1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/agpio.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 45 #include <dev/pci/pcivar.h> 46 #include <dev/pci/pcireg.h> 47 #include <pci/agppriv.h> 48 #include <pci/agpvar.h> 49 #include <pci/agpreg.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_pageout.h> 55 #include <vm/pmap.h> 56 57 #include <machine/md_var.h> 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 MODULE_VERSION(agp, 1); 63 64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 65 66 /* agp_drv.c */ 67 static d_open_t agp_open; 68 static d_close_t agp_close; 69 static d_ioctl_t agp_ioctl; 70 static d_mmap_t agp_mmap; 71 72 static struct cdevsw agp_cdevsw = { 73 .d_version = D_VERSION, 74 .d_flags = D_NEEDGIANT, 75 .d_open = agp_open, 76 .d_close = agp_close, 77 .d_ioctl = agp_ioctl, 78 .d_mmap = agp_mmap, 79 .d_name = "agp", 80 }; 81 82 static devclass_t agp_devclass; 83 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev)) 84 85 /* Helper functions for implementing chipset mini drivers. */ 86 87 void 88 agp_flush_cache() 89 { 90 #if defined(__i386__) || defined(__amd64__) 91 wbinvd(); 92 #endif 93 } 94 95 u_int8_t 96 agp_find_caps(device_t dev) 97 { 98 int capreg; 99 100 101 if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0) 102 capreg = 0; 103 return (capreg); 104 } 105 106 /* 107 * Find an AGP display device (if any). 108 */ 109 static device_t 110 agp_find_display(void) 111 { 112 devclass_t pci = devclass_find("pci"); 113 device_t bus, dev = 0; 114 device_t *kids; 115 int busnum, numkids, i; 116 117 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 118 bus = devclass_get_device(pci, busnum); 119 if (!bus) 120 continue; 121 device_get_children(bus, &kids, &numkids); 122 for (i = 0; i < numkids; i++) { 123 dev = kids[i]; 124 if (pci_get_class(dev) == PCIC_DISPLAY 125 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 126 if (agp_find_caps(dev)) { 127 free(kids, M_TEMP); 128 return dev; 129 } 130 131 } 132 free(kids, M_TEMP); 133 } 134 135 return 0; 136 } 137 138 struct agp_gatt * 139 agp_alloc_gatt(device_t dev) 140 { 141 u_int32_t apsize = AGP_GET_APERTURE(dev); 142 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 143 struct agp_gatt *gatt; 144 145 if (bootverbose) 146 device_printf(dev, 147 "allocating GATT for aperture of size %dM\n", 148 apsize / (1024*1024)); 149 150 if (entries == 0) { 151 device_printf(dev, "bad aperture size\n"); 152 return NULL; 153 } 154 155 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 156 if (!gatt) 157 return 0; 158 159 gatt->ag_entries = entries; 160 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 161 0, ~0, PAGE_SIZE, 0); 162 if (!gatt->ag_virtual) { 163 if (bootverbose) 164 device_printf(dev, "contiguous allocation failed\n"); 165 free(gatt, M_AGP); 166 return 0; 167 } 168 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 169 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 170 agp_flush_cache(); 171 172 return gatt; 173 } 174 175 void 176 agp_free_gatt(struct agp_gatt *gatt) 177 { 178 contigfree(gatt->ag_virtual, 179 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 180 free(gatt, M_AGP); 181 } 182 183 static int agp_max[][2] = { 184 {0, 0}, 185 {32, 4}, 186 {64, 28}, 187 {128, 96}, 188 {256, 204}, 189 {512, 440}, 190 {1024, 942}, 191 {2048, 1920}, 192 {4096, 3932} 193 }; 194 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 195 196 int 197 agp_generic_attach(device_t dev) 198 { 199 struct agp_softc *sc = device_get_softc(dev); 200 int rid, memsize, i; 201 202 /* 203 * Find and map the aperture. 204 */ 205 rid = AGP_APBASE; 206 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 0); 207 if (!sc->as_aperture) 208 return ENOMEM; 209 210 /* 211 * Work out an upper bound for agp memory allocation. This 212 * uses a heurisitc table from the Linux driver. 213 */ 214 memsize = ptoa(Maxmem) >> 20; 215 for (i = 0; i < agp_max_size; i++) { 216 if (memsize <= agp_max[i][0]) 217 break; 218 } 219 if (i == agp_max_size) i = agp_max_size - 1; 220 sc->as_maxmem = agp_max[i][1] << 20U; 221 222 /* 223 * The lock is used to prevent re-entry to 224 * agp_generic_bind_memory() since that function can sleep. 225 */ 226 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 227 228 /* 229 * Initialise stuff for the userland device. 230 */ 231 agp_devclass = devclass_find("agp"); 232 TAILQ_INIT(&sc->as_memory); 233 sc->as_nextid = 1; 234 235 sc->as_devnode = make_dev(&agp_cdevsw, 236 device_get_unit(dev), 237 UID_ROOT, 238 GID_WHEEL, 239 0600, 240 "agpgart"); 241 242 return 0; 243 } 244 245 int 246 agp_generic_detach(device_t dev) 247 { 248 struct agp_softc *sc = device_get_softc(dev); 249 250 destroy_dev(sc->as_devnode); 251 bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture); 252 mtx_destroy(&sc->as_lock); 253 agp_flush_cache(); 254 return 0; 255 } 256 257 /* 258 * This does the enable logic for v3, with the same topology 259 * restrictions as in place for v2 -- one bus, one device on the bus. 260 */ 261 static int 262 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 263 { 264 u_int32_t tstatus, mstatus; 265 u_int32_t command; 266 int rq, sba, fw, rate, arqsz, cal; 267 268 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 269 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 270 271 /* Set RQ to the min of mode, tstatus and mstatus */ 272 rq = AGP_MODE_GET_RQ(mode); 273 if (AGP_MODE_GET_RQ(tstatus) < rq) 274 rq = AGP_MODE_GET_RQ(tstatus); 275 if (AGP_MODE_GET_RQ(mstatus) < rq) 276 rq = AGP_MODE_GET_RQ(mstatus); 277 278 /* 279 * ARQSZ - Set the value to the maximum one. 280 * Don't allow the mode register to override values. 281 */ 282 arqsz = AGP_MODE_GET_ARQSZ(mode); 283 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 284 rq = AGP_MODE_GET_ARQSZ(tstatus); 285 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 286 rq = AGP_MODE_GET_ARQSZ(mstatus); 287 288 /* Calibration cycle - don't allow override by mode register */ 289 cal = AGP_MODE_GET_CAL(tstatus); 290 if (AGP_MODE_GET_CAL(mstatus) < cal) 291 cal = AGP_MODE_GET_CAL(mstatus); 292 293 /* SBA must be supported for AGP v3. */ 294 sba = 1; 295 296 /* Set FW if all three support it. */ 297 fw = (AGP_MODE_GET_FW(tstatus) 298 & AGP_MODE_GET_FW(mstatus) 299 & AGP_MODE_GET_FW(mode)); 300 301 /* Figure out the max rate */ 302 rate = (AGP_MODE_GET_RATE(tstatus) 303 & AGP_MODE_GET_RATE(mstatus) 304 & AGP_MODE_GET_RATE(mode)); 305 if (rate & AGP_MODE_V3_RATE_8x) 306 rate = AGP_MODE_V3_RATE_8x; 307 else 308 rate = AGP_MODE_V3_RATE_4x; 309 if (bootverbose) 310 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 311 312 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 313 314 /* Construct the new mode word and tell the hardware */ 315 command = 0; 316 command = AGP_MODE_SET_RQ(0, rq); 317 command = AGP_MODE_SET_ARQSZ(command, arqsz); 318 command = AGP_MODE_SET_CAL(command, cal); 319 command = AGP_MODE_SET_SBA(command, sba); 320 command = AGP_MODE_SET_FW(command, fw); 321 command = AGP_MODE_SET_RATE(command, rate); 322 command = AGP_MODE_SET_MODE_3(command, 1); 323 command = AGP_MODE_SET_AGP(command, 1); 324 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 325 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 326 327 return 0; 328 } 329 330 static int 331 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 332 { 333 u_int32_t tstatus, mstatus; 334 u_int32_t command; 335 int rq, sba, fw, rate; 336 337 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 338 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 339 340 /* Set RQ to the min of mode, tstatus and mstatus */ 341 rq = AGP_MODE_GET_RQ(mode); 342 if (AGP_MODE_GET_RQ(tstatus) < rq) 343 rq = AGP_MODE_GET_RQ(tstatus); 344 if (AGP_MODE_GET_RQ(mstatus) < rq) 345 rq = AGP_MODE_GET_RQ(mstatus); 346 347 /* Set SBA if all three can deal with SBA */ 348 sba = (AGP_MODE_GET_SBA(tstatus) 349 & AGP_MODE_GET_SBA(mstatus) 350 & AGP_MODE_GET_SBA(mode)); 351 352 /* Similar for FW */ 353 fw = (AGP_MODE_GET_FW(tstatus) 354 & AGP_MODE_GET_FW(mstatus) 355 & AGP_MODE_GET_FW(mode)); 356 357 /* Figure out the max rate */ 358 rate = (AGP_MODE_GET_RATE(tstatus) 359 & AGP_MODE_GET_RATE(mstatus) 360 & AGP_MODE_GET_RATE(mode)); 361 if (rate & AGP_MODE_V2_RATE_4x) 362 rate = AGP_MODE_V2_RATE_4x; 363 else if (rate & AGP_MODE_V2_RATE_2x) 364 rate = AGP_MODE_V2_RATE_2x; 365 else 366 rate = AGP_MODE_V2_RATE_1x; 367 if (bootverbose) 368 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 369 370 /* Construct the new mode word and tell the hardware */ 371 command = 0; 372 command = AGP_MODE_SET_RQ(0, rq); 373 command = AGP_MODE_SET_SBA(command, sba); 374 command = AGP_MODE_SET_FW(command, fw); 375 command = AGP_MODE_SET_RATE(command, rate); 376 command = AGP_MODE_SET_AGP(command, 1); 377 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 378 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 379 380 return 0; 381 } 382 383 int 384 agp_generic_enable(device_t dev, u_int32_t mode) 385 { 386 device_t mdev = agp_find_display(); 387 u_int32_t tstatus, mstatus; 388 389 if (!mdev) { 390 AGP_DPF("can't find display\n"); 391 return ENXIO; 392 } 393 394 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 395 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 396 397 /* 398 * Check display and bridge for AGP v3 support. AGP v3 allows 399 * more variety in topology than v2, e.g. multiple AGP devices 400 * attached to one bridge, or multiple AGP bridges in one 401 * system. This doesn't attempt to address those situations, 402 * but should work fine for a classic single AGP slot system 403 * with AGP v3. 404 */ 405 if (AGP_MODE_GET_MODE_3(mode) && 406 AGP_MODE_GET_MODE_3(tstatus) && 407 AGP_MODE_GET_MODE_3(mstatus)) 408 return (agp_v3_enable(dev, mdev, mode)); 409 else 410 return (agp_v2_enable(dev, mdev, mode)); 411 } 412 413 struct agp_memory * 414 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 415 { 416 struct agp_softc *sc = device_get_softc(dev); 417 struct agp_memory *mem; 418 419 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 420 return 0; 421 422 if (sc->as_allocated + size > sc->as_maxmem) 423 return 0; 424 425 if (type != 0) { 426 printf("agp_generic_alloc_memory: unsupported type %d\n", 427 type); 428 return 0; 429 } 430 431 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 432 mem->am_id = sc->as_nextid++; 433 mem->am_size = size; 434 mem->am_type = 0; 435 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 436 mem->am_physical = 0; 437 mem->am_offset = 0; 438 mem->am_is_bound = 0; 439 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 440 sc->as_allocated += size; 441 442 return mem; 443 } 444 445 int 446 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 447 { 448 struct agp_softc *sc = device_get_softc(dev); 449 450 if (mem->am_is_bound) 451 return EBUSY; 452 453 sc->as_allocated -= mem->am_size; 454 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 455 vm_object_deallocate(mem->am_obj); 456 free(mem, M_AGP); 457 return 0; 458 } 459 460 int 461 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 462 vm_offset_t offset) 463 { 464 struct agp_softc *sc = device_get_softc(dev); 465 vm_offset_t i, j, k; 466 vm_page_t m; 467 int error; 468 469 /* Do some sanity checks first. */ 470 if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 || 471 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 472 device_printf(dev, "binding memory at bad offset %#x\n", 473 (int)offset); 474 return EINVAL; 475 } 476 477 /* 478 * Allocate the pages early, before acquiring the lock, 479 * because vm_page_grab() used with VM_ALLOC_RETRY may 480 * block and we can't hold a mutex while blocking. 481 */ 482 VM_OBJECT_LOCK(mem->am_obj); 483 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 484 /* 485 * Find a page from the object and wire it 486 * down. This page will be mapped using one or more 487 * entries in the GATT (assuming that PAGE_SIZE >= 488 * AGP_PAGE_SIZE. If this is the first call to bind, 489 * the pages will be allocated and zeroed. 490 */ 491 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 492 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 493 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m)); 494 } 495 VM_OBJECT_UNLOCK(mem->am_obj); 496 497 mtx_lock(&sc->as_lock); 498 499 if (mem->am_is_bound) { 500 device_printf(dev, "memory already bound\n"); 501 error = EINVAL; 502 VM_OBJECT_LOCK(mem->am_obj); 503 goto bad; 504 } 505 506 /* 507 * Bind the individual pages and flush the chipset's 508 * TLB. 509 */ 510 VM_OBJECT_LOCK(mem->am_obj); 511 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 512 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 513 514 /* 515 * Install entries in the GATT, making sure that if 516 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 517 * aligned to PAGE_SIZE, we don't modify too many GATT 518 * entries. 519 */ 520 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 521 j += AGP_PAGE_SIZE) { 522 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 523 AGP_DPF("binding offset %#x to pa %#x\n", 524 offset + i + j, pa); 525 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 526 if (error) { 527 /* 528 * Bail out. Reverse all the mappings 529 * and unwire the pages. 530 */ 531 vm_page_lock_queues(); 532 vm_page_wakeup(m); 533 vm_page_unlock_queues(); 534 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 535 AGP_UNBIND_PAGE(dev, offset + k); 536 goto bad; 537 } 538 } 539 vm_page_lock_queues(); 540 vm_page_wakeup(m); 541 vm_page_unlock_queues(); 542 } 543 VM_OBJECT_UNLOCK(mem->am_obj); 544 545 /* 546 * Flush the cpu cache since we are providing a new mapping 547 * for these pages. 548 */ 549 agp_flush_cache(); 550 551 /* 552 * Make sure the chipset gets the new mappings. 553 */ 554 AGP_FLUSH_TLB(dev); 555 556 mem->am_offset = offset; 557 mem->am_is_bound = 1; 558 559 mtx_unlock(&sc->as_lock); 560 561 return 0; 562 bad: 563 mtx_unlock(&sc->as_lock); 564 VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED); 565 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 566 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 567 vm_page_lock_queues(); 568 vm_page_unwire(m, 0); 569 vm_page_unlock_queues(); 570 } 571 VM_OBJECT_UNLOCK(mem->am_obj); 572 573 return error; 574 } 575 576 int 577 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 578 { 579 struct agp_softc *sc = device_get_softc(dev); 580 vm_page_t m; 581 int i; 582 583 mtx_lock(&sc->as_lock); 584 585 if (!mem->am_is_bound) { 586 device_printf(dev, "memory is not bound\n"); 587 mtx_unlock(&sc->as_lock); 588 return EINVAL; 589 } 590 591 592 /* 593 * Unbind the individual pages and flush the chipset's 594 * TLB. Unwire the pages so they can be swapped. 595 */ 596 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 597 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 598 VM_OBJECT_LOCK(mem->am_obj); 599 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 600 m = vm_page_lookup(mem->am_obj, atop(i)); 601 vm_page_lock_queues(); 602 vm_page_unwire(m, 0); 603 vm_page_unlock_queues(); 604 } 605 VM_OBJECT_UNLOCK(mem->am_obj); 606 607 agp_flush_cache(); 608 AGP_FLUSH_TLB(dev); 609 610 mem->am_offset = 0; 611 mem->am_is_bound = 0; 612 613 mtx_unlock(&sc->as_lock); 614 615 return 0; 616 } 617 618 /* Helper functions for implementing user/kernel api */ 619 620 static int 621 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 622 { 623 struct agp_softc *sc = device_get_softc(dev); 624 625 if (sc->as_state != AGP_ACQUIRE_FREE) 626 return EBUSY; 627 sc->as_state = state; 628 629 return 0; 630 } 631 632 static int 633 agp_release_helper(device_t dev, enum agp_acquire_state state) 634 { 635 struct agp_softc *sc = device_get_softc(dev); 636 637 if (sc->as_state == AGP_ACQUIRE_FREE) 638 return 0; 639 640 if (sc->as_state != state) 641 return EBUSY; 642 643 sc->as_state = AGP_ACQUIRE_FREE; 644 return 0; 645 } 646 647 static struct agp_memory * 648 agp_find_memory(device_t dev, int id) 649 { 650 struct agp_softc *sc = device_get_softc(dev); 651 struct agp_memory *mem; 652 653 AGP_DPF("searching for memory block %d\n", id); 654 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 655 AGP_DPF("considering memory block %d\n", mem->am_id); 656 if (mem->am_id == id) 657 return mem; 658 } 659 return 0; 660 } 661 662 /* Implementation of the userland ioctl api */ 663 664 static int 665 agp_info_user(device_t dev, agp_info *info) 666 { 667 struct agp_softc *sc = device_get_softc(dev); 668 669 bzero(info, sizeof *info); 670 info->bridge_id = pci_get_devid(dev); 671 info->agp_mode = 672 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 673 info->aper_base = rman_get_start(sc->as_aperture); 674 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 675 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 676 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 677 678 return 0; 679 } 680 681 static int 682 agp_setup_user(device_t dev, agp_setup *setup) 683 { 684 return AGP_ENABLE(dev, setup->agp_mode); 685 } 686 687 static int 688 agp_allocate_user(device_t dev, agp_allocate *alloc) 689 { 690 struct agp_memory *mem; 691 692 mem = AGP_ALLOC_MEMORY(dev, 693 alloc->type, 694 alloc->pg_count << AGP_PAGE_SHIFT); 695 if (mem) { 696 alloc->key = mem->am_id; 697 alloc->physical = mem->am_physical; 698 return 0; 699 } else { 700 return ENOMEM; 701 } 702 } 703 704 static int 705 agp_deallocate_user(device_t dev, int id) 706 { 707 struct agp_memory *mem = agp_find_memory(dev, id);; 708 709 if (mem) { 710 AGP_FREE_MEMORY(dev, mem); 711 return 0; 712 } else { 713 return ENOENT; 714 } 715 } 716 717 static int 718 agp_bind_user(device_t dev, agp_bind *bind) 719 { 720 struct agp_memory *mem = agp_find_memory(dev, bind->key); 721 722 if (!mem) 723 return ENOENT; 724 725 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 726 } 727 728 static int 729 agp_unbind_user(device_t dev, agp_unbind *unbind) 730 { 731 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 732 733 if (!mem) 734 return ENOENT; 735 736 return AGP_UNBIND_MEMORY(dev, mem); 737 } 738 739 static int 740 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 741 { 742 device_t dev = KDEV2DEV(kdev); 743 struct agp_softc *sc = device_get_softc(dev); 744 745 if (!sc->as_isopen) { 746 sc->as_isopen = 1; 747 device_busy(dev); 748 } 749 750 return 0; 751 } 752 753 static int 754 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 755 { 756 device_t dev = KDEV2DEV(kdev); 757 struct agp_softc *sc = device_get_softc(dev); 758 struct agp_memory *mem; 759 760 /* 761 * Clear the GATT and force release on last close 762 */ 763 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 764 if (mem->am_is_bound) 765 AGP_UNBIND_MEMORY(dev, mem); 766 AGP_FREE_MEMORY(dev, mem); 767 } 768 if (sc->as_state == AGP_ACQUIRE_USER) 769 agp_release_helper(dev, AGP_ACQUIRE_USER); 770 sc->as_isopen = 0; 771 device_unbusy(dev); 772 773 return 0; 774 } 775 776 static int 777 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 778 { 779 device_t dev = KDEV2DEV(kdev); 780 781 switch (cmd) { 782 case AGPIOC_INFO: 783 return agp_info_user(dev, (agp_info *) data); 784 785 case AGPIOC_ACQUIRE: 786 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 787 788 case AGPIOC_RELEASE: 789 return agp_release_helper(dev, AGP_ACQUIRE_USER); 790 791 case AGPIOC_SETUP: 792 return agp_setup_user(dev, (agp_setup *)data); 793 794 case AGPIOC_ALLOCATE: 795 return agp_allocate_user(dev, (agp_allocate *)data); 796 797 case AGPIOC_DEALLOCATE: 798 return agp_deallocate_user(dev, *(int *) data); 799 800 case AGPIOC_BIND: 801 return agp_bind_user(dev, (agp_bind *)data); 802 803 case AGPIOC_UNBIND: 804 return agp_unbind_user(dev, (agp_unbind *)data); 805 806 } 807 808 return EINVAL; 809 } 810 811 static int 812 agp_mmap(struct cdev *kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot) 813 { 814 device_t dev = KDEV2DEV(kdev); 815 struct agp_softc *sc = device_get_softc(dev); 816 817 if (offset > AGP_GET_APERTURE(dev)) 818 return -1; 819 *paddr = rman_get_start(sc->as_aperture) + offset; 820 return 0; 821 } 822 823 /* Implementation of the kernel api */ 824 825 device_t 826 agp_find_device() 827 { 828 device_t *children, child; 829 int i, count; 830 831 if (!agp_devclass) 832 return NULL; 833 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 834 return NULL; 835 child = NULL; 836 for (i = 0; i < count; i++) { 837 if (device_is_attached(children[i])) { 838 child = children[i]; 839 break; 840 } 841 } 842 free(children, M_TEMP); 843 return child; 844 } 845 846 enum agp_acquire_state 847 agp_state(device_t dev) 848 { 849 struct agp_softc *sc = device_get_softc(dev); 850 return sc->as_state; 851 } 852 853 void 854 agp_get_info(device_t dev, struct agp_info *info) 855 { 856 struct agp_softc *sc = device_get_softc(dev); 857 858 info->ai_mode = 859 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 860 info->ai_aperture_base = rman_get_start(sc->as_aperture); 861 info->ai_aperture_size = rman_get_size(sc->as_aperture); 862 info->ai_memory_allowed = sc->as_maxmem; 863 info->ai_memory_used = sc->as_allocated; 864 } 865 866 int 867 agp_acquire(device_t dev) 868 { 869 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 870 } 871 872 int 873 agp_release(device_t dev) 874 { 875 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 876 } 877 878 int 879 agp_enable(device_t dev, u_int32_t mode) 880 { 881 return AGP_ENABLE(dev, mode); 882 } 883 884 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 885 { 886 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 887 } 888 889 void agp_free_memory(device_t dev, void *handle) 890 { 891 struct agp_memory *mem = (struct agp_memory *) handle; 892 AGP_FREE_MEMORY(dev, mem); 893 } 894 895 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 896 { 897 struct agp_memory *mem = (struct agp_memory *) handle; 898 return AGP_BIND_MEMORY(dev, mem, offset); 899 } 900 901 int agp_unbind_memory(device_t dev, void *handle) 902 { 903 struct agp_memory *mem = (struct agp_memory *) handle; 904 return AGP_UNBIND_MEMORY(dev, mem); 905 } 906 907 void agp_memory_info(device_t dev, void *handle, struct 908 agp_memory_info *mi) 909 { 910 struct agp_memory *mem = (struct agp_memory *) handle; 911 912 mi->ami_size = mem->am_size; 913 mi->ami_physical = mem->am_physical; 914 mi->ami_offset = mem->am_offset; 915 mi->ami_is_bound = mem->am_is_bound; 916 } 917