1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_agp.h" 31 #include "opt_bus.h" 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/kernel.h> 37 #include <sys/module.h> 38 #include <sys/bus.h> 39 #include <sys/conf.h> 40 #include <sys/ioccom.h> 41 #include <sys/agpio.h> 42 #include <sys/lock.h> 43 #include <sys/mutex.h> 44 #include <sys/proc.h> 45 46 #include <dev/agp/agppriv.h> 47 #include <dev/agp/agpvar.h> 48 #include <dev/agp/agpreg.h> 49 #include <dev/pci/pcivar.h> 50 #include <dev/pci/pcireg.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_page.h> 55 #include <vm/vm_pageout.h> 56 #include <vm/pmap.h> 57 58 #include <machine/md_var.h> 59 #include <machine/bus.h> 60 #include <machine/resource.h> 61 #include <sys/rman.h> 62 63 MODULE_VERSION(agp, 1); 64 65 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 66 67 /* agp_drv.c */ 68 static d_open_t agp_open; 69 static d_close_t agp_close; 70 static d_ioctl_t agp_ioctl; 71 static d_mmap_t agp_mmap; 72 73 static struct cdevsw agp_cdevsw = { 74 .d_version = D_VERSION, 75 .d_flags = D_NEEDGIANT, 76 .d_open = agp_open, 77 .d_close = agp_close, 78 .d_ioctl = agp_ioctl, 79 .d_mmap = agp_mmap, 80 .d_name = "agp", 81 }; 82 83 static devclass_t agp_devclass; 84 85 /* Helper functions for implementing chipset mini drivers. */ 86 87 void 88 agp_flush_cache() 89 { 90 #if defined(__i386__) || defined(__amd64__) 91 wbinvd(); 92 #endif 93 } 94 95 u_int8_t 96 agp_find_caps(device_t dev) 97 { 98 int capreg; 99 100 101 if (pci_find_cap(dev, PCIY_AGP, &capreg) != 0) 102 capreg = 0; 103 return (capreg); 104 } 105 106 /* 107 * Find an AGP display device (if any). 108 */ 109 static device_t 110 agp_find_display(void) 111 { 112 devclass_t pci = devclass_find("pci"); 113 device_t bus, dev = 0; 114 device_t *kids; 115 int busnum, numkids, i; 116 117 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 118 bus = devclass_get_device(pci, busnum); 119 if (!bus) 120 continue; 121 if (device_get_children(bus, &kids, &numkids) != 0) 122 continue; 123 for (i = 0; i < numkids; i++) { 124 dev = kids[i]; 125 if (pci_get_class(dev) == PCIC_DISPLAY 126 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 127 if (agp_find_caps(dev)) { 128 free(kids, M_TEMP); 129 return dev; 130 } 131 132 } 133 free(kids, M_TEMP); 134 } 135 136 return 0; 137 } 138 139 struct agp_gatt * 140 agp_alloc_gatt(device_t dev) 141 { 142 u_int32_t apsize = AGP_GET_APERTURE(dev); 143 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 144 struct agp_gatt *gatt; 145 146 if (bootverbose) 147 device_printf(dev, 148 "allocating GATT for aperture of size %dM\n", 149 apsize / (1024*1024)); 150 151 if (entries == 0) { 152 device_printf(dev, "bad aperture size\n"); 153 return NULL; 154 } 155 156 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 157 if (!gatt) 158 return 0; 159 160 gatt->ag_entries = entries; 161 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 162 0, ~0, PAGE_SIZE, 0); 163 if (!gatt->ag_virtual) { 164 if (bootverbose) 165 device_printf(dev, "contiguous allocation failed\n"); 166 free(gatt, M_AGP); 167 return 0; 168 } 169 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 170 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 171 agp_flush_cache(); 172 173 return gatt; 174 } 175 176 void 177 agp_free_gatt(struct agp_gatt *gatt) 178 { 179 contigfree(gatt->ag_virtual, 180 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 181 free(gatt, M_AGP); 182 } 183 184 static u_int agp_max[][2] = { 185 {0, 0}, 186 {32, 4}, 187 {64, 28}, 188 {128, 96}, 189 {256, 204}, 190 {512, 440}, 191 {1024, 942}, 192 {2048, 1920}, 193 {4096, 3932} 194 }; 195 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 196 197 /** 198 * Sets the PCI resource which represents the AGP aperture. 199 * 200 * If not called, the default AGP aperture resource of AGP_APBASE will 201 * be used. Must be called before agp_generic_attach(). 202 */ 203 void 204 agp_set_aperture_resource(device_t dev, int rid) 205 { 206 struct agp_softc *sc = device_get_softc(dev); 207 208 sc->as_aperture_rid = rid; 209 } 210 211 int 212 agp_generic_attach(device_t dev) 213 { 214 struct agp_softc *sc = device_get_softc(dev); 215 int i; 216 u_int memsize; 217 218 /* 219 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE 220 * because the kernel doesn't need to map it. 221 */ 222 223 if (sc->as_aperture_rid != -1) { 224 if (sc->as_aperture_rid == 0) 225 sc->as_aperture_rid = AGP_APBASE; 226 227 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 228 &sc->as_aperture_rid, RF_SHAREABLE); 229 if (!sc->as_aperture) 230 return ENOMEM; 231 } 232 233 /* 234 * Work out an upper bound for agp memory allocation. This 235 * uses a heurisitc table from the Linux driver. 236 */ 237 memsize = ptoa(Maxmem) >> 20; 238 for (i = 0; i < agp_max_size; i++) { 239 if (memsize <= agp_max[i][0]) 240 break; 241 } 242 if (i == agp_max_size) i = agp_max_size - 1; 243 sc->as_maxmem = agp_max[i][1] << 20U; 244 245 /* 246 * The lock is used to prevent re-entry to 247 * agp_generic_bind_memory() since that function can sleep. 248 */ 249 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 250 251 /* 252 * Initialise stuff for the userland device. 253 */ 254 agp_devclass = devclass_find("agp"); 255 TAILQ_INIT(&sc->as_memory); 256 sc->as_nextid = 1; 257 258 sc->as_devnode = make_dev(&agp_cdevsw, 259 0, UID_ROOT, GID_WHEEL, 0600, "agpgart"); 260 sc->as_devnode->si_drv1 = dev; 261 262 return 0; 263 } 264 265 void 266 agp_free_cdev(device_t dev) 267 { 268 struct agp_softc *sc = device_get_softc(dev); 269 270 destroy_dev(sc->as_devnode); 271 } 272 273 void 274 agp_free_res(device_t dev) 275 { 276 struct agp_softc *sc = device_get_softc(dev); 277 278 if (sc->as_aperture != NULL) 279 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, 280 sc->as_aperture); 281 mtx_destroy(&sc->as_lock); 282 agp_flush_cache(); 283 } 284 285 int 286 agp_generic_detach(device_t dev) 287 { 288 289 agp_free_cdev(dev); 290 agp_free_res(dev); 291 return 0; 292 } 293 294 /** 295 * Default AGP aperture size detection which simply returns the size of 296 * the aperture's PCI resource. 297 */ 298 u_int32_t 299 agp_generic_get_aperture(device_t dev) 300 { 301 struct agp_softc *sc = device_get_softc(dev); 302 303 return rman_get_size(sc->as_aperture); 304 } 305 306 /** 307 * Default AGP aperture size setting function, which simply doesn't allow 308 * changes to resource size. 309 */ 310 int 311 agp_generic_set_aperture(device_t dev, u_int32_t aperture) 312 { 313 u_int32_t current_aperture; 314 315 current_aperture = AGP_GET_APERTURE(dev); 316 if (current_aperture != aperture) 317 return EINVAL; 318 else 319 return 0; 320 } 321 322 /* 323 * This does the enable logic for v3, with the same topology 324 * restrictions as in place for v2 -- one bus, one device on the bus. 325 */ 326 static int 327 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 328 { 329 u_int32_t tstatus, mstatus; 330 u_int32_t command; 331 int rq, sba, fw, rate, arqsz, cal; 332 333 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 334 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 335 336 /* Set RQ to the min of mode, tstatus and mstatus */ 337 rq = AGP_MODE_GET_RQ(mode); 338 if (AGP_MODE_GET_RQ(tstatus) < rq) 339 rq = AGP_MODE_GET_RQ(tstatus); 340 if (AGP_MODE_GET_RQ(mstatus) < rq) 341 rq = AGP_MODE_GET_RQ(mstatus); 342 343 /* 344 * ARQSZ - Set the value to the maximum one. 345 * Don't allow the mode register to override values. 346 */ 347 arqsz = AGP_MODE_GET_ARQSZ(mode); 348 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 349 rq = AGP_MODE_GET_ARQSZ(tstatus); 350 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 351 rq = AGP_MODE_GET_ARQSZ(mstatus); 352 353 /* Calibration cycle - don't allow override by mode register */ 354 cal = AGP_MODE_GET_CAL(tstatus); 355 if (AGP_MODE_GET_CAL(mstatus) < cal) 356 cal = AGP_MODE_GET_CAL(mstatus); 357 358 /* SBA must be supported for AGP v3. */ 359 sba = 1; 360 361 /* Set FW if all three support it. */ 362 fw = (AGP_MODE_GET_FW(tstatus) 363 & AGP_MODE_GET_FW(mstatus) 364 & AGP_MODE_GET_FW(mode)); 365 366 /* Figure out the max rate */ 367 rate = (AGP_MODE_GET_RATE(tstatus) 368 & AGP_MODE_GET_RATE(mstatus) 369 & AGP_MODE_GET_RATE(mode)); 370 if (rate & AGP_MODE_V3_RATE_8x) 371 rate = AGP_MODE_V3_RATE_8x; 372 else 373 rate = AGP_MODE_V3_RATE_4x; 374 if (bootverbose) 375 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 376 377 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 378 379 /* Construct the new mode word and tell the hardware */ 380 command = 0; 381 command = AGP_MODE_SET_RQ(0, rq); 382 command = AGP_MODE_SET_ARQSZ(command, arqsz); 383 command = AGP_MODE_SET_CAL(command, cal); 384 command = AGP_MODE_SET_SBA(command, sba); 385 command = AGP_MODE_SET_FW(command, fw); 386 command = AGP_MODE_SET_RATE(command, rate); 387 command = AGP_MODE_SET_MODE_3(command, 1); 388 command = AGP_MODE_SET_AGP(command, 1); 389 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 390 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 391 392 return 0; 393 } 394 395 static int 396 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 397 { 398 u_int32_t tstatus, mstatus; 399 u_int32_t command; 400 int rq, sba, fw, rate; 401 402 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 403 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 404 405 /* Set RQ to the min of mode, tstatus and mstatus */ 406 rq = AGP_MODE_GET_RQ(mode); 407 if (AGP_MODE_GET_RQ(tstatus) < rq) 408 rq = AGP_MODE_GET_RQ(tstatus); 409 if (AGP_MODE_GET_RQ(mstatus) < rq) 410 rq = AGP_MODE_GET_RQ(mstatus); 411 412 /* Set SBA if all three can deal with SBA */ 413 sba = (AGP_MODE_GET_SBA(tstatus) 414 & AGP_MODE_GET_SBA(mstatus) 415 & AGP_MODE_GET_SBA(mode)); 416 417 /* Similar for FW */ 418 fw = (AGP_MODE_GET_FW(tstatus) 419 & AGP_MODE_GET_FW(mstatus) 420 & AGP_MODE_GET_FW(mode)); 421 422 /* Figure out the max rate */ 423 rate = (AGP_MODE_GET_RATE(tstatus) 424 & AGP_MODE_GET_RATE(mstatus) 425 & AGP_MODE_GET_RATE(mode)); 426 if (rate & AGP_MODE_V2_RATE_4x) 427 rate = AGP_MODE_V2_RATE_4x; 428 else if (rate & AGP_MODE_V2_RATE_2x) 429 rate = AGP_MODE_V2_RATE_2x; 430 else 431 rate = AGP_MODE_V2_RATE_1x; 432 if (bootverbose) 433 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 434 435 /* Construct the new mode word and tell the hardware */ 436 command = 0; 437 command = AGP_MODE_SET_RQ(0, rq); 438 command = AGP_MODE_SET_SBA(command, sba); 439 command = AGP_MODE_SET_FW(command, fw); 440 command = AGP_MODE_SET_RATE(command, rate); 441 command = AGP_MODE_SET_AGP(command, 1); 442 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 443 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 444 445 return 0; 446 } 447 448 int 449 agp_generic_enable(device_t dev, u_int32_t mode) 450 { 451 device_t mdev = agp_find_display(); 452 u_int32_t tstatus, mstatus; 453 454 if (!mdev) { 455 AGP_DPF("can't find display\n"); 456 return ENXIO; 457 } 458 459 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 460 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 461 462 /* 463 * Check display and bridge for AGP v3 support. AGP v3 allows 464 * more variety in topology than v2, e.g. multiple AGP devices 465 * attached to one bridge, or multiple AGP bridges in one 466 * system. This doesn't attempt to address those situations, 467 * but should work fine for a classic single AGP slot system 468 * with AGP v3. 469 */ 470 if (AGP_MODE_GET_MODE_3(mode) && 471 AGP_MODE_GET_MODE_3(tstatus) && 472 AGP_MODE_GET_MODE_3(mstatus)) 473 return (agp_v3_enable(dev, mdev, mode)); 474 else 475 return (agp_v2_enable(dev, mdev, mode)); 476 } 477 478 struct agp_memory * 479 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 480 { 481 struct agp_softc *sc = device_get_softc(dev); 482 struct agp_memory *mem; 483 484 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 485 return 0; 486 487 if (sc->as_allocated + size > sc->as_maxmem) 488 return 0; 489 490 if (type != 0) { 491 printf("agp_generic_alloc_memory: unsupported type %d\n", 492 type); 493 return 0; 494 } 495 496 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 497 mem->am_id = sc->as_nextid++; 498 mem->am_size = size; 499 mem->am_type = 0; 500 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 501 mem->am_physical = 0; 502 mem->am_offset = 0; 503 mem->am_is_bound = 0; 504 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 505 sc->as_allocated += size; 506 507 return mem; 508 } 509 510 int 511 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 512 { 513 struct agp_softc *sc = device_get_softc(dev); 514 515 if (mem->am_is_bound) 516 return EBUSY; 517 518 sc->as_allocated -= mem->am_size; 519 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 520 vm_object_deallocate(mem->am_obj); 521 free(mem, M_AGP); 522 return 0; 523 } 524 525 int 526 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 527 vm_offset_t offset) 528 { 529 struct agp_softc *sc = device_get_softc(dev); 530 vm_offset_t i, j, k; 531 vm_page_t m; 532 int error; 533 534 /* Do some sanity checks first. */ 535 if ((offset & (AGP_PAGE_SIZE - 1)) != 0 || 536 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 537 device_printf(dev, "binding memory at bad offset %#x\n", 538 (int)offset); 539 return EINVAL; 540 } 541 542 /* 543 * Allocate the pages early, before acquiring the lock, 544 * because vm_page_grab() may sleep and we can't hold a mutex 545 * while sleeping. 546 */ 547 VM_OBJECT_LOCK(mem->am_obj); 548 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 549 /* 550 * Find a page from the object and wire it 551 * down. This page will be mapped using one or more 552 * entries in the GATT (assuming that PAGE_SIZE >= 553 * AGP_PAGE_SIZE. If this is the first call to bind, 554 * the pages will be allocated and zeroed. 555 */ 556 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 557 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 558 AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m)); 559 } 560 VM_OBJECT_UNLOCK(mem->am_obj); 561 562 mtx_lock(&sc->as_lock); 563 564 if (mem->am_is_bound) { 565 device_printf(dev, "memory already bound\n"); 566 error = EINVAL; 567 VM_OBJECT_LOCK(mem->am_obj); 568 i = 0; 569 goto bad; 570 } 571 572 /* 573 * Bind the individual pages and flush the chipset's 574 * TLB. 575 */ 576 VM_OBJECT_LOCK(mem->am_obj); 577 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 578 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 579 580 /* 581 * Install entries in the GATT, making sure that if 582 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 583 * aligned to PAGE_SIZE, we don't modify too many GATT 584 * entries. 585 */ 586 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 587 j += AGP_PAGE_SIZE) { 588 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 589 AGP_DPF("binding offset %#jx to pa %#jx\n", 590 (uintmax_t)offset + i + j, (uintmax_t)pa); 591 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 592 if (error) { 593 /* 594 * Bail out. Reverse all the mappings 595 * and unwire the pages. 596 */ 597 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 598 AGP_UNBIND_PAGE(dev, offset + k); 599 goto bad; 600 } 601 } 602 vm_page_wakeup(m); 603 } 604 VM_OBJECT_UNLOCK(mem->am_obj); 605 606 /* 607 * Flush the cpu cache since we are providing a new mapping 608 * for these pages. 609 */ 610 agp_flush_cache(); 611 612 /* 613 * Make sure the chipset gets the new mappings. 614 */ 615 AGP_FLUSH_TLB(dev); 616 617 mem->am_offset = offset; 618 mem->am_is_bound = 1; 619 620 mtx_unlock(&sc->as_lock); 621 622 return 0; 623 bad: 624 mtx_unlock(&sc->as_lock); 625 VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED); 626 for (k = 0; k < mem->am_size; k += PAGE_SIZE) { 627 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(k)); 628 if (k >= i) 629 vm_page_wakeup(m); 630 vm_page_lock(m); 631 vm_page_unwire(m, 0); 632 vm_page_unlock(m); 633 } 634 VM_OBJECT_UNLOCK(mem->am_obj); 635 636 return error; 637 } 638 639 int 640 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 641 { 642 struct agp_softc *sc = device_get_softc(dev); 643 vm_page_t m; 644 int i; 645 646 mtx_lock(&sc->as_lock); 647 648 if (!mem->am_is_bound) { 649 device_printf(dev, "memory is not bound\n"); 650 mtx_unlock(&sc->as_lock); 651 return EINVAL; 652 } 653 654 655 /* 656 * Unbind the individual pages and flush the chipset's 657 * TLB. Unwire the pages so they can be swapped. 658 */ 659 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 660 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 661 VM_OBJECT_LOCK(mem->am_obj); 662 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 663 m = vm_page_lookup(mem->am_obj, atop(i)); 664 vm_page_lock(m); 665 vm_page_unwire(m, 0); 666 vm_page_unlock(m); 667 } 668 VM_OBJECT_UNLOCK(mem->am_obj); 669 670 agp_flush_cache(); 671 AGP_FLUSH_TLB(dev); 672 673 mem->am_offset = 0; 674 mem->am_is_bound = 0; 675 676 mtx_unlock(&sc->as_lock); 677 678 return 0; 679 } 680 681 /* Helper functions for implementing user/kernel api */ 682 683 static int 684 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 685 { 686 struct agp_softc *sc = device_get_softc(dev); 687 688 if (sc->as_state != AGP_ACQUIRE_FREE) 689 return EBUSY; 690 sc->as_state = state; 691 692 return 0; 693 } 694 695 static int 696 agp_release_helper(device_t dev, enum agp_acquire_state state) 697 { 698 struct agp_softc *sc = device_get_softc(dev); 699 700 if (sc->as_state == AGP_ACQUIRE_FREE) 701 return 0; 702 703 if (sc->as_state != state) 704 return EBUSY; 705 706 sc->as_state = AGP_ACQUIRE_FREE; 707 return 0; 708 } 709 710 static struct agp_memory * 711 agp_find_memory(device_t dev, int id) 712 { 713 struct agp_softc *sc = device_get_softc(dev); 714 struct agp_memory *mem; 715 716 AGP_DPF("searching for memory block %d\n", id); 717 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 718 AGP_DPF("considering memory block %d\n", mem->am_id); 719 if (mem->am_id == id) 720 return mem; 721 } 722 return 0; 723 } 724 725 /* Implementation of the userland ioctl api */ 726 727 static int 728 agp_info_user(device_t dev, agp_info *info) 729 { 730 struct agp_softc *sc = device_get_softc(dev); 731 732 bzero(info, sizeof *info); 733 info->bridge_id = pci_get_devid(dev); 734 info->agp_mode = 735 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 736 if (sc->as_aperture) 737 info->aper_base = rman_get_start(sc->as_aperture); 738 else 739 info->aper_base = 0; 740 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 741 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 742 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 743 744 return 0; 745 } 746 747 static int 748 agp_setup_user(device_t dev, agp_setup *setup) 749 { 750 return AGP_ENABLE(dev, setup->agp_mode); 751 } 752 753 static int 754 agp_allocate_user(device_t dev, agp_allocate *alloc) 755 { 756 struct agp_memory *mem; 757 758 mem = AGP_ALLOC_MEMORY(dev, 759 alloc->type, 760 alloc->pg_count << AGP_PAGE_SHIFT); 761 if (mem) { 762 alloc->key = mem->am_id; 763 alloc->physical = mem->am_physical; 764 return 0; 765 } else { 766 return ENOMEM; 767 } 768 } 769 770 static int 771 agp_deallocate_user(device_t dev, int id) 772 { 773 struct agp_memory *mem = agp_find_memory(dev, id); 774 775 if (mem) { 776 AGP_FREE_MEMORY(dev, mem); 777 return 0; 778 } else { 779 return ENOENT; 780 } 781 } 782 783 static int 784 agp_bind_user(device_t dev, agp_bind *bind) 785 { 786 struct agp_memory *mem = agp_find_memory(dev, bind->key); 787 788 if (!mem) 789 return ENOENT; 790 791 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 792 } 793 794 static int 795 agp_unbind_user(device_t dev, agp_unbind *unbind) 796 { 797 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 798 799 if (!mem) 800 return ENOENT; 801 802 return AGP_UNBIND_MEMORY(dev, mem); 803 } 804 805 static int 806 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 807 { 808 device_t dev = kdev->si_drv1; 809 struct agp_softc *sc = device_get_softc(dev); 810 811 if (!sc->as_isopen) { 812 sc->as_isopen = 1; 813 device_busy(dev); 814 } 815 816 return 0; 817 } 818 819 static int 820 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 821 { 822 device_t dev = kdev->si_drv1; 823 struct agp_softc *sc = device_get_softc(dev); 824 struct agp_memory *mem; 825 826 /* 827 * Clear the GATT and force release on last close 828 */ 829 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 830 if (mem->am_is_bound) 831 AGP_UNBIND_MEMORY(dev, mem); 832 AGP_FREE_MEMORY(dev, mem); 833 } 834 if (sc->as_state == AGP_ACQUIRE_USER) 835 agp_release_helper(dev, AGP_ACQUIRE_USER); 836 sc->as_isopen = 0; 837 device_unbusy(dev); 838 839 return 0; 840 } 841 842 static int 843 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 844 { 845 device_t dev = kdev->si_drv1; 846 847 switch (cmd) { 848 case AGPIOC_INFO: 849 return agp_info_user(dev, (agp_info *) data); 850 851 case AGPIOC_ACQUIRE: 852 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 853 854 case AGPIOC_RELEASE: 855 return agp_release_helper(dev, AGP_ACQUIRE_USER); 856 857 case AGPIOC_SETUP: 858 return agp_setup_user(dev, (agp_setup *)data); 859 860 case AGPIOC_ALLOCATE: 861 return agp_allocate_user(dev, (agp_allocate *)data); 862 863 case AGPIOC_DEALLOCATE: 864 return agp_deallocate_user(dev, *(int *) data); 865 866 case AGPIOC_BIND: 867 return agp_bind_user(dev, (agp_bind *)data); 868 869 case AGPIOC_UNBIND: 870 return agp_unbind_user(dev, (agp_unbind *)data); 871 872 } 873 874 return EINVAL; 875 } 876 877 static int 878 agp_mmap(struct cdev *kdev, vm_ooffset_t offset, vm_paddr_t *paddr, 879 int prot, vm_memattr_t *memattr) 880 { 881 device_t dev = kdev->si_drv1; 882 struct agp_softc *sc = device_get_softc(dev); 883 884 if (offset > AGP_GET_APERTURE(dev)) 885 return -1; 886 if (sc->as_aperture == NULL) 887 return -1; 888 *paddr = rman_get_start(sc->as_aperture) + offset; 889 return 0; 890 } 891 892 /* Implementation of the kernel api */ 893 894 device_t 895 agp_find_device() 896 { 897 device_t *children, child; 898 int i, count; 899 900 if (!agp_devclass) 901 return NULL; 902 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 903 return NULL; 904 child = NULL; 905 for (i = 0; i < count; i++) { 906 if (device_is_attached(children[i])) { 907 child = children[i]; 908 break; 909 } 910 } 911 free(children, M_TEMP); 912 return child; 913 } 914 915 enum agp_acquire_state 916 agp_state(device_t dev) 917 { 918 struct agp_softc *sc = device_get_softc(dev); 919 return sc->as_state; 920 } 921 922 void 923 agp_get_info(device_t dev, struct agp_info *info) 924 { 925 struct agp_softc *sc = device_get_softc(dev); 926 927 info->ai_mode = 928 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 929 if (sc->as_aperture != NULL) 930 info->ai_aperture_base = rman_get_start(sc->as_aperture); 931 else 932 info->ai_aperture_base = 0; 933 info->ai_aperture_size = AGP_GET_APERTURE(dev); 934 info->ai_memory_allowed = sc->as_maxmem; 935 info->ai_memory_used = sc->as_allocated; 936 } 937 938 int 939 agp_acquire(device_t dev) 940 { 941 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 942 } 943 944 int 945 agp_release(device_t dev) 946 { 947 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 948 } 949 950 int 951 agp_enable(device_t dev, u_int32_t mode) 952 { 953 return AGP_ENABLE(dev, mode); 954 } 955 956 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 957 { 958 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 959 } 960 961 void agp_free_memory(device_t dev, void *handle) 962 { 963 struct agp_memory *mem = (struct agp_memory *) handle; 964 AGP_FREE_MEMORY(dev, mem); 965 } 966 967 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 968 { 969 struct agp_memory *mem = (struct agp_memory *) handle; 970 return AGP_BIND_MEMORY(dev, mem, offset); 971 } 972 973 int agp_unbind_memory(device_t dev, void *handle) 974 { 975 struct agp_memory *mem = (struct agp_memory *) handle; 976 return AGP_UNBIND_MEMORY(dev, mem); 977 } 978 979 void agp_memory_info(device_t dev, void *handle, struct 980 agp_memory_info *mi) 981 { 982 struct agp_memory *mem = (struct agp_memory *) handle; 983 984 mi->ami_size = mem->am_size; 985 mi->ami_physical = mem->am_physical; 986 mi->ami_offset = mem->am_offset; 987 mi->ami_is_bound = mem->am_is_bound; 988 } 989