xref: /freebsd/sys/dev/agp/agp.c (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_agp.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/module.h>
39 #include <sys/bus.h>
40 #include <sys/conf.h>
41 #include <sys/ioccom.h>
42 #include <sys/agpio.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/rwlock.h>
47 
48 #include <dev/agp/agppriv.h>
49 #include <dev/agp/agpvar.h>
50 #include <dev/agp/agpreg.h>
51 #include <dev/pci/pcivar.h>
52 #include <dev/pci/pcireg.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_kern.h>
57 #include <vm/vm_param.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_pageout.h>
61 #include <vm/pmap.h>
62 
63 #include <machine/bus.h>
64 #include <machine/resource.h>
65 #include <sys/rman.h>
66 
67 MODULE_VERSION(agp, 1);
68 
69 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
70 
71 				/* agp_drv.c */
72 static d_open_t agp_open;
73 static d_close_t agp_close;
74 static d_ioctl_t agp_ioctl;
75 static d_mmap_t agp_mmap;
76 
77 static struct cdevsw agp_cdevsw = {
78 	.d_version =	D_VERSION,
79 	.d_flags =	D_NEEDGIANT,
80 	.d_open =	agp_open,
81 	.d_close =	agp_close,
82 	.d_ioctl =	agp_ioctl,
83 	.d_mmap =	agp_mmap,
84 	.d_name =	"agp",
85 };
86 
87 static devclass_t agp_devclass;
88 
89 /* Helper functions for implementing chipset mini drivers. */
90 
91 u_int8_t
92 agp_find_caps(device_t dev)
93 {
94 	int capreg;
95 
96 
97 	if (pci_find_cap(dev, PCIY_AGP, &capreg) != 0)
98 		capreg = 0;
99 	return (capreg);
100 }
101 
102 /*
103  * Find an AGP display device (if any).
104  */
105 static device_t
106 agp_find_display(void)
107 {
108 	devclass_t pci = devclass_find("pci");
109 	device_t bus, dev = 0;
110 	device_t *kids;
111 	int busnum, numkids, i;
112 
113 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
114 		bus = devclass_get_device(pci, busnum);
115 		if (!bus)
116 			continue;
117 		if (device_get_children(bus, &kids, &numkids) != 0)
118 			continue;
119 		for (i = 0; i < numkids; i++) {
120 			dev = kids[i];
121 			if (pci_get_class(dev) == PCIC_DISPLAY
122 			    && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
123 				if (agp_find_caps(dev)) {
124 					free(kids, M_TEMP);
125 					return dev;
126 				}
127 
128 		}
129 		free(kids, M_TEMP);
130 	}
131 
132 	return 0;
133 }
134 
135 struct agp_gatt *
136 agp_alloc_gatt(device_t dev)
137 {
138 	u_int32_t apsize = AGP_GET_APERTURE(dev);
139 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
140 	struct agp_gatt *gatt;
141 
142 	if (bootverbose)
143 		device_printf(dev,
144 			      "allocating GATT for aperture of size %dM\n",
145 			      apsize / (1024*1024));
146 
147 	if (entries == 0) {
148 		device_printf(dev, "bad aperture size\n");
149 		return NULL;
150 	}
151 
152 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
153 	if (!gatt)
154 		return 0;
155 
156 	gatt->ag_entries = entries;
157 	gatt->ag_virtual = (void *)kmem_alloc_contig(entries *
158 	    sizeof(u_int32_t), M_NOWAIT | M_ZERO, 0, ~0, PAGE_SIZE, 0,
159 	    VM_MEMATTR_WRITE_COMBINING);
160 	if (!gatt->ag_virtual) {
161 		if (bootverbose)
162 			device_printf(dev, "contiguous allocation failed\n");
163 		free(gatt, M_AGP);
164 		return 0;
165 	}
166 	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
167 
168 	return gatt;
169 }
170 
171 void
172 agp_free_gatt(struct agp_gatt *gatt)
173 {
174 	kmem_free((vm_offset_t)gatt->ag_virtual, gatt->ag_entries *
175 	    sizeof(u_int32_t));
176 	free(gatt, M_AGP);
177 }
178 
179 static u_int agp_max[][2] = {
180 	{0,	0},
181 	{32,	4},
182 	{64,	28},
183 	{128,	96},
184 	{256,	204},
185 	{512,	440},
186 	{1024,	942},
187 	{2048,	1920},
188 	{4096,	3932}
189 };
190 #define	AGP_MAX_SIZE	nitems(agp_max)
191 
192 /**
193  * Sets the PCI resource which represents the AGP aperture.
194  *
195  * If not called, the default AGP aperture resource of AGP_APBASE will
196  * be used.  Must be called before agp_generic_attach().
197  */
198 void
199 agp_set_aperture_resource(device_t dev, int rid)
200 {
201 	struct agp_softc *sc = device_get_softc(dev);
202 
203 	sc->as_aperture_rid = rid;
204 }
205 
206 int
207 agp_generic_attach(device_t dev)
208 {
209 	struct agp_softc *sc = device_get_softc(dev);
210 	int i;
211 	u_int memsize;
212 
213 	/*
214 	 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE
215 	 * because the kernel doesn't need to map it.
216 	 */
217 
218 	if (sc->as_aperture_rid != -1) {
219 		if (sc->as_aperture_rid == 0)
220 			sc->as_aperture_rid = AGP_APBASE;
221 
222 		sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
223 		    &sc->as_aperture_rid, RF_SHAREABLE);
224 		if (!sc->as_aperture)
225 			return ENOMEM;
226 	}
227 
228 	/*
229 	 * Work out an upper bound for agp memory allocation. This
230 	 * uses a heurisitc table from the Linux driver.
231 	 */
232 	memsize = ptoa(realmem) >> 20;
233 	for (i = 0; i < AGP_MAX_SIZE; i++) {
234 		if (memsize <= agp_max[i][0])
235 			break;
236 	}
237 	if (i == AGP_MAX_SIZE)
238 		i = AGP_MAX_SIZE - 1;
239 	sc->as_maxmem = agp_max[i][1] << 20U;
240 
241 	/*
242 	 * The lock is used to prevent re-entry to
243 	 * agp_generic_bind_memory() since that function can sleep.
244 	 */
245 	mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF);
246 
247 	/*
248 	 * Initialise stuff for the userland device.
249 	 */
250 	agp_devclass = devclass_find("agp");
251 	TAILQ_INIT(&sc->as_memory);
252 	sc->as_nextid = 1;
253 
254 	sc->as_devnode = make_dev(&agp_cdevsw,
255 	    0, UID_ROOT, GID_WHEEL, 0600, "agpgart");
256 	sc->as_devnode->si_drv1 = dev;
257 
258 	return 0;
259 }
260 
261 void
262 agp_free_cdev(device_t dev)
263 {
264 	struct agp_softc *sc = device_get_softc(dev);
265 
266 	destroy_dev(sc->as_devnode);
267 }
268 
269 void
270 agp_free_res(device_t dev)
271 {
272 	struct agp_softc *sc = device_get_softc(dev);
273 
274 	if (sc->as_aperture != NULL)
275 		bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid,
276 		    sc->as_aperture);
277 	mtx_destroy(&sc->as_lock);
278 }
279 
280 int
281 agp_generic_detach(device_t dev)
282 {
283 
284 	agp_free_cdev(dev);
285 	agp_free_res(dev);
286 	return 0;
287 }
288 
289 /**
290  * Default AGP aperture size detection which simply returns the size of
291  * the aperture's PCI resource.
292  */
293 u_int32_t
294 agp_generic_get_aperture(device_t dev)
295 {
296 	struct agp_softc *sc = device_get_softc(dev);
297 
298 	return rman_get_size(sc->as_aperture);
299 }
300 
301 /**
302  * Default AGP aperture size setting function, which simply doesn't allow
303  * changes to resource size.
304  */
305 int
306 agp_generic_set_aperture(device_t dev, u_int32_t aperture)
307 {
308 	u_int32_t current_aperture;
309 
310 	current_aperture = AGP_GET_APERTURE(dev);
311 	if (current_aperture != aperture)
312 		return EINVAL;
313 	else
314 		return 0;
315 }
316 
317 /*
318  * This does the enable logic for v3, with the same topology
319  * restrictions as in place for v2 -- one bus, one device on the bus.
320  */
321 static int
322 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
323 {
324 	u_int32_t tstatus, mstatus;
325 	u_int32_t command;
326 	int rq, sba, fw, rate, arqsz, cal;
327 
328 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
329 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
330 
331 	/* Set RQ to the min of mode, tstatus and mstatus */
332 	rq = AGP_MODE_GET_RQ(mode);
333 	if (AGP_MODE_GET_RQ(tstatus) < rq)
334 		rq = AGP_MODE_GET_RQ(tstatus);
335 	if (AGP_MODE_GET_RQ(mstatus) < rq)
336 		rq = AGP_MODE_GET_RQ(mstatus);
337 
338 	/*
339 	 * ARQSZ - Set the value to the maximum one.
340 	 * Don't allow the mode register to override values.
341 	 */
342 	arqsz = AGP_MODE_GET_ARQSZ(mode);
343 	if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
344 		rq = AGP_MODE_GET_ARQSZ(tstatus);
345 	if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
346 		rq = AGP_MODE_GET_ARQSZ(mstatus);
347 
348 	/* Calibration cycle - don't allow override by mode register */
349 	cal = AGP_MODE_GET_CAL(tstatus);
350 	if (AGP_MODE_GET_CAL(mstatus) < cal)
351 		cal = AGP_MODE_GET_CAL(mstatus);
352 
353 	/* SBA must be supported for AGP v3. */
354 	sba = 1;
355 
356 	/* Set FW if all three support it. */
357 	fw = (AGP_MODE_GET_FW(tstatus)
358 	       & AGP_MODE_GET_FW(mstatus)
359 	       & AGP_MODE_GET_FW(mode));
360 
361 	/* Figure out the max rate */
362 	rate = (AGP_MODE_GET_RATE(tstatus)
363 		& AGP_MODE_GET_RATE(mstatus)
364 		& AGP_MODE_GET_RATE(mode));
365 	if (rate & AGP_MODE_V3_RATE_8x)
366 		rate = AGP_MODE_V3_RATE_8x;
367 	else
368 		rate = AGP_MODE_V3_RATE_4x;
369 	if (bootverbose)
370 		device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
371 
372 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
373 
374 	/* Construct the new mode word and tell the hardware */
375 	command = 0;
376 	command = AGP_MODE_SET_RQ(0, rq);
377 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
378 	command = AGP_MODE_SET_CAL(command, cal);
379 	command = AGP_MODE_SET_SBA(command, sba);
380 	command = AGP_MODE_SET_FW(command, fw);
381 	command = AGP_MODE_SET_RATE(command, rate);
382 	command = AGP_MODE_SET_MODE_3(command, 1);
383 	command = AGP_MODE_SET_AGP(command, 1);
384 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
385 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
386 
387 	return 0;
388 }
389 
390 static int
391 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
392 {
393 	u_int32_t tstatus, mstatus;
394 	u_int32_t command;
395 	int rq, sba, fw, rate;
396 
397 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
398 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
399 
400 	/* Set RQ to the min of mode, tstatus and mstatus */
401 	rq = AGP_MODE_GET_RQ(mode);
402 	if (AGP_MODE_GET_RQ(tstatus) < rq)
403 		rq = AGP_MODE_GET_RQ(tstatus);
404 	if (AGP_MODE_GET_RQ(mstatus) < rq)
405 		rq = AGP_MODE_GET_RQ(mstatus);
406 
407 	/* Set SBA if all three can deal with SBA */
408 	sba = (AGP_MODE_GET_SBA(tstatus)
409 	       & AGP_MODE_GET_SBA(mstatus)
410 	       & AGP_MODE_GET_SBA(mode));
411 
412 	/* Similar for FW */
413 	fw = (AGP_MODE_GET_FW(tstatus)
414 	       & AGP_MODE_GET_FW(mstatus)
415 	       & AGP_MODE_GET_FW(mode));
416 
417 	/* Figure out the max rate */
418 	rate = (AGP_MODE_GET_RATE(tstatus)
419 		& AGP_MODE_GET_RATE(mstatus)
420 		& AGP_MODE_GET_RATE(mode));
421 	if (rate & AGP_MODE_V2_RATE_4x)
422 		rate = AGP_MODE_V2_RATE_4x;
423 	else if (rate & AGP_MODE_V2_RATE_2x)
424 		rate = AGP_MODE_V2_RATE_2x;
425 	else
426 		rate = AGP_MODE_V2_RATE_1x;
427 	if (bootverbose)
428 		device_printf(dev, "Setting AGP v2 mode %d\n", rate);
429 
430 	/* Construct the new mode word and tell the hardware */
431 	command = 0;
432 	command = AGP_MODE_SET_RQ(0, rq);
433 	command = AGP_MODE_SET_SBA(command, sba);
434 	command = AGP_MODE_SET_FW(command, fw);
435 	command = AGP_MODE_SET_RATE(command, rate);
436 	command = AGP_MODE_SET_AGP(command, 1);
437 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
438 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
439 
440 	return 0;
441 }
442 
443 int
444 agp_generic_enable(device_t dev, u_int32_t mode)
445 {
446 	device_t mdev = agp_find_display();
447 	u_int32_t tstatus, mstatus;
448 
449 	if (!mdev) {
450 		AGP_DPF("can't find display\n");
451 		return ENXIO;
452 	}
453 
454 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
455 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
456 
457 	/*
458 	 * Check display and bridge for AGP v3 support.  AGP v3 allows
459 	 * more variety in topology than v2, e.g. multiple AGP devices
460 	 * attached to one bridge, or multiple AGP bridges in one
461 	 * system.  This doesn't attempt to address those situations,
462 	 * but should work fine for a classic single AGP slot system
463 	 * with AGP v3.
464 	 */
465 	if (AGP_MODE_GET_MODE_3(mode) &&
466 	    AGP_MODE_GET_MODE_3(tstatus) &&
467 	    AGP_MODE_GET_MODE_3(mstatus))
468 		return (agp_v3_enable(dev, mdev, mode));
469 	else
470 		return (agp_v2_enable(dev, mdev, mode));
471 }
472 
473 struct agp_memory *
474 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
475 {
476 	struct agp_softc *sc = device_get_softc(dev);
477 	struct agp_memory *mem;
478 
479 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
480 		return 0;
481 
482 	if (size > sc->as_maxmem - sc->as_allocated)
483 		return 0;
484 
485 	if (type != 0) {
486 		printf("agp_generic_alloc_memory: unsupported type %d\n",
487 		       type);
488 		return 0;
489 	}
490 
491 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
492 	mem->am_id = sc->as_nextid++;
493 	mem->am_size = size;
494 	mem->am_type = 0;
495 	mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
496 	mem->am_physical = 0;
497 	mem->am_offset = 0;
498 	mem->am_is_bound = 0;
499 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
500 	sc->as_allocated += size;
501 
502 	return mem;
503 }
504 
505 int
506 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
507 {
508 	struct agp_softc *sc = device_get_softc(dev);
509 
510 	if (mem->am_is_bound)
511 		return EBUSY;
512 
513 	sc->as_allocated -= mem->am_size;
514 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
515 	vm_object_deallocate(mem->am_obj);
516 	free(mem, M_AGP);
517 	return 0;
518 }
519 
520 int
521 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
522 			vm_offset_t offset)
523 {
524 	struct agp_softc *sc = device_get_softc(dev);
525 	vm_offset_t i, j, k;
526 	vm_page_t m;
527 	int error;
528 
529 	/* Do some sanity checks first. */
530 	if ((offset & (AGP_PAGE_SIZE - 1)) != 0 ||
531 	    offset + mem->am_size > AGP_GET_APERTURE(dev)) {
532 		device_printf(dev, "binding memory at bad offset %#x\n",
533 		    (int)offset);
534 		return EINVAL;
535 	}
536 
537 	/*
538 	 * Allocate the pages early, before acquiring the lock,
539 	 * because vm_page_grab() may sleep and we can't hold a mutex
540 	 * while sleeping.
541 	 */
542 	VM_OBJECT_WLOCK(mem->am_obj);
543 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
544 		/*
545 		 * Find a page from the object and wire it
546 		 * down. This page will be mapped using one or more
547 		 * entries in the GATT (assuming that PAGE_SIZE >=
548 		 * AGP_PAGE_SIZE. If this is the first call to bind,
549 		 * the pages will be allocated and zeroed.
550 		 */
551 		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
552 		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
553 		AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m));
554 	}
555 	VM_OBJECT_WUNLOCK(mem->am_obj);
556 
557 	mtx_lock(&sc->as_lock);
558 
559 	if (mem->am_is_bound) {
560 		device_printf(dev, "memory already bound\n");
561 		error = EINVAL;
562 		VM_OBJECT_WLOCK(mem->am_obj);
563 		i = 0;
564 		goto bad;
565 	}
566 
567 	/*
568 	 * Bind the individual pages and flush the chipset's
569 	 * TLB.
570 	 */
571 	VM_OBJECT_WLOCK(mem->am_obj);
572 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
573 		m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i));
574 
575 		/*
576 		 * Install entries in the GATT, making sure that if
577 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
578 		 * aligned to PAGE_SIZE, we don't modify too many GATT
579 		 * entries.
580 		 */
581 		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
582 		     j += AGP_PAGE_SIZE) {
583 			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
584 			AGP_DPF("binding offset %#jx to pa %#jx\n",
585 				(uintmax_t)offset + i + j, (uintmax_t)pa);
586 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
587 			if (error) {
588 				/*
589 				 * Bail out. Reverse all the mappings
590 				 * and unwire the pages.
591 				 */
592 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
593 					AGP_UNBIND_PAGE(dev, offset + k);
594 				goto bad;
595 			}
596 		}
597 		vm_page_xunbusy(m);
598 	}
599 	VM_OBJECT_WUNLOCK(mem->am_obj);
600 
601 	/*
602 	 * Make sure the chipset gets the new mappings.
603 	 */
604 	AGP_FLUSH_TLB(dev);
605 
606 	mem->am_offset = offset;
607 	mem->am_is_bound = 1;
608 
609 	mtx_unlock(&sc->as_lock);
610 
611 	return 0;
612 bad:
613 	mtx_unlock(&sc->as_lock);
614 	VM_OBJECT_ASSERT_WLOCKED(mem->am_obj);
615 	for (k = 0; k < mem->am_size; k += PAGE_SIZE) {
616 		m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(k));
617 		if (k >= i)
618 			vm_page_xunbusy(m);
619 		vm_page_unwire(m, PQ_INACTIVE);
620 	}
621 	VM_OBJECT_WUNLOCK(mem->am_obj);
622 
623 	return error;
624 }
625 
626 int
627 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
628 {
629 	struct agp_softc *sc = device_get_softc(dev);
630 	vm_page_t m;
631 	int i;
632 
633 	mtx_lock(&sc->as_lock);
634 
635 	if (!mem->am_is_bound) {
636 		device_printf(dev, "memory is not bound\n");
637 		mtx_unlock(&sc->as_lock);
638 		return EINVAL;
639 	}
640 
641 
642 	/*
643 	 * Unbind the individual pages and flush the chipset's
644 	 * TLB. Unwire the pages so they can be swapped.
645 	 */
646 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
647 		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
648 
649 	AGP_FLUSH_TLB(dev);
650 
651 	VM_OBJECT_WLOCK(mem->am_obj);
652 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
653 		m = vm_page_lookup(mem->am_obj, atop(i));
654 		vm_page_unwire(m, PQ_INACTIVE);
655 	}
656 	VM_OBJECT_WUNLOCK(mem->am_obj);
657 
658 	mem->am_offset = 0;
659 	mem->am_is_bound = 0;
660 
661 	mtx_unlock(&sc->as_lock);
662 
663 	return 0;
664 }
665 
666 /* Helper functions for implementing user/kernel api */
667 
668 static int
669 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
670 {
671 	struct agp_softc *sc = device_get_softc(dev);
672 
673 	if (sc->as_state != AGP_ACQUIRE_FREE)
674 		return EBUSY;
675 	sc->as_state = state;
676 
677 	return 0;
678 }
679 
680 static int
681 agp_release_helper(device_t dev, enum agp_acquire_state state)
682 {
683 	struct agp_softc *sc = device_get_softc(dev);
684 
685 	if (sc->as_state == AGP_ACQUIRE_FREE)
686 		return 0;
687 
688 	if (sc->as_state != state)
689 		return EBUSY;
690 
691 	sc->as_state = AGP_ACQUIRE_FREE;
692 	return 0;
693 }
694 
695 static struct agp_memory *
696 agp_find_memory(device_t dev, int id)
697 {
698 	struct agp_softc *sc = device_get_softc(dev);
699 	struct agp_memory *mem;
700 
701 	AGP_DPF("searching for memory block %d\n", id);
702 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
703 		AGP_DPF("considering memory block %d\n", mem->am_id);
704 		if (mem->am_id == id)
705 			return mem;
706 	}
707 	return 0;
708 }
709 
710 /* Implementation of the userland ioctl api */
711 
712 static int
713 agp_info_user(device_t dev, agp_info *info)
714 {
715 	struct agp_softc *sc = device_get_softc(dev);
716 
717 	bzero(info, sizeof *info);
718 	info->bridge_id = pci_get_devid(dev);
719 	info->agp_mode =
720 	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
721 	if (sc->as_aperture)
722 		info->aper_base = rman_get_start(sc->as_aperture);
723 	else
724 		info->aper_base = 0;
725 	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
726 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
727 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
728 
729 	return 0;
730 }
731 
732 static int
733 agp_setup_user(device_t dev, agp_setup *setup)
734 {
735 	return AGP_ENABLE(dev, setup->agp_mode);
736 }
737 
738 static int
739 agp_allocate_user(device_t dev, agp_allocate *alloc)
740 {
741 	struct agp_memory *mem;
742 
743 	mem = AGP_ALLOC_MEMORY(dev,
744 			       alloc->type,
745 			       alloc->pg_count << AGP_PAGE_SHIFT);
746 	if (mem) {
747 		alloc->key = mem->am_id;
748 		alloc->physical = mem->am_physical;
749 		return 0;
750 	} else {
751 		return ENOMEM;
752 	}
753 }
754 
755 static int
756 agp_deallocate_user(device_t dev, int id)
757 {
758 	struct agp_memory *mem = agp_find_memory(dev, id);
759 
760 	if (mem) {
761 		AGP_FREE_MEMORY(dev, mem);
762 		return 0;
763 	} else {
764 		return ENOENT;
765 	}
766 }
767 
768 static int
769 agp_bind_user(device_t dev, agp_bind *bind)
770 {
771 	struct agp_memory *mem = agp_find_memory(dev, bind->key);
772 
773 	if (!mem)
774 		return ENOENT;
775 
776 	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
777 }
778 
779 static int
780 agp_unbind_user(device_t dev, agp_unbind *unbind)
781 {
782 	struct agp_memory *mem = agp_find_memory(dev, unbind->key);
783 
784 	if (!mem)
785 		return ENOENT;
786 
787 	return AGP_UNBIND_MEMORY(dev, mem);
788 }
789 
790 static int
791 agp_chipset_flush(device_t dev)
792 {
793 
794 	return (AGP_CHIPSET_FLUSH(dev));
795 }
796 
797 static int
798 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td)
799 {
800 	device_t dev = kdev->si_drv1;
801 	struct agp_softc *sc = device_get_softc(dev);
802 
803 	if (!sc->as_isopen) {
804 		sc->as_isopen = 1;
805 		device_busy(dev);
806 	}
807 
808 	return 0;
809 }
810 
811 static int
812 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td)
813 {
814 	device_t dev = kdev->si_drv1;
815 	struct agp_softc *sc = device_get_softc(dev);
816 	struct agp_memory *mem;
817 
818 	/*
819 	 * Clear the GATT and force release on last close
820 	 */
821 	while ((mem = TAILQ_FIRST(&sc->as_memory)) != NULL) {
822 		if (mem->am_is_bound)
823 			AGP_UNBIND_MEMORY(dev, mem);
824 		AGP_FREE_MEMORY(dev, mem);
825 	}
826 	if (sc->as_state == AGP_ACQUIRE_USER)
827 		agp_release_helper(dev, AGP_ACQUIRE_USER);
828 	sc->as_isopen = 0;
829 	device_unbusy(dev);
830 
831 	return 0;
832 }
833 
834 static int
835 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
836 {
837 	device_t dev = kdev->si_drv1;
838 
839 	switch (cmd) {
840 	case AGPIOC_INFO:
841 		return agp_info_user(dev, (agp_info *) data);
842 
843 	case AGPIOC_ACQUIRE:
844 		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
845 
846 	case AGPIOC_RELEASE:
847 		return agp_release_helper(dev, AGP_ACQUIRE_USER);
848 
849 	case AGPIOC_SETUP:
850 		return agp_setup_user(dev, (agp_setup *)data);
851 
852 	case AGPIOC_ALLOCATE:
853 		return agp_allocate_user(dev, (agp_allocate *)data);
854 
855 	case AGPIOC_DEALLOCATE:
856 		return agp_deallocate_user(dev, *(int *) data);
857 
858 	case AGPIOC_BIND:
859 		return agp_bind_user(dev, (agp_bind *)data);
860 
861 	case AGPIOC_UNBIND:
862 		return agp_unbind_user(dev, (agp_unbind *)data);
863 
864 	case AGPIOC_CHIPSET_FLUSH:
865 		return agp_chipset_flush(dev);
866 	}
867 
868 	return EINVAL;
869 }
870 
871 static int
872 agp_mmap(struct cdev *kdev, vm_ooffset_t offset, vm_paddr_t *paddr,
873     int prot, vm_memattr_t *memattr)
874 {
875 	device_t dev = kdev->si_drv1;
876 	struct agp_softc *sc = device_get_softc(dev);
877 
878 	if (offset > AGP_GET_APERTURE(dev))
879 		return -1;
880 	if (sc->as_aperture == NULL)
881 		return -1;
882 	*paddr = rman_get_start(sc->as_aperture) + offset;
883 	return 0;
884 }
885 
886 /* Implementation of the kernel api */
887 
888 device_t
889 agp_find_device()
890 {
891 	device_t *children, child;
892 	int i, count;
893 
894 	if (!agp_devclass)
895 		return NULL;
896 	if (devclass_get_devices(agp_devclass, &children, &count) != 0)
897 		return NULL;
898 	child = NULL;
899 	for (i = 0; i < count; i++) {
900 		if (device_is_attached(children[i])) {
901 			child = children[i];
902 			break;
903 		}
904 	}
905 	free(children, M_TEMP);
906 	return child;
907 }
908 
909 enum agp_acquire_state
910 agp_state(device_t dev)
911 {
912 	struct agp_softc *sc = device_get_softc(dev);
913 	return sc->as_state;
914 }
915 
916 void
917 agp_get_info(device_t dev, struct agp_info *info)
918 {
919 	struct agp_softc *sc = device_get_softc(dev);
920 
921 	info->ai_mode =
922 		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
923 	if (sc->as_aperture != NULL)
924 		info->ai_aperture_base = rman_get_start(sc->as_aperture);
925 	else
926 		info->ai_aperture_base = 0;
927 	info->ai_aperture_size = AGP_GET_APERTURE(dev);
928 	info->ai_memory_allowed = sc->as_maxmem;
929 	info->ai_memory_used = sc->as_allocated;
930 }
931 
932 int
933 agp_acquire(device_t dev)
934 {
935 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
936 }
937 
938 int
939 agp_release(device_t dev)
940 {
941 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
942 }
943 
944 int
945 agp_enable(device_t dev, u_int32_t mode)
946 {
947 	return AGP_ENABLE(dev, mode);
948 }
949 
950 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
951 {
952 	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
953 }
954 
955 void agp_free_memory(device_t dev, void *handle)
956 {
957 	struct agp_memory *mem = (struct agp_memory *) handle;
958 	AGP_FREE_MEMORY(dev, mem);
959 }
960 
961 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
962 {
963 	struct agp_memory *mem = (struct agp_memory *) handle;
964 	return AGP_BIND_MEMORY(dev, mem, offset);
965 }
966 
967 int agp_unbind_memory(device_t dev, void *handle)
968 {
969 	struct agp_memory *mem = (struct agp_memory *) handle;
970 	return AGP_UNBIND_MEMORY(dev, mem);
971 }
972 
973 void agp_memory_info(device_t dev, void *handle, struct
974 		     agp_memory_info *mi)
975 {
976 	struct agp_memory *mem = (struct agp_memory *) handle;
977 
978 	mi->ami_size = mem->am_size;
979 	mi->ami_physical = mem->am_physical;
980 	mi->ami_offset = mem->am_offset;
981 	mi->ami_is_bound = mem->am_is_bound;
982 }
983 
984 int
985 agp_bind_pages(device_t dev, vm_page_t *pages, vm_size_t size,
986     vm_offset_t offset)
987 {
988 	struct agp_softc *sc;
989 	vm_offset_t i, j, k, pa;
990 	vm_page_t m;
991 	int error;
992 
993 	if ((size & (AGP_PAGE_SIZE - 1)) != 0 ||
994 	    (offset & (AGP_PAGE_SIZE - 1)) != 0)
995 		return (EINVAL);
996 
997 	sc = device_get_softc(dev);
998 
999 	mtx_lock(&sc->as_lock);
1000 	for (i = 0; i < size; i += PAGE_SIZE) {
1001 		m = pages[OFF_TO_IDX(i)];
1002 		KASSERT(vm_page_wired(m),
1003 		    ("agp_bind_pages: page %p hasn't been wired", m));
1004 
1005 		/*
1006 		 * Install entries in the GATT, making sure that if
1007 		 * AGP_PAGE_SIZE < PAGE_SIZE and size is not
1008 		 * aligned to PAGE_SIZE, we don't modify too many GATT
1009 		 * entries.
1010 		 */
1011 		for (j = 0; j < PAGE_SIZE && i + j < size; j += AGP_PAGE_SIZE) {
1012 			pa = VM_PAGE_TO_PHYS(m) + j;
1013 			AGP_DPF("binding offset %#jx to pa %#jx\n",
1014 				(uintmax_t)offset + i + j, (uintmax_t)pa);
1015 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
1016 			if (error) {
1017 				/*
1018 				 * Bail out. Reverse all the mappings.
1019 				 */
1020 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
1021 					AGP_UNBIND_PAGE(dev, offset + k);
1022 
1023 				mtx_unlock(&sc->as_lock);
1024 				return (error);
1025 			}
1026 		}
1027 	}
1028 
1029 	AGP_FLUSH_TLB(dev);
1030 
1031 	mtx_unlock(&sc->as_lock);
1032 	return (0);
1033 }
1034 
1035 int
1036 agp_unbind_pages(device_t dev, vm_size_t size, vm_offset_t offset)
1037 {
1038 	struct agp_softc *sc;
1039 	vm_offset_t i;
1040 
1041 	if ((size & (AGP_PAGE_SIZE - 1)) != 0 ||
1042 	    (offset & (AGP_PAGE_SIZE - 1)) != 0)
1043 		return (EINVAL);
1044 
1045 	sc = device_get_softc(dev);
1046 
1047 	mtx_lock(&sc->as_lock);
1048 	for (i = 0; i < size; i += AGP_PAGE_SIZE)
1049 		AGP_UNBIND_PAGE(dev, offset + i);
1050 
1051 	AGP_FLUSH_TLB(dev);
1052 
1053 	mtx_unlock(&sc->as_lock);
1054 	return (0);
1055 }
1056