1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/bus.h> 37 #include <sys/conf.h> 38 #include <sys/ioccom.h> 39 #include <sys/agpio.h> 40 #include <sys/lock.h> 41 #include <sys/lockmgr.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 45 #include <dev/pci/pcivar.h> 46 #include <dev/pci/pcireg.h> 47 #include <pci/agppriv.h> 48 #include <pci/agpvar.h> 49 #include <pci/agpreg.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_pageout.h> 55 #include <vm/pmap.h> 56 57 #include <machine/md_var.h> 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 MODULE_VERSION(agp, 1); 63 64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 65 66 #define CDEV_MAJOR 148 67 /* agp_drv.c */ 68 static d_open_t agp_open; 69 static d_close_t agp_close; 70 static d_ioctl_t agp_ioctl; 71 static d_mmap_t agp_mmap; 72 73 static struct cdevsw agp_cdevsw = { 74 .d_open = agp_open, 75 .d_close = agp_close, 76 .d_ioctl = agp_ioctl, 77 .d_mmap = agp_mmap, 78 .d_name = "agp", 79 .d_maj = CDEV_MAJOR, 80 .d_flags = D_TTY, 81 }; 82 83 static devclass_t agp_devclass; 84 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev)) 85 86 /* Helper functions for implementing chipset mini drivers. */ 87 88 void 89 agp_flush_cache() 90 { 91 #ifdef __i386__ 92 wbinvd(); 93 #endif 94 #ifdef __alpha__ 95 /* FIXME: This is most likely not correct as it doesn't flush CPU 96 * write caches, but we don't have a facility to do that and 97 * this is all linux does, too */ 98 alpha_mb(); 99 #endif 100 } 101 102 u_int8_t 103 agp_find_caps(device_t dev) 104 { 105 u_int32_t status; 106 u_int8_t ptr, next; 107 108 /* 109 * Check the CAP_LIST bit of the PCI status register first. 110 */ 111 status = pci_read_config(dev, PCIR_STATUS, 2); 112 if (!(status & 0x10)) 113 return 0; 114 115 /* 116 * Traverse the capabilities list. 117 */ 118 for (ptr = pci_read_config(dev, AGP_CAPPTR, 1); 119 ptr != 0; 120 ptr = next) { 121 u_int32_t capid = pci_read_config(dev, ptr, 4); 122 next = AGP_CAPID_GET_NEXT_PTR(capid); 123 124 /* 125 * If this capability entry ID is 2, then we are done. 126 */ 127 if (AGP_CAPID_GET_CAP_ID(capid) == 2) 128 return ptr; 129 } 130 131 return 0; 132 } 133 134 /* 135 * Find an AGP display device (if any). 136 */ 137 static device_t 138 agp_find_display(void) 139 { 140 devclass_t pci = devclass_find("pci"); 141 device_t bus, dev = 0; 142 device_t *kids; 143 int busnum, numkids, i; 144 145 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 146 bus = devclass_get_device(pci, busnum); 147 if (!bus) 148 continue; 149 device_get_children(bus, &kids, &numkids); 150 for (i = 0; i < numkids; i++) { 151 dev = kids[i]; 152 if (pci_get_class(dev) == PCIC_DISPLAY 153 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 154 if (agp_find_caps(dev)) { 155 free(kids, M_TEMP); 156 return dev; 157 } 158 159 } 160 free(kids, M_TEMP); 161 } 162 163 return 0; 164 } 165 166 struct agp_gatt * 167 agp_alloc_gatt(device_t dev) 168 { 169 u_int32_t apsize = AGP_GET_APERTURE(dev); 170 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 171 struct agp_gatt *gatt; 172 173 if (bootverbose) 174 device_printf(dev, 175 "allocating GATT for aperture of size %dM\n", 176 apsize / (1024*1024)); 177 178 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 179 if (!gatt) 180 return 0; 181 182 gatt->ag_entries = entries; 183 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 184 0, ~0, PAGE_SIZE, 0); 185 if (!gatt->ag_virtual) { 186 if (bootverbose) 187 device_printf(dev, "contiguous allocation failed\n"); 188 free(gatt, M_AGP); 189 return 0; 190 } 191 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 192 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 193 agp_flush_cache(); 194 195 return gatt; 196 } 197 198 void 199 agp_free_gatt(struct agp_gatt *gatt) 200 { 201 contigfree(gatt->ag_virtual, 202 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 203 free(gatt, M_AGP); 204 } 205 206 static int agp_max[][2] = { 207 {0, 0}, 208 {32, 4}, 209 {64, 28}, 210 {128, 96}, 211 {256, 204}, 212 {512, 440}, 213 {1024, 942}, 214 {2048, 1920}, 215 {4096, 3932} 216 }; 217 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 218 219 int 220 agp_generic_attach(device_t dev) 221 { 222 struct agp_softc *sc = device_get_softc(dev); 223 int rid, memsize, i; 224 225 /* 226 * Find and map the aperture. 227 */ 228 rid = AGP_APBASE; 229 sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 230 0, ~0, 1, RF_ACTIVE); 231 if (!sc->as_aperture) 232 return ENOMEM; 233 234 /* 235 * Work out an upper bound for agp memory allocation. This 236 * uses a heurisitc table from the Linux driver. 237 */ 238 memsize = ptoa(Maxmem) >> 20; 239 for (i = 0; i < agp_max_size; i++) { 240 if (memsize <= agp_max[i][0]) 241 break; 242 } 243 if (i == agp_max_size) i = agp_max_size - 1; 244 sc->as_maxmem = agp_max[i][1] << 20U; 245 246 /* 247 * The lock is used to prevent re-entry to 248 * agp_generic_bind_memory() since that function can sleep. 249 */ 250 lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0); 251 252 /* 253 * Initialise stuff for the userland device. 254 */ 255 agp_devclass = devclass_find("agp"); 256 TAILQ_INIT(&sc->as_memory); 257 sc->as_nextid = 1; 258 259 sc->as_devnode = make_dev(&agp_cdevsw, 260 device_get_unit(dev), 261 UID_ROOT, 262 GID_WHEEL, 263 0600, 264 "agpgart"); 265 266 return 0; 267 } 268 269 int 270 agp_generic_detach(device_t dev) 271 { 272 struct agp_softc *sc = device_get_softc(dev); 273 bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture); 274 lockmgr(&sc->as_lock, LK_DRAIN, 0, curthread); 275 lockdestroy(&sc->as_lock); 276 destroy_dev(sc->as_devnode); 277 agp_flush_cache(); 278 return 0; 279 } 280 281 int 282 agp_generic_enable(device_t dev, u_int32_t mode) 283 { 284 device_t mdev = agp_find_display(); 285 u_int32_t tstatus, mstatus; 286 u_int32_t command; 287 int rq, sba, fw, rate;; 288 289 if (!mdev) { 290 AGP_DPF("can't find display\n"); 291 return ENXIO; 292 } 293 294 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 295 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 296 297 /* Set RQ to the min of mode, tstatus and mstatus */ 298 rq = AGP_MODE_GET_RQ(mode); 299 if (AGP_MODE_GET_RQ(tstatus) < rq) 300 rq = AGP_MODE_GET_RQ(tstatus); 301 if (AGP_MODE_GET_RQ(mstatus) < rq) 302 rq = AGP_MODE_GET_RQ(mstatus); 303 304 /* Set SBA if all three can deal with SBA */ 305 sba = (AGP_MODE_GET_SBA(tstatus) 306 & AGP_MODE_GET_SBA(mstatus) 307 & AGP_MODE_GET_SBA(mode)); 308 309 /* Similar for FW */ 310 fw = (AGP_MODE_GET_FW(tstatus) 311 & AGP_MODE_GET_FW(mstatus) 312 & AGP_MODE_GET_FW(mode)); 313 314 /* Figure out the max rate */ 315 rate = (AGP_MODE_GET_RATE(tstatus) 316 & AGP_MODE_GET_RATE(mstatus) 317 & AGP_MODE_GET_RATE(mode)); 318 if (rate & AGP_MODE_RATE_4x) 319 rate = AGP_MODE_RATE_4x; 320 else if (rate & AGP_MODE_RATE_2x) 321 rate = AGP_MODE_RATE_2x; 322 else 323 rate = AGP_MODE_RATE_1x; 324 325 /* Construct the new mode word and tell the hardware */ 326 command = AGP_MODE_SET_RQ(0, rq); 327 command = AGP_MODE_SET_SBA(command, sba); 328 command = AGP_MODE_SET_FW(command, fw); 329 command = AGP_MODE_SET_RATE(command, rate); 330 command = AGP_MODE_SET_AGP(command, 1); 331 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 332 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 333 334 return 0; 335 } 336 337 struct agp_memory * 338 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 339 { 340 struct agp_softc *sc = device_get_softc(dev); 341 struct agp_memory *mem; 342 343 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 344 return 0; 345 346 if (sc->as_allocated + size > sc->as_maxmem) 347 return 0; 348 349 if (type != 0) { 350 printf("agp_generic_alloc_memory: unsupported type %d\n", 351 type); 352 return 0; 353 } 354 355 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 356 mem->am_id = sc->as_nextid++; 357 mem->am_size = size; 358 mem->am_type = 0; 359 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 360 mem->am_physical = 0; 361 mem->am_offset = 0; 362 mem->am_is_bound = 0; 363 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 364 sc->as_allocated += size; 365 366 return mem; 367 } 368 369 int 370 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 371 { 372 struct agp_softc *sc = device_get_softc(dev); 373 374 if (mem->am_is_bound) 375 return EBUSY; 376 377 sc->as_allocated -= mem->am_size; 378 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 379 vm_object_deallocate(mem->am_obj); 380 free(mem, M_AGP); 381 return 0; 382 } 383 384 int 385 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 386 vm_offset_t offset) 387 { 388 struct agp_softc *sc = device_get_softc(dev); 389 vm_offset_t i, j, k; 390 vm_page_t m; 391 int error; 392 393 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread); 394 395 if (mem->am_is_bound) { 396 device_printf(dev, "memory already bound\n"); 397 return EINVAL; 398 } 399 400 if (offset < 0 401 || (offset & (AGP_PAGE_SIZE - 1)) != 0 402 || offset + mem->am_size > AGP_GET_APERTURE(dev)) { 403 device_printf(dev, "binding memory at bad offset %#x\n", 404 (int) offset); 405 return EINVAL; 406 } 407 408 /* 409 * Bind the individual pages and flush the chipset's 410 * TLB. 411 * 412 * XXX Presumably, this needs to be the pci address on alpha 413 * (i.e. use alpha_XXX_dmamap()). I don't have access to any 414 * alpha AGP hardware to check. 415 */ 416 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 417 /* 418 * Find a page from the object and wire it 419 * down. This page will be mapped using one or more 420 * entries in the GATT (assuming that PAGE_SIZE >= 421 * AGP_PAGE_SIZE. If this is the first call to bind, 422 * the pages will be allocated and zeroed. 423 */ 424 VM_OBJECT_LOCK(mem->am_obj); 425 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 426 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 427 VM_OBJECT_UNLOCK(mem->am_obj); 428 if ((m->flags & PG_ZERO) == 0) 429 pmap_zero_page(m); 430 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m)); 431 432 /* 433 * Install entries in the GATT, making sure that if 434 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 435 * aligned to PAGE_SIZE, we don't modify too many GATT 436 * entries. 437 */ 438 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 439 j += AGP_PAGE_SIZE) { 440 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 441 AGP_DPF("binding offset %#x to pa %#x\n", 442 offset + i + j, pa); 443 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 444 if (error) { 445 /* 446 * Bail out. Reverse all the mappings 447 * and unwire the pages. 448 */ 449 vm_page_lock_queues(); 450 vm_page_wakeup(m); 451 vm_page_unlock_queues(); 452 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 453 AGP_UNBIND_PAGE(dev, offset + k); 454 VM_OBJECT_LOCK(mem->am_obj); 455 for (k = 0; k <= i; k += PAGE_SIZE) { 456 m = vm_page_lookup(mem->am_obj, 457 OFF_TO_IDX(k)); 458 vm_page_lock_queues(); 459 vm_page_unwire(m, 0); 460 vm_page_unlock_queues(); 461 } 462 VM_OBJECT_UNLOCK(mem->am_obj); 463 lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread); 464 return error; 465 } 466 } 467 vm_page_lock_queues(); 468 vm_page_wakeup(m); 469 vm_page_unlock_queues(); 470 } 471 472 /* 473 * Flush the cpu cache since we are providing a new mapping 474 * for these pages. 475 */ 476 agp_flush_cache(); 477 478 /* 479 * Make sure the chipset gets the new mappings. 480 */ 481 AGP_FLUSH_TLB(dev); 482 483 mem->am_offset = offset; 484 mem->am_is_bound = 1; 485 486 lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread); 487 488 return 0; 489 } 490 491 int 492 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 493 { 494 struct agp_softc *sc = device_get_softc(dev); 495 vm_page_t m; 496 int i; 497 498 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread); 499 500 if (!mem->am_is_bound) { 501 device_printf(dev, "memory is not bound\n"); 502 return EINVAL; 503 } 504 505 506 /* 507 * Unbind the individual pages and flush the chipset's 508 * TLB. Unwire the pages so they can be swapped. 509 */ 510 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 511 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 512 VM_OBJECT_LOCK(mem->am_obj); 513 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 514 m = vm_page_lookup(mem->am_obj, atop(i)); 515 vm_page_lock_queues(); 516 vm_page_unwire(m, 0); 517 vm_page_unlock_queues(); 518 } 519 VM_OBJECT_UNLOCK(mem->am_obj); 520 521 agp_flush_cache(); 522 AGP_FLUSH_TLB(dev); 523 524 mem->am_offset = 0; 525 mem->am_is_bound = 0; 526 527 lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread); 528 529 return 0; 530 } 531 532 /* Helper functions for implementing user/kernel api */ 533 534 static int 535 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 536 { 537 struct agp_softc *sc = device_get_softc(dev); 538 539 if (sc->as_state != AGP_ACQUIRE_FREE) 540 return EBUSY; 541 sc->as_state = state; 542 543 return 0; 544 } 545 546 static int 547 agp_release_helper(device_t dev, enum agp_acquire_state state) 548 { 549 struct agp_softc *sc = device_get_softc(dev); 550 551 if (sc->as_state == AGP_ACQUIRE_FREE) 552 return 0; 553 554 if (sc->as_state != state) 555 return EBUSY; 556 557 sc->as_state = AGP_ACQUIRE_FREE; 558 return 0; 559 } 560 561 static struct agp_memory * 562 agp_find_memory(device_t dev, int id) 563 { 564 struct agp_softc *sc = device_get_softc(dev); 565 struct agp_memory *mem; 566 567 AGP_DPF("searching for memory block %d\n", id); 568 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 569 AGP_DPF("considering memory block %d\n", mem->am_id); 570 if (mem->am_id == id) 571 return mem; 572 } 573 return 0; 574 } 575 576 /* Implementation of the userland ioctl api */ 577 578 static int 579 agp_info_user(device_t dev, agp_info *info) 580 { 581 struct agp_softc *sc = device_get_softc(dev); 582 583 bzero(info, sizeof *info); 584 info->bridge_id = pci_get_devid(dev); 585 info->agp_mode = 586 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 587 info->aper_base = rman_get_start(sc->as_aperture); 588 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 589 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 590 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 591 592 return 0; 593 } 594 595 static int 596 agp_setup_user(device_t dev, agp_setup *setup) 597 { 598 return AGP_ENABLE(dev, setup->agp_mode); 599 } 600 601 static int 602 agp_allocate_user(device_t dev, agp_allocate *alloc) 603 { 604 struct agp_memory *mem; 605 606 mem = AGP_ALLOC_MEMORY(dev, 607 alloc->type, 608 alloc->pg_count << AGP_PAGE_SHIFT); 609 if (mem) { 610 alloc->key = mem->am_id; 611 alloc->physical = mem->am_physical; 612 return 0; 613 } else { 614 return ENOMEM; 615 } 616 } 617 618 static int 619 agp_deallocate_user(device_t dev, int id) 620 { 621 struct agp_memory *mem = agp_find_memory(dev, id);; 622 623 if (mem) { 624 AGP_FREE_MEMORY(dev, mem); 625 return 0; 626 } else { 627 return ENOENT; 628 } 629 } 630 631 static int 632 agp_bind_user(device_t dev, agp_bind *bind) 633 { 634 struct agp_memory *mem = agp_find_memory(dev, bind->key); 635 636 if (!mem) 637 return ENOENT; 638 639 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 640 } 641 642 static int 643 agp_unbind_user(device_t dev, agp_unbind *unbind) 644 { 645 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 646 647 if (!mem) 648 return ENOENT; 649 650 return AGP_UNBIND_MEMORY(dev, mem); 651 } 652 653 static int 654 agp_open(dev_t kdev, int oflags, int devtype, struct thread *td) 655 { 656 device_t dev = KDEV2DEV(kdev); 657 struct agp_softc *sc = device_get_softc(dev); 658 659 if (!sc->as_isopen) { 660 sc->as_isopen = 1; 661 device_busy(dev); 662 } 663 664 return 0; 665 } 666 667 static int 668 agp_close(dev_t kdev, int fflag, int devtype, struct thread *td) 669 { 670 device_t dev = KDEV2DEV(kdev); 671 struct agp_softc *sc = device_get_softc(dev); 672 struct agp_memory *mem; 673 674 /* 675 * Clear the GATT and force release on last close 676 */ 677 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 678 if (mem->am_is_bound) 679 AGP_UNBIND_MEMORY(dev, mem); 680 AGP_FREE_MEMORY(dev, mem); 681 } 682 if (sc->as_state == AGP_ACQUIRE_USER) 683 agp_release_helper(dev, AGP_ACQUIRE_USER); 684 sc->as_isopen = 0; 685 device_unbusy(dev); 686 687 return 0; 688 } 689 690 static int 691 agp_ioctl(dev_t kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 692 { 693 device_t dev = KDEV2DEV(kdev); 694 695 switch (cmd) { 696 case AGPIOC_INFO: 697 return agp_info_user(dev, (agp_info *) data); 698 699 case AGPIOC_ACQUIRE: 700 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 701 702 case AGPIOC_RELEASE: 703 return agp_release_helper(dev, AGP_ACQUIRE_USER); 704 705 case AGPIOC_SETUP: 706 return agp_setup_user(dev, (agp_setup *)data); 707 708 case AGPIOC_ALLOCATE: 709 return agp_allocate_user(dev, (agp_allocate *)data); 710 711 case AGPIOC_DEALLOCATE: 712 return agp_deallocate_user(dev, *(int *) data); 713 714 case AGPIOC_BIND: 715 return agp_bind_user(dev, (agp_bind *)data); 716 717 case AGPIOC_UNBIND: 718 return agp_unbind_user(dev, (agp_unbind *)data); 719 720 } 721 722 return EINVAL; 723 } 724 725 static int 726 agp_mmap(dev_t kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot) 727 { 728 device_t dev = KDEV2DEV(kdev); 729 struct agp_softc *sc = device_get_softc(dev); 730 731 if (offset > AGP_GET_APERTURE(dev)) 732 return -1; 733 *paddr = rman_get_start(sc->as_aperture) + offset; 734 return 0; 735 } 736 737 /* Implementation of the kernel api */ 738 739 device_t 740 agp_find_device() 741 { 742 if (!agp_devclass) 743 return 0; 744 return devclass_get_device(agp_devclass, 0); 745 } 746 747 enum agp_acquire_state 748 agp_state(device_t dev) 749 { 750 struct agp_softc *sc = device_get_softc(dev); 751 return sc->as_state; 752 } 753 754 void 755 agp_get_info(device_t dev, struct agp_info *info) 756 { 757 struct agp_softc *sc = device_get_softc(dev); 758 759 info->ai_mode = 760 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 761 info->ai_aperture_base = rman_get_start(sc->as_aperture); 762 info->ai_aperture_size = rman_get_size(sc->as_aperture); 763 info->ai_aperture_va = (vm_offset_t) rman_get_virtual(sc->as_aperture); 764 info->ai_memory_allowed = sc->as_maxmem; 765 info->ai_memory_used = sc->as_allocated; 766 } 767 768 int 769 agp_acquire(device_t dev) 770 { 771 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 772 } 773 774 int 775 agp_release(device_t dev) 776 { 777 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 778 } 779 780 int 781 agp_enable(device_t dev, u_int32_t mode) 782 { 783 return AGP_ENABLE(dev, mode); 784 } 785 786 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 787 { 788 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 789 } 790 791 void agp_free_memory(device_t dev, void *handle) 792 { 793 struct agp_memory *mem = (struct agp_memory *) handle; 794 AGP_FREE_MEMORY(dev, mem); 795 } 796 797 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 798 { 799 struct agp_memory *mem = (struct agp_memory *) handle; 800 return AGP_BIND_MEMORY(dev, mem, offset); 801 } 802 803 int agp_unbind_memory(device_t dev, void *handle) 804 { 805 struct agp_memory *mem = (struct agp_memory *) handle; 806 return AGP_UNBIND_MEMORY(dev, mem); 807 } 808 809 void agp_memory_info(device_t dev, void *handle, struct 810 agp_memory_info *mi) 811 { 812 struct agp_memory *mem = (struct agp_memory *) handle; 813 814 mi->ami_size = mem->am_size; 815 mi->ami_physical = mem->am_physical; 816 mi->ami_offset = mem->am_offset; 817 mi->ami_is_bound = mem->am_is_bound; 818 } 819