1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_agp.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/agpio.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/rwlock.h> 45 46 #include <dev/agp/agppriv.h> 47 #include <dev/agp/agpvar.h> 48 #include <dev/agp/agpreg.h> 49 #include <dev/pci/pcivar.h> 50 #include <dev/pci/pcireg.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_extern.h> 54 #include <vm/vm_kern.h> 55 #include <vm/vm_param.h> 56 #include <vm/vm_object.h> 57 #include <vm/vm_page.h> 58 #include <vm/vm_pageout.h> 59 #include <vm/vm_radix.h> 60 #include <vm/pmap.h> 61 62 #include <machine/bus.h> 63 #include <machine/resource.h> 64 #include <sys/rman.h> 65 66 MODULE_VERSION(agp, 1); 67 68 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 69 70 /* agp_drv.c */ 71 static d_open_t agp_open; 72 static d_close_t agp_close; 73 static d_ioctl_t agp_ioctl; 74 static d_mmap_t agp_mmap; 75 76 static struct cdevsw agp_cdevsw = { 77 .d_version = D_VERSION, 78 .d_flags = D_NEEDGIANT, 79 .d_open = agp_open, 80 .d_close = agp_close, 81 .d_ioctl = agp_ioctl, 82 .d_mmap = agp_mmap, 83 .d_name = "agp", 84 }; 85 86 static devclass_t agp_devclass; 87 88 /* Helper functions for implementing chipset mini drivers. */ 89 90 u_int8_t 91 agp_find_caps(device_t dev) 92 { 93 int capreg; 94 95 if (pci_find_cap(dev, PCIY_AGP, &capreg) != 0) 96 capreg = 0; 97 return (capreg); 98 } 99 100 /* 101 * Find an AGP display device (if any). 102 */ 103 static device_t 104 agp_find_display(void) 105 { 106 devclass_t pci = devclass_find("pci"); 107 device_t bus, dev = 0; 108 device_t *kids; 109 int busnum, numkids, i; 110 111 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 112 bus = devclass_get_device(pci, busnum); 113 if (!bus) 114 continue; 115 if (device_get_children(bus, &kids, &numkids) != 0) 116 continue; 117 for (i = 0; i < numkids; i++) { 118 dev = kids[i]; 119 if (pci_get_class(dev) == PCIC_DISPLAY 120 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 121 if (agp_find_caps(dev)) { 122 free(kids, M_TEMP); 123 return dev; 124 } 125 126 } 127 free(kids, M_TEMP); 128 } 129 130 return 0; 131 } 132 133 struct agp_gatt * 134 agp_alloc_gatt(device_t dev) 135 { 136 u_int32_t apsize = AGP_GET_APERTURE(dev); 137 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 138 struct agp_gatt *gatt; 139 140 if (bootverbose) 141 device_printf(dev, 142 "allocating GATT for aperture of size %dM\n", 143 apsize / (1024*1024)); 144 145 if (entries == 0) { 146 device_printf(dev, "bad aperture size\n"); 147 return NULL; 148 } 149 150 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 151 if (!gatt) 152 return 0; 153 154 gatt->ag_entries = entries; 155 gatt->ag_virtual = kmem_alloc_contig(entries * sizeof(uint32_t), 156 M_NOWAIT | M_ZERO, 0, ~0, PAGE_SIZE, 0, VM_MEMATTR_WRITE_COMBINING); 157 if (!gatt->ag_virtual) { 158 if (bootverbose) 159 device_printf(dev, "contiguous allocation failed\n"); 160 free(gatt, M_AGP); 161 return 0; 162 } 163 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 164 165 return gatt; 166 } 167 168 void 169 agp_free_gatt(struct agp_gatt *gatt) 170 { 171 kmem_free(gatt->ag_virtual, gatt->ag_entries * sizeof(uint32_t)); 172 free(gatt, M_AGP); 173 } 174 175 static u_int agp_max[][2] = { 176 {0, 0}, 177 {32, 4}, 178 {64, 28}, 179 {128, 96}, 180 {256, 204}, 181 {512, 440}, 182 {1024, 942}, 183 {2048, 1920}, 184 {4096, 3932} 185 }; 186 #define AGP_MAX_SIZE nitems(agp_max) 187 188 /** 189 * Sets the PCI resource which represents the AGP aperture. 190 * 191 * If not called, the default AGP aperture resource of AGP_APBASE will 192 * be used. Must be called before agp_generic_attach(). 193 */ 194 void 195 agp_set_aperture_resource(device_t dev, int rid) 196 { 197 struct agp_softc *sc = device_get_softc(dev); 198 199 sc->as_aperture_rid = rid; 200 } 201 202 int 203 agp_generic_attach(device_t dev) 204 { 205 struct make_dev_args mdargs; 206 struct agp_softc *sc = device_get_softc(dev); 207 int error, i, unit; 208 u_int memsize; 209 210 /* 211 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE 212 * because the kernel doesn't need to map it. 213 */ 214 215 if (sc->as_aperture_rid != -1) { 216 if (sc->as_aperture_rid == 0) 217 sc->as_aperture_rid = AGP_APBASE; 218 219 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 220 &sc->as_aperture_rid, RF_SHAREABLE); 221 if (!sc->as_aperture) 222 return ENOMEM; 223 } 224 225 /* 226 * Work out an upper bound for agp memory allocation. This 227 * uses a heurisitc table from the Linux driver. 228 */ 229 memsize = ptoa(realmem) >> 20; 230 for (i = 0; i < AGP_MAX_SIZE; i++) { 231 if (memsize <= agp_max[i][0]) 232 break; 233 } 234 if (i == AGP_MAX_SIZE) 235 i = AGP_MAX_SIZE - 1; 236 sc->as_maxmem = agp_max[i][1] << 20U; 237 238 /* 239 * The lock is used to prevent re-entry to 240 * agp_generic_bind_memory() since that function can sleep. 241 */ 242 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 243 244 /* 245 * Initialise stuff for the userland device. 246 */ 247 agp_devclass = devclass_find("agp"); 248 TAILQ_INIT(&sc->as_memory); 249 sc->as_nextid = 1; 250 251 sc->as_devalias = NULL; 252 253 make_dev_args_init(&mdargs); 254 mdargs.mda_devsw = &agp_cdevsw; 255 mdargs.mda_uid = UID_ROOT; 256 mdargs.mda_gid = GID_WHEEL; 257 mdargs.mda_mode = 0600; 258 mdargs.mda_si_drv1 = dev; 259 mdargs.mda_si_drv2 = NULL; 260 261 unit = device_get_unit(dev); 262 error = make_dev_s(&mdargs, &sc->as_devnode, "agpgart%d", unit); 263 if (error == 0) { 264 /* 265 * Create an alias for the first device that shows up. 266 */ 267 if (unit == 0) { 268 (void)make_dev_alias_p(MAKEDEV_CHECKNAME, 269 &sc->as_devalias, sc->as_devnode, "agpgart"); 270 } 271 } else { 272 agp_free_res(dev); 273 } 274 275 return error; 276 } 277 278 void 279 agp_free_cdev(device_t dev) 280 { 281 struct agp_softc *sc = device_get_softc(dev); 282 283 destroy_dev(sc->as_devnode); 284 if (sc->as_devalias != NULL) 285 destroy_dev(sc->as_devalias); 286 } 287 288 void 289 agp_free_res(device_t dev) 290 { 291 struct agp_softc *sc = device_get_softc(dev); 292 293 if (sc->as_aperture != NULL) 294 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, 295 sc->as_aperture); 296 mtx_destroy(&sc->as_lock); 297 } 298 299 int 300 agp_generic_detach(device_t dev) 301 { 302 303 agp_free_cdev(dev); 304 agp_free_res(dev); 305 return 0; 306 } 307 308 /** 309 * Default AGP aperture size detection which simply returns the size of 310 * the aperture's PCI resource. 311 */ 312 u_int32_t 313 agp_generic_get_aperture(device_t dev) 314 { 315 struct agp_softc *sc = device_get_softc(dev); 316 317 return rman_get_size(sc->as_aperture); 318 } 319 320 /** 321 * Default AGP aperture size setting function, which simply doesn't allow 322 * changes to resource size. 323 */ 324 int 325 agp_generic_set_aperture(device_t dev, u_int32_t aperture) 326 { 327 u_int32_t current_aperture; 328 329 current_aperture = AGP_GET_APERTURE(dev); 330 if (current_aperture != aperture) 331 return EINVAL; 332 else 333 return 0; 334 } 335 336 /* 337 * This does the enable logic for v3, with the same topology 338 * restrictions as in place for v2 -- one bus, one device on the bus. 339 */ 340 static int 341 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 342 { 343 u_int32_t tstatus, mstatus; 344 u_int32_t command; 345 int rq, sba, fw, rate, arqsz, cal; 346 347 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 348 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 349 350 /* Set RQ to the min of mode, tstatus and mstatus */ 351 rq = AGP_MODE_GET_RQ(mode); 352 if (AGP_MODE_GET_RQ(tstatus) < rq) 353 rq = AGP_MODE_GET_RQ(tstatus); 354 if (AGP_MODE_GET_RQ(mstatus) < rq) 355 rq = AGP_MODE_GET_RQ(mstatus); 356 357 /* 358 * ARQSZ - Set the value to the maximum one. 359 * Don't allow the mode register to override values. 360 */ 361 arqsz = AGP_MODE_GET_ARQSZ(mode); 362 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 363 rq = AGP_MODE_GET_ARQSZ(tstatus); 364 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 365 rq = AGP_MODE_GET_ARQSZ(mstatus); 366 367 /* Calibration cycle - don't allow override by mode register */ 368 cal = AGP_MODE_GET_CAL(tstatus); 369 if (AGP_MODE_GET_CAL(mstatus) < cal) 370 cal = AGP_MODE_GET_CAL(mstatus); 371 372 /* SBA must be supported for AGP v3. */ 373 sba = 1; 374 375 /* Set FW if all three support it. */ 376 fw = (AGP_MODE_GET_FW(tstatus) 377 & AGP_MODE_GET_FW(mstatus) 378 & AGP_MODE_GET_FW(mode)); 379 380 /* Figure out the max rate */ 381 rate = (AGP_MODE_GET_RATE(tstatus) 382 & AGP_MODE_GET_RATE(mstatus) 383 & AGP_MODE_GET_RATE(mode)); 384 if (rate & AGP_MODE_V3_RATE_8x) 385 rate = AGP_MODE_V3_RATE_8x; 386 else 387 rate = AGP_MODE_V3_RATE_4x; 388 if (bootverbose) 389 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 390 391 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 392 393 /* Construct the new mode word and tell the hardware */ 394 command = 0; 395 command = AGP_MODE_SET_RQ(0, rq); 396 command = AGP_MODE_SET_ARQSZ(command, arqsz); 397 command = AGP_MODE_SET_CAL(command, cal); 398 command = AGP_MODE_SET_SBA(command, sba); 399 command = AGP_MODE_SET_FW(command, fw); 400 command = AGP_MODE_SET_RATE(command, rate); 401 command = AGP_MODE_SET_MODE_3(command, 1); 402 command = AGP_MODE_SET_AGP(command, 1); 403 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 404 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 405 406 return 0; 407 } 408 409 static int 410 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 411 { 412 u_int32_t tstatus, mstatus; 413 u_int32_t command; 414 int rq, sba, fw, rate; 415 416 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 417 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 418 419 /* Set RQ to the min of mode, tstatus and mstatus */ 420 rq = AGP_MODE_GET_RQ(mode); 421 if (AGP_MODE_GET_RQ(tstatus) < rq) 422 rq = AGP_MODE_GET_RQ(tstatus); 423 if (AGP_MODE_GET_RQ(mstatus) < rq) 424 rq = AGP_MODE_GET_RQ(mstatus); 425 426 /* Set SBA if all three can deal with SBA */ 427 sba = (AGP_MODE_GET_SBA(tstatus) 428 & AGP_MODE_GET_SBA(mstatus) 429 & AGP_MODE_GET_SBA(mode)); 430 431 /* Similar for FW */ 432 fw = (AGP_MODE_GET_FW(tstatus) 433 & AGP_MODE_GET_FW(mstatus) 434 & AGP_MODE_GET_FW(mode)); 435 436 /* Figure out the max rate */ 437 rate = (AGP_MODE_GET_RATE(tstatus) 438 & AGP_MODE_GET_RATE(mstatus) 439 & AGP_MODE_GET_RATE(mode)); 440 if (rate & AGP_MODE_V2_RATE_4x) 441 rate = AGP_MODE_V2_RATE_4x; 442 else if (rate & AGP_MODE_V2_RATE_2x) 443 rate = AGP_MODE_V2_RATE_2x; 444 else 445 rate = AGP_MODE_V2_RATE_1x; 446 if (bootverbose) 447 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 448 449 /* Construct the new mode word and tell the hardware */ 450 command = 0; 451 command = AGP_MODE_SET_RQ(0, rq); 452 command = AGP_MODE_SET_SBA(command, sba); 453 command = AGP_MODE_SET_FW(command, fw); 454 command = AGP_MODE_SET_RATE(command, rate); 455 command = AGP_MODE_SET_AGP(command, 1); 456 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 457 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 458 459 return 0; 460 } 461 462 int 463 agp_generic_enable(device_t dev, u_int32_t mode) 464 { 465 device_t mdev = agp_find_display(); 466 u_int32_t tstatus, mstatus; 467 468 if (!mdev) { 469 AGP_DPF("can't find display\n"); 470 return ENXIO; 471 } 472 473 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 474 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 475 476 /* 477 * Check display and bridge for AGP v3 support. AGP v3 allows 478 * more variety in topology than v2, e.g. multiple AGP devices 479 * attached to one bridge, or multiple AGP bridges in one 480 * system. This doesn't attempt to address those situations, 481 * but should work fine for a classic single AGP slot system 482 * with AGP v3. 483 */ 484 if (AGP_MODE_GET_MODE_3(mode) && 485 AGP_MODE_GET_MODE_3(tstatus) && 486 AGP_MODE_GET_MODE_3(mstatus)) 487 return (agp_v3_enable(dev, mdev, mode)); 488 else 489 return (agp_v2_enable(dev, mdev, mode)); 490 } 491 492 struct agp_memory * 493 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 494 { 495 struct agp_softc *sc = device_get_softc(dev); 496 struct agp_memory *mem; 497 498 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 499 return 0; 500 501 if (size > sc->as_maxmem - sc->as_allocated) 502 return 0; 503 504 if (type != 0) { 505 printf("agp_generic_alloc_memory: unsupported type %d\n", 506 type); 507 return 0; 508 } 509 510 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 511 mem->am_id = sc->as_nextid++; 512 mem->am_size = size; 513 mem->am_type = 0; 514 mem->am_obj = vm_object_allocate(OBJT_SWAP, atop(round_page(size))); 515 mem->am_physical = 0; 516 mem->am_offset = 0; 517 mem->am_is_bound = 0; 518 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 519 sc->as_allocated += size; 520 521 return mem; 522 } 523 524 int 525 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 526 { 527 struct agp_softc *sc = device_get_softc(dev); 528 529 if (mem->am_is_bound) 530 return EBUSY; 531 532 sc->as_allocated -= mem->am_size; 533 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 534 vm_object_deallocate(mem->am_obj); 535 free(mem, M_AGP); 536 return 0; 537 } 538 539 int 540 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 541 vm_offset_t offset) 542 { 543 struct pctrie_iter pages; 544 struct agp_softc *sc = device_get_softc(dev); 545 vm_offset_t i, j, k; 546 vm_page_t m; 547 int error; 548 549 /* Do some sanity checks first. */ 550 if ((offset & (AGP_PAGE_SIZE - 1)) != 0 || 551 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 552 device_printf(dev, "binding memory at bad offset %#x\n", 553 (int)offset); 554 return EINVAL; 555 } 556 557 /* 558 * Allocate the pages early, before acquiring the lock, 559 * because vm_page_grab() may sleep and we can't hold a mutex 560 * while sleeping. 561 */ 562 VM_OBJECT_WLOCK(mem->am_obj); 563 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 564 /* 565 * Find a page from the object and wire it 566 * down. This page will be mapped using one or more 567 * entries in the GATT (assuming that PAGE_SIZE >= 568 * AGP_PAGE_SIZE. If this is the first call to bind, 569 * the pages will be allocated and zeroed. 570 */ 571 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 572 VM_ALLOC_WIRED | VM_ALLOC_ZERO); 573 AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m)); 574 } 575 VM_OBJECT_WUNLOCK(mem->am_obj); 576 vm_page_iter_init(&pages, mem->am_obj); 577 mtx_lock(&sc->as_lock); 578 579 if (mem->am_is_bound) { 580 device_printf(dev, "memory already bound\n"); 581 error = EINVAL; 582 VM_OBJECT_WLOCK(mem->am_obj); 583 i = 0; 584 goto bad; 585 } 586 587 /* 588 * Bind the individual pages and flush the chipset's 589 * TLB. 590 */ 591 VM_OBJECT_WLOCK(mem->am_obj); 592 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 593 m = vm_radix_iter_lookup(&pages, OFF_TO_IDX(i)); 594 595 /* 596 * Install entries in the GATT, making sure that if 597 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 598 * aligned to PAGE_SIZE, we don't modify too many GATT 599 * entries. 600 */ 601 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 602 j += AGP_PAGE_SIZE) { 603 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 604 AGP_DPF("binding offset %#jx to pa %#jx\n", 605 (uintmax_t)offset + i + j, (uintmax_t)pa); 606 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 607 if (error) { 608 /* 609 * Bail out. Reverse all the mappings 610 * and unwire the pages. 611 */ 612 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 613 AGP_UNBIND_PAGE(dev, offset + k); 614 pctrie_iter_reset(&pages); 615 goto bad; 616 } 617 } 618 vm_page_xunbusy(m); 619 } 620 VM_OBJECT_WUNLOCK(mem->am_obj); 621 622 /* 623 * Make sure the chipset gets the new mappings. 624 */ 625 AGP_FLUSH_TLB(dev); 626 627 mem->am_offset = offset; 628 mem->am_is_bound = 1; 629 630 mtx_unlock(&sc->as_lock); 631 632 return 0; 633 bad: 634 mtx_unlock(&sc->as_lock); 635 VM_OBJECT_ASSERT_WLOCKED(mem->am_obj); 636 for (k = 0; k < mem->am_size; k += PAGE_SIZE) { 637 m = vm_radix_iter_lookup(&pages, OFF_TO_IDX(k)); 638 if (k >= i) 639 vm_page_xunbusy(m); 640 vm_page_unwire(m, PQ_INACTIVE); 641 } 642 VM_OBJECT_WUNLOCK(mem->am_obj); 643 644 return error; 645 } 646 647 int 648 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 649 { 650 struct pctrie_iter pages; 651 struct agp_softc *sc = device_get_softc(dev); 652 vm_page_t m; 653 int i; 654 655 mtx_lock(&sc->as_lock); 656 657 if (!mem->am_is_bound) { 658 device_printf(dev, "memory is not bound\n"); 659 mtx_unlock(&sc->as_lock); 660 return EINVAL; 661 } 662 663 /* 664 * Unbind the individual pages and flush the chipset's 665 * TLB. Unwire the pages so they can be swapped. 666 */ 667 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 668 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 669 670 AGP_FLUSH_TLB(dev); 671 672 vm_page_iter_init(&pages, mem->am_obj); 673 VM_OBJECT_WLOCK(mem->am_obj); 674 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 675 m = vm_radix_iter_lookup(&pages, atop(i)); 676 vm_page_unwire(m, PQ_INACTIVE); 677 } 678 VM_OBJECT_WUNLOCK(mem->am_obj); 679 680 mem->am_offset = 0; 681 mem->am_is_bound = 0; 682 683 mtx_unlock(&sc->as_lock); 684 685 return 0; 686 } 687 688 /* Helper functions for implementing user/kernel api */ 689 690 static int 691 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 692 { 693 struct agp_softc *sc = device_get_softc(dev); 694 695 if (sc->as_state != AGP_ACQUIRE_FREE) 696 return EBUSY; 697 sc->as_state = state; 698 699 return 0; 700 } 701 702 static int 703 agp_release_helper(device_t dev, enum agp_acquire_state state) 704 { 705 struct agp_softc *sc = device_get_softc(dev); 706 707 if (sc->as_state == AGP_ACQUIRE_FREE) 708 return 0; 709 710 if (sc->as_state != state) 711 return EBUSY; 712 713 sc->as_state = AGP_ACQUIRE_FREE; 714 return 0; 715 } 716 717 static struct agp_memory * 718 agp_find_memory(device_t dev, int id) 719 { 720 struct agp_softc *sc = device_get_softc(dev); 721 struct agp_memory *mem; 722 723 AGP_DPF("searching for memory block %d\n", id); 724 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 725 AGP_DPF("considering memory block %d\n", mem->am_id); 726 if (mem->am_id == id) 727 return mem; 728 } 729 return 0; 730 } 731 732 /* Implementation of the userland ioctl api */ 733 734 static int 735 agp_info_user(device_t dev, agp_info *info) 736 { 737 struct agp_softc *sc = device_get_softc(dev); 738 739 bzero(info, sizeof *info); 740 info->bridge_id = pci_get_devid(dev); 741 info->agp_mode = 742 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 743 if (sc->as_aperture) 744 info->aper_base = rman_get_start(sc->as_aperture); 745 else 746 info->aper_base = 0; 747 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 748 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 749 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 750 751 return 0; 752 } 753 754 static int 755 agp_setup_user(device_t dev, agp_setup *setup) 756 { 757 return AGP_ENABLE(dev, setup->agp_mode); 758 } 759 760 static int 761 agp_allocate_user(device_t dev, agp_allocate *alloc) 762 { 763 struct agp_memory *mem; 764 765 mem = AGP_ALLOC_MEMORY(dev, 766 alloc->type, 767 alloc->pg_count << AGP_PAGE_SHIFT); 768 if (mem) { 769 alloc->key = mem->am_id; 770 alloc->physical = mem->am_physical; 771 return 0; 772 } else { 773 return ENOMEM; 774 } 775 } 776 777 static int 778 agp_deallocate_user(device_t dev, int id) 779 { 780 struct agp_memory *mem = agp_find_memory(dev, id); 781 782 if (mem) { 783 AGP_FREE_MEMORY(dev, mem); 784 return 0; 785 } else { 786 return ENOENT; 787 } 788 } 789 790 static int 791 agp_bind_user(device_t dev, agp_bind *bind) 792 { 793 struct agp_memory *mem = agp_find_memory(dev, bind->key); 794 795 if (!mem) 796 return ENOENT; 797 798 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 799 } 800 801 static int 802 agp_unbind_user(device_t dev, agp_unbind *unbind) 803 { 804 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 805 806 if (!mem) 807 return ENOENT; 808 809 return AGP_UNBIND_MEMORY(dev, mem); 810 } 811 812 static int 813 agp_chipset_flush(device_t dev) 814 { 815 816 return (AGP_CHIPSET_FLUSH(dev)); 817 } 818 819 static int 820 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 821 { 822 device_t dev = kdev->si_drv1; 823 struct agp_softc *sc = device_get_softc(dev); 824 825 if (!sc->as_isopen) { 826 sc->as_isopen = 1; 827 device_busy(dev); 828 } 829 830 return 0; 831 } 832 833 static int 834 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 835 { 836 device_t dev = kdev->si_drv1; 837 struct agp_softc *sc = device_get_softc(dev); 838 struct agp_memory *mem; 839 840 /* 841 * Clear the GATT and force release on last close 842 */ 843 while ((mem = TAILQ_FIRST(&sc->as_memory)) != NULL) { 844 if (mem->am_is_bound) 845 AGP_UNBIND_MEMORY(dev, mem); 846 AGP_FREE_MEMORY(dev, mem); 847 } 848 if (sc->as_state == AGP_ACQUIRE_USER) 849 agp_release_helper(dev, AGP_ACQUIRE_USER); 850 sc->as_isopen = 0; 851 device_unbusy(dev); 852 853 return 0; 854 } 855 856 static int 857 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 858 { 859 device_t dev = kdev->si_drv1; 860 861 switch (cmd) { 862 case AGPIOC_INFO: 863 return agp_info_user(dev, (agp_info *) data); 864 865 case AGPIOC_ACQUIRE: 866 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 867 868 case AGPIOC_RELEASE: 869 return agp_release_helper(dev, AGP_ACQUIRE_USER); 870 871 case AGPIOC_SETUP: 872 return agp_setup_user(dev, (agp_setup *)data); 873 874 case AGPIOC_ALLOCATE: 875 return agp_allocate_user(dev, (agp_allocate *)data); 876 877 case AGPIOC_DEALLOCATE: 878 return agp_deallocate_user(dev, *(int *) data); 879 880 case AGPIOC_BIND: 881 return agp_bind_user(dev, (agp_bind *)data); 882 883 case AGPIOC_UNBIND: 884 return agp_unbind_user(dev, (agp_unbind *)data); 885 886 case AGPIOC_CHIPSET_FLUSH: 887 return agp_chipset_flush(dev); 888 } 889 890 return EINVAL; 891 } 892 893 static int 894 agp_mmap(struct cdev *kdev, vm_ooffset_t offset, vm_paddr_t *paddr, 895 int prot, vm_memattr_t *memattr) 896 { 897 device_t dev = kdev->si_drv1; 898 struct agp_softc *sc = device_get_softc(dev); 899 900 if (offset > AGP_GET_APERTURE(dev)) 901 return -1; 902 if (sc->as_aperture == NULL) 903 return -1; 904 *paddr = rman_get_start(sc->as_aperture) + offset; 905 return 0; 906 } 907 908 /* Implementation of the kernel api */ 909 910 device_t 911 agp_find_device(void) 912 { 913 device_t *children, child; 914 int i, count; 915 916 if (!agp_devclass) 917 return NULL; 918 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 919 return NULL; 920 child = NULL; 921 for (i = 0; i < count; i++) { 922 if (device_is_attached(children[i])) { 923 child = children[i]; 924 break; 925 } 926 } 927 free(children, M_TEMP); 928 return child; 929 } 930 931 enum agp_acquire_state 932 agp_state(device_t dev) 933 { 934 struct agp_softc *sc = device_get_softc(dev); 935 return sc->as_state; 936 } 937 938 void 939 agp_get_info(device_t dev, struct agp_info *info) 940 { 941 struct agp_softc *sc = device_get_softc(dev); 942 943 info->ai_mode = 944 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 945 if (sc->as_aperture != NULL) 946 info->ai_aperture_base = rman_get_start(sc->as_aperture); 947 else 948 info->ai_aperture_base = 0; 949 info->ai_aperture_size = AGP_GET_APERTURE(dev); 950 info->ai_memory_allowed = sc->as_maxmem; 951 info->ai_memory_used = sc->as_allocated; 952 } 953 954 int 955 agp_acquire(device_t dev) 956 { 957 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 958 } 959 960 int 961 agp_release(device_t dev) 962 { 963 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 964 } 965 966 int 967 agp_enable(device_t dev, u_int32_t mode) 968 { 969 return AGP_ENABLE(dev, mode); 970 } 971 972 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 973 { 974 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 975 } 976 977 void agp_free_memory(device_t dev, void *handle) 978 { 979 struct agp_memory *mem = (struct agp_memory *) handle; 980 AGP_FREE_MEMORY(dev, mem); 981 } 982 983 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 984 { 985 struct agp_memory *mem = (struct agp_memory *) handle; 986 return AGP_BIND_MEMORY(dev, mem, offset); 987 } 988 989 int agp_unbind_memory(device_t dev, void *handle) 990 { 991 struct agp_memory *mem = (struct agp_memory *) handle; 992 return AGP_UNBIND_MEMORY(dev, mem); 993 } 994 995 void agp_memory_info(device_t dev, void *handle, struct 996 agp_memory_info *mi) 997 { 998 struct agp_memory *mem = (struct agp_memory *) handle; 999 1000 mi->ami_size = mem->am_size; 1001 mi->ami_physical = mem->am_physical; 1002 mi->ami_offset = mem->am_offset; 1003 mi->ami_is_bound = mem->am_is_bound; 1004 } 1005 1006 int 1007 agp_bind_pages(device_t dev, vm_page_t *pages, vm_size_t size, 1008 vm_offset_t offset) 1009 { 1010 struct agp_softc *sc; 1011 vm_offset_t i, j, k, pa; 1012 vm_page_t m; 1013 int error; 1014 1015 if ((size & (AGP_PAGE_SIZE - 1)) != 0 || 1016 (offset & (AGP_PAGE_SIZE - 1)) != 0) 1017 return (EINVAL); 1018 1019 sc = device_get_softc(dev); 1020 1021 mtx_lock(&sc->as_lock); 1022 for (i = 0; i < size; i += PAGE_SIZE) { 1023 m = pages[OFF_TO_IDX(i)]; 1024 KASSERT(vm_page_wired(m), 1025 ("agp_bind_pages: page %p hasn't been wired", m)); 1026 1027 /* 1028 * Install entries in the GATT, making sure that if 1029 * AGP_PAGE_SIZE < PAGE_SIZE and size is not 1030 * aligned to PAGE_SIZE, we don't modify too many GATT 1031 * entries. 1032 */ 1033 for (j = 0; j < PAGE_SIZE && i + j < size; j += AGP_PAGE_SIZE) { 1034 pa = VM_PAGE_TO_PHYS(m) + j; 1035 AGP_DPF("binding offset %#jx to pa %#jx\n", 1036 (uintmax_t)offset + i + j, (uintmax_t)pa); 1037 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 1038 if (error) { 1039 /* 1040 * Bail out. Reverse all the mappings. 1041 */ 1042 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 1043 AGP_UNBIND_PAGE(dev, offset + k); 1044 1045 mtx_unlock(&sc->as_lock); 1046 return (error); 1047 } 1048 } 1049 } 1050 1051 AGP_FLUSH_TLB(dev); 1052 1053 mtx_unlock(&sc->as_lock); 1054 return (0); 1055 } 1056 1057 int 1058 agp_unbind_pages(device_t dev, vm_size_t size, vm_offset_t offset) 1059 { 1060 struct agp_softc *sc; 1061 vm_offset_t i; 1062 1063 if ((size & (AGP_PAGE_SIZE - 1)) != 0 || 1064 (offset & (AGP_PAGE_SIZE - 1)) != 0) 1065 return (EINVAL); 1066 1067 sc = device_get_softc(dev); 1068 1069 mtx_lock(&sc->as_lock); 1070 for (i = 0; i < size; i += AGP_PAGE_SIZE) 1071 AGP_UNBIND_PAGE(dev, offset + i); 1072 1073 AGP_FLUSH_TLB(dev); 1074 1075 mtx_unlock(&sc->as_lock); 1076 return (0); 1077 } 1078