1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_agp.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/agpio.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/rwlock.h> 45 46 #include <dev/agp/agppriv.h> 47 #include <dev/agp/agpvar.h> 48 #include <dev/agp/agpreg.h> 49 #include <dev/pci/pcivar.h> 50 #include <dev/pci/pcireg.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_extern.h> 54 #include <vm/vm_kern.h> 55 #include <vm/vm_param.h> 56 #include <vm/vm_object.h> 57 #include <vm/vm_page.h> 58 #include <vm/vm_pageout.h> 59 #include <vm/pmap.h> 60 61 #include <machine/bus.h> 62 #include <machine/resource.h> 63 #include <sys/rman.h> 64 65 MODULE_VERSION(agp, 1); 66 67 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 68 69 /* agp_drv.c */ 70 static d_open_t agp_open; 71 static d_close_t agp_close; 72 static d_ioctl_t agp_ioctl; 73 static d_mmap_t agp_mmap; 74 75 static struct cdevsw agp_cdevsw = { 76 .d_version = D_VERSION, 77 .d_flags = D_NEEDGIANT, 78 .d_open = agp_open, 79 .d_close = agp_close, 80 .d_ioctl = agp_ioctl, 81 .d_mmap = agp_mmap, 82 .d_name = "agp", 83 }; 84 85 static devclass_t agp_devclass; 86 87 /* Helper functions for implementing chipset mini drivers. */ 88 89 u_int8_t 90 agp_find_caps(device_t dev) 91 { 92 int capreg; 93 94 95 if (pci_find_cap(dev, PCIY_AGP, &capreg) != 0) 96 capreg = 0; 97 return (capreg); 98 } 99 100 /* 101 * Find an AGP display device (if any). 102 */ 103 static device_t 104 agp_find_display(void) 105 { 106 devclass_t pci = devclass_find("pci"); 107 device_t bus, dev = 0; 108 device_t *kids; 109 int busnum, numkids, i; 110 111 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 112 bus = devclass_get_device(pci, busnum); 113 if (!bus) 114 continue; 115 if (device_get_children(bus, &kids, &numkids) != 0) 116 continue; 117 for (i = 0; i < numkids; i++) { 118 dev = kids[i]; 119 if (pci_get_class(dev) == PCIC_DISPLAY 120 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 121 if (agp_find_caps(dev)) { 122 free(kids, M_TEMP); 123 return dev; 124 } 125 126 } 127 free(kids, M_TEMP); 128 } 129 130 return 0; 131 } 132 133 struct agp_gatt * 134 agp_alloc_gatt(device_t dev) 135 { 136 u_int32_t apsize = AGP_GET_APERTURE(dev); 137 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 138 struct agp_gatt *gatt; 139 140 if (bootverbose) 141 device_printf(dev, 142 "allocating GATT for aperture of size %dM\n", 143 apsize / (1024*1024)); 144 145 if (entries == 0) { 146 device_printf(dev, "bad aperture size\n"); 147 return NULL; 148 } 149 150 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 151 if (!gatt) 152 return 0; 153 154 gatt->ag_entries = entries; 155 gatt->ag_virtual = (void *)kmem_alloc_contig(kernel_arena, 156 entries * sizeof(u_int32_t), M_NOWAIT | M_ZERO, 0, ~0, PAGE_SIZE, 157 0, VM_MEMATTR_WRITE_COMBINING); 158 if (!gatt->ag_virtual) { 159 if (bootverbose) 160 device_printf(dev, "contiguous allocation failed\n"); 161 free(gatt, M_AGP); 162 return 0; 163 } 164 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 165 166 return gatt; 167 } 168 169 void 170 agp_free_gatt(struct agp_gatt *gatt) 171 { 172 kmem_free(kernel_arena, (vm_offset_t)gatt->ag_virtual, 173 gatt->ag_entries * sizeof(u_int32_t)); 174 free(gatt, M_AGP); 175 } 176 177 static u_int agp_max[][2] = { 178 {0, 0}, 179 {32, 4}, 180 {64, 28}, 181 {128, 96}, 182 {256, 204}, 183 {512, 440}, 184 {1024, 942}, 185 {2048, 1920}, 186 {4096, 3932} 187 }; 188 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 189 190 /** 191 * Sets the PCI resource which represents the AGP aperture. 192 * 193 * If not called, the default AGP aperture resource of AGP_APBASE will 194 * be used. Must be called before agp_generic_attach(). 195 */ 196 void 197 agp_set_aperture_resource(device_t dev, int rid) 198 { 199 struct agp_softc *sc = device_get_softc(dev); 200 201 sc->as_aperture_rid = rid; 202 } 203 204 int 205 agp_generic_attach(device_t dev) 206 { 207 struct agp_softc *sc = device_get_softc(dev); 208 int i; 209 u_int memsize; 210 211 /* 212 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE 213 * because the kernel doesn't need to map it. 214 */ 215 216 if (sc->as_aperture_rid != -1) { 217 if (sc->as_aperture_rid == 0) 218 sc->as_aperture_rid = AGP_APBASE; 219 220 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 221 &sc->as_aperture_rid, RF_SHAREABLE); 222 if (!sc->as_aperture) 223 return ENOMEM; 224 } 225 226 /* 227 * Work out an upper bound for agp memory allocation. This 228 * uses a heurisitc table from the Linux driver. 229 */ 230 memsize = ptoa(realmem) >> 20; 231 for (i = 0; i < agp_max_size; i++) { 232 if (memsize <= agp_max[i][0]) 233 break; 234 } 235 if (i == agp_max_size) 236 i = agp_max_size - 1; 237 sc->as_maxmem = agp_max[i][1] << 20U; 238 239 /* 240 * The lock is used to prevent re-entry to 241 * agp_generic_bind_memory() since that function can sleep. 242 */ 243 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 244 245 /* 246 * Initialise stuff for the userland device. 247 */ 248 agp_devclass = devclass_find("agp"); 249 TAILQ_INIT(&sc->as_memory); 250 sc->as_nextid = 1; 251 252 sc->as_devnode = make_dev(&agp_cdevsw, 253 0, UID_ROOT, GID_WHEEL, 0600, "agpgart"); 254 sc->as_devnode->si_drv1 = dev; 255 256 return 0; 257 } 258 259 void 260 agp_free_cdev(device_t dev) 261 { 262 struct agp_softc *sc = device_get_softc(dev); 263 264 destroy_dev(sc->as_devnode); 265 } 266 267 void 268 agp_free_res(device_t dev) 269 { 270 struct agp_softc *sc = device_get_softc(dev); 271 272 if (sc->as_aperture != NULL) 273 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, 274 sc->as_aperture); 275 mtx_destroy(&sc->as_lock); 276 } 277 278 int 279 agp_generic_detach(device_t dev) 280 { 281 282 agp_free_cdev(dev); 283 agp_free_res(dev); 284 return 0; 285 } 286 287 /** 288 * Default AGP aperture size detection which simply returns the size of 289 * the aperture's PCI resource. 290 */ 291 u_int32_t 292 agp_generic_get_aperture(device_t dev) 293 { 294 struct agp_softc *sc = device_get_softc(dev); 295 296 return rman_get_size(sc->as_aperture); 297 } 298 299 /** 300 * Default AGP aperture size setting function, which simply doesn't allow 301 * changes to resource size. 302 */ 303 int 304 agp_generic_set_aperture(device_t dev, u_int32_t aperture) 305 { 306 u_int32_t current_aperture; 307 308 current_aperture = AGP_GET_APERTURE(dev); 309 if (current_aperture != aperture) 310 return EINVAL; 311 else 312 return 0; 313 } 314 315 /* 316 * This does the enable logic for v3, with the same topology 317 * restrictions as in place for v2 -- one bus, one device on the bus. 318 */ 319 static int 320 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 321 { 322 u_int32_t tstatus, mstatus; 323 u_int32_t command; 324 int rq, sba, fw, rate, arqsz, cal; 325 326 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 327 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 328 329 /* Set RQ to the min of mode, tstatus and mstatus */ 330 rq = AGP_MODE_GET_RQ(mode); 331 if (AGP_MODE_GET_RQ(tstatus) < rq) 332 rq = AGP_MODE_GET_RQ(tstatus); 333 if (AGP_MODE_GET_RQ(mstatus) < rq) 334 rq = AGP_MODE_GET_RQ(mstatus); 335 336 /* 337 * ARQSZ - Set the value to the maximum one. 338 * Don't allow the mode register to override values. 339 */ 340 arqsz = AGP_MODE_GET_ARQSZ(mode); 341 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 342 rq = AGP_MODE_GET_ARQSZ(tstatus); 343 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 344 rq = AGP_MODE_GET_ARQSZ(mstatus); 345 346 /* Calibration cycle - don't allow override by mode register */ 347 cal = AGP_MODE_GET_CAL(tstatus); 348 if (AGP_MODE_GET_CAL(mstatus) < cal) 349 cal = AGP_MODE_GET_CAL(mstatus); 350 351 /* SBA must be supported for AGP v3. */ 352 sba = 1; 353 354 /* Set FW if all three support it. */ 355 fw = (AGP_MODE_GET_FW(tstatus) 356 & AGP_MODE_GET_FW(mstatus) 357 & AGP_MODE_GET_FW(mode)); 358 359 /* Figure out the max rate */ 360 rate = (AGP_MODE_GET_RATE(tstatus) 361 & AGP_MODE_GET_RATE(mstatus) 362 & AGP_MODE_GET_RATE(mode)); 363 if (rate & AGP_MODE_V3_RATE_8x) 364 rate = AGP_MODE_V3_RATE_8x; 365 else 366 rate = AGP_MODE_V3_RATE_4x; 367 if (bootverbose) 368 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 369 370 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 371 372 /* Construct the new mode word and tell the hardware */ 373 command = 0; 374 command = AGP_MODE_SET_RQ(0, rq); 375 command = AGP_MODE_SET_ARQSZ(command, arqsz); 376 command = AGP_MODE_SET_CAL(command, cal); 377 command = AGP_MODE_SET_SBA(command, sba); 378 command = AGP_MODE_SET_FW(command, fw); 379 command = AGP_MODE_SET_RATE(command, rate); 380 command = AGP_MODE_SET_MODE_3(command, 1); 381 command = AGP_MODE_SET_AGP(command, 1); 382 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 383 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 384 385 return 0; 386 } 387 388 static int 389 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 390 { 391 u_int32_t tstatus, mstatus; 392 u_int32_t command; 393 int rq, sba, fw, rate; 394 395 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 396 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 397 398 /* Set RQ to the min of mode, tstatus and mstatus */ 399 rq = AGP_MODE_GET_RQ(mode); 400 if (AGP_MODE_GET_RQ(tstatus) < rq) 401 rq = AGP_MODE_GET_RQ(tstatus); 402 if (AGP_MODE_GET_RQ(mstatus) < rq) 403 rq = AGP_MODE_GET_RQ(mstatus); 404 405 /* Set SBA if all three can deal with SBA */ 406 sba = (AGP_MODE_GET_SBA(tstatus) 407 & AGP_MODE_GET_SBA(mstatus) 408 & AGP_MODE_GET_SBA(mode)); 409 410 /* Similar for FW */ 411 fw = (AGP_MODE_GET_FW(tstatus) 412 & AGP_MODE_GET_FW(mstatus) 413 & AGP_MODE_GET_FW(mode)); 414 415 /* Figure out the max rate */ 416 rate = (AGP_MODE_GET_RATE(tstatus) 417 & AGP_MODE_GET_RATE(mstatus) 418 & AGP_MODE_GET_RATE(mode)); 419 if (rate & AGP_MODE_V2_RATE_4x) 420 rate = AGP_MODE_V2_RATE_4x; 421 else if (rate & AGP_MODE_V2_RATE_2x) 422 rate = AGP_MODE_V2_RATE_2x; 423 else 424 rate = AGP_MODE_V2_RATE_1x; 425 if (bootverbose) 426 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 427 428 /* Construct the new mode word and tell the hardware */ 429 command = 0; 430 command = AGP_MODE_SET_RQ(0, rq); 431 command = AGP_MODE_SET_SBA(command, sba); 432 command = AGP_MODE_SET_FW(command, fw); 433 command = AGP_MODE_SET_RATE(command, rate); 434 command = AGP_MODE_SET_AGP(command, 1); 435 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 436 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 437 438 return 0; 439 } 440 441 int 442 agp_generic_enable(device_t dev, u_int32_t mode) 443 { 444 device_t mdev = agp_find_display(); 445 u_int32_t tstatus, mstatus; 446 447 if (!mdev) { 448 AGP_DPF("can't find display\n"); 449 return ENXIO; 450 } 451 452 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 453 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 454 455 /* 456 * Check display and bridge for AGP v3 support. AGP v3 allows 457 * more variety in topology than v2, e.g. multiple AGP devices 458 * attached to one bridge, or multiple AGP bridges in one 459 * system. This doesn't attempt to address those situations, 460 * but should work fine for a classic single AGP slot system 461 * with AGP v3. 462 */ 463 if (AGP_MODE_GET_MODE_3(mode) && 464 AGP_MODE_GET_MODE_3(tstatus) && 465 AGP_MODE_GET_MODE_3(mstatus)) 466 return (agp_v3_enable(dev, mdev, mode)); 467 else 468 return (agp_v2_enable(dev, mdev, mode)); 469 } 470 471 struct agp_memory * 472 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 473 { 474 struct agp_softc *sc = device_get_softc(dev); 475 struct agp_memory *mem; 476 477 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 478 return 0; 479 480 if (size > sc->as_maxmem - sc->as_allocated) 481 return 0; 482 483 if (type != 0) { 484 printf("agp_generic_alloc_memory: unsupported type %d\n", 485 type); 486 return 0; 487 } 488 489 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 490 mem->am_id = sc->as_nextid++; 491 mem->am_size = size; 492 mem->am_type = 0; 493 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 494 mem->am_physical = 0; 495 mem->am_offset = 0; 496 mem->am_is_bound = 0; 497 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 498 sc->as_allocated += size; 499 500 return mem; 501 } 502 503 int 504 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 505 { 506 struct agp_softc *sc = device_get_softc(dev); 507 508 if (mem->am_is_bound) 509 return EBUSY; 510 511 sc->as_allocated -= mem->am_size; 512 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 513 vm_object_deallocate(mem->am_obj); 514 free(mem, M_AGP); 515 return 0; 516 } 517 518 int 519 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 520 vm_offset_t offset) 521 { 522 struct agp_softc *sc = device_get_softc(dev); 523 vm_offset_t i, j, k; 524 vm_page_t m; 525 int error; 526 527 /* Do some sanity checks first. */ 528 if ((offset & (AGP_PAGE_SIZE - 1)) != 0 || 529 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 530 device_printf(dev, "binding memory at bad offset %#x\n", 531 (int)offset); 532 return EINVAL; 533 } 534 535 /* 536 * Allocate the pages early, before acquiring the lock, 537 * because vm_page_grab() may sleep and we can't hold a mutex 538 * while sleeping. 539 */ 540 VM_OBJECT_WLOCK(mem->am_obj); 541 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 542 /* 543 * Find a page from the object and wire it 544 * down. This page will be mapped using one or more 545 * entries in the GATT (assuming that PAGE_SIZE >= 546 * AGP_PAGE_SIZE. If this is the first call to bind, 547 * the pages will be allocated and zeroed. 548 */ 549 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 550 VM_ALLOC_WIRED | VM_ALLOC_ZERO); 551 AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m)); 552 } 553 VM_OBJECT_WUNLOCK(mem->am_obj); 554 555 mtx_lock(&sc->as_lock); 556 557 if (mem->am_is_bound) { 558 device_printf(dev, "memory already bound\n"); 559 error = EINVAL; 560 VM_OBJECT_WLOCK(mem->am_obj); 561 i = 0; 562 goto bad; 563 } 564 565 /* 566 * Bind the individual pages and flush the chipset's 567 * TLB. 568 */ 569 VM_OBJECT_WLOCK(mem->am_obj); 570 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 571 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 572 573 /* 574 * Install entries in the GATT, making sure that if 575 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 576 * aligned to PAGE_SIZE, we don't modify too many GATT 577 * entries. 578 */ 579 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 580 j += AGP_PAGE_SIZE) { 581 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 582 AGP_DPF("binding offset %#jx to pa %#jx\n", 583 (uintmax_t)offset + i + j, (uintmax_t)pa); 584 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 585 if (error) { 586 /* 587 * Bail out. Reverse all the mappings 588 * and unwire the pages. 589 */ 590 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 591 AGP_UNBIND_PAGE(dev, offset + k); 592 goto bad; 593 } 594 } 595 vm_page_xunbusy(m); 596 } 597 VM_OBJECT_WUNLOCK(mem->am_obj); 598 599 /* 600 * Make sure the chipset gets the new mappings. 601 */ 602 AGP_FLUSH_TLB(dev); 603 604 mem->am_offset = offset; 605 mem->am_is_bound = 1; 606 607 mtx_unlock(&sc->as_lock); 608 609 return 0; 610 bad: 611 mtx_unlock(&sc->as_lock); 612 VM_OBJECT_ASSERT_WLOCKED(mem->am_obj); 613 for (k = 0; k < mem->am_size; k += PAGE_SIZE) { 614 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(k)); 615 if (k >= i) 616 vm_page_xunbusy(m); 617 vm_page_lock(m); 618 vm_page_unwire(m, PQ_INACTIVE); 619 vm_page_unlock(m); 620 } 621 VM_OBJECT_WUNLOCK(mem->am_obj); 622 623 return error; 624 } 625 626 int 627 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 628 { 629 struct agp_softc *sc = device_get_softc(dev); 630 vm_page_t m; 631 int i; 632 633 mtx_lock(&sc->as_lock); 634 635 if (!mem->am_is_bound) { 636 device_printf(dev, "memory is not bound\n"); 637 mtx_unlock(&sc->as_lock); 638 return EINVAL; 639 } 640 641 642 /* 643 * Unbind the individual pages and flush the chipset's 644 * TLB. Unwire the pages so they can be swapped. 645 */ 646 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 647 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 648 649 AGP_FLUSH_TLB(dev); 650 651 VM_OBJECT_WLOCK(mem->am_obj); 652 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 653 m = vm_page_lookup(mem->am_obj, atop(i)); 654 vm_page_lock(m); 655 vm_page_unwire(m, PQ_INACTIVE); 656 vm_page_unlock(m); 657 } 658 VM_OBJECT_WUNLOCK(mem->am_obj); 659 660 mem->am_offset = 0; 661 mem->am_is_bound = 0; 662 663 mtx_unlock(&sc->as_lock); 664 665 return 0; 666 } 667 668 /* Helper functions for implementing user/kernel api */ 669 670 static int 671 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 672 { 673 struct agp_softc *sc = device_get_softc(dev); 674 675 if (sc->as_state != AGP_ACQUIRE_FREE) 676 return EBUSY; 677 sc->as_state = state; 678 679 return 0; 680 } 681 682 static int 683 agp_release_helper(device_t dev, enum agp_acquire_state state) 684 { 685 struct agp_softc *sc = device_get_softc(dev); 686 687 if (sc->as_state == AGP_ACQUIRE_FREE) 688 return 0; 689 690 if (sc->as_state != state) 691 return EBUSY; 692 693 sc->as_state = AGP_ACQUIRE_FREE; 694 return 0; 695 } 696 697 static struct agp_memory * 698 agp_find_memory(device_t dev, int id) 699 { 700 struct agp_softc *sc = device_get_softc(dev); 701 struct agp_memory *mem; 702 703 AGP_DPF("searching for memory block %d\n", id); 704 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 705 AGP_DPF("considering memory block %d\n", mem->am_id); 706 if (mem->am_id == id) 707 return mem; 708 } 709 return 0; 710 } 711 712 /* Implementation of the userland ioctl api */ 713 714 static int 715 agp_info_user(device_t dev, agp_info *info) 716 { 717 struct agp_softc *sc = device_get_softc(dev); 718 719 bzero(info, sizeof *info); 720 info->bridge_id = pci_get_devid(dev); 721 info->agp_mode = 722 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 723 if (sc->as_aperture) 724 info->aper_base = rman_get_start(sc->as_aperture); 725 else 726 info->aper_base = 0; 727 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 728 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 729 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 730 731 return 0; 732 } 733 734 static int 735 agp_setup_user(device_t dev, agp_setup *setup) 736 { 737 return AGP_ENABLE(dev, setup->agp_mode); 738 } 739 740 static int 741 agp_allocate_user(device_t dev, agp_allocate *alloc) 742 { 743 struct agp_memory *mem; 744 745 mem = AGP_ALLOC_MEMORY(dev, 746 alloc->type, 747 alloc->pg_count << AGP_PAGE_SHIFT); 748 if (mem) { 749 alloc->key = mem->am_id; 750 alloc->physical = mem->am_physical; 751 return 0; 752 } else { 753 return ENOMEM; 754 } 755 } 756 757 static int 758 agp_deallocate_user(device_t dev, int id) 759 { 760 struct agp_memory *mem = agp_find_memory(dev, id); 761 762 if (mem) { 763 AGP_FREE_MEMORY(dev, mem); 764 return 0; 765 } else { 766 return ENOENT; 767 } 768 } 769 770 static int 771 agp_bind_user(device_t dev, agp_bind *bind) 772 { 773 struct agp_memory *mem = agp_find_memory(dev, bind->key); 774 775 if (!mem) 776 return ENOENT; 777 778 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 779 } 780 781 static int 782 agp_unbind_user(device_t dev, agp_unbind *unbind) 783 { 784 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 785 786 if (!mem) 787 return ENOENT; 788 789 return AGP_UNBIND_MEMORY(dev, mem); 790 } 791 792 static int 793 agp_chipset_flush(device_t dev) 794 { 795 796 return (AGP_CHIPSET_FLUSH(dev)); 797 } 798 799 static int 800 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 801 { 802 device_t dev = kdev->si_drv1; 803 struct agp_softc *sc = device_get_softc(dev); 804 805 if (!sc->as_isopen) { 806 sc->as_isopen = 1; 807 device_busy(dev); 808 } 809 810 return 0; 811 } 812 813 static int 814 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 815 { 816 device_t dev = kdev->si_drv1; 817 struct agp_softc *sc = device_get_softc(dev); 818 struct agp_memory *mem; 819 820 /* 821 * Clear the GATT and force release on last close 822 */ 823 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 824 if (mem->am_is_bound) 825 AGP_UNBIND_MEMORY(dev, mem); 826 AGP_FREE_MEMORY(dev, mem); 827 } 828 if (sc->as_state == AGP_ACQUIRE_USER) 829 agp_release_helper(dev, AGP_ACQUIRE_USER); 830 sc->as_isopen = 0; 831 device_unbusy(dev); 832 833 return 0; 834 } 835 836 static int 837 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 838 { 839 device_t dev = kdev->si_drv1; 840 841 switch (cmd) { 842 case AGPIOC_INFO: 843 return agp_info_user(dev, (agp_info *) data); 844 845 case AGPIOC_ACQUIRE: 846 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 847 848 case AGPIOC_RELEASE: 849 return agp_release_helper(dev, AGP_ACQUIRE_USER); 850 851 case AGPIOC_SETUP: 852 return agp_setup_user(dev, (agp_setup *)data); 853 854 case AGPIOC_ALLOCATE: 855 return agp_allocate_user(dev, (agp_allocate *)data); 856 857 case AGPIOC_DEALLOCATE: 858 return agp_deallocate_user(dev, *(int *) data); 859 860 case AGPIOC_BIND: 861 return agp_bind_user(dev, (agp_bind *)data); 862 863 case AGPIOC_UNBIND: 864 return agp_unbind_user(dev, (agp_unbind *)data); 865 866 case AGPIOC_CHIPSET_FLUSH: 867 return agp_chipset_flush(dev); 868 } 869 870 return EINVAL; 871 } 872 873 static int 874 agp_mmap(struct cdev *kdev, vm_ooffset_t offset, vm_paddr_t *paddr, 875 int prot, vm_memattr_t *memattr) 876 { 877 device_t dev = kdev->si_drv1; 878 struct agp_softc *sc = device_get_softc(dev); 879 880 if (offset > AGP_GET_APERTURE(dev)) 881 return -1; 882 if (sc->as_aperture == NULL) 883 return -1; 884 *paddr = rman_get_start(sc->as_aperture) + offset; 885 return 0; 886 } 887 888 /* Implementation of the kernel api */ 889 890 device_t 891 agp_find_device() 892 { 893 device_t *children, child; 894 int i, count; 895 896 if (!agp_devclass) 897 return NULL; 898 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 899 return NULL; 900 child = NULL; 901 for (i = 0; i < count; i++) { 902 if (device_is_attached(children[i])) { 903 child = children[i]; 904 break; 905 } 906 } 907 free(children, M_TEMP); 908 return child; 909 } 910 911 enum agp_acquire_state 912 agp_state(device_t dev) 913 { 914 struct agp_softc *sc = device_get_softc(dev); 915 return sc->as_state; 916 } 917 918 void 919 agp_get_info(device_t dev, struct agp_info *info) 920 { 921 struct agp_softc *sc = device_get_softc(dev); 922 923 info->ai_mode = 924 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 925 if (sc->as_aperture != NULL) 926 info->ai_aperture_base = rman_get_start(sc->as_aperture); 927 else 928 info->ai_aperture_base = 0; 929 info->ai_aperture_size = AGP_GET_APERTURE(dev); 930 info->ai_memory_allowed = sc->as_maxmem; 931 info->ai_memory_used = sc->as_allocated; 932 } 933 934 int 935 agp_acquire(device_t dev) 936 { 937 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 938 } 939 940 int 941 agp_release(device_t dev) 942 { 943 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 944 } 945 946 int 947 agp_enable(device_t dev, u_int32_t mode) 948 { 949 return AGP_ENABLE(dev, mode); 950 } 951 952 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 953 { 954 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 955 } 956 957 void agp_free_memory(device_t dev, void *handle) 958 { 959 struct agp_memory *mem = (struct agp_memory *) handle; 960 AGP_FREE_MEMORY(dev, mem); 961 } 962 963 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 964 { 965 struct agp_memory *mem = (struct agp_memory *) handle; 966 return AGP_BIND_MEMORY(dev, mem, offset); 967 } 968 969 int agp_unbind_memory(device_t dev, void *handle) 970 { 971 struct agp_memory *mem = (struct agp_memory *) handle; 972 return AGP_UNBIND_MEMORY(dev, mem); 973 } 974 975 void agp_memory_info(device_t dev, void *handle, struct 976 agp_memory_info *mi) 977 { 978 struct agp_memory *mem = (struct agp_memory *) handle; 979 980 mi->ami_size = mem->am_size; 981 mi->ami_physical = mem->am_physical; 982 mi->ami_offset = mem->am_offset; 983 mi->ami_is_bound = mem->am_is_bound; 984 } 985 986 int 987 agp_bind_pages(device_t dev, vm_page_t *pages, vm_size_t size, 988 vm_offset_t offset) 989 { 990 struct agp_softc *sc; 991 vm_offset_t i, j, k, pa; 992 vm_page_t m; 993 int error; 994 995 if ((size & (AGP_PAGE_SIZE - 1)) != 0 || 996 (offset & (AGP_PAGE_SIZE - 1)) != 0) 997 return (EINVAL); 998 999 sc = device_get_softc(dev); 1000 1001 mtx_lock(&sc->as_lock); 1002 for (i = 0; i < size; i += PAGE_SIZE) { 1003 m = pages[OFF_TO_IDX(i)]; 1004 KASSERT(m->wire_count > 0, 1005 ("agp_bind_pages: page %p hasn't been wired", m)); 1006 1007 /* 1008 * Install entries in the GATT, making sure that if 1009 * AGP_PAGE_SIZE < PAGE_SIZE and size is not 1010 * aligned to PAGE_SIZE, we don't modify too many GATT 1011 * entries. 1012 */ 1013 for (j = 0; j < PAGE_SIZE && i + j < size; j += AGP_PAGE_SIZE) { 1014 pa = VM_PAGE_TO_PHYS(m) + j; 1015 AGP_DPF("binding offset %#jx to pa %#jx\n", 1016 (uintmax_t)offset + i + j, (uintmax_t)pa); 1017 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 1018 if (error) { 1019 /* 1020 * Bail out. Reverse all the mappings. 1021 */ 1022 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 1023 AGP_UNBIND_PAGE(dev, offset + k); 1024 1025 mtx_unlock(&sc->as_lock); 1026 return (error); 1027 } 1028 } 1029 } 1030 1031 AGP_FLUSH_TLB(dev); 1032 1033 mtx_unlock(&sc->as_lock); 1034 return (0); 1035 } 1036 1037 int 1038 agp_unbind_pages(device_t dev, vm_size_t size, vm_offset_t offset) 1039 { 1040 struct agp_softc *sc; 1041 vm_offset_t i; 1042 1043 if ((size & (AGP_PAGE_SIZE - 1)) != 0 || 1044 (offset & (AGP_PAGE_SIZE - 1)) != 0) 1045 return (EINVAL); 1046 1047 sc = device_get_softc(dev); 1048 1049 mtx_lock(&sc->as_lock); 1050 for (i = 0; i < size; i += AGP_PAGE_SIZE) 1051 AGP_UNBIND_PAGE(dev, offset + i); 1052 1053 AGP_FLUSH_TLB(dev); 1054 1055 mtx_unlock(&sc->as_lock); 1056 return (0); 1057 } 1058