1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_agp.h" 31 #include "opt_bus.h" 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/kernel.h> 37 #include <sys/module.h> 38 #include <sys/bus.h> 39 #include <sys/conf.h> 40 #include <sys/ioccom.h> 41 #include <sys/agpio.h> 42 #include <sys/lock.h> 43 #include <sys/mutex.h> 44 #include <sys/proc.h> 45 46 #include <dev/agp/agppriv.h> 47 #include <dev/agp/agpvar.h> 48 #include <dev/agp/agpreg.h> 49 #include <dev/pci/pcivar.h> 50 #include <dev/pci/pcireg.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_page.h> 55 #include <vm/vm_pageout.h> 56 #include <vm/pmap.h> 57 58 #include <machine/md_var.h> 59 #include <machine/bus.h> 60 #include <machine/resource.h> 61 #include <sys/rman.h> 62 63 MODULE_VERSION(agp, 1); 64 65 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 66 67 /* agp_drv.c */ 68 static d_open_t agp_open; 69 static d_close_t agp_close; 70 static d_ioctl_t agp_ioctl; 71 static d_mmap_t agp_mmap; 72 73 static struct cdevsw agp_cdevsw = { 74 .d_version = D_VERSION, 75 .d_flags = D_NEEDGIANT, 76 .d_open = agp_open, 77 .d_close = agp_close, 78 .d_ioctl = agp_ioctl, 79 .d_mmap = agp_mmap, 80 .d_name = "agp", 81 }; 82 83 static devclass_t agp_devclass; 84 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, dev2unit(kdev)) 85 86 /* Helper functions for implementing chipset mini drivers. */ 87 88 void 89 agp_flush_cache() 90 { 91 #if defined(__i386__) || defined(__amd64__) 92 wbinvd(); 93 #endif 94 } 95 96 u_int8_t 97 agp_find_caps(device_t dev) 98 { 99 int capreg; 100 101 102 if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0) 103 capreg = 0; 104 return (capreg); 105 } 106 107 /* 108 * Find an AGP display device (if any). 109 */ 110 static device_t 111 agp_find_display(void) 112 { 113 devclass_t pci = devclass_find("pci"); 114 device_t bus, dev = 0; 115 device_t *kids; 116 int busnum, numkids, i; 117 118 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 119 bus = devclass_get_device(pci, busnum); 120 if (!bus) 121 continue; 122 if (device_get_children(bus, &kids, &numkids) != 0) 123 continue; 124 for (i = 0; i < numkids; i++) { 125 dev = kids[i]; 126 if (pci_get_class(dev) == PCIC_DISPLAY 127 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 128 if (agp_find_caps(dev)) { 129 free(kids, M_TEMP); 130 return dev; 131 } 132 133 } 134 free(kids, M_TEMP); 135 } 136 137 return 0; 138 } 139 140 struct agp_gatt * 141 agp_alloc_gatt(device_t dev) 142 { 143 u_int32_t apsize = AGP_GET_APERTURE(dev); 144 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 145 struct agp_gatt *gatt; 146 147 if (bootverbose) 148 device_printf(dev, 149 "allocating GATT for aperture of size %dM\n", 150 apsize / (1024*1024)); 151 152 if (entries == 0) { 153 device_printf(dev, "bad aperture size\n"); 154 return NULL; 155 } 156 157 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 158 if (!gatt) 159 return 0; 160 161 gatt->ag_entries = entries; 162 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 163 0, ~0, PAGE_SIZE, 0); 164 if (!gatt->ag_virtual) { 165 if (bootverbose) 166 device_printf(dev, "contiguous allocation failed\n"); 167 free(gatt, M_AGP); 168 return 0; 169 } 170 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 171 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 172 agp_flush_cache(); 173 174 return gatt; 175 } 176 177 void 178 agp_free_gatt(struct agp_gatt *gatt) 179 { 180 contigfree(gatt->ag_virtual, 181 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 182 free(gatt, M_AGP); 183 } 184 185 static u_int agp_max[][2] = { 186 {0, 0}, 187 {32, 4}, 188 {64, 28}, 189 {128, 96}, 190 {256, 204}, 191 {512, 440}, 192 {1024, 942}, 193 {2048, 1920}, 194 {4096, 3932} 195 }; 196 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 197 198 /** 199 * Sets the PCI resource which represents the AGP aperture. 200 * 201 * If not called, the default AGP aperture resource of AGP_APBASE will 202 * be used. Must be called before agp_generic_attach(). 203 */ 204 void 205 agp_set_aperture_resource(device_t dev, int rid) 206 { 207 struct agp_softc *sc = device_get_softc(dev); 208 209 sc->as_aperture_rid = rid; 210 } 211 212 int 213 agp_generic_attach(device_t dev) 214 { 215 struct agp_softc *sc = device_get_softc(dev); 216 int i; 217 u_int memsize; 218 219 /* 220 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE 221 * because the kernel doesn't need to map it. 222 */ 223 if (sc->as_aperture_rid == 0) 224 sc->as_aperture_rid = AGP_APBASE; 225 226 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 227 &sc->as_aperture_rid, RF_SHAREABLE); 228 if (!sc->as_aperture) 229 return ENOMEM; 230 231 /* 232 * Work out an upper bound for agp memory allocation. This 233 * uses a heurisitc table from the Linux driver. 234 */ 235 memsize = ptoa(Maxmem) >> 20; 236 for (i = 0; i < agp_max_size; i++) { 237 if (memsize <= agp_max[i][0]) 238 break; 239 } 240 if (i == agp_max_size) i = agp_max_size - 1; 241 sc->as_maxmem = agp_max[i][1] << 20U; 242 243 /* 244 * The lock is used to prevent re-entry to 245 * agp_generic_bind_memory() since that function can sleep. 246 */ 247 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 248 249 /* 250 * Initialise stuff for the userland device. 251 */ 252 agp_devclass = devclass_find("agp"); 253 TAILQ_INIT(&sc->as_memory); 254 sc->as_nextid = 1; 255 256 sc->as_devnode = make_dev(&agp_cdevsw, 257 device_get_unit(dev), 258 UID_ROOT, 259 GID_WHEEL, 260 0600, 261 "agpgart"); 262 263 return 0; 264 } 265 266 void 267 agp_free_cdev(device_t dev) 268 { 269 struct agp_softc *sc = device_get_softc(dev); 270 271 destroy_dev(sc->as_devnode); 272 } 273 274 void 275 agp_free_res(device_t dev) 276 { 277 struct agp_softc *sc = device_get_softc(dev); 278 279 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, 280 sc->as_aperture); 281 mtx_destroy(&sc->as_lock); 282 agp_flush_cache(); 283 } 284 285 int 286 agp_generic_detach(device_t dev) 287 { 288 289 agp_free_cdev(dev); 290 agp_free_res(dev); 291 return 0; 292 } 293 294 /** 295 * Default AGP aperture size detection which simply returns the size of 296 * the aperture's PCI resource. 297 */ 298 int 299 agp_generic_get_aperture(device_t dev) 300 { 301 struct agp_softc *sc = device_get_softc(dev); 302 303 return rman_get_size(sc->as_aperture); 304 } 305 306 /** 307 * Default AGP aperture size setting function, which simply doesn't allow 308 * changes to resource size. 309 */ 310 int 311 agp_generic_set_aperture(device_t dev, u_int32_t aperture) 312 { 313 u_int32_t current_aperture; 314 315 current_aperture = AGP_GET_APERTURE(dev); 316 if (current_aperture != aperture) 317 return EINVAL; 318 else 319 return 0; 320 } 321 322 /* 323 * This does the enable logic for v3, with the same topology 324 * restrictions as in place for v2 -- one bus, one device on the bus. 325 */ 326 static int 327 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 328 { 329 u_int32_t tstatus, mstatus; 330 u_int32_t command; 331 int rq, sba, fw, rate, arqsz, cal; 332 333 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 334 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 335 336 /* Set RQ to the min of mode, tstatus and mstatus */ 337 rq = AGP_MODE_GET_RQ(mode); 338 if (AGP_MODE_GET_RQ(tstatus) < rq) 339 rq = AGP_MODE_GET_RQ(tstatus); 340 if (AGP_MODE_GET_RQ(mstatus) < rq) 341 rq = AGP_MODE_GET_RQ(mstatus); 342 343 /* 344 * ARQSZ - Set the value to the maximum one. 345 * Don't allow the mode register to override values. 346 */ 347 arqsz = AGP_MODE_GET_ARQSZ(mode); 348 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 349 rq = AGP_MODE_GET_ARQSZ(tstatus); 350 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 351 rq = AGP_MODE_GET_ARQSZ(mstatus); 352 353 /* Calibration cycle - don't allow override by mode register */ 354 cal = AGP_MODE_GET_CAL(tstatus); 355 if (AGP_MODE_GET_CAL(mstatus) < cal) 356 cal = AGP_MODE_GET_CAL(mstatus); 357 358 /* SBA must be supported for AGP v3. */ 359 sba = 1; 360 361 /* Set FW if all three support it. */ 362 fw = (AGP_MODE_GET_FW(tstatus) 363 & AGP_MODE_GET_FW(mstatus) 364 & AGP_MODE_GET_FW(mode)); 365 366 /* Figure out the max rate */ 367 rate = (AGP_MODE_GET_RATE(tstatus) 368 & AGP_MODE_GET_RATE(mstatus) 369 & AGP_MODE_GET_RATE(mode)); 370 if (rate & AGP_MODE_V3_RATE_8x) 371 rate = AGP_MODE_V3_RATE_8x; 372 else 373 rate = AGP_MODE_V3_RATE_4x; 374 if (bootverbose) 375 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 376 377 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 378 379 /* Construct the new mode word and tell the hardware */ 380 command = 0; 381 command = AGP_MODE_SET_RQ(0, rq); 382 command = AGP_MODE_SET_ARQSZ(command, arqsz); 383 command = AGP_MODE_SET_CAL(command, cal); 384 command = AGP_MODE_SET_SBA(command, sba); 385 command = AGP_MODE_SET_FW(command, fw); 386 command = AGP_MODE_SET_RATE(command, rate); 387 command = AGP_MODE_SET_MODE_3(command, 1); 388 command = AGP_MODE_SET_AGP(command, 1); 389 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 390 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 391 392 return 0; 393 } 394 395 static int 396 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 397 { 398 u_int32_t tstatus, mstatus; 399 u_int32_t command; 400 int rq, sba, fw, rate; 401 402 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 403 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 404 405 /* Set RQ to the min of mode, tstatus and mstatus */ 406 rq = AGP_MODE_GET_RQ(mode); 407 if (AGP_MODE_GET_RQ(tstatus) < rq) 408 rq = AGP_MODE_GET_RQ(tstatus); 409 if (AGP_MODE_GET_RQ(mstatus) < rq) 410 rq = AGP_MODE_GET_RQ(mstatus); 411 412 /* Set SBA if all three can deal with SBA */ 413 sba = (AGP_MODE_GET_SBA(tstatus) 414 & AGP_MODE_GET_SBA(mstatus) 415 & AGP_MODE_GET_SBA(mode)); 416 417 /* Similar for FW */ 418 fw = (AGP_MODE_GET_FW(tstatus) 419 & AGP_MODE_GET_FW(mstatus) 420 & AGP_MODE_GET_FW(mode)); 421 422 /* Figure out the max rate */ 423 rate = (AGP_MODE_GET_RATE(tstatus) 424 & AGP_MODE_GET_RATE(mstatus) 425 & AGP_MODE_GET_RATE(mode)); 426 if (rate & AGP_MODE_V2_RATE_4x) 427 rate = AGP_MODE_V2_RATE_4x; 428 else if (rate & AGP_MODE_V2_RATE_2x) 429 rate = AGP_MODE_V2_RATE_2x; 430 else 431 rate = AGP_MODE_V2_RATE_1x; 432 if (bootverbose) 433 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 434 435 /* Construct the new mode word and tell the hardware */ 436 command = 0; 437 command = AGP_MODE_SET_RQ(0, rq); 438 command = AGP_MODE_SET_SBA(command, sba); 439 command = AGP_MODE_SET_FW(command, fw); 440 command = AGP_MODE_SET_RATE(command, rate); 441 command = AGP_MODE_SET_AGP(command, 1); 442 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 443 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 444 445 return 0; 446 } 447 448 int 449 agp_generic_enable(device_t dev, u_int32_t mode) 450 { 451 device_t mdev = agp_find_display(); 452 u_int32_t tstatus, mstatus; 453 454 if (!mdev) { 455 AGP_DPF("can't find display\n"); 456 return ENXIO; 457 } 458 459 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 460 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 461 462 /* 463 * Check display and bridge for AGP v3 support. AGP v3 allows 464 * more variety in topology than v2, e.g. multiple AGP devices 465 * attached to one bridge, or multiple AGP bridges in one 466 * system. This doesn't attempt to address those situations, 467 * but should work fine for a classic single AGP slot system 468 * with AGP v3. 469 */ 470 if (AGP_MODE_GET_MODE_3(mode) && 471 AGP_MODE_GET_MODE_3(tstatus) && 472 AGP_MODE_GET_MODE_3(mstatus)) 473 return (agp_v3_enable(dev, mdev, mode)); 474 else 475 return (agp_v2_enable(dev, mdev, mode)); 476 } 477 478 struct agp_memory * 479 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 480 { 481 struct agp_softc *sc = device_get_softc(dev); 482 struct agp_memory *mem; 483 484 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 485 return 0; 486 487 if (sc->as_allocated + size > sc->as_maxmem) 488 return 0; 489 490 if (type != 0) { 491 printf("agp_generic_alloc_memory: unsupported type %d\n", 492 type); 493 return 0; 494 } 495 496 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 497 mem->am_id = sc->as_nextid++; 498 mem->am_size = size; 499 mem->am_type = 0; 500 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 501 mem->am_physical = 0; 502 mem->am_offset = 0; 503 mem->am_is_bound = 0; 504 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 505 sc->as_allocated += size; 506 507 return mem; 508 } 509 510 int 511 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 512 { 513 struct agp_softc *sc = device_get_softc(dev); 514 515 if (mem->am_is_bound) 516 return EBUSY; 517 518 sc->as_allocated -= mem->am_size; 519 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 520 vm_object_deallocate(mem->am_obj); 521 free(mem, M_AGP); 522 return 0; 523 } 524 525 int 526 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 527 vm_offset_t offset) 528 { 529 struct agp_softc *sc = device_get_softc(dev); 530 vm_offset_t i, j, k; 531 vm_page_t m; 532 int error; 533 534 /* Do some sanity checks first. */ 535 if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 || 536 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 537 device_printf(dev, "binding memory at bad offset %#x\n", 538 (int)offset); 539 return EINVAL; 540 } 541 542 /* 543 * Allocate the pages early, before acquiring the lock, 544 * because vm_page_grab() used with VM_ALLOC_RETRY may 545 * block and we can't hold a mutex while blocking. 546 */ 547 VM_OBJECT_LOCK(mem->am_obj); 548 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 549 /* 550 * Find a page from the object and wire it 551 * down. This page will be mapped using one or more 552 * entries in the GATT (assuming that PAGE_SIZE >= 553 * AGP_PAGE_SIZE. If this is the first call to bind, 554 * the pages will be allocated and zeroed. 555 */ 556 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 557 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 558 AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m)); 559 } 560 VM_OBJECT_UNLOCK(mem->am_obj); 561 562 mtx_lock(&sc->as_lock); 563 564 if (mem->am_is_bound) { 565 device_printf(dev, "memory already bound\n"); 566 error = EINVAL; 567 VM_OBJECT_LOCK(mem->am_obj); 568 i = 0; 569 goto bad; 570 } 571 572 /* 573 * Bind the individual pages and flush the chipset's 574 * TLB. 575 */ 576 VM_OBJECT_LOCK(mem->am_obj); 577 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 578 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 579 580 /* 581 * Install entries in the GATT, making sure that if 582 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 583 * aligned to PAGE_SIZE, we don't modify too many GATT 584 * entries. 585 */ 586 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 587 j += AGP_PAGE_SIZE) { 588 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 589 AGP_DPF("binding offset %#jx to pa %#jx\n", 590 (uintmax_t)offset + i + j, (uintmax_t)pa); 591 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 592 if (error) { 593 /* 594 * Bail out. Reverse all the mappings 595 * and unwire the pages. 596 */ 597 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 598 AGP_UNBIND_PAGE(dev, offset + k); 599 goto bad; 600 } 601 } 602 vm_page_wakeup(m); 603 } 604 VM_OBJECT_UNLOCK(mem->am_obj); 605 606 /* 607 * Flush the cpu cache since we are providing a new mapping 608 * for these pages. 609 */ 610 agp_flush_cache(); 611 612 /* 613 * Make sure the chipset gets the new mappings. 614 */ 615 AGP_FLUSH_TLB(dev); 616 617 mem->am_offset = offset; 618 mem->am_is_bound = 1; 619 620 mtx_unlock(&sc->as_lock); 621 622 return 0; 623 bad: 624 mtx_unlock(&sc->as_lock); 625 VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED); 626 for (k = 0; k < mem->am_size; k += PAGE_SIZE) { 627 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(k)); 628 if (k >= i) 629 vm_page_wakeup(m); 630 vm_page_lock_queues(); 631 vm_page_unwire(m, 0); 632 vm_page_unlock_queues(); 633 } 634 VM_OBJECT_UNLOCK(mem->am_obj); 635 636 return error; 637 } 638 639 int 640 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 641 { 642 struct agp_softc *sc = device_get_softc(dev); 643 vm_page_t m; 644 int i; 645 646 mtx_lock(&sc->as_lock); 647 648 if (!mem->am_is_bound) { 649 device_printf(dev, "memory is not bound\n"); 650 mtx_unlock(&sc->as_lock); 651 return EINVAL; 652 } 653 654 655 /* 656 * Unbind the individual pages and flush the chipset's 657 * TLB. Unwire the pages so they can be swapped. 658 */ 659 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 660 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 661 VM_OBJECT_LOCK(mem->am_obj); 662 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 663 m = vm_page_lookup(mem->am_obj, atop(i)); 664 vm_page_lock_queues(); 665 vm_page_unwire(m, 0); 666 vm_page_unlock_queues(); 667 } 668 VM_OBJECT_UNLOCK(mem->am_obj); 669 670 agp_flush_cache(); 671 AGP_FLUSH_TLB(dev); 672 673 mem->am_offset = 0; 674 mem->am_is_bound = 0; 675 676 mtx_unlock(&sc->as_lock); 677 678 return 0; 679 } 680 681 /* Helper functions for implementing user/kernel api */ 682 683 static int 684 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 685 { 686 struct agp_softc *sc = device_get_softc(dev); 687 688 if (sc->as_state != AGP_ACQUIRE_FREE) 689 return EBUSY; 690 sc->as_state = state; 691 692 return 0; 693 } 694 695 static int 696 agp_release_helper(device_t dev, enum agp_acquire_state state) 697 { 698 struct agp_softc *sc = device_get_softc(dev); 699 700 if (sc->as_state == AGP_ACQUIRE_FREE) 701 return 0; 702 703 if (sc->as_state != state) 704 return EBUSY; 705 706 sc->as_state = AGP_ACQUIRE_FREE; 707 return 0; 708 } 709 710 static struct agp_memory * 711 agp_find_memory(device_t dev, int id) 712 { 713 struct agp_softc *sc = device_get_softc(dev); 714 struct agp_memory *mem; 715 716 AGP_DPF("searching for memory block %d\n", id); 717 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 718 AGP_DPF("considering memory block %d\n", mem->am_id); 719 if (mem->am_id == id) 720 return mem; 721 } 722 return 0; 723 } 724 725 /* Implementation of the userland ioctl api */ 726 727 static int 728 agp_info_user(device_t dev, agp_info *info) 729 { 730 struct agp_softc *sc = device_get_softc(dev); 731 732 bzero(info, sizeof *info); 733 info->bridge_id = pci_get_devid(dev); 734 info->agp_mode = 735 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 736 info->aper_base = rman_get_start(sc->as_aperture); 737 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 738 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 739 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 740 741 return 0; 742 } 743 744 static int 745 agp_setup_user(device_t dev, agp_setup *setup) 746 { 747 return AGP_ENABLE(dev, setup->agp_mode); 748 } 749 750 static int 751 agp_allocate_user(device_t dev, agp_allocate *alloc) 752 { 753 struct agp_memory *mem; 754 755 mem = AGP_ALLOC_MEMORY(dev, 756 alloc->type, 757 alloc->pg_count << AGP_PAGE_SHIFT); 758 if (mem) { 759 alloc->key = mem->am_id; 760 alloc->physical = mem->am_physical; 761 return 0; 762 } else { 763 return ENOMEM; 764 } 765 } 766 767 static int 768 agp_deallocate_user(device_t dev, int id) 769 { 770 struct agp_memory *mem = agp_find_memory(dev, id);; 771 772 if (mem) { 773 AGP_FREE_MEMORY(dev, mem); 774 return 0; 775 } else { 776 return ENOENT; 777 } 778 } 779 780 static int 781 agp_bind_user(device_t dev, agp_bind *bind) 782 { 783 struct agp_memory *mem = agp_find_memory(dev, bind->key); 784 785 if (!mem) 786 return ENOENT; 787 788 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 789 } 790 791 static int 792 agp_unbind_user(device_t dev, agp_unbind *unbind) 793 { 794 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 795 796 if (!mem) 797 return ENOENT; 798 799 return AGP_UNBIND_MEMORY(dev, mem); 800 } 801 802 static int 803 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 804 { 805 device_t dev = KDEV2DEV(kdev); 806 struct agp_softc *sc = device_get_softc(dev); 807 808 if (!sc->as_isopen) { 809 sc->as_isopen = 1; 810 device_busy(dev); 811 } 812 813 return 0; 814 } 815 816 static int 817 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 818 { 819 device_t dev = KDEV2DEV(kdev); 820 struct agp_softc *sc = device_get_softc(dev); 821 struct agp_memory *mem; 822 823 /* 824 * Clear the GATT and force release on last close 825 */ 826 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 827 if (mem->am_is_bound) 828 AGP_UNBIND_MEMORY(dev, mem); 829 AGP_FREE_MEMORY(dev, mem); 830 } 831 if (sc->as_state == AGP_ACQUIRE_USER) 832 agp_release_helper(dev, AGP_ACQUIRE_USER); 833 sc->as_isopen = 0; 834 device_unbusy(dev); 835 836 return 0; 837 } 838 839 static int 840 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 841 { 842 device_t dev = KDEV2DEV(kdev); 843 844 switch (cmd) { 845 case AGPIOC_INFO: 846 return agp_info_user(dev, (agp_info *) data); 847 848 case AGPIOC_ACQUIRE: 849 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 850 851 case AGPIOC_RELEASE: 852 return agp_release_helper(dev, AGP_ACQUIRE_USER); 853 854 case AGPIOC_SETUP: 855 return agp_setup_user(dev, (agp_setup *)data); 856 857 case AGPIOC_ALLOCATE: 858 return agp_allocate_user(dev, (agp_allocate *)data); 859 860 case AGPIOC_DEALLOCATE: 861 return agp_deallocate_user(dev, *(int *) data); 862 863 case AGPIOC_BIND: 864 return agp_bind_user(dev, (agp_bind *)data); 865 866 case AGPIOC_UNBIND: 867 return agp_unbind_user(dev, (agp_unbind *)data); 868 869 } 870 871 return EINVAL; 872 } 873 874 static int 875 agp_mmap(struct cdev *kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot) 876 { 877 device_t dev = KDEV2DEV(kdev); 878 struct agp_softc *sc = device_get_softc(dev); 879 880 if (offset > AGP_GET_APERTURE(dev)) 881 return -1; 882 *paddr = rman_get_start(sc->as_aperture) + offset; 883 return 0; 884 } 885 886 /* Implementation of the kernel api */ 887 888 device_t 889 agp_find_device() 890 { 891 device_t *children, child; 892 int i, count; 893 894 if (!agp_devclass) 895 return NULL; 896 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 897 return NULL; 898 child = NULL; 899 for (i = 0; i < count; i++) { 900 if (device_is_attached(children[i])) { 901 child = children[i]; 902 break; 903 } 904 } 905 free(children, M_TEMP); 906 return child; 907 } 908 909 enum agp_acquire_state 910 agp_state(device_t dev) 911 { 912 struct agp_softc *sc = device_get_softc(dev); 913 return sc->as_state; 914 } 915 916 void 917 agp_get_info(device_t dev, struct agp_info *info) 918 { 919 struct agp_softc *sc = device_get_softc(dev); 920 921 info->ai_mode = 922 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 923 info->ai_aperture_base = rman_get_start(sc->as_aperture); 924 info->ai_aperture_size = rman_get_size(sc->as_aperture); 925 info->ai_memory_allowed = sc->as_maxmem; 926 info->ai_memory_used = sc->as_allocated; 927 } 928 929 int 930 agp_acquire(device_t dev) 931 { 932 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 933 } 934 935 int 936 agp_release(device_t dev) 937 { 938 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 939 } 940 941 int 942 agp_enable(device_t dev, u_int32_t mode) 943 { 944 return AGP_ENABLE(dev, mode); 945 } 946 947 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 948 { 949 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 950 } 951 952 void agp_free_memory(device_t dev, void *handle) 953 { 954 struct agp_memory *mem = (struct agp_memory *) handle; 955 AGP_FREE_MEMORY(dev, mem); 956 } 957 958 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 959 { 960 struct agp_memory *mem = (struct agp_memory *) handle; 961 return AGP_BIND_MEMORY(dev, mem, offset); 962 } 963 964 int agp_unbind_memory(device_t dev, void *handle) 965 { 966 struct agp_memory *mem = (struct agp_memory *) handle; 967 return AGP_UNBIND_MEMORY(dev, mem); 968 } 969 970 void agp_memory_info(device_t dev, void *handle, struct 971 agp_memory_info *mi) 972 { 973 struct agp_memory *mem = (struct agp_memory *) handle; 974 975 mi->ami_size = mem->am_size; 976 mi->ami_physical = mem->am_physical; 977 mi->ami_offset = mem->am_offset; 978 mi->ami_is_bound = mem->am_is_bound; 979 } 980