1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_agp.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/module.h> 39 #include <sys/bus.h> 40 #include <sys/conf.h> 41 #include <sys/ioccom.h> 42 #include <sys/agpio.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/rwlock.h> 47 48 #include <dev/agp/agppriv.h> 49 #include <dev/agp/agpvar.h> 50 #include <dev/agp/agpreg.h> 51 #include <dev/pci/pcivar.h> 52 #include <dev/pci/pcireg.h> 53 54 #include <vm/vm.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_kern.h> 57 #include <vm/vm_param.h> 58 #include <vm/vm_object.h> 59 #include <vm/vm_page.h> 60 #include <vm/vm_pageout.h> 61 #include <vm/pmap.h> 62 63 #include <machine/bus.h> 64 #include <machine/resource.h> 65 #include <sys/rman.h> 66 67 MODULE_VERSION(agp, 1); 68 69 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 70 71 /* agp_drv.c */ 72 static d_open_t agp_open; 73 static d_close_t agp_close; 74 static d_ioctl_t agp_ioctl; 75 static d_mmap_t agp_mmap; 76 77 static struct cdevsw agp_cdevsw = { 78 .d_version = D_VERSION, 79 .d_flags = D_NEEDGIANT, 80 .d_open = agp_open, 81 .d_close = agp_close, 82 .d_ioctl = agp_ioctl, 83 .d_mmap = agp_mmap, 84 .d_name = "agp", 85 }; 86 87 static devclass_t agp_devclass; 88 89 /* Helper functions for implementing chipset mini drivers. */ 90 91 u_int8_t 92 agp_find_caps(device_t dev) 93 { 94 int capreg; 95 96 97 if (pci_find_cap(dev, PCIY_AGP, &capreg) != 0) 98 capreg = 0; 99 return (capreg); 100 } 101 102 /* 103 * Find an AGP display device (if any). 104 */ 105 static device_t 106 agp_find_display(void) 107 { 108 devclass_t pci = devclass_find("pci"); 109 device_t bus, dev = 0; 110 device_t *kids; 111 int busnum, numkids, i; 112 113 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 114 bus = devclass_get_device(pci, busnum); 115 if (!bus) 116 continue; 117 if (device_get_children(bus, &kids, &numkids) != 0) 118 continue; 119 for (i = 0; i < numkids; i++) { 120 dev = kids[i]; 121 if (pci_get_class(dev) == PCIC_DISPLAY 122 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 123 if (agp_find_caps(dev)) { 124 free(kids, M_TEMP); 125 return dev; 126 } 127 128 } 129 free(kids, M_TEMP); 130 } 131 132 return 0; 133 } 134 135 struct agp_gatt * 136 agp_alloc_gatt(device_t dev) 137 { 138 u_int32_t apsize = AGP_GET_APERTURE(dev); 139 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 140 struct agp_gatt *gatt; 141 142 if (bootverbose) 143 device_printf(dev, 144 "allocating GATT for aperture of size %dM\n", 145 apsize / (1024*1024)); 146 147 if (entries == 0) { 148 device_printf(dev, "bad aperture size\n"); 149 return NULL; 150 } 151 152 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 153 if (!gatt) 154 return 0; 155 156 gatt->ag_entries = entries; 157 gatt->ag_virtual = (void *)kmem_alloc_contig(entries * 158 sizeof(u_int32_t), M_NOWAIT | M_ZERO, 0, ~0, PAGE_SIZE, 0, 159 VM_MEMATTR_WRITE_COMBINING); 160 if (!gatt->ag_virtual) { 161 if (bootverbose) 162 device_printf(dev, "contiguous allocation failed\n"); 163 free(gatt, M_AGP); 164 return 0; 165 } 166 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 167 168 return gatt; 169 } 170 171 void 172 agp_free_gatt(struct agp_gatt *gatt) 173 { 174 kmem_free((vm_offset_t)gatt->ag_virtual, gatt->ag_entries * 175 sizeof(u_int32_t)); 176 free(gatt, M_AGP); 177 } 178 179 static u_int agp_max[][2] = { 180 {0, 0}, 181 {32, 4}, 182 {64, 28}, 183 {128, 96}, 184 {256, 204}, 185 {512, 440}, 186 {1024, 942}, 187 {2048, 1920}, 188 {4096, 3932} 189 }; 190 #define AGP_MAX_SIZE nitems(agp_max) 191 192 /** 193 * Sets the PCI resource which represents the AGP aperture. 194 * 195 * If not called, the default AGP aperture resource of AGP_APBASE will 196 * be used. Must be called before agp_generic_attach(). 197 */ 198 void 199 agp_set_aperture_resource(device_t dev, int rid) 200 { 201 struct agp_softc *sc = device_get_softc(dev); 202 203 sc->as_aperture_rid = rid; 204 } 205 206 int 207 agp_generic_attach(device_t dev) 208 { 209 struct agp_softc *sc = device_get_softc(dev); 210 int i; 211 u_int memsize; 212 213 /* 214 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE 215 * because the kernel doesn't need to map it. 216 */ 217 218 if (sc->as_aperture_rid != -1) { 219 if (sc->as_aperture_rid == 0) 220 sc->as_aperture_rid = AGP_APBASE; 221 222 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 223 &sc->as_aperture_rid, RF_SHAREABLE); 224 if (!sc->as_aperture) 225 return ENOMEM; 226 } 227 228 /* 229 * Work out an upper bound for agp memory allocation. This 230 * uses a heurisitc table from the Linux driver. 231 */ 232 memsize = ptoa(realmem) >> 20; 233 for (i = 0; i < AGP_MAX_SIZE; i++) { 234 if (memsize <= agp_max[i][0]) 235 break; 236 } 237 if (i == AGP_MAX_SIZE) 238 i = AGP_MAX_SIZE - 1; 239 sc->as_maxmem = agp_max[i][1] << 20U; 240 241 /* 242 * The lock is used to prevent re-entry to 243 * agp_generic_bind_memory() since that function can sleep. 244 */ 245 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 246 247 /* 248 * Initialise stuff for the userland device. 249 */ 250 agp_devclass = devclass_find("agp"); 251 TAILQ_INIT(&sc->as_memory); 252 sc->as_nextid = 1; 253 254 sc->as_devnode = make_dev(&agp_cdevsw, 255 0, UID_ROOT, GID_WHEEL, 0600, "agpgart"); 256 sc->as_devnode->si_drv1 = dev; 257 258 return 0; 259 } 260 261 void 262 agp_free_cdev(device_t dev) 263 { 264 struct agp_softc *sc = device_get_softc(dev); 265 266 destroy_dev(sc->as_devnode); 267 } 268 269 void 270 agp_free_res(device_t dev) 271 { 272 struct agp_softc *sc = device_get_softc(dev); 273 274 if (sc->as_aperture != NULL) 275 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, 276 sc->as_aperture); 277 mtx_destroy(&sc->as_lock); 278 } 279 280 int 281 agp_generic_detach(device_t dev) 282 { 283 284 agp_free_cdev(dev); 285 agp_free_res(dev); 286 return 0; 287 } 288 289 /** 290 * Default AGP aperture size detection which simply returns the size of 291 * the aperture's PCI resource. 292 */ 293 u_int32_t 294 agp_generic_get_aperture(device_t dev) 295 { 296 struct agp_softc *sc = device_get_softc(dev); 297 298 return rman_get_size(sc->as_aperture); 299 } 300 301 /** 302 * Default AGP aperture size setting function, which simply doesn't allow 303 * changes to resource size. 304 */ 305 int 306 agp_generic_set_aperture(device_t dev, u_int32_t aperture) 307 { 308 u_int32_t current_aperture; 309 310 current_aperture = AGP_GET_APERTURE(dev); 311 if (current_aperture != aperture) 312 return EINVAL; 313 else 314 return 0; 315 } 316 317 /* 318 * This does the enable logic for v3, with the same topology 319 * restrictions as in place for v2 -- one bus, one device on the bus. 320 */ 321 static int 322 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 323 { 324 u_int32_t tstatus, mstatus; 325 u_int32_t command; 326 int rq, sba, fw, rate, arqsz, cal; 327 328 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 329 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 330 331 /* Set RQ to the min of mode, tstatus and mstatus */ 332 rq = AGP_MODE_GET_RQ(mode); 333 if (AGP_MODE_GET_RQ(tstatus) < rq) 334 rq = AGP_MODE_GET_RQ(tstatus); 335 if (AGP_MODE_GET_RQ(mstatus) < rq) 336 rq = AGP_MODE_GET_RQ(mstatus); 337 338 /* 339 * ARQSZ - Set the value to the maximum one. 340 * Don't allow the mode register to override values. 341 */ 342 arqsz = AGP_MODE_GET_ARQSZ(mode); 343 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 344 rq = AGP_MODE_GET_ARQSZ(tstatus); 345 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 346 rq = AGP_MODE_GET_ARQSZ(mstatus); 347 348 /* Calibration cycle - don't allow override by mode register */ 349 cal = AGP_MODE_GET_CAL(tstatus); 350 if (AGP_MODE_GET_CAL(mstatus) < cal) 351 cal = AGP_MODE_GET_CAL(mstatus); 352 353 /* SBA must be supported for AGP v3. */ 354 sba = 1; 355 356 /* Set FW if all three support it. */ 357 fw = (AGP_MODE_GET_FW(tstatus) 358 & AGP_MODE_GET_FW(mstatus) 359 & AGP_MODE_GET_FW(mode)); 360 361 /* Figure out the max rate */ 362 rate = (AGP_MODE_GET_RATE(tstatus) 363 & AGP_MODE_GET_RATE(mstatus) 364 & AGP_MODE_GET_RATE(mode)); 365 if (rate & AGP_MODE_V3_RATE_8x) 366 rate = AGP_MODE_V3_RATE_8x; 367 else 368 rate = AGP_MODE_V3_RATE_4x; 369 if (bootverbose) 370 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 371 372 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 373 374 /* Construct the new mode word and tell the hardware */ 375 command = 0; 376 command = AGP_MODE_SET_RQ(0, rq); 377 command = AGP_MODE_SET_ARQSZ(command, arqsz); 378 command = AGP_MODE_SET_CAL(command, cal); 379 command = AGP_MODE_SET_SBA(command, sba); 380 command = AGP_MODE_SET_FW(command, fw); 381 command = AGP_MODE_SET_RATE(command, rate); 382 command = AGP_MODE_SET_MODE_3(command, 1); 383 command = AGP_MODE_SET_AGP(command, 1); 384 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 385 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 386 387 return 0; 388 } 389 390 static int 391 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 392 { 393 u_int32_t tstatus, mstatus; 394 u_int32_t command; 395 int rq, sba, fw, rate; 396 397 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 398 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 399 400 /* Set RQ to the min of mode, tstatus and mstatus */ 401 rq = AGP_MODE_GET_RQ(mode); 402 if (AGP_MODE_GET_RQ(tstatus) < rq) 403 rq = AGP_MODE_GET_RQ(tstatus); 404 if (AGP_MODE_GET_RQ(mstatus) < rq) 405 rq = AGP_MODE_GET_RQ(mstatus); 406 407 /* Set SBA if all three can deal with SBA */ 408 sba = (AGP_MODE_GET_SBA(tstatus) 409 & AGP_MODE_GET_SBA(mstatus) 410 & AGP_MODE_GET_SBA(mode)); 411 412 /* Similar for FW */ 413 fw = (AGP_MODE_GET_FW(tstatus) 414 & AGP_MODE_GET_FW(mstatus) 415 & AGP_MODE_GET_FW(mode)); 416 417 /* Figure out the max rate */ 418 rate = (AGP_MODE_GET_RATE(tstatus) 419 & AGP_MODE_GET_RATE(mstatus) 420 & AGP_MODE_GET_RATE(mode)); 421 if (rate & AGP_MODE_V2_RATE_4x) 422 rate = AGP_MODE_V2_RATE_4x; 423 else if (rate & AGP_MODE_V2_RATE_2x) 424 rate = AGP_MODE_V2_RATE_2x; 425 else 426 rate = AGP_MODE_V2_RATE_1x; 427 if (bootverbose) 428 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 429 430 /* Construct the new mode word and tell the hardware */ 431 command = 0; 432 command = AGP_MODE_SET_RQ(0, rq); 433 command = AGP_MODE_SET_SBA(command, sba); 434 command = AGP_MODE_SET_FW(command, fw); 435 command = AGP_MODE_SET_RATE(command, rate); 436 command = AGP_MODE_SET_AGP(command, 1); 437 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 438 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 439 440 return 0; 441 } 442 443 int 444 agp_generic_enable(device_t dev, u_int32_t mode) 445 { 446 device_t mdev = agp_find_display(); 447 u_int32_t tstatus, mstatus; 448 449 if (!mdev) { 450 AGP_DPF("can't find display\n"); 451 return ENXIO; 452 } 453 454 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 455 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 456 457 /* 458 * Check display and bridge for AGP v3 support. AGP v3 allows 459 * more variety in topology than v2, e.g. multiple AGP devices 460 * attached to one bridge, or multiple AGP bridges in one 461 * system. This doesn't attempt to address those situations, 462 * but should work fine for a classic single AGP slot system 463 * with AGP v3. 464 */ 465 if (AGP_MODE_GET_MODE_3(mode) && 466 AGP_MODE_GET_MODE_3(tstatus) && 467 AGP_MODE_GET_MODE_3(mstatus)) 468 return (agp_v3_enable(dev, mdev, mode)); 469 else 470 return (agp_v2_enable(dev, mdev, mode)); 471 } 472 473 struct agp_memory * 474 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 475 { 476 struct agp_softc *sc = device_get_softc(dev); 477 struct agp_memory *mem; 478 479 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 480 return 0; 481 482 if (size > sc->as_maxmem - sc->as_allocated) 483 return 0; 484 485 if (type != 0) { 486 printf("agp_generic_alloc_memory: unsupported type %d\n", 487 type); 488 return 0; 489 } 490 491 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 492 mem->am_id = sc->as_nextid++; 493 mem->am_size = size; 494 mem->am_type = 0; 495 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 496 mem->am_physical = 0; 497 mem->am_offset = 0; 498 mem->am_is_bound = 0; 499 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 500 sc->as_allocated += size; 501 502 return mem; 503 } 504 505 int 506 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 507 { 508 struct agp_softc *sc = device_get_softc(dev); 509 510 if (mem->am_is_bound) 511 return EBUSY; 512 513 sc->as_allocated -= mem->am_size; 514 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 515 vm_object_deallocate(mem->am_obj); 516 free(mem, M_AGP); 517 return 0; 518 } 519 520 int 521 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 522 vm_offset_t offset) 523 { 524 struct agp_softc *sc = device_get_softc(dev); 525 vm_offset_t i, j, k; 526 vm_page_t m; 527 int error; 528 529 /* Do some sanity checks first. */ 530 if ((offset & (AGP_PAGE_SIZE - 1)) != 0 || 531 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 532 device_printf(dev, "binding memory at bad offset %#x\n", 533 (int)offset); 534 return EINVAL; 535 } 536 537 /* 538 * Allocate the pages early, before acquiring the lock, 539 * because vm_page_grab() may sleep and we can't hold a mutex 540 * while sleeping. 541 */ 542 VM_OBJECT_WLOCK(mem->am_obj); 543 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 544 /* 545 * Find a page from the object and wire it 546 * down. This page will be mapped using one or more 547 * entries in the GATT (assuming that PAGE_SIZE >= 548 * AGP_PAGE_SIZE. If this is the first call to bind, 549 * the pages will be allocated and zeroed. 550 */ 551 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 552 VM_ALLOC_WIRED | VM_ALLOC_ZERO); 553 AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m)); 554 } 555 VM_OBJECT_WUNLOCK(mem->am_obj); 556 557 mtx_lock(&sc->as_lock); 558 559 if (mem->am_is_bound) { 560 device_printf(dev, "memory already bound\n"); 561 error = EINVAL; 562 VM_OBJECT_WLOCK(mem->am_obj); 563 i = 0; 564 goto bad; 565 } 566 567 /* 568 * Bind the individual pages and flush the chipset's 569 * TLB. 570 */ 571 VM_OBJECT_WLOCK(mem->am_obj); 572 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 573 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 574 575 /* 576 * Install entries in the GATT, making sure that if 577 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 578 * aligned to PAGE_SIZE, we don't modify too many GATT 579 * entries. 580 */ 581 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 582 j += AGP_PAGE_SIZE) { 583 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 584 AGP_DPF("binding offset %#jx to pa %#jx\n", 585 (uintmax_t)offset + i + j, (uintmax_t)pa); 586 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 587 if (error) { 588 /* 589 * Bail out. Reverse all the mappings 590 * and unwire the pages. 591 */ 592 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 593 AGP_UNBIND_PAGE(dev, offset + k); 594 goto bad; 595 } 596 } 597 vm_page_xunbusy(m); 598 } 599 VM_OBJECT_WUNLOCK(mem->am_obj); 600 601 /* 602 * Make sure the chipset gets the new mappings. 603 */ 604 AGP_FLUSH_TLB(dev); 605 606 mem->am_offset = offset; 607 mem->am_is_bound = 1; 608 609 mtx_unlock(&sc->as_lock); 610 611 return 0; 612 bad: 613 mtx_unlock(&sc->as_lock); 614 VM_OBJECT_ASSERT_WLOCKED(mem->am_obj); 615 for (k = 0; k < mem->am_size; k += PAGE_SIZE) { 616 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(k)); 617 if (k >= i) 618 vm_page_xunbusy(m); 619 vm_page_lock(m); 620 vm_page_unwire(m, PQ_INACTIVE); 621 vm_page_unlock(m); 622 } 623 VM_OBJECT_WUNLOCK(mem->am_obj); 624 625 return error; 626 } 627 628 int 629 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 630 { 631 struct agp_softc *sc = device_get_softc(dev); 632 vm_page_t m; 633 int i; 634 635 mtx_lock(&sc->as_lock); 636 637 if (!mem->am_is_bound) { 638 device_printf(dev, "memory is not bound\n"); 639 mtx_unlock(&sc->as_lock); 640 return EINVAL; 641 } 642 643 644 /* 645 * Unbind the individual pages and flush the chipset's 646 * TLB. Unwire the pages so they can be swapped. 647 */ 648 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 649 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 650 651 AGP_FLUSH_TLB(dev); 652 653 VM_OBJECT_WLOCK(mem->am_obj); 654 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 655 m = vm_page_lookup(mem->am_obj, atop(i)); 656 vm_page_lock(m); 657 vm_page_unwire(m, PQ_INACTIVE); 658 vm_page_unlock(m); 659 } 660 VM_OBJECT_WUNLOCK(mem->am_obj); 661 662 mem->am_offset = 0; 663 mem->am_is_bound = 0; 664 665 mtx_unlock(&sc->as_lock); 666 667 return 0; 668 } 669 670 /* Helper functions for implementing user/kernel api */ 671 672 static int 673 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 674 { 675 struct agp_softc *sc = device_get_softc(dev); 676 677 if (sc->as_state != AGP_ACQUIRE_FREE) 678 return EBUSY; 679 sc->as_state = state; 680 681 return 0; 682 } 683 684 static int 685 agp_release_helper(device_t dev, enum agp_acquire_state state) 686 { 687 struct agp_softc *sc = device_get_softc(dev); 688 689 if (sc->as_state == AGP_ACQUIRE_FREE) 690 return 0; 691 692 if (sc->as_state != state) 693 return EBUSY; 694 695 sc->as_state = AGP_ACQUIRE_FREE; 696 return 0; 697 } 698 699 static struct agp_memory * 700 agp_find_memory(device_t dev, int id) 701 { 702 struct agp_softc *sc = device_get_softc(dev); 703 struct agp_memory *mem; 704 705 AGP_DPF("searching for memory block %d\n", id); 706 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 707 AGP_DPF("considering memory block %d\n", mem->am_id); 708 if (mem->am_id == id) 709 return mem; 710 } 711 return 0; 712 } 713 714 /* Implementation of the userland ioctl api */ 715 716 static int 717 agp_info_user(device_t dev, agp_info *info) 718 { 719 struct agp_softc *sc = device_get_softc(dev); 720 721 bzero(info, sizeof *info); 722 info->bridge_id = pci_get_devid(dev); 723 info->agp_mode = 724 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 725 if (sc->as_aperture) 726 info->aper_base = rman_get_start(sc->as_aperture); 727 else 728 info->aper_base = 0; 729 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 730 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 731 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 732 733 return 0; 734 } 735 736 static int 737 agp_setup_user(device_t dev, agp_setup *setup) 738 { 739 return AGP_ENABLE(dev, setup->agp_mode); 740 } 741 742 static int 743 agp_allocate_user(device_t dev, agp_allocate *alloc) 744 { 745 struct agp_memory *mem; 746 747 mem = AGP_ALLOC_MEMORY(dev, 748 alloc->type, 749 alloc->pg_count << AGP_PAGE_SHIFT); 750 if (mem) { 751 alloc->key = mem->am_id; 752 alloc->physical = mem->am_physical; 753 return 0; 754 } else { 755 return ENOMEM; 756 } 757 } 758 759 static int 760 agp_deallocate_user(device_t dev, int id) 761 { 762 struct agp_memory *mem = agp_find_memory(dev, id); 763 764 if (mem) { 765 AGP_FREE_MEMORY(dev, mem); 766 return 0; 767 } else { 768 return ENOENT; 769 } 770 } 771 772 static int 773 agp_bind_user(device_t dev, agp_bind *bind) 774 { 775 struct agp_memory *mem = agp_find_memory(dev, bind->key); 776 777 if (!mem) 778 return ENOENT; 779 780 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 781 } 782 783 static int 784 agp_unbind_user(device_t dev, agp_unbind *unbind) 785 { 786 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 787 788 if (!mem) 789 return ENOENT; 790 791 return AGP_UNBIND_MEMORY(dev, mem); 792 } 793 794 static int 795 agp_chipset_flush(device_t dev) 796 { 797 798 return (AGP_CHIPSET_FLUSH(dev)); 799 } 800 801 static int 802 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 803 { 804 device_t dev = kdev->si_drv1; 805 struct agp_softc *sc = device_get_softc(dev); 806 807 if (!sc->as_isopen) { 808 sc->as_isopen = 1; 809 device_busy(dev); 810 } 811 812 return 0; 813 } 814 815 static int 816 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 817 { 818 device_t dev = kdev->si_drv1; 819 struct agp_softc *sc = device_get_softc(dev); 820 struct agp_memory *mem; 821 822 /* 823 * Clear the GATT and force release on last close 824 */ 825 while ((mem = TAILQ_FIRST(&sc->as_memory)) != NULL) { 826 if (mem->am_is_bound) 827 AGP_UNBIND_MEMORY(dev, mem); 828 AGP_FREE_MEMORY(dev, mem); 829 } 830 if (sc->as_state == AGP_ACQUIRE_USER) 831 agp_release_helper(dev, AGP_ACQUIRE_USER); 832 sc->as_isopen = 0; 833 device_unbusy(dev); 834 835 return 0; 836 } 837 838 static int 839 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 840 { 841 device_t dev = kdev->si_drv1; 842 843 switch (cmd) { 844 case AGPIOC_INFO: 845 return agp_info_user(dev, (agp_info *) data); 846 847 case AGPIOC_ACQUIRE: 848 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 849 850 case AGPIOC_RELEASE: 851 return agp_release_helper(dev, AGP_ACQUIRE_USER); 852 853 case AGPIOC_SETUP: 854 return agp_setup_user(dev, (agp_setup *)data); 855 856 case AGPIOC_ALLOCATE: 857 return agp_allocate_user(dev, (agp_allocate *)data); 858 859 case AGPIOC_DEALLOCATE: 860 return agp_deallocate_user(dev, *(int *) data); 861 862 case AGPIOC_BIND: 863 return agp_bind_user(dev, (agp_bind *)data); 864 865 case AGPIOC_UNBIND: 866 return agp_unbind_user(dev, (agp_unbind *)data); 867 868 case AGPIOC_CHIPSET_FLUSH: 869 return agp_chipset_flush(dev); 870 } 871 872 return EINVAL; 873 } 874 875 static int 876 agp_mmap(struct cdev *kdev, vm_ooffset_t offset, vm_paddr_t *paddr, 877 int prot, vm_memattr_t *memattr) 878 { 879 device_t dev = kdev->si_drv1; 880 struct agp_softc *sc = device_get_softc(dev); 881 882 if (offset > AGP_GET_APERTURE(dev)) 883 return -1; 884 if (sc->as_aperture == NULL) 885 return -1; 886 *paddr = rman_get_start(sc->as_aperture) + offset; 887 return 0; 888 } 889 890 /* Implementation of the kernel api */ 891 892 device_t 893 agp_find_device() 894 { 895 device_t *children, child; 896 int i, count; 897 898 if (!agp_devclass) 899 return NULL; 900 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 901 return NULL; 902 child = NULL; 903 for (i = 0; i < count; i++) { 904 if (device_is_attached(children[i])) { 905 child = children[i]; 906 break; 907 } 908 } 909 free(children, M_TEMP); 910 return child; 911 } 912 913 enum agp_acquire_state 914 agp_state(device_t dev) 915 { 916 struct agp_softc *sc = device_get_softc(dev); 917 return sc->as_state; 918 } 919 920 void 921 agp_get_info(device_t dev, struct agp_info *info) 922 { 923 struct agp_softc *sc = device_get_softc(dev); 924 925 info->ai_mode = 926 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 927 if (sc->as_aperture != NULL) 928 info->ai_aperture_base = rman_get_start(sc->as_aperture); 929 else 930 info->ai_aperture_base = 0; 931 info->ai_aperture_size = AGP_GET_APERTURE(dev); 932 info->ai_memory_allowed = sc->as_maxmem; 933 info->ai_memory_used = sc->as_allocated; 934 } 935 936 int 937 agp_acquire(device_t dev) 938 { 939 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 940 } 941 942 int 943 agp_release(device_t dev) 944 { 945 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 946 } 947 948 int 949 agp_enable(device_t dev, u_int32_t mode) 950 { 951 return AGP_ENABLE(dev, mode); 952 } 953 954 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 955 { 956 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 957 } 958 959 void agp_free_memory(device_t dev, void *handle) 960 { 961 struct agp_memory *mem = (struct agp_memory *) handle; 962 AGP_FREE_MEMORY(dev, mem); 963 } 964 965 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 966 { 967 struct agp_memory *mem = (struct agp_memory *) handle; 968 return AGP_BIND_MEMORY(dev, mem, offset); 969 } 970 971 int agp_unbind_memory(device_t dev, void *handle) 972 { 973 struct agp_memory *mem = (struct agp_memory *) handle; 974 return AGP_UNBIND_MEMORY(dev, mem); 975 } 976 977 void agp_memory_info(device_t dev, void *handle, struct 978 agp_memory_info *mi) 979 { 980 struct agp_memory *mem = (struct agp_memory *) handle; 981 982 mi->ami_size = mem->am_size; 983 mi->ami_physical = mem->am_physical; 984 mi->ami_offset = mem->am_offset; 985 mi->ami_is_bound = mem->am_is_bound; 986 } 987 988 int 989 agp_bind_pages(device_t dev, vm_page_t *pages, vm_size_t size, 990 vm_offset_t offset) 991 { 992 struct agp_softc *sc; 993 vm_offset_t i, j, k, pa; 994 vm_page_t m; 995 int error; 996 997 if ((size & (AGP_PAGE_SIZE - 1)) != 0 || 998 (offset & (AGP_PAGE_SIZE - 1)) != 0) 999 return (EINVAL); 1000 1001 sc = device_get_softc(dev); 1002 1003 mtx_lock(&sc->as_lock); 1004 for (i = 0; i < size; i += PAGE_SIZE) { 1005 m = pages[OFF_TO_IDX(i)]; 1006 KASSERT(m->wire_count > 0, 1007 ("agp_bind_pages: page %p hasn't been wired", m)); 1008 1009 /* 1010 * Install entries in the GATT, making sure that if 1011 * AGP_PAGE_SIZE < PAGE_SIZE and size is not 1012 * aligned to PAGE_SIZE, we don't modify too many GATT 1013 * entries. 1014 */ 1015 for (j = 0; j < PAGE_SIZE && i + j < size; j += AGP_PAGE_SIZE) { 1016 pa = VM_PAGE_TO_PHYS(m) + j; 1017 AGP_DPF("binding offset %#jx to pa %#jx\n", 1018 (uintmax_t)offset + i + j, (uintmax_t)pa); 1019 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 1020 if (error) { 1021 /* 1022 * Bail out. Reverse all the mappings. 1023 */ 1024 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 1025 AGP_UNBIND_PAGE(dev, offset + k); 1026 1027 mtx_unlock(&sc->as_lock); 1028 return (error); 1029 } 1030 } 1031 } 1032 1033 AGP_FLUSH_TLB(dev); 1034 1035 mtx_unlock(&sc->as_lock); 1036 return (0); 1037 } 1038 1039 int 1040 agp_unbind_pages(device_t dev, vm_size_t size, vm_offset_t offset) 1041 { 1042 struct agp_softc *sc; 1043 vm_offset_t i; 1044 1045 if ((size & (AGP_PAGE_SIZE - 1)) != 0 || 1046 (offset & (AGP_PAGE_SIZE - 1)) != 0) 1047 return (EINVAL); 1048 1049 sc = device_get_softc(dev); 1050 1051 mtx_lock(&sc->as_lock); 1052 for (i = 0; i < size; i += AGP_PAGE_SIZE) 1053 AGP_UNBIND_PAGE(dev, offset + i); 1054 1055 AGP_FLUSH_TLB(dev); 1056 1057 mtx_unlock(&sc->as_lock); 1058 return (0); 1059 } 1060