xref: /freebsd/sys/dev/agp/agp.c (revision 7773002178c8dbc52b44e4d705f07706409af8e4)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/ioccom.h>
39 #include <sys/agpio.h>
40 #include <sys/lock.h>
41 #include <sys/lockmgr.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 
45 #include <dev/pci/pcivar.h>
46 #include <dev/pci/pcireg.h>
47 #include <pci/agppriv.h>
48 #include <pci/agpvar.h>
49 #include <pci/agpreg.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_object.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_pageout.h>
55 #include <vm/pmap.h>
56 
57 #include <machine/md_var.h>
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61 
62 MODULE_VERSION(agp, 1);
63 
64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
65 
66 #define CDEV_MAJOR	148
67 				/* agp_drv.c */
68 static d_open_t agp_open;
69 static d_close_t agp_close;
70 static d_ioctl_t agp_ioctl;
71 static d_mmap_t agp_mmap;
72 
73 static struct cdevsw agp_cdevsw = {
74 	.d_open =	agp_open,
75 	.d_close =	agp_close,
76 	.d_ioctl =	agp_ioctl,
77 	.d_mmap =	agp_mmap,
78 	.d_name =	"agp",
79 	.d_maj =	CDEV_MAJOR,
80 	.d_flags =	D_TTY,
81 };
82 
83 static devclass_t agp_devclass;
84 #define KDEV2DEV(kdev)	devclass_get_device(agp_devclass, minor(kdev))
85 
86 /* Helper functions for implementing chipset mini drivers. */
87 
88 void
89 agp_flush_cache()
90 {
91 #ifdef __i386__
92 	wbinvd();
93 #endif
94 #ifdef __alpha__
95 	/* FIXME: This is most likely not correct as it doesn't flush CPU
96 	 * write caches, but we don't have a facility to do that and
97 	 * this is all linux does, too */
98 	alpha_mb();
99 #endif
100 }
101 
102 u_int8_t
103 agp_find_caps(device_t dev)
104 {
105 	u_int32_t status;
106 	u_int8_t ptr, next;
107 
108 	/*
109 	 * Check the CAP_LIST bit of the PCI status register first.
110 	 */
111 	status = pci_read_config(dev, PCIR_STATUS, 2);
112 	if (!(status & 0x10))
113 		return 0;
114 
115 	/*
116 	 * Traverse the capabilities list.
117 	 */
118 	for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
119 	     ptr != 0;
120 	     ptr = next) {
121 		u_int32_t capid = pci_read_config(dev, ptr, 4);
122 		next = AGP_CAPID_GET_NEXT_PTR(capid);
123 
124 		/*
125 		 * If this capability entry ID is 2, then we are done.
126 		 */
127 		if (AGP_CAPID_GET_CAP_ID(capid) == 2)
128 			return ptr;
129 	}
130 
131 	return 0;
132 }
133 
134 /*
135  * Find an AGP display device (if any).
136  */
137 static device_t
138 agp_find_display(void)
139 {
140 	devclass_t pci = devclass_find("pci");
141 	device_t bus, dev = 0;
142 	device_t *kids;
143 	int busnum, numkids, i;
144 
145 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
146 		bus = devclass_get_device(pci, busnum);
147 		if (!bus)
148 			continue;
149 		device_get_children(bus, &kids, &numkids);
150 		for (i = 0; i < numkids; i++) {
151 			dev = kids[i];
152 			if (pci_get_class(dev) == PCIC_DISPLAY
153 			    && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
154 				if (agp_find_caps(dev)) {
155 					free(kids, M_TEMP);
156 					return dev;
157 				}
158 
159 		}
160 		free(kids, M_TEMP);
161 	}
162 
163 	return 0;
164 }
165 
166 struct agp_gatt *
167 agp_alloc_gatt(device_t dev)
168 {
169 	u_int32_t apsize = AGP_GET_APERTURE(dev);
170 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
171 	struct agp_gatt *gatt;
172 
173 	if (bootverbose)
174 		device_printf(dev,
175 			      "allocating GATT for aperture of size %dM\n",
176 			      apsize / (1024*1024));
177 
178 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
179 	if (!gatt)
180 		return 0;
181 
182 	gatt->ag_entries = entries;
183 	gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0,
184 					0, ~0, PAGE_SIZE, 0);
185 	if (!gatt->ag_virtual) {
186 		if (bootverbose)
187 			device_printf(dev, "contiguous allocation failed\n");
188 		free(gatt, M_AGP);
189 		return 0;
190 	}
191 	bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
192 	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
193 	agp_flush_cache();
194 
195 	return gatt;
196 }
197 
198 void
199 agp_free_gatt(struct agp_gatt *gatt)
200 {
201 	contigfree(gatt->ag_virtual,
202 		   gatt->ag_entries * sizeof(u_int32_t), M_AGP);
203 	free(gatt, M_AGP);
204 }
205 
206 static int agp_max[][2] = {
207 	{0,	0},
208 	{32,	4},
209 	{64,	28},
210 	{128,	96},
211 	{256,	204},
212 	{512,	440},
213 	{1024,	942},
214 	{2048,	1920},
215 	{4096,	3932}
216 };
217 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
218 
219 int
220 agp_generic_attach(device_t dev)
221 {
222 	struct agp_softc *sc = device_get_softc(dev);
223 	int rid, memsize, i;
224 
225 	/*
226 	 * Find and map the aperture.
227 	 */
228 	rid = AGP_APBASE;
229 	sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
230 					     0, ~0, 1, RF_ACTIVE);
231 	if (!sc->as_aperture)
232 		return ENOMEM;
233 
234 	/*
235 	 * Work out an upper bound for agp memory allocation. This
236 	 * uses a heurisitc table from the Linux driver.
237 	 */
238 	memsize = ptoa(Maxmem) >> 20;
239 	for (i = 0; i < agp_max_size; i++) {
240 		if (memsize <= agp_max[i][0])
241 			break;
242 	}
243 	if (i == agp_max_size) i = agp_max_size - 1;
244 	sc->as_maxmem = agp_max[i][1] << 20U;
245 
246 	/*
247 	 * The lock is used to prevent re-entry to
248 	 * agp_generic_bind_memory() since that function can sleep.
249 	 */
250 	lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
251 
252 	/*
253 	 * Initialise stuff for the userland device.
254 	 */
255 	agp_devclass = devclass_find("agp");
256 	TAILQ_INIT(&sc->as_memory);
257 	sc->as_nextid = 1;
258 
259 	sc->as_devnode = make_dev(&agp_cdevsw,
260 				  device_get_unit(dev),
261 				  UID_ROOT,
262 				  GID_WHEEL,
263 				  0600,
264 				  "agpgart");
265 
266 	return 0;
267 }
268 
269 int
270 agp_generic_detach(device_t dev)
271 {
272 	struct agp_softc *sc = device_get_softc(dev);
273 	bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture);
274 	lockmgr(&sc->as_lock, LK_DRAIN, 0, curthread);
275 	lockdestroy(&sc->as_lock);
276 	destroy_dev(sc->as_devnode);
277 	agp_flush_cache();
278 	return 0;
279 }
280 
281 /*
282  * This does the enable logic for v3, with the same topology
283  * restrictions as in place for v2 -- one bus, one device on the bus.
284  */
285 static int
286 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
287 {
288 	u_int32_t tstatus, mstatus;
289 	u_int32_t command;
290 	int rq, sba, fw, rate, arqsz, cal;
291 
292 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
293 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
294 
295 	/* Set RQ to the min of mode, tstatus and mstatus */
296 	rq = AGP_MODE_GET_RQ(mode);
297 	if (AGP_MODE_GET_RQ(tstatus) < rq)
298 		rq = AGP_MODE_GET_RQ(tstatus);
299 	if (AGP_MODE_GET_RQ(mstatus) < rq)
300 		rq = AGP_MODE_GET_RQ(mstatus);
301 
302 	/*
303 	 * ARQSZ - Set the value to the maximum one.
304 	 * Don't allow the mode register to override values.
305 	 */
306 	arqsz = AGP_MODE_GET_ARQSZ(mode);
307 	if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
308 		rq = AGP_MODE_GET_ARQSZ(tstatus);
309 	if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
310 		rq = AGP_MODE_GET_ARQSZ(mstatus);
311 
312 	/* Calibration cycle - don't allow override by mode register */
313 	cal = AGP_MODE_GET_CAL(tstatus);
314 	if (AGP_MODE_GET_CAL(mstatus) < cal)
315 		cal = AGP_MODE_GET_CAL(mstatus);
316 
317 	/* SBA must be supported for AGP v3. */
318 	sba = 1;
319 
320 	/* Set FW if all three support it. */
321 	fw = (AGP_MODE_GET_FW(tstatus)
322 	       & AGP_MODE_GET_FW(mstatus)
323 	       & AGP_MODE_GET_FW(mode));
324 
325 	/* Figure out the max rate */
326 	rate = (AGP_MODE_GET_RATE(tstatus)
327 		& AGP_MODE_GET_RATE(mstatus)
328 		& AGP_MODE_GET_RATE(mode));
329 	if (rate & AGP_MODE_V3_RATE_8x)
330 		rate = AGP_MODE_V3_RATE_8x;
331 	else
332 		rate = AGP_MODE_V3_RATE_4x;
333 	if (bootverbose)
334 		device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
335 
336 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
337 
338 	/* Construct the new mode word and tell the hardware */
339 	command = AGP_MODE_SET_RQ(0, rq);
340 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
341 	command = AGP_MODE_SET_CAL(command, cal);
342 	command = AGP_MODE_SET_SBA(command, sba);
343 	command = AGP_MODE_SET_FW(command, fw);
344 	command = AGP_MODE_SET_RATE(command, rate);
345 	command = AGP_MODE_SET_AGP(command, 1);
346 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
347 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
348 
349 	return 0;
350 }
351 
352 static int
353 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
354 {
355 	u_int32_t tstatus, mstatus;
356 	u_int32_t command;
357 	int rq, sba, fw, rate;
358 
359 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
360 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
361 
362 	/* Set RQ to the min of mode, tstatus and mstatus */
363 	rq = AGP_MODE_GET_RQ(mode);
364 	if (AGP_MODE_GET_RQ(tstatus) < rq)
365 		rq = AGP_MODE_GET_RQ(tstatus);
366 	if (AGP_MODE_GET_RQ(mstatus) < rq)
367 		rq = AGP_MODE_GET_RQ(mstatus);
368 
369 	/* Set SBA if all three can deal with SBA */
370 	sba = (AGP_MODE_GET_SBA(tstatus)
371 	       & AGP_MODE_GET_SBA(mstatus)
372 	       & AGP_MODE_GET_SBA(mode));
373 
374 	/* Similar for FW */
375 	fw = (AGP_MODE_GET_FW(tstatus)
376 	       & AGP_MODE_GET_FW(mstatus)
377 	       & AGP_MODE_GET_FW(mode));
378 
379 	/* Figure out the max rate */
380 	rate = (AGP_MODE_GET_RATE(tstatus)
381 		& AGP_MODE_GET_RATE(mstatus)
382 		& AGP_MODE_GET_RATE(mode));
383 	if (rate & AGP_MODE_V2_RATE_4x)
384 		rate = AGP_MODE_V2_RATE_4x;
385 	else if (rate & AGP_MODE_V2_RATE_2x)
386 		rate = AGP_MODE_V2_RATE_2x;
387 	else
388 		rate = AGP_MODE_V2_RATE_1x;
389 	if (bootverbose)
390 		device_printf(dev, "Setting AGP v2 mode %d\n", rate);
391 
392 	/* Construct the new mode word and tell the hardware */
393 	command = AGP_MODE_SET_RQ(0, rq);
394 	command = AGP_MODE_SET_SBA(command, sba);
395 	command = AGP_MODE_SET_FW(command, fw);
396 	command = AGP_MODE_SET_RATE(command, rate);
397 	command = AGP_MODE_SET_AGP(command, 1);
398 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
399 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
400 
401 	return 0;
402 }
403 
404 int
405 agp_generic_enable(device_t dev, u_int32_t mode)
406 {
407 	device_t mdev = agp_find_display();
408 	u_int32_t tstatus, mstatus;
409 
410 	if (!mdev) {
411 		AGP_DPF("can't find display\n");
412 		return ENXIO;
413 	}
414 
415 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
416 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
417 
418 	/*
419 	 * Check display and bridge for AGP v3 support.  AGP v3 allows
420 	 * more variety in topology than v2, e.g. multiple AGP devices
421 	 * attached to one bridge, or multiple AGP bridges in one
422 	 * system.  This doesn't attempt to address those situations,
423 	 * but should work fine for a classic single AGP slot system
424 	 * with AGP v3.
425 	 */
426 	if (AGP_MODE_GET_MODE_3(tstatus) && AGP_MODE_GET_MODE_3(mstatus))
427 		return (agp_v3_enable(dev, mdev, mode));
428 	else
429 		return (agp_v2_enable(dev, mdev, mode));
430 }
431 
432 struct agp_memory *
433 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
434 {
435 	struct agp_softc *sc = device_get_softc(dev);
436 	struct agp_memory *mem;
437 
438 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
439 		return 0;
440 
441 	if (sc->as_allocated + size > sc->as_maxmem)
442 		return 0;
443 
444 	if (type != 0) {
445 		printf("agp_generic_alloc_memory: unsupported type %d\n",
446 		       type);
447 		return 0;
448 	}
449 
450 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
451 	mem->am_id = sc->as_nextid++;
452 	mem->am_size = size;
453 	mem->am_type = 0;
454 	mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
455 	mem->am_physical = 0;
456 	mem->am_offset = 0;
457 	mem->am_is_bound = 0;
458 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
459 	sc->as_allocated += size;
460 
461 	return mem;
462 }
463 
464 int
465 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
466 {
467 	struct agp_softc *sc = device_get_softc(dev);
468 
469 	if (mem->am_is_bound)
470 		return EBUSY;
471 
472 	sc->as_allocated -= mem->am_size;
473 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
474 	vm_object_deallocate(mem->am_obj);
475 	free(mem, M_AGP);
476 	return 0;
477 }
478 
479 int
480 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
481 			vm_offset_t offset)
482 {
483 	struct agp_softc *sc = device_get_softc(dev);
484 	vm_offset_t i, j, k;
485 	vm_page_t m;
486 	int error;
487 
488 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread);
489 
490 	if (mem->am_is_bound) {
491 		device_printf(dev, "memory already bound\n");
492 		return EINVAL;
493 	}
494 
495 	if (offset < 0
496 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
497 	    || offset + mem->am_size > AGP_GET_APERTURE(dev)) {
498 		device_printf(dev, "binding memory at bad offset %#x\n",
499 			      (int) offset);
500 		return EINVAL;
501 	}
502 
503 	/*
504 	 * Bind the individual pages and flush the chipset's
505 	 * TLB.
506 	 *
507 	 * XXX Presumably, this needs to be the pci address on alpha
508 	 * (i.e. use alpha_XXX_dmamap()). I don't have access to any
509 	 * alpha AGP hardware to check.
510 	 */
511 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
512 		/*
513 		 * Find a page from the object and wire it
514 		 * down. This page will be mapped using one or more
515 		 * entries in the GATT (assuming that PAGE_SIZE >=
516 		 * AGP_PAGE_SIZE. If this is the first call to bind,
517 		 * the pages will be allocated and zeroed.
518 		 */
519 		VM_OBJECT_LOCK(mem->am_obj);
520 		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
521 		    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
522 		VM_OBJECT_UNLOCK(mem->am_obj);
523 		if ((m->flags & PG_ZERO) == 0)
524 			pmap_zero_page(m);
525 		AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
526 
527 		/*
528 		 * Install entries in the GATT, making sure that if
529 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
530 		 * aligned to PAGE_SIZE, we don't modify too many GATT
531 		 * entries.
532 		 */
533 		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
534 		     j += AGP_PAGE_SIZE) {
535 			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
536 			AGP_DPF("binding offset %#x to pa %#x\n",
537 				offset + i + j, pa);
538 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
539 			if (error) {
540 				/*
541 				 * Bail out. Reverse all the mappings
542 				 * and unwire the pages.
543 				 */
544 				vm_page_lock_queues();
545 				vm_page_wakeup(m);
546 				vm_page_unlock_queues();
547 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
548 					AGP_UNBIND_PAGE(dev, offset + k);
549 				VM_OBJECT_LOCK(mem->am_obj);
550 				for (k = 0; k <= i; k += PAGE_SIZE) {
551 					m = vm_page_lookup(mem->am_obj,
552 							   OFF_TO_IDX(k));
553 					vm_page_lock_queues();
554 					vm_page_unwire(m, 0);
555 					vm_page_unlock_queues();
556 				}
557 				VM_OBJECT_UNLOCK(mem->am_obj);
558 				lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);
559 				return error;
560 			}
561 		}
562 		vm_page_lock_queues();
563 		vm_page_wakeup(m);
564 		vm_page_unlock_queues();
565 	}
566 
567 	/*
568 	 * Flush the cpu cache since we are providing a new mapping
569 	 * for these pages.
570 	 */
571 	agp_flush_cache();
572 
573 	/*
574 	 * Make sure the chipset gets the new mappings.
575 	 */
576 	AGP_FLUSH_TLB(dev);
577 
578 	mem->am_offset = offset;
579 	mem->am_is_bound = 1;
580 
581 	lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);
582 
583 	return 0;
584 }
585 
586 int
587 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
588 {
589 	struct agp_softc *sc = device_get_softc(dev);
590 	vm_page_t m;
591 	int i;
592 
593 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread);
594 
595 	if (!mem->am_is_bound) {
596 		device_printf(dev, "memory is not bound\n");
597 		return EINVAL;
598 	}
599 
600 
601 	/*
602 	 * Unbind the individual pages and flush the chipset's
603 	 * TLB. Unwire the pages so they can be swapped.
604 	 */
605 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
606 		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
607 	VM_OBJECT_LOCK(mem->am_obj);
608 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
609 		m = vm_page_lookup(mem->am_obj, atop(i));
610 		vm_page_lock_queues();
611 		vm_page_unwire(m, 0);
612 		vm_page_unlock_queues();
613 	}
614 	VM_OBJECT_UNLOCK(mem->am_obj);
615 
616 	agp_flush_cache();
617 	AGP_FLUSH_TLB(dev);
618 
619 	mem->am_offset = 0;
620 	mem->am_is_bound = 0;
621 
622 	lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);
623 
624 	return 0;
625 }
626 
627 /* Helper functions for implementing user/kernel api */
628 
629 static int
630 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
631 {
632 	struct agp_softc *sc = device_get_softc(dev);
633 
634 	if (sc->as_state != AGP_ACQUIRE_FREE)
635 		return EBUSY;
636 	sc->as_state = state;
637 
638 	return 0;
639 }
640 
641 static int
642 agp_release_helper(device_t dev, enum agp_acquire_state state)
643 {
644 	struct agp_softc *sc = device_get_softc(dev);
645 
646 	if (sc->as_state == AGP_ACQUIRE_FREE)
647 		return 0;
648 
649 	if (sc->as_state != state)
650 		return EBUSY;
651 
652 	sc->as_state = AGP_ACQUIRE_FREE;
653 	return 0;
654 }
655 
656 static struct agp_memory *
657 agp_find_memory(device_t dev, int id)
658 {
659 	struct agp_softc *sc = device_get_softc(dev);
660 	struct agp_memory *mem;
661 
662 	AGP_DPF("searching for memory block %d\n", id);
663 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
664 		AGP_DPF("considering memory block %d\n", mem->am_id);
665 		if (mem->am_id == id)
666 			return mem;
667 	}
668 	return 0;
669 }
670 
671 /* Implementation of the userland ioctl api */
672 
673 static int
674 agp_info_user(device_t dev, agp_info *info)
675 {
676 	struct agp_softc *sc = device_get_softc(dev);
677 
678 	bzero(info, sizeof *info);
679 	info->bridge_id = pci_get_devid(dev);
680 	info->agp_mode =
681 	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
682 	info->aper_base = rman_get_start(sc->as_aperture);
683 	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
684 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
685 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
686 
687 	return 0;
688 }
689 
690 static int
691 agp_setup_user(device_t dev, agp_setup *setup)
692 {
693 	return AGP_ENABLE(dev, setup->agp_mode);
694 }
695 
696 static int
697 agp_allocate_user(device_t dev, agp_allocate *alloc)
698 {
699 	struct agp_memory *mem;
700 
701 	mem = AGP_ALLOC_MEMORY(dev,
702 			       alloc->type,
703 			       alloc->pg_count << AGP_PAGE_SHIFT);
704 	if (mem) {
705 		alloc->key = mem->am_id;
706 		alloc->physical = mem->am_physical;
707 		return 0;
708 	} else {
709 		return ENOMEM;
710 	}
711 }
712 
713 static int
714 agp_deallocate_user(device_t dev, int id)
715 {
716 	struct agp_memory *mem = agp_find_memory(dev, id);;
717 
718 	if (mem) {
719 		AGP_FREE_MEMORY(dev, mem);
720 		return 0;
721 	} else {
722 		return ENOENT;
723 	}
724 }
725 
726 static int
727 agp_bind_user(device_t dev, agp_bind *bind)
728 {
729 	struct agp_memory *mem = agp_find_memory(dev, bind->key);
730 
731 	if (!mem)
732 		return ENOENT;
733 
734 	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
735 }
736 
737 static int
738 agp_unbind_user(device_t dev, agp_unbind *unbind)
739 {
740 	struct agp_memory *mem = agp_find_memory(dev, unbind->key);
741 
742 	if (!mem)
743 		return ENOENT;
744 
745 	return AGP_UNBIND_MEMORY(dev, mem);
746 }
747 
748 static int
749 agp_open(dev_t kdev, int oflags, int devtype, struct thread *td)
750 {
751 	device_t dev = KDEV2DEV(kdev);
752 	struct agp_softc *sc = device_get_softc(dev);
753 
754 	if (!sc->as_isopen) {
755 		sc->as_isopen = 1;
756 		device_busy(dev);
757 	}
758 
759 	return 0;
760 }
761 
762 static int
763 agp_close(dev_t kdev, int fflag, int devtype, struct thread *td)
764 {
765 	device_t dev = KDEV2DEV(kdev);
766 	struct agp_softc *sc = device_get_softc(dev);
767 	struct agp_memory *mem;
768 
769 	/*
770 	 * Clear the GATT and force release on last close
771 	 */
772 	while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
773 		if (mem->am_is_bound)
774 			AGP_UNBIND_MEMORY(dev, mem);
775 		AGP_FREE_MEMORY(dev, mem);
776 	}
777 	if (sc->as_state == AGP_ACQUIRE_USER)
778 		agp_release_helper(dev, AGP_ACQUIRE_USER);
779 	sc->as_isopen = 0;
780 	device_unbusy(dev);
781 
782 	return 0;
783 }
784 
785 static int
786 agp_ioctl(dev_t kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
787 {
788 	device_t dev = KDEV2DEV(kdev);
789 
790 	switch (cmd) {
791 	case AGPIOC_INFO:
792 		return agp_info_user(dev, (agp_info *) data);
793 
794 	case AGPIOC_ACQUIRE:
795 		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
796 
797 	case AGPIOC_RELEASE:
798 		return agp_release_helper(dev, AGP_ACQUIRE_USER);
799 
800 	case AGPIOC_SETUP:
801 		return agp_setup_user(dev, (agp_setup *)data);
802 
803 	case AGPIOC_ALLOCATE:
804 		return agp_allocate_user(dev, (agp_allocate *)data);
805 
806 	case AGPIOC_DEALLOCATE:
807 		return agp_deallocate_user(dev, *(int *) data);
808 
809 	case AGPIOC_BIND:
810 		return agp_bind_user(dev, (agp_bind *)data);
811 
812 	case AGPIOC_UNBIND:
813 		return agp_unbind_user(dev, (agp_unbind *)data);
814 
815 	}
816 
817 	return EINVAL;
818 }
819 
820 static int
821 agp_mmap(dev_t kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot)
822 {
823 	device_t dev = KDEV2DEV(kdev);
824 	struct agp_softc *sc = device_get_softc(dev);
825 
826 	if (offset > AGP_GET_APERTURE(dev))
827 		return -1;
828 	*paddr = rman_get_start(sc->as_aperture) + offset;
829 	return 0;
830 }
831 
832 /* Implementation of the kernel api */
833 
834 device_t
835 agp_find_device()
836 {
837 	if (!agp_devclass)
838 		return 0;
839 	return devclass_get_device(agp_devclass, 0);
840 }
841 
842 enum agp_acquire_state
843 agp_state(device_t dev)
844 {
845 	struct agp_softc *sc = device_get_softc(dev);
846 	return sc->as_state;
847 }
848 
849 void
850 agp_get_info(device_t dev, struct agp_info *info)
851 {
852 	struct agp_softc *sc = device_get_softc(dev);
853 
854 	info->ai_mode =
855 		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
856 	info->ai_aperture_base = rman_get_start(sc->as_aperture);
857 	info->ai_aperture_size = rman_get_size(sc->as_aperture);
858 	info->ai_aperture_va = (vm_offset_t) rman_get_virtual(sc->as_aperture);
859 	info->ai_memory_allowed = sc->as_maxmem;
860 	info->ai_memory_used = sc->as_allocated;
861 }
862 
863 int
864 agp_acquire(device_t dev)
865 {
866 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
867 }
868 
869 int
870 agp_release(device_t dev)
871 {
872 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
873 }
874 
875 int
876 agp_enable(device_t dev, u_int32_t mode)
877 {
878 	return AGP_ENABLE(dev, mode);
879 }
880 
881 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
882 {
883 	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
884 }
885 
886 void agp_free_memory(device_t dev, void *handle)
887 {
888 	struct agp_memory *mem = (struct agp_memory *) handle;
889 	AGP_FREE_MEMORY(dev, mem);
890 }
891 
892 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
893 {
894 	struct agp_memory *mem = (struct agp_memory *) handle;
895 	return AGP_BIND_MEMORY(dev, mem, offset);
896 }
897 
898 int agp_unbind_memory(device_t dev, void *handle)
899 {
900 	struct agp_memory *mem = (struct agp_memory *) handle;
901 	return AGP_UNBIND_MEMORY(dev, mem);
902 }
903 
904 void agp_memory_info(device_t dev, void *handle, struct
905 		     agp_memory_info *mi)
906 {
907 	struct agp_memory *mem = (struct agp_memory *) handle;
908 
909 	mi->ami_size = mem->am_size;
910 	mi->ami_physical = mem->am_physical;
911 	mi->ami_offset = mem->am_offset;
912 	mi->ami_is_bound = mem->am_is_bound;
913 }
914