xref: /freebsd/sys/dev/agp/agp.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/ioccom.h>
39 #include <sys/agpio.h>
40 #include <sys/lock.h>
41 #include <sys/lockmgr.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 
45 #include <dev/pci/pcivar.h>
46 #include <dev/pci/pcireg.h>
47 #include <pci/agppriv.h>
48 #include <pci/agpvar.h>
49 #include <pci/agpreg.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_object.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_pageout.h>
55 #include <vm/pmap.h>
56 
57 #include <machine/md_var.h>
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61 
62 MODULE_VERSION(agp, 1);
63 
64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
65 
66 #define CDEV_MAJOR	148
67 				/* agp_drv.c */
68 static d_open_t agp_open;
69 static d_close_t agp_close;
70 static d_ioctl_t agp_ioctl;
71 static d_mmap_t agp_mmap;
72 
73 static struct cdevsw agp_cdevsw = {
74 	.d_open =	agp_open,
75 	.d_close =	agp_close,
76 	.d_ioctl =	agp_ioctl,
77 	.d_mmap =	agp_mmap,
78 	.d_name =	"agp",
79 	.d_maj =	CDEV_MAJOR,
80 	.d_flags =	D_TTY,
81 };
82 
83 static devclass_t agp_devclass;
84 #define KDEV2DEV(kdev)	devclass_get_device(agp_devclass, minor(kdev))
85 
86 /* Helper functions for implementing chipset mini drivers. */
87 
88 void
89 agp_flush_cache()
90 {
91 #ifdef __i386__
92 	wbinvd();
93 #endif
94 #ifdef __alpha__
95 	/* FIXME: This is most likely not correct as it doesn't flush CPU
96 	 * write caches, but we don't have a facility to do that and
97 	 * this is all linux does, too */
98 	alpha_mb();
99 #endif
100 }
101 
102 u_int8_t
103 agp_find_caps(device_t dev)
104 {
105 	u_int32_t status;
106 	u_int8_t ptr, next;
107 
108 	/*
109 	 * Check the CAP_LIST bit of the PCI status register first.
110 	 */
111 	status = pci_read_config(dev, PCIR_STATUS, 2);
112 	if (!(status & 0x10))
113 		return 0;
114 
115 	/*
116 	 * Traverse the capabilities list.
117 	 */
118 	for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
119 	     ptr != 0;
120 	     ptr = next) {
121 		u_int32_t capid = pci_read_config(dev, ptr, 4);
122 		next = AGP_CAPID_GET_NEXT_PTR(capid);
123 
124 		/*
125 		 * If this capability entry ID is 2, then we are done.
126 		 */
127 		if (AGP_CAPID_GET_CAP_ID(capid) == 2)
128 			return ptr;
129 	}
130 
131 	return 0;
132 }
133 
134 /*
135  * Find an AGP display device (if any).
136  */
137 static device_t
138 agp_find_display(void)
139 {
140 	devclass_t pci = devclass_find("pci");
141 	device_t bus, dev = 0;
142 	device_t *kids;
143 	int busnum, numkids, i;
144 
145 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
146 		bus = devclass_get_device(pci, busnum);
147 		if (!bus)
148 			continue;
149 		device_get_children(bus, &kids, &numkids);
150 		for (i = 0; i < numkids; i++) {
151 			dev = kids[i];
152 			if (pci_get_class(dev) == PCIC_DISPLAY
153 			    && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
154 				if (agp_find_caps(dev)) {
155 					free(kids, M_TEMP);
156 					return dev;
157 				}
158 
159 		}
160 		free(kids, M_TEMP);
161 	}
162 
163 	return 0;
164 }
165 
166 struct agp_gatt *
167 agp_alloc_gatt(device_t dev)
168 {
169 	u_int32_t apsize = AGP_GET_APERTURE(dev);
170 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
171 	struct agp_gatt *gatt;
172 
173 	if (bootverbose)
174 		device_printf(dev,
175 			      "allocating GATT for aperture of size %dM\n",
176 			      apsize / (1024*1024));
177 
178 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
179 	if (!gatt)
180 		return 0;
181 
182 	gatt->ag_entries = entries;
183 	gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0,
184 					0, ~0, PAGE_SIZE, 0);
185 	if (!gatt->ag_virtual) {
186 		if (bootverbose)
187 			device_printf(dev, "contiguous allocation failed\n");
188 		free(gatt, M_AGP);
189 		return 0;
190 	}
191 	bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
192 	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
193 	agp_flush_cache();
194 
195 	return gatt;
196 }
197 
198 void
199 agp_free_gatt(struct agp_gatt *gatt)
200 {
201 	contigfree(gatt->ag_virtual,
202 		   gatt->ag_entries * sizeof(u_int32_t), M_AGP);
203 	free(gatt, M_AGP);
204 }
205 
206 static int agp_max[][2] = {
207 	{0,	0},
208 	{32,	4},
209 	{64,	28},
210 	{128,	96},
211 	{256,	204},
212 	{512,	440},
213 	{1024,	942},
214 	{2048,	1920},
215 	{4096,	3932}
216 };
217 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
218 
219 int
220 agp_generic_attach(device_t dev)
221 {
222 	struct agp_softc *sc = device_get_softc(dev);
223 	int rid, memsize, i;
224 
225 	/*
226 	 * Find and map the aperture.
227 	 */
228 	rid = AGP_APBASE;
229 	sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
230 					     0, ~0, 1, RF_ACTIVE);
231 	if (!sc->as_aperture)
232 		return ENOMEM;
233 
234 	/*
235 	 * Work out an upper bound for agp memory allocation. This
236 	 * uses a heurisitc table from the Linux driver.
237 	 */
238 	memsize = ptoa(Maxmem) >> 20;
239 	for (i = 0; i < agp_max_size; i++) {
240 		if (memsize <= agp_max[i][0])
241 			break;
242 	}
243 	if (i == agp_max_size) i = agp_max_size - 1;
244 	sc->as_maxmem = agp_max[i][1] << 20U;
245 
246 	/*
247 	 * The lock is used to prevent re-entry to
248 	 * agp_generic_bind_memory() since that function can sleep.
249 	 */
250 	lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
251 
252 	/*
253 	 * Initialise stuff for the userland device.
254 	 */
255 	agp_devclass = devclass_find("agp");
256 	TAILQ_INIT(&sc->as_memory);
257 	sc->as_nextid = 1;
258 
259 	sc->as_devnode = make_dev(&agp_cdevsw,
260 				  device_get_unit(dev),
261 				  UID_ROOT,
262 				  GID_WHEEL,
263 				  0600,
264 				  "agpgart");
265 
266 	return 0;
267 }
268 
269 int
270 agp_generic_detach(device_t dev)
271 {
272 	struct agp_softc *sc = device_get_softc(dev);
273 	bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture);
274 	lockmgr(&sc->as_lock, LK_DRAIN, 0, curthread);
275 	lockdestroy(&sc->as_lock);
276 	destroy_dev(sc->as_devnode);
277 	agp_flush_cache();
278 	return 0;
279 }
280 
281 int
282 agp_generic_enable(device_t dev, u_int32_t mode)
283 {
284 	device_t mdev = agp_find_display();
285 	u_int32_t tstatus, mstatus;
286 	u_int32_t command;
287 	int rq, sba, fw, rate;;
288 
289 	if (!mdev) {
290 		AGP_DPF("can't find display\n");
291 		return ENXIO;
292 	}
293 
294 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
295 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
296 
297 	/* Set RQ to the min of mode, tstatus and mstatus */
298 	rq = AGP_MODE_GET_RQ(mode);
299 	if (AGP_MODE_GET_RQ(tstatus) < rq)
300 		rq = AGP_MODE_GET_RQ(tstatus);
301 	if (AGP_MODE_GET_RQ(mstatus) < rq)
302 		rq = AGP_MODE_GET_RQ(mstatus);
303 
304 	/* Set SBA if all three can deal with SBA */
305 	sba = (AGP_MODE_GET_SBA(tstatus)
306 	       & AGP_MODE_GET_SBA(mstatus)
307 	       & AGP_MODE_GET_SBA(mode));
308 
309 	/* Similar for FW */
310 	fw = (AGP_MODE_GET_FW(tstatus)
311 	       & AGP_MODE_GET_FW(mstatus)
312 	       & AGP_MODE_GET_FW(mode));
313 
314 	/* Figure out the max rate */
315 	rate = (AGP_MODE_GET_RATE(tstatus)
316 		& AGP_MODE_GET_RATE(mstatus)
317 		& AGP_MODE_GET_RATE(mode));
318 	if (rate & AGP_MODE_RATE_4x)
319 		rate = AGP_MODE_RATE_4x;
320 	else if (rate & AGP_MODE_RATE_2x)
321 		rate = AGP_MODE_RATE_2x;
322 	else
323 		rate = AGP_MODE_RATE_1x;
324 
325 	/* Construct the new mode word and tell the hardware */
326 	command = AGP_MODE_SET_RQ(0, rq);
327 	command = AGP_MODE_SET_SBA(command, sba);
328 	command = AGP_MODE_SET_FW(command, fw);
329 	command = AGP_MODE_SET_RATE(command, rate);
330 	command = AGP_MODE_SET_AGP(command, 1);
331 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
332 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
333 
334 	return 0;
335 }
336 
337 struct agp_memory *
338 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
339 {
340 	struct agp_softc *sc = device_get_softc(dev);
341 	struct agp_memory *mem;
342 
343 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
344 		return 0;
345 
346 	if (sc->as_allocated + size > sc->as_maxmem)
347 		return 0;
348 
349 	if (type != 0) {
350 		printf("agp_generic_alloc_memory: unsupported type %d\n",
351 		       type);
352 		return 0;
353 	}
354 
355 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
356 	mem->am_id = sc->as_nextid++;
357 	mem->am_size = size;
358 	mem->am_type = 0;
359 	mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
360 	mem->am_physical = 0;
361 	mem->am_offset = 0;
362 	mem->am_is_bound = 0;
363 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
364 	sc->as_allocated += size;
365 
366 	return mem;
367 }
368 
369 int
370 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
371 {
372 	struct agp_softc *sc = device_get_softc(dev);
373 
374 	if (mem->am_is_bound)
375 		return EBUSY;
376 
377 	sc->as_allocated -= mem->am_size;
378 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
379 	vm_object_deallocate(mem->am_obj);
380 	free(mem, M_AGP);
381 	return 0;
382 }
383 
384 int
385 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
386 			vm_offset_t offset)
387 {
388 	struct agp_softc *sc = device_get_softc(dev);
389 	vm_offset_t i, j, k;
390 	vm_page_t m;
391 	int error;
392 
393 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread);
394 
395 	if (mem->am_is_bound) {
396 		device_printf(dev, "memory already bound\n");
397 		return EINVAL;
398 	}
399 
400 	if (offset < 0
401 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
402 	    || offset + mem->am_size > AGP_GET_APERTURE(dev)) {
403 		device_printf(dev, "binding memory at bad offset %#x\n",
404 			      (int) offset);
405 		return EINVAL;
406 	}
407 
408 	/*
409 	 * Bind the individual pages and flush the chipset's
410 	 * TLB.
411 	 *
412 	 * XXX Presumably, this needs to be the pci address on alpha
413 	 * (i.e. use alpha_XXX_dmamap()). I don't have access to any
414 	 * alpha AGP hardware to check.
415 	 */
416 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
417 		/*
418 		 * Find a page from the object and wire it
419 		 * down. This page will be mapped using one or more
420 		 * entries in the GATT (assuming that PAGE_SIZE >=
421 		 * AGP_PAGE_SIZE. If this is the first call to bind,
422 		 * the pages will be allocated and zeroed.
423 		 */
424 		VM_OBJECT_LOCK(mem->am_obj);
425 		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
426 		    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
427 		VM_OBJECT_UNLOCK(mem->am_obj);
428 		if ((m->flags & PG_ZERO) == 0)
429 			pmap_zero_page(m);
430 		AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
431 
432 		/*
433 		 * Install entries in the GATT, making sure that if
434 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
435 		 * aligned to PAGE_SIZE, we don't modify too many GATT
436 		 * entries.
437 		 */
438 		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
439 		     j += AGP_PAGE_SIZE) {
440 			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
441 			AGP_DPF("binding offset %#x to pa %#x\n",
442 				offset + i + j, pa);
443 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
444 			if (error) {
445 				/*
446 				 * Bail out. Reverse all the mappings
447 				 * and unwire the pages.
448 				 */
449 				vm_page_lock_queues();
450 				vm_page_wakeup(m);
451 				vm_page_unlock_queues();
452 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
453 					AGP_UNBIND_PAGE(dev, offset + k);
454 				VM_OBJECT_LOCK(mem->am_obj);
455 				for (k = 0; k <= i; k += PAGE_SIZE) {
456 					m = vm_page_lookup(mem->am_obj,
457 							   OFF_TO_IDX(k));
458 					vm_page_lock_queues();
459 					vm_page_unwire(m, 0);
460 					vm_page_unlock_queues();
461 				}
462 				VM_OBJECT_UNLOCK(mem->am_obj);
463 				lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);
464 				return error;
465 			}
466 		}
467 		vm_page_lock_queues();
468 		vm_page_wakeup(m);
469 		vm_page_unlock_queues();
470 	}
471 
472 	/*
473 	 * Flush the cpu cache since we are providing a new mapping
474 	 * for these pages.
475 	 */
476 	agp_flush_cache();
477 
478 	/*
479 	 * Make sure the chipset gets the new mappings.
480 	 */
481 	AGP_FLUSH_TLB(dev);
482 
483 	mem->am_offset = offset;
484 	mem->am_is_bound = 1;
485 
486 	lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);
487 
488 	return 0;
489 }
490 
491 int
492 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
493 {
494 	struct agp_softc *sc = device_get_softc(dev);
495 	vm_page_t m;
496 	int i;
497 
498 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread);
499 
500 	if (!mem->am_is_bound) {
501 		device_printf(dev, "memory is not bound\n");
502 		return EINVAL;
503 	}
504 
505 
506 	/*
507 	 * Unbind the individual pages and flush the chipset's
508 	 * TLB. Unwire the pages so they can be swapped.
509 	 */
510 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
511 		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
512 	VM_OBJECT_LOCK(mem->am_obj);
513 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
514 		m = vm_page_lookup(mem->am_obj, atop(i));
515 		vm_page_lock_queues();
516 		vm_page_unwire(m, 0);
517 		vm_page_unlock_queues();
518 	}
519 	VM_OBJECT_UNLOCK(mem->am_obj);
520 
521 	agp_flush_cache();
522 	AGP_FLUSH_TLB(dev);
523 
524 	mem->am_offset = 0;
525 	mem->am_is_bound = 0;
526 
527 	lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);
528 
529 	return 0;
530 }
531 
532 /* Helper functions for implementing user/kernel api */
533 
534 static int
535 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
536 {
537 	struct agp_softc *sc = device_get_softc(dev);
538 
539 	if (sc->as_state != AGP_ACQUIRE_FREE)
540 		return EBUSY;
541 	sc->as_state = state;
542 
543 	return 0;
544 }
545 
546 static int
547 agp_release_helper(device_t dev, enum agp_acquire_state state)
548 {
549 	struct agp_softc *sc = device_get_softc(dev);
550 
551 	if (sc->as_state == AGP_ACQUIRE_FREE)
552 		return 0;
553 
554 	if (sc->as_state != state)
555 		return EBUSY;
556 
557 	sc->as_state = AGP_ACQUIRE_FREE;
558 	return 0;
559 }
560 
561 static struct agp_memory *
562 agp_find_memory(device_t dev, int id)
563 {
564 	struct agp_softc *sc = device_get_softc(dev);
565 	struct agp_memory *mem;
566 
567 	AGP_DPF("searching for memory block %d\n", id);
568 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
569 		AGP_DPF("considering memory block %d\n", mem->am_id);
570 		if (mem->am_id == id)
571 			return mem;
572 	}
573 	return 0;
574 }
575 
576 /* Implementation of the userland ioctl api */
577 
578 static int
579 agp_info_user(device_t dev, agp_info *info)
580 {
581 	struct agp_softc *sc = device_get_softc(dev);
582 
583 	bzero(info, sizeof *info);
584 	info->bridge_id = pci_get_devid(dev);
585 	info->agp_mode =
586 	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
587 	info->aper_base = rman_get_start(sc->as_aperture);
588 	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
589 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
590 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
591 
592 	return 0;
593 }
594 
595 static int
596 agp_setup_user(device_t dev, agp_setup *setup)
597 {
598 	return AGP_ENABLE(dev, setup->agp_mode);
599 }
600 
601 static int
602 agp_allocate_user(device_t dev, agp_allocate *alloc)
603 {
604 	struct agp_memory *mem;
605 
606 	mem = AGP_ALLOC_MEMORY(dev,
607 			       alloc->type,
608 			       alloc->pg_count << AGP_PAGE_SHIFT);
609 	if (mem) {
610 		alloc->key = mem->am_id;
611 		alloc->physical = mem->am_physical;
612 		return 0;
613 	} else {
614 		return ENOMEM;
615 	}
616 }
617 
618 static int
619 agp_deallocate_user(device_t dev, int id)
620 {
621 	struct agp_memory *mem = agp_find_memory(dev, id);;
622 
623 	if (mem) {
624 		AGP_FREE_MEMORY(dev, mem);
625 		return 0;
626 	} else {
627 		return ENOENT;
628 	}
629 }
630 
631 static int
632 agp_bind_user(device_t dev, agp_bind *bind)
633 {
634 	struct agp_memory *mem = agp_find_memory(dev, bind->key);
635 
636 	if (!mem)
637 		return ENOENT;
638 
639 	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
640 }
641 
642 static int
643 agp_unbind_user(device_t dev, agp_unbind *unbind)
644 {
645 	struct agp_memory *mem = agp_find_memory(dev, unbind->key);
646 
647 	if (!mem)
648 		return ENOENT;
649 
650 	return AGP_UNBIND_MEMORY(dev, mem);
651 }
652 
653 static int
654 agp_open(dev_t kdev, int oflags, int devtype, struct thread *td)
655 {
656 	device_t dev = KDEV2DEV(kdev);
657 	struct agp_softc *sc = device_get_softc(dev);
658 
659 	if (!sc->as_isopen) {
660 		sc->as_isopen = 1;
661 		device_busy(dev);
662 	}
663 
664 	return 0;
665 }
666 
667 static int
668 agp_close(dev_t kdev, int fflag, int devtype, struct thread *td)
669 {
670 	device_t dev = KDEV2DEV(kdev);
671 	struct agp_softc *sc = device_get_softc(dev);
672 	struct agp_memory *mem;
673 
674 	/*
675 	 * Clear the GATT and force release on last close
676 	 */
677 	while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
678 		if (mem->am_is_bound)
679 			AGP_UNBIND_MEMORY(dev, mem);
680 		AGP_FREE_MEMORY(dev, mem);
681 	}
682 	if (sc->as_state == AGP_ACQUIRE_USER)
683 		agp_release_helper(dev, AGP_ACQUIRE_USER);
684 	sc->as_isopen = 0;
685 	device_unbusy(dev);
686 
687 	return 0;
688 }
689 
690 static int
691 agp_ioctl(dev_t kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
692 {
693 	device_t dev = KDEV2DEV(kdev);
694 
695 	switch (cmd) {
696 	case AGPIOC_INFO:
697 		return agp_info_user(dev, (agp_info *) data);
698 
699 	case AGPIOC_ACQUIRE:
700 		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
701 
702 	case AGPIOC_RELEASE:
703 		return agp_release_helper(dev, AGP_ACQUIRE_USER);
704 
705 	case AGPIOC_SETUP:
706 		return agp_setup_user(dev, (agp_setup *)data);
707 
708 	case AGPIOC_ALLOCATE:
709 		return agp_allocate_user(dev, (agp_allocate *)data);
710 
711 	case AGPIOC_DEALLOCATE:
712 		return agp_deallocate_user(dev, *(int *) data);
713 
714 	case AGPIOC_BIND:
715 		return agp_bind_user(dev, (agp_bind *)data);
716 
717 	case AGPIOC_UNBIND:
718 		return agp_unbind_user(dev, (agp_unbind *)data);
719 
720 	}
721 
722 	return EINVAL;
723 }
724 
725 static int
726 agp_mmap(dev_t kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot)
727 {
728 	device_t dev = KDEV2DEV(kdev);
729 	struct agp_softc *sc = device_get_softc(dev);
730 
731 	if (offset > AGP_GET_APERTURE(dev))
732 		return -1;
733 	*paddr = rman_get_start(sc->as_aperture) + offset;
734 	return 0;
735 }
736 
737 /* Implementation of the kernel api */
738 
739 device_t
740 agp_find_device()
741 {
742 	if (!agp_devclass)
743 		return 0;
744 	return devclass_get_device(agp_devclass, 0);
745 }
746 
747 enum agp_acquire_state
748 agp_state(device_t dev)
749 {
750 	struct agp_softc *sc = device_get_softc(dev);
751 	return sc->as_state;
752 }
753 
754 void
755 agp_get_info(device_t dev, struct agp_info *info)
756 {
757 	struct agp_softc *sc = device_get_softc(dev);
758 
759 	info->ai_mode =
760 		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
761 	info->ai_aperture_base = rman_get_start(sc->as_aperture);
762 	info->ai_aperture_size = rman_get_size(sc->as_aperture);
763 	info->ai_aperture_va = (vm_offset_t) rman_get_virtual(sc->as_aperture);
764 	info->ai_memory_allowed = sc->as_maxmem;
765 	info->ai_memory_used = sc->as_allocated;
766 }
767 
768 int
769 agp_acquire(device_t dev)
770 {
771 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
772 }
773 
774 int
775 agp_release(device_t dev)
776 {
777 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
778 }
779 
780 int
781 agp_enable(device_t dev, u_int32_t mode)
782 {
783 	return AGP_ENABLE(dev, mode);
784 }
785 
786 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
787 {
788 	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
789 }
790 
791 void agp_free_memory(device_t dev, void *handle)
792 {
793 	struct agp_memory *mem = (struct agp_memory *) handle;
794 	AGP_FREE_MEMORY(dev, mem);
795 }
796 
797 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
798 {
799 	struct agp_memory *mem = (struct agp_memory *) handle;
800 	return AGP_BIND_MEMORY(dev, mem, offset);
801 }
802 
803 int agp_unbind_memory(device_t dev, void *handle)
804 {
805 	struct agp_memory *mem = (struct agp_memory *) handle;
806 	return AGP_UNBIND_MEMORY(dev, mem);
807 }
808 
809 void agp_memory_info(device_t dev, void *handle, struct
810 		     agp_memory_info *mi)
811 {
812 	struct agp_memory *mem = (struct agp_memory *) handle;
813 
814 	mi->ami_size = mem->am_size;
815 	mi->ami_physical = mem->am_physical;
816 	mi->ami_offset = mem->am_offset;
817 	mi->ami_is_bound = mem->am_is_bound;
818 }
819