    || offset + mem->am_size > AGP_GET_APERTURE(dev)) {
401 		device_printf(dev, "binding memory at bad offset %#x\n",
402 			      (int) offset);
403 		return EINVAL;
404 	}
405 
406 	/*
407 	 * Bind the individual pages and flush the chipset's
408 	 * TLB.
409 	 *
410 	 * XXX Presumably, this needs to be the pci address on alpha
411 	 * (i.e. use alpha_XXX_dmamap()). I don't have access to any
412 	 * alpha AGP hardware to check.
413 	 */
414 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
415 		/*
416 		 * Find a page from the object and wire it
417 		 * down. This page will be mapped using one or more
418 		 * entries in the GATT (assuming that PAGE_SIZE >=
419 		 * AGP_PAGE_SIZE. If this is the first call to bind,
420 		 * the pages will be allocated and zeroed.
421 		 */
422 		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
423 				 VM_ALLOC_ZERO | VM_ALLOC_RETRY);
424 		AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
425 		vm_page_wire(m);
426 
427 		/*
428 		 * Install entries in the GATT, making sure that if
429 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
430 		 * aligned to PAGE_SIZE, we don't modify too many GATT
431 		 * entries.
432 		 */
433 		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
434 		     j += AGP_PAGE_SIZE) {
435 			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
436 			AGP_DPF("binding offset %#x to pa %#x\n",
437 				offset + i + j, pa);
438 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
439 			if (error) {
440 				/*
441 				 * Bail out. Reverse all the mappings
442 				 * and unwire the pages.
443 				 */
444 				vm_page_wakeup(m);
445 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
446 					AGP_UNBIND_PAGE(dev, offset + k);
447 				for (k = 0; k <= i; k += PAGE_SIZE) {
448 					m = vm_page_lookup(mem->am_obj,
449 							   OFF_TO_IDX(k));
450 					vm_page_unwire(m, 0);
451 				}
452 				lockmgr(&sc->as_lock, LK_RELEASE, 0, curproc);
453 				return error;
454 			}
455 		}
456 		vm_page_wakeup(m);
457 	}
458 
459 	/*
460 	 * Flush the cpu cache since we are providing a new mapping
461 	 * for these pages.
462 	 */
463 	agp_flush_cache();
464 
465 	/*
466 	 * Make sure the chipset gets the new mappings.
467 	 */
468 	AGP_FLUSH_TLB(dev);
469 
470 	mem->am_offset = offset;
471 	mem->am_is_bound = 1;
472 
473 	lockmgr(&sc->as_lock, LK_RELEASE, 0, curproc);
474 
475 	return 0;
476 }
477 
478 int
479 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
480 {
481 	struct agp_softc *sc = device_get_softc(dev);
482 	vm_page_t m;
483 	int i;
484 
485 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curproc);
486 
487 	if (!mem->am_is_bound) {
488 		device_printf(dev, "memory is not bound\n");
489 		return EINVAL;
490 	}
491 
492 
493 	/*
494 	 * Unbind the individual pages and flush the chipset's
495 	 * TLB. Unwire the pages so they can be swapped.
496 	 */
497 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
498 		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
499 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
500 		m = vm_page_lookup(mem->am_obj, atop(i));
501 		vm_page_unwire(m, 0);
502 	}
503 
504 	agp_flush_cache();
505 	AGP_FLUSH_TLB(dev);
506 
507 	mem->am_offset = 0;
508 	mem->am_is_bound = 0;
509 
510 	lockmgr(&sc->as_lock, LK_RELEASE, 0, curproc);
511 
512 	return 0;
513 }
514 
515 /* Helper functions for implementing user/kernel api */
516 
517 static int
518 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
519 {
520 	struct agp_softc *sc = device_get_softc(dev);
521 
522 	if (sc->as_state != AGP_ACQUIRE_FREE)
523 		return EBUSY;
524 	sc->as_state = state;
525 
526 	return 0;
527 }
528 
529 static int
530 agp_release_helper(device_t dev, enum agp_acquire_state state)
531 {
532 	struct agp_softc *sc = device_get_softc(dev);
533 	struct agp_memory *mem;
534 
535 	if (sc->as_state == AGP_ACQUIRE_FREE)
536 		return 0;
537 
538 	if (sc->as_state != state)
539 		return EBUSY;
540 
541 	/*
542 	 * Clear out the aperture and free any outstanding memory blocks.
543 	 */
544 	while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
545 		if (mem->am_is_bound)
546 			AGP_UNBIND_MEMORY(dev, mem);
547 		AGP_FREE_MEMORY(dev, mem);
548 	}
549 
550 	sc->as_state = AGP_ACQUIRE_FREE;
551 	return 0;
552 }
553 
554 static struct agp_memory *
555 agp_find_memory(device_t dev, int id)
556 {
557 	struct agp_softc *sc = device_get_softc(dev);
558 	struct agp_memory *mem;
559 
560 	AGP_DPF("searching for memory block %d\n", id);
561 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
562 		AGP_DPF("considering memory block %d\n", mem->am_id);
563 		if (mem->am_id == id)
564 			return mem;
565 	}
566 	return 0;
567 }
568 
569 /* Implementation of the userland ioctl api */
570 
571 static int
572 agp_info_user(device_t dev, agp_info *info)
573 {
574 	struct agp_softc *sc = device_get_softc(dev);
575 
576 	bzero(info, sizeof *info);
577 	info->bridge_id = pci_get_devid(dev);
578 	info->agp_mode =
579 	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
580 	info->aper_base = rman_get_start(sc->as_aperture);
581 	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
582 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
583 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
584 
585 	return 0;
586 }
587 
588 static int
589 agp_setup_user(device_t dev, agp_setup *setup)
590 {
591 	return AGP_ENABLE(dev, setup->agp_mode);
592 }
593 
594 static int
595 agp_allocate_user(device_t dev, agp_allocate *alloc)
596 {
597 	struct agp_memory *mem;
598 
599 	mem = AGP_ALLOC_MEMORY(dev,
600 			       alloc->type,
601 			       alloc->pg_count << AGP_PAGE_SHIFT);
602 	if (mem) {
603 		alloc->key = mem->am_id;
604 		alloc->physical = mem->am_physical;
605 		return 0;
606 	} else {
607 		return ENOMEM;
608 	}
609 }
610 
611 static int
612 agp_deallocate_user(device_t dev, int id)
613 {
614 	struct agp_memory *mem = agp_find_memory(dev, id);;
615 
616 	if (mem) {
617 		AGP_FREE_MEMORY(dev, mem);
618 		return 0;
619 	} else {
620 		return ENOENT;
621 	}
622 }
623 
624 static int
625 agp_bind_user(device_t dev, agp_bind *bind)
626 {
627 	struct agp_memory *mem = agp_find_memory(dev, bind->key);
628 
629 	if (!mem)
630 		return ENOENT;
631 
632 	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
633 }
634 
635 static int
636 agp_unbind_user(device_t dev, agp_unbind *unbind)
637 {
638 	struct agp_memory *mem = agp_find_memory(dev, unbind->key);
639 
640 	if (!mem)
641 		return ENOENT;
642 
643 	return AGP_UNBIND_MEMORY(dev, mem);
644 }
645 
646 static int
647 agp_open(dev_t kdev, int oflags, int devtype, struct proc *p)
648 {
649 	device_t dev = KDEV2DEV(kdev);
650 	struct agp_softc *sc = device_get_softc(dev);
651 
652 	if (!sc->as_isopen) {
653 		sc->as_isopen = 1;
654 		device_busy(dev);
655 	}
656 
657 	return 0;
658 }
659 
660 static int
661 agp_close(dev_t kdev, int fflag, int devtype, struct proc *p)
662 {
663 	device_t dev = KDEV2DEV(kdev);
664 	struct agp_softc *sc = device_get_softc(dev);
665 
666 	/*
667 	 * Clear the GATT and force release on last close
668 	 */
669 	if (sc->as_state == AGP_ACQUIRE_USER)
670 		agp_release_helper(dev, AGP_ACQUIRE_USER);
671 	sc->as_isopen = 0;
672 	device_unbusy(dev);
673 
674 	return 0;
675 }
676 
677 static int
678 agp_ioctl(dev_t kdev, u_long cmd, caddr_t data, int fflag, struct proc *p)
679 {
680 	device_t dev = KDEV2DEV(kdev);
681 
682 	switch (cmd) {
683 	case AGPIOC_INFO:
684 		return agp_info_user(dev, (agp_info *) data);
685 
686 	case AGPIOC_ACQUIRE:
687 		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
688 
689 	case AGPIOC_RELEASE:
690 		return agp_release_helper(dev, AGP_ACQUIRE_USER);
691 
692 	case AGPIOC_SETUP:
693 		return agp_setup_user(dev, (agp_setup *)data);
694 
695 	case AGPIOC_ALLOCATE:
696 		return agp_allocate_user(dev, (agp_allocate *)data);
697 
698 	case AGPIOC_DEALLOCATE:
699 		return agp_deallocate_user(dev, *(int *) data);
700 
701 	case AGPIOC_BIND:
702 		return agp_bind_user(dev, (agp_bind *)data);
703 
704 	case AGPIOC_UNBIND:
705 		return agp_unbind_user(dev, (agp_unbind *)data);
706 
707 	}
708 
709 	return EINVAL;
710 }
711 
712 static int
713 agp_mmap(dev_t kdev, vm_offset_t offset, int prot)
714 {
715 	device_t dev = KDEV2DEV(kdev);
716 	struct agp_softc *sc = device_get_softc(dev);
717 
718 	if (offset > AGP_GET_APERTURE(dev))
719 		return -1;
720 	return atop(rman_get_start(sc->as_aperture) + offset);
721 }
722 
723 /* Implementation of the kernel api */
724 
725 device_t
726 agp_find_device()
727 {
728 	if (!agp_devclass)
729 		return 0;
730 	return devclass_get_device(agp_devclass, 0);
731 }
732 
733 enum agp_acquire_state
734 agp_state(device_t dev)
735 {
736 	struct agp_softc *sc = device_get_softc(dev);
737 	return sc->as_state;
738 }
739 
740 void
741 agp_get_info(device_t dev, struct agp_info *info)
742 {
743 	struct agp_softc *sc = device_get_softc(dev);
744 
745 	info->ai_mode =
746 		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
747 	info->ai_aperture_base = rman_get_start(sc->as_aperture);
748 	info->ai_aperture_size = rman_get_size(sc->as_aperture);
749 	info->ai_memory_allowed = sc->as_maxmem;
750 	info->ai_memory_used = sc->as_allocated;
751 }
752 
753 int
754 agp_acquire(device_t dev)
755 {
756 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
757 }
758 
759 int
760 agp_release(device_t dev)
761 {
762 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
763 }
764 
765 int
766 agp_enable(device_t dev, u_int32_t mode)
767 {
768 	return AGP_ENABLE(dev, mode);
769 }
770 
771 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
772 {
773 	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
774 }
775 
776 void agp_free_memory(device_t dev, void *handle)
777 {
778 	struct agp_memory *mem = (struct agp_memory *) handle;
779 	AGP_FREE_MEMORY(dev, mem);
780 }
781 
782 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
783 {
784 	struct agp_memory *mem = (struct agp_memory *) handle;
785 	return AGP_BIND_MEMORY(dev, mem, offset);
786 }
787 
788 int agp_unbind_memory(device_t dev, void *handle)
789 {
790 	struct agp_memory *mem = (struct agp_memory *) handle;
791 	return AGP_UNBIND_MEMORY(dev, mem);
792 }
793 
794 void agp_memory_info(device_t dev, void *handle, struct
795 		     agp_memory_info *mi)
796 {
797 	struct agp_memory *mem = (struct agp_memory *) handle;
798 
799 	mi->ami_size = mem->am_size;
800 	mi->ami_physical = mem->am_physical;
801 	mi->ami_offset = mem->am_offset;
802 	mi->ami_is_bound = mem->am_is_bound;
803 }
804