1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/agpio.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 45 #include <dev/agp/agppriv.h> 46 #include <dev/agp/agpvar.h> 47 #include <dev/agp/agpreg.h> 48 #include <dev/pci/pcivar.h> 49 #include <dev/pci/pcireg.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_pageout.h> 55 #include <vm/pmap.h> 56 57 #include <machine/md_var.h> 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 MODULE_VERSION(agp, 1); 63 64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 65 66 /* agp_drv.c */ 67 static d_open_t agp_open; 68 static d_close_t agp_close; 69 static d_ioctl_t agp_ioctl; 70 static d_mmap_t agp_mmap; 71 72 static struct cdevsw agp_cdevsw = { 73 .d_version = D_VERSION, 74 .d_flags = D_NEEDGIANT, 75 .d_open = agp_open, 76 .d_close = agp_close, 77 .d_ioctl = agp_ioctl, 78 .d_mmap = agp_mmap, 79 .d_name = "agp", 80 }; 81 82 static devclass_t agp_devclass; 83 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev)) 84 85 /* Helper functions for implementing chipset mini drivers. */ 86 87 void 88 agp_flush_cache() 89 { 90 #if defined(__i386__) || defined(__amd64__) 91 wbinvd(); 92 #endif 93 } 94 95 u_int8_t 96 agp_find_caps(device_t dev) 97 { 98 int capreg; 99 100 101 if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0) 102 capreg = 0; 103 return (capreg); 104 } 105 106 /* 107 * Find an AGP display device (if any). 108 */ 109 static device_t 110 agp_find_display(void) 111 { 112 devclass_t pci = devclass_find("pci"); 113 device_t bus, dev = 0; 114 device_t *kids; 115 int busnum, numkids, i; 116 117 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 118 bus = devclass_get_device(pci, busnum); 119 if (!bus) 120 continue; 121 device_get_children(bus, &kids, &numkids); 122 for (i = 0; i < numkids; i++) { 123 dev = kids[i]; 124 if (pci_get_class(dev) == PCIC_DISPLAY 125 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 126 if (agp_find_caps(dev)) { 127 free(kids, M_TEMP); 128 return dev; 129 } 130 131 } 132 free(kids, M_TEMP); 133 } 134 135 return 0; 136 } 137 138 struct agp_gatt * 139 agp_alloc_gatt(device_t dev) 140 { 141 u_int32_t apsize = AGP_GET_APERTURE(dev); 142 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 143 struct agp_gatt *gatt; 144 145 if (bootverbose) 146 device_printf(dev, 147 "allocating GATT for aperture of size %dM\n", 148 apsize / (1024*1024)); 149 150 if (entries == 0) { 151 device_printf(dev, "bad aperture size\n"); 152 return NULL; 153 } 154 155 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 156 if (!gatt) 157 return 0; 158 159 gatt->ag_entries = entries; 160 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 161 0, ~0, PAGE_SIZE, 0); 162 if (!gatt->ag_virtual) { 163 if (bootverbose) 164 device_printf(dev, "contiguous allocation failed\n"); 165 free(gatt, M_AGP); 166 return 0; 167 } 168 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 169 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 170 agp_flush_cache(); 171 172 return gatt; 173 } 174 175 void 176 agp_free_gatt(struct agp_gatt *gatt) 177 { 178 contigfree(gatt->ag_virtual, 179 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 180 free(gatt, M_AGP); 181 } 182 183 static u_int agp_max[][2] = { 184 {0, 0}, 185 {32, 4}, 186 {64, 28}, 187 {128, 96}, 188 {256, 204}, 189 {512, 440}, 190 {1024, 942}, 191 {2048, 1920}, 192 {4096, 3932} 193 }; 194 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 195 196 /** 197 * Sets the PCI resource which represents the AGP aperture. 198 * 199 * If not called, the default AGP aperture resource of AGP_APBASE will 200 * be used. Must be called before agp_generic_attach(). 201 */ 202 void 203 agp_set_aperture_resource(device_t dev, int rid) 204 { 205 struct agp_softc *sc = device_get_softc(dev); 206 207 sc->as_aperture_rid = rid; 208 } 209 210 int 211 agp_generic_attach(device_t dev) 212 { 213 struct agp_softc *sc = device_get_softc(dev); 214 int i; 215 u_int memsize; 216 217 /* 218 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE 219 * because the kernel doesn't need to map it. 220 */ 221 if (sc->as_aperture_rid == 0) 222 sc->as_aperture_rid = AGP_APBASE; 223 224 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 225 &sc->as_aperture_rid, RF_SHAREABLE); 226 if (!sc->as_aperture) 227 return ENOMEM; 228 229 /* 230 * Work out an upper bound for agp memory allocation. This 231 * uses a heurisitc table from the Linux driver. 232 */ 233 memsize = ptoa(Maxmem) >> 20; 234 for (i = 0; i < agp_max_size; i++) { 235 if (memsize <= agp_max[i][0]) 236 break; 237 } 238 if (i == agp_max_size) i = agp_max_size - 1; 239 sc->as_maxmem = agp_max[i][1] << 20U; 240 241 /* 242 * The lock is used to prevent re-entry to 243 * agp_generic_bind_memory() since that function can sleep. 244 */ 245 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 246 247 /* 248 * Initialise stuff for the userland device. 249 */ 250 agp_devclass = devclass_find("agp"); 251 TAILQ_INIT(&sc->as_memory); 252 sc->as_nextid = 1; 253 254 sc->as_devnode = make_dev(&agp_cdevsw, 255 device_get_unit(dev), 256 UID_ROOT, 257 GID_WHEEL, 258 0600, 259 "agpgart"); 260 261 return 0; 262 } 263 264 void 265 agp_free_cdev(device_t dev) 266 { 267 struct agp_softc *sc = device_get_softc(dev); 268 269 destroy_dev(sc->as_devnode); 270 } 271 272 void 273 agp_free_res(device_t dev) 274 { 275 struct agp_softc *sc = device_get_softc(dev); 276 277 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, 278 sc->as_aperture); 279 mtx_destroy(&sc->as_lock); 280 agp_flush_cache(); 281 } 282 283 int 284 agp_generic_detach(device_t dev) 285 { 286 287 agp_free_cdev(dev); 288 agp_free_res(dev); 289 return 0; 290 } 291 292 /** 293 * Default AGP aperture size detection which simply returns the size of 294 * the aperture's PCI resource. 295 */ 296 int 297 agp_generic_get_aperture(device_t dev) 298 { 299 struct agp_softc *sc = device_get_softc(dev); 300 301 return rman_get_size(sc->as_aperture); 302 } 303 304 /** 305 * Default AGP aperture size setting function, which simply doesn't allow 306 * changes to resource size. 307 */ 308 int 309 agp_generic_set_aperture(device_t dev, u_int32_t aperture) 310 { 311 u_int32_t current_aperture; 312 313 current_aperture = AGP_GET_APERTURE(dev); 314 if (current_aperture != aperture) 315 return EINVAL; 316 else 317 return 0; 318 } 319 320 /* 321 * This does the enable logic for v3, with the same topology 322 * restrictions as in place for v2 -- one bus, one device on the bus. 323 */ 324 static int 325 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 326 { 327 u_int32_t tstatus, mstatus; 328 u_int32_t command; 329 int rq, sba, fw, rate, arqsz, cal; 330 331 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 332 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 333 334 /* Set RQ to the min of mode, tstatus and mstatus */ 335 rq = AGP_MODE_GET_RQ(mode); 336 if (AGP_MODE_GET_RQ(tstatus) < rq) 337 rq = AGP_MODE_GET_RQ(tstatus); 338 if (AGP_MODE_GET_RQ(mstatus) < rq) 339 rq = AGP_MODE_GET_RQ(mstatus); 340 341 /* 342 * ARQSZ - Set the value to the maximum one. 343 * Don't allow the mode register to override values. 344 */ 345 arqsz = AGP_MODE_GET_ARQSZ(mode); 346 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 347 rq = AGP_MODE_GET_ARQSZ(tstatus); 348 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 349 rq = AGP_MODE_GET_ARQSZ(mstatus); 350 351 /* Calibration cycle - don't allow override by mode register */ 352 cal = AGP_MODE_GET_CAL(tstatus); 353 if (AGP_MODE_GET_CAL(mstatus) < cal) 354 cal = AGP_MODE_GET_CAL(mstatus); 355 356 /* SBA must be supported for AGP v3. */ 357 sba = 1; 358 359 /* Set FW if all three support it. */ 360 fw = (AGP_MODE_GET_FW(tstatus) 361 & AGP_MODE_GET_FW(mstatus) 362 & AGP_MODE_GET_FW(mode)); 363 364 /* Figure out the max rate */ 365 rate = (AGP_MODE_GET_RATE(tstatus) 366 & AGP_MODE_GET_RATE(mstatus) 367 & AGP_MODE_GET_RATE(mode)); 368 if (rate & AGP_MODE_V3_RATE_8x) 369 rate = AGP_MODE_V3_RATE_8x; 370 else 371 rate = AGP_MODE_V3_RATE_4x; 372 if (bootverbose) 373 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 374 375 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 376 377 /* Construct the new mode word and tell the hardware */ 378 command = 0; 379 command = AGP_MODE_SET_RQ(0, rq); 380 command = AGP_MODE_SET_ARQSZ(command, arqsz); 381 command = AGP_MODE_SET_CAL(command, cal); 382 command = AGP_MODE_SET_SBA(command, sba); 383 command = AGP_MODE_SET_FW(command, fw); 384 command = AGP_MODE_SET_RATE(command, rate); 385 command = AGP_MODE_SET_MODE_3(command, 1); 386 command = AGP_MODE_SET_AGP(command, 1); 387 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 388 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 389 390 return 0; 391 } 392 393 static int 394 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 395 { 396 u_int32_t tstatus, mstatus; 397 u_int32_t command; 398 int rq, sba, fw, rate; 399 400 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 401 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 402 403 /* Set RQ to the min of mode, tstatus and mstatus */ 404 rq = AGP_MODE_GET_RQ(mode); 405 if (AGP_MODE_GET_RQ(tstatus) < rq) 406 rq = AGP_MODE_GET_RQ(tstatus); 407 if (AGP_MODE_GET_RQ(mstatus) < rq) 408 rq = AGP_MODE_GET_RQ(mstatus); 409 410 /* Set SBA if all three can deal with SBA */ 411 sba = (AGP_MODE_GET_SBA(tstatus) 412 & AGP_MODE_GET_SBA(mstatus) 413 & AGP_MODE_GET_SBA(mode)); 414 415 /* Similar for FW */ 416 fw = (AGP_MODE_GET_FW(tstatus) 417 & AGP_MODE_GET_FW(mstatus) 418 & AGP_MODE_GET_FW(mode)); 419 420 /* Figure out the max rate */ 421 rate = (AGP_MODE_GET_RATE(tstatus) 422 & AGP_MODE_GET_RATE(mstatus) 423 & AGP_MODE_GET_RATE(mode)); 424 if (rate & AGP_MODE_V2_RATE_4x) 425 rate = AGP_MODE_V2_RATE_4x; 426 else if (rate & AGP_MODE_V2_RATE_2x) 427 rate = AGP_MODE_V2_RATE_2x; 428 else 429 rate = AGP_MODE_V2_RATE_1x; 430 if (bootverbose) 431 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 432 433 /* Construct the new mode word and tell the hardware */ 434 command = 0; 435 command = AGP_MODE_SET_RQ(0, rq); 436 command = AGP_MODE_SET_SBA(command, sba); 437 command = AGP_MODE_SET_FW(command, fw); 438 command = AGP_MODE_SET_RATE(command, rate); 439 command = AGP_MODE_SET_AGP(command, 1); 440 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 441 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 442 443 return 0; 444 } 445 446 int 447 agp_generic_enable(device_t dev, u_int32_t mode) 448 { 449 device_t mdev = agp_find_display(); 450 u_int32_t tstatus, mstatus; 451 452 if (!mdev) { 453 AGP_DPF("can't find display\n"); 454 return ENXIO; 455 } 456 457 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 458 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 459 460 /* 461 * Check display and bridge for AGP v3 support. AGP v3 allows 462 * more variety in topology than v2, e.g. multiple AGP devices 463 * attached to one bridge, or multiple AGP bridges in one 464 * system. This doesn't attempt to address those situations, 465 * but should work fine for a classic single AGP slot system 466 * with AGP v3. 467 */ 468 if (AGP_MODE_GET_MODE_3(mode) && 469 AGP_MODE_GET_MODE_3(tstatus) && 470 AGP_MODE_GET_MODE_3(mstatus)) 471 return (agp_v3_enable(dev, mdev, mode)); 472 else 473 return (agp_v2_enable(dev, mdev, mode)); 474 } 475 476 struct agp_memory * 477 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 478 { 479 struct agp_softc *sc = device_get_softc(dev); 480 struct agp_memory *mem; 481 482 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 483 return 0; 484 485 if (sc->as_allocated + size > sc->as_maxmem) 486 return 0; 487 488 if (type != 0) { 489 printf("agp_generic_alloc_memory: unsupported type %d\n", 490 type); 491 return 0; 492 } 493 494 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 495 mem->am_id = sc->as_nextid++; 496 mem->am_size = size; 497 mem->am_type = 0; 498 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 499 mem->am_physical = 0; 500 mem->am_offset = 0; 501 mem->am_is_bound = 0; 502 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 503 sc->as_allocated += size; 504 505 return mem; 506 } 507 508 int 509 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 510 { 511 struct agp_softc *sc = device_get_softc(dev); 512 513 if (mem->am_is_bound) 514 return EBUSY; 515 516 sc->as_allocated -= mem->am_size; 517 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 518 vm_object_deallocate(mem->am_obj); 519 free(mem, M_AGP); 520 return 0; 521 } 522 523 int 524 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 525 vm_offset_t offset) 526 { 527 struct agp_softc *sc = device_get_softc(dev); 528 vm_offset_t i, j, k; 529 vm_page_t m; 530 int error; 531 532 /* Do some sanity checks first. */ 533 if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 || 534 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 535 device_printf(dev, "binding memory at bad offset %#x\n", 536 (int)offset); 537 return EINVAL; 538 } 539 540 /* 541 * Allocate the pages early, before acquiring the lock, 542 * because vm_page_grab() used with VM_ALLOC_RETRY may 543 * block and we can't hold a mutex while blocking. 544 */ 545 VM_OBJECT_LOCK(mem->am_obj); 546 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 547 /* 548 * Find a page from the object and wire it 549 * down. This page will be mapped using one or more 550 * entries in the GATT (assuming that PAGE_SIZE >= 551 * AGP_PAGE_SIZE. If this is the first call to bind, 552 * the pages will be allocated and zeroed. 553 */ 554 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 555 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 556 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m)); 557 } 558 VM_OBJECT_UNLOCK(mem->am_obj); 559 560 mtx_lock(&sc->as_lock); 561 562 if (mem->am_is_bound) { 563 device_printf(dev, "memory already bound\n"); 564 error = EINVAL; 565 VM_OBJECT_LOCK(mem->am_obj); 566 goto bad; 567 } 568 569 /* 570 * Bind the individual pages and flush the chipset's 571 * TLB. 572 */ 573 VM_OBJECT_LOCK(mem->am_obj); 574 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 575 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 576 577 /* 578 * Install entries in the GATT, making sure that if 579 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 580 * aligned to PAGE_SIZE, we don't modify too many GATT 581 * entries. 582 */ 583 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 584 j += AGP_PAGE_SIZE) { 585 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 586 AGP_DPF("binding offset %#x to pa %#x\n", 587 offset + i + j, pa); 588 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 589 if (error) { 590 /* 591 * Bail out. Reverse all the mappings 592 * and unwire the pages. 593 */ 594 vm_page_wakeup(m); 595 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 596 AGP_UNBIND_PAGE(dev, offset + k); 597 goto bad; 598 } 599 } 600 vm_page_wakeup(m); 601 } 602 VM_OBJECT_UNLOCK(mem->am_obj); 603 604 /* 605 * Flush the cpu cache since we are providing a new mapping 606 * for these pages. 607 */ 608 agp_flush_cache(); 609 610 /* 611 * Make sure the chipset gets the new mappings. 612 */ 613 AGP_FLUSH_TLB(dev); 614 615 mem->am_offset = offset; 616 mem->am_is_bound = 1; 617 618 mtx_unlock(&sc->as_lock); 619 620 return 0; 621 bad: 622 mtx_unlock(&sc->as_lock); 623 VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED); 624 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 625 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 626 vm_page_lock_queues(); 627 vm_page_unwire(m, 0); 628 vm_page_unlock_queues(); 629 } 630 VM_OBJECT_UNLOCK(mem->am_obj); 631 632 return error; 633 } 634 635 int 636 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 637 { 638 struct agp_softc *sc = device_get_softc(dev); 639 vm_page_t m; 640 int i; 641 642 mtx_lock(&sc->as_lock); 643 644 if (!mem->am_is_bound) { 645 device_printf(dev, "memory is not bound\n"); 646 mtx_unlock(&sc->as_lock); 647 return EINVAL; 648 } 649 650 651 /* 652 * Unbind the individual pages and flush the chipset's 653 * TLB. Unwire the pages so they can be swapped. 654 */ 655 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 656 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 657 VM_OBJECT_LOCK(mem->am_obj); 658 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 659 m = vm_page_lookup(mem->am_obj, atop(i)); 660 vm_page_lock_queues(); 661 vm_page_unwire(m, 0); 662 vm_page_unlock_queues(); 663 } 664 VM_OBJECT_UNLOCK(mem->am_obj); 665 666 agp_flush_cache(); 667 AGP_FLUSH_TLB(dev); 668 669 mem->am_offset = 0; 670 mem->am_is_bound = 0; 671 672 mtx_unlock(&sc->as_lock); 673 674 return 0; 675 } 676 677 /* Helper functions for implementing user/kernel api */ 678 679 static int 680 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 681 { 682 struct agp_softc *sc = device_get_softc(dev); 683 684 if (sc->as_state != AGP_ACQUIRE_FREE) 685 return EBUSY; 686 sc->as_state = state; 687 688 return 0; 689 } 690 691 static int 692 agp_release_helper(device_t dev, enum agp_acquire_state state) 693 { 694 struct agp_softc *sc = device_get_softc(dev); 695 696 if (sc->as_state == AGP_ACQUIRE_FREE) 697 return 0; 698 699 if (sc->as_state != state) 700 return EBUSY; 701 702 sc->as_state = AGP_ACQUIRE_FREE; 703 return 0; 704 } 705 706 static struct agp_memory * 707 agp_find_memory(device_t dev, int id) 708 { 709 struct agp_softc *sc = device_get_softc(dev); 710 struct agp_memory *mem; 711 712 AGP_DPF("searching for memory block %d\n", id); 713 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 714 AGP_DPF("considering memory block %d\n", mem->am_id); 715 if (mem->am_id == id) 716 return mem; 717 } 718 return 0; 719 } 720 721 /* Implementation of the userland ioctl api */ 722 723 static int 724 agp_info_user(device_t dev, agp_info *info) 725 { 726 struct agp_softc *sc = device_get_softc(dev); 727 728 bzero(info, sizeof *info); 729 info->bridge_id = pci_get_devid(dev); 730 info->agp_mode = 731 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 732 info->aper_base = rman_get_start(sc->as_aperture); 733 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 734 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 735 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 736 737 return 0; 738 } 739 740 static int 741 agp_setup_user(device_t dev, agp_setup *setup) 742 { 743 return AGP_ENABLE(dev, setup->agp_mode); 744 } 745 746 static int 747 agp_allocate_user(device_t dev, agp_allocate *alloc) 748 { 749 struct agp_memory *mem; 750 751 mem = AGP_ALLOC_MEMORY(dev, 752 alloc->type, 753 alloc->pg_count << AGP_PAGE_SHIFT); 754 if (mem) { 755 alloc->key = mem->am_id; 756 alloc->physical = mem->am_physical; 757 return 0; 758 } else { 759 return ENOMEM; 760 } 761 } 762 763 static int 764 agp_deallocate_user(device_t dev, int id) 765 { 766 struct agp_memory *mem = agp_find_memory(dev, id);; 767 768 if (mem) { 769 AGP_FREE_MEMORY(dev, mem); 770 return 0; 771 } else { 772 return ENOENT; 773 } 774 } 775 776 static int 777 agp_bind_user(device_t dev, agp_bind *bind) 778 { 779 struct agp_memory *mem = agp_find_memory(dev, bind->key); 780 781 if (!mem) 782 return ENOENT; 783 784 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 785 } 786 787 static int 788 agp_unbind_user(device_t dev, agp_unbind *unbind) 789 { 790 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 791 792 if (!mem) 793 return ENOENT; 794 795 return AGP_UNBIND_MEMORY(dev, mem); 796 } 797 798 static int 799 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 800 { 801 device_t dev = KDEV2DEV(kdev); 802 struct agp_softc *sc = device_get_softc(dev); 803 804 if (!sc->as_isopen) { 805 sc->as_isopen = 1; 806 device_busy(dev); 807 } 808 809 return 0; 810 } 811 812 static int 813 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 814 { 815 device_t dev = KDEV2DEV(kdev); 816 struct agp_softc *sc = device_get_softc(dev); 817 struct agp_memory *mem; 818 819 /* 820 * Clear the GATT and force release on last close 821 */ 822 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 823 if (mem->am_is_bound) 824 AGP_UNBIND_MEMORY(dev, mem); 825 AGP_FREE_MEMORY(dev, mem); 826 } 827 if (sc->as_state == AGP_ACQUIRE_USER) 828 agp_release_helper(dev, AGP_ACQUIRE_USER); 829 sc->as_isopen = 0; 830 device_unbusy(dev); 831 832 return 0; 833 } 834 835 static int 836 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 837 { 838 device_t dev = KDEV2DEV(kdev); 839 840 switch (cmd) { 841 case AGPIOC_INFO: 842 return agp_info_user(dev, (agp_info *) data); 843 844 case AGPIOC_ACQUIRE: 845 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 846 847 case AGPIOC_RELEASE: 848 return agp_release_helper(dev, AGP_ACQUIRE_USER); 849 850 case AGPIOC_SETUP: 851 return agp_setup_user(dev, (agp_setup *)data); 852 853 case AGPIOC_ALLOCATE: 854 return agp_allocate_user(dev, (agp_allocate *)data); 855 856 case AGPIOC_DEALLOCATE: 857 return agp_deallocate_user(dev, *(int *) data); 858 859 case AGPIOC_BIND: 860 return agp_bind_user(dev, (agp_bind *)data); 861 862 case AGPIOC_UNBIND: 863 return agp_unbind_user(dev, (agp_unbind *)data); 864 865 } 866 867 return EINVAL; 868 } 869 870 static int 871 agp_mmap(struct cdev *kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot) 872 { 873 device_t dev = KDEV2DEV(kdev); 874 struct agp_softc *sc = device_get_softc(dev); 875 876 if (offset > AGP_GET_APERTURE(dev)) 877 return -1; 878 *paddr = rman_get_start(sc->as_aperture) + offset; 879 return 0; 880 } 881 882 /* Implementation of the kernel api */ 883 884 device_t 885 agp_find_device() 886 { 887 device_t *children, child; 888 int i, count; 889 890 if (!agp_devclass) 891 return NULL; 892 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 893 return NULL; 894 child = NULL; 895 for (i = 0; i < count; i++) { 896 if (device_is_attached(children[i])) { 897 child = children[i]; 898 break; 899 } 900 } 901 free(children, M_TEMP); 902 return child; 903 } 904 905 enum agp_acquire_state 906 agp_state(device_t dev) 907 { 908 struct agp_softc *sc = device_get_softc(dev); 909 return sc->as_state; 910 } 911 912 void 913 agp_get_info(device_t dev, struct agp_info *info) 914 { 915 struct agp_softc *sc = device_get_softc(dev); 916 917 info->ai_mode = 918 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 919 info->ai_aperture_base = rman_get_start(sc->as_aperture); 920 info->ai_aperture_size = rman_get_size(sc->as_aperture); 921 info->ai_memory_allowed = sc->as_maxmem; 922 info->ai_memory_used = sc->as_allocated; 923 } 924 925 int 926 agp_acquire(device_t dev) 927 { 928 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 929 } 930 931 int 932 agp_release(device_t dev) 933 { 934 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 935 } 936 937 int 938 agp_enable(device_t dev, u_int32_t mode) 939 { 940 return AGP_ENABLE(dev, mode); 941 } 942 943 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 944 { 945 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 946 } 947 948 void agp_free_memory(device_t dev, void *handle) 949 { 950 struct agp_memory *mem = (struct agp_memory *) handle; 951 AGP_FREE_MEMORY(dev, mem); 952 } 953 954 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 955 { 956 struct agp_memory *mem = (struct agp_memory *) handle; 957 return AGP_BIND_MEMORY(dev, mem, offset); 958 } 959 960 int agp_unbind_memory(device_t dev, void *handle) 961 { 962 struct agp_memory *mem = (struct agp_memory *) handle; 963 return AGP_UNBIND_MEMORY(dev, mem); 964 } 965 966 void agp_memory_info(device_t dev, void *handle, struct 967 agp_memory_info *mi) 968 { 969 struct agp_memory *mem = (struct agp_memory *) handle; 970 971 mi->ami_size = mem->am_size; 972 mi->ami_physical = mem->am_physical; 973 mi->ami_offset = mem->am_offset; 974 mi->ami_is_bound = mem->am_is_bound; 975 } 976