1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/agpio.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 45 #include <dev/pci/pcivar.h> 46 #include <dev/pci/pcireg.h> 47 #include <pci/agppriv.h> 48 #include <pci/agpvar.h> 49 #include <pci/agpreg.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_pageout.h> 55 #include <vm/pmap.h> 56 57 #include <machine/md_var.h> 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 MODULE_VERSION(agp, 1); 63 64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 65 66 /* agp_drv.c */ 67 static d_open_t agp_open; 68 static d_close_t agp_close; 69 static d_ioctl_t agp_ioctl; 70 static d_mmap_t agp_mmap; 71 72 static struct cdevsw agp_cdevsw = { 73 .d_version = D_VERSION, 74 .d_flags = D_NEEDGIANT, 75 .d_open = agp_open, 76 .d_close = agp_close, 77 .d_ioctl = agp_ioctl, 78 .d_mmap = agp_mmap, 79 .d_name = "agp", 80 }; 81 82 static devclass_t agp_devclass; 83 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev)) 84 85 /* Helper functions for implementing chipset mini drivers. */ 86 87 void 88 agp_flush_cache() 89 { 90 #if defined(__i386__) || defined(__amd64__) 91 wbinvd(); 92 #endif 93 #ifdef __alpha__ 94 /* FIXME: This is most likely not correct as it doesn't flush CPU 95 * write caches, but we don't have a facility to do that and 96 * this is all linux does, too */ 97 alpha_mb(); 98 #endif 99 } 100 101 u_int8_t 102 agp_find_caps(device_t dev) 103 { 104 u_int32_t status; 105 u_int8_t ptr, next; 106 107 /* 108 * Check the CAP_LIST bit of the PCI status register first. 109 */ 110 status = pci_read_config(dev, PCIR_STATUS, 2); 111 if (!(status & 0x10)) 112 return 0; 113 114 /* 115 * Traverse the capabilities list. 116 */ 117 for (ptr = pci_read_config(dev, AGP_CAPPTR, 1); 118 ptr != 0; 119 ptr = next) { 120 u_int32_t capid = pci_read_config(dev, ptr, 4); 121 next = AGP_CAPID_GET_NEXT_PTR(capid); 122 123 /* 124 * If this capability entry ID is 2, then we are done. 125 */ 126 if (AGP_CAPID_GET_CAP_ID(capid) == 2) 127 return ptr; 128 } 129 130 return 0; 131 } 132 133 /* 134 * Find an AGP display device (if any). 135 */ 136 static device_t 137 agp_find_display(void) 138 { 139 devclass_t pci = devclass_find("pci"); 140 device_t bus, dev = 0; 141 device_t *kids; 142 int busnum, numkids, i; 143 144 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 145 bus = devclass_get_device(pci, busnum); 146 if (!bus) 147 continue; 148 device_get_children(bus, &kids, &numkids); 149 for (i = 0; i < numkids; i++) { 150 dev = kids[i]; 151 if (pci_get_class(dev) == PCIC_DISPLAY 152 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 153 if (agp_find_caps(dev)) { 154 free(kids, M_TEMP); 155 return dev; 156 } 157 158 } 159 free(kids, M_TEMP); 160 } 161 162 return 0; 163 } 164 165 struct agp_gatt * 166 agp_alloc_gatt(device_t dev) 167 { 168 u_int32_t apsize = AGP_GET_APERTURE(dev); 169 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 170 struct agp_gatt *gatt; 171 172 if (bootverbose) 173 device_printf(dev, 174 "allocating GATT for aperture of size %dM\n", 175 apsize / (1024*1024)); 176 177 if (entries == 0) { 178 device_printf(dev, "bad aperture size\n"); 179 return NULL; 180 } 181 182 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 183 if (!gatt) 184 return 0; 185 186 gatt->ag_entries = entries; 187 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0, 188 0, ~0, PAGE_SIZE, 0); 189 if (!gatt->ag_virtual) { 190 if (bootverbose) 191 device_printf(dev, "contiguous allocation failed\n"); 192 free(gatt, M_AGP); 193 return 0; 194 } 195 bzero(gatt->ag_virtual, entries * sizeof(u_int32_t)); 196 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 197 agp_flush_cache(); 198 199 return gatt; 200 } 201 202 void 203 agp_free_gatt(struct agp_gatt *gatt) 204 { 205 contigfree(gatt->ag_virtual, 206 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 207 free(gatt, M_AGP); 208 } 209 210 static int agp_max[][2] = { 211 {0, 0}, 212 {32, 4}, 213 {64, 28}, 214 {128, 96}, 215 {256, 204}, 216 {512, 440}, 217 {1024, 942}, 218 {2048, 1920}, 219 {4096, 3932} 220 }; 221 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 222 223 int 224 agp_generic_attach(device_t dev) 225 { 226 struct agp_softc *sc = device_get_softc(dev); 227 int rid, memsize, i; 228 229 /* 230 * Find and map the aperture. 231 */ 232 rid = AGP_APBASE; 233 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 234 RF_ACTIVE); 235 if (!sc->as_aperture) 236 return ENOMEM; 237 238 /* 239 * Work out an upper bound for agp memory allocation. This 240 * uses a heurisitc table from the Linux driver. 241 */ 242 memsize = ptoa(Maxmem) >> 20; 243 for (i = 0; i < agp_max_size; i++) { 244 if (memsize <= agp_max[i][0]) 245 break; 246 } 247 if (i == agp_max_size) i = agp_max_size - 1; 248 sc->as_maxmem = agp_max[i][1] << 20U; 249 250 /* 251 * The lock is used to prevent re-entry to 252 * agp_generic_bind_memory() since that function can sleep. 253 */ 254 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 255 256 /* 257 * Initialise stuff for the userland device. 258 */ 259 agp_devclass = devclass_find("agp"); 260 TAILQ_INIT(&sc->as_memory); 261 sc->as_nextid = 1; 262 263 sc->as_devnode = make_dev(&agp_cdevsw, 264 device_get_unit(dev), 265 UID_ROOT, 266 GID_WHEEL, 267 0600, 268 "agpgart"); 269 270 return 0; 271 } 272 273 int 274 agp_generic_detach(device_t dev) 275 { 276 struct agp_softc *sc = device_get_softc(dev); 277 bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture); 278 mtx_destroy(&sc->as_lock); 279 destroy_dev(sc->as_devnode); 280 agp_flush_cache(); 281 return 0; 282 } 283 284 /* 285 * This does the enable logic for v3, with the same topology 286 * restrictions as in place for v2 -- one bus, one device on the bus. 287 */ 288 static int 289 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 290 { 291 u_int32_t tstatus, mstatus; 292 u_int32_t command; 293 int rq, sba, fw, rate, arqsz, cal; 294 295 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 296 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 297 298 /* Set RQ to the min of mode, tstatus and mstatus */ 299 rq = AGP_MODE_GET_RQ(mode); 300 if (AGP_MODE_GET_RQ(tstatus) < rq) 301 rq = AGP_MODE_GET_RQ(tstatus); 302 if (AGP_MODE_GET_RQ(mstatus) < rq) 303 rq = AGP_MODE_GET_RQ(mstatus); 304 305 /* 306 * ARQSZ - Set the value to the maximum one. 307 * Don't allow the mode register to override values. 308 */ 309 arqsz = AGP_MODE_GET_ARQSZ(mode); 310 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 311 rq = AGP_MODE_GET_ARQSZ(tstatus); 312 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 313 rq = AGP_MODE_GET_ARQSZ(mstatus); 314 315 /* Calibration cycle - don't allow override by mode register */ 316 cal = AGP_MODE_GET_CAL(tstatus); 317 if (AGP_MODE_GET_CAL(mstatus) < cal) 318 cal = AGP_MODE_GET_CAL(mstatus); 319 320 /* SBA must be supported for AGP v3. */ 321 sba = 1; 322 323 /* Set FW if all three support it. */ 324 fw = (AGP_MODE_GET_FW(tstatus) 325 & AGP_MODE_GET_FW(mstatus) 326 & AGP_MODE_GET_FW(mode)); 327 328 /* Figure out the max rate */ 329 rate = (AGP_MODE_GET_RATE(tstatus) 330 & AGP_MODE_GET_RATE(mstatus) 331 & AGP_MODE_GET_RATE(mode)); 332 if (rate & AGP_MODE_V3_RATE_8x) 333 rate = AGP_MODE_V3_RATE_8x; 334 else 335 rate = AGP_MODE_V3_RATE_4x; 336 if (bootverbose) 337 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 338 339 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 340 341 /* Construct the new mode word and tell the hardware */ 342 command = AGP_MODE_SET_RQ(0, rq); 343 command = AGP_MODE_SET_ARQSZ(command, arqsz); 344 command = AGP_MODE_SET_CAL(command, cal); 345 command = AGP_MODE_SET_SBA(command, sba); 346 command = AGP_MODE_SET_FW(command, fw); 347 command = AGP_MODE_SET_RATE(command, rate); 348 command = AGP_MODE_SET_AGP(command, 1); 349 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 350 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 351 352 return 0; 353 } 354 355 static int 356 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 357 { 358 u_int32_t tstatus, mstatus; 359 u_int32_t command; 360 int rq, sba, fw, rate; 361 362 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 363 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 364 365 /* Set RQ to the min of mode, tstatus and mstatus */ 366 rq = AGP_MODE_GET_RQ(mode); 367 if (AGP_MODE_GET_RQ(tstatus) < rq) 368 rq = AGP_MODE_GET_RQ(tstatus); 369 if (AGP_MODE_GET_RQ(mstatus) < rq) 370 rq = AGP_MODE_GET_RQ(mstatus); 371 372 /* Set SBA if all three can deal with SBA */ 373 sba = (AGP_MODE_GET_SBA(tstatus) 374 & AGP_MODE_GET_SBA(mstatus) 375 & AGP_MODE_GET_SBA(mode)); 376 377 /* Similar for FW */ 378 fw = (AGP_MODE_GET_FW(tstatus) 379 & AGP_MODE_GET_FW(mstatus) 380 & AGP_MODE_GET_FW(mode)); 381 382 /* Figure out the max rate */ 383 rate = (AGP_MODE_GET_RATE(tstatus) 384 & AGP_MODE_GET_RATE(mstatus) 385 & AGP_MODE_GET_RATE(mode)); 386 if (rate & AGP_MODE_V2_RATE_4x) 387 rate = AGP_MODE_V2_RATE_4x; 388 else if (rate & AGP_MODE_V2_RATE_2x) 389 rate = AGP_MODE_V2_RATE_2x; 390 else 391 rate = AGP_MODE_V2_RATE_1x; 392 if (bootverbose) 393 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 394 395 /* Construct the new mode word and tell the hardware */ 396 command = AGP_MODE_SET_RQ(0, rq); 397 command = AGP_MODE_SET_SBA(command, sba); 398 command = AGP_MODE_SET_FW(command, fw); 399 command = AGP_MODE_SET_RATE(command, rate); 400 command = AGP_MODE_SET_AGP(command, 1); 401 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 402 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 403 404 return 0; 405 } 406 407 int 408 agp_generic_enable(device_t dev, u_int32_t mode) 409 { 410 device_t mdev = agp_find_display(); 411 u_int32_t tstatus, mstatus; 412 413 if (!mdev) { 414 AGP_DPF("can't find display\n"); 415 return ENXIO; 416 } 417 418 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 419 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 420 421 /* 422 * Check display and bridge for AGP v3 support. AGP v3 allows 423 * more variety in topology than v2, e.g. multiple AGP devices 424 * attached to one bridge, or multiple AGP bridges in one 425 * system. This doesn't attempt to address those situations, 426 * but should work fine for a classic single AGP slot system 427 * with AGP v3. 428 */ 429 if (AGP_MODE_GET_MODE_3(tstatus) && AGP_MODE_GET_MODE_3(mstatus)) 430 return (agp_v3_enable(dev, mdev, mode)); 431 else 432 return (agp_v2_enable(dev, mdev, mode)); 433 } 434 435 struct agp_memory * 436 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 437 { 438 struct agp_softc *sc = device_get_softc(dev); 439 struct agp_memory *mem; 440 441 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 442 return 0; 443 444 if (sc->as_allocated + size > sc->as_maxmem) 445 return 0; 446 447 if (type != 0) { 448 printf("agp_generic_alloc_memory: unsupported type %d\n", 449 type); 450 return 0; 451 } 452 453 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 454 mem->am_id = sc->as_nextid++; 455 mem->am_size = size; 456 mem->am_type = 0; 457 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 458 mem->am_physical = 0; 459 mem->am_offset = 0; 460 mem->am_is_bound = 0; 461 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 462 sc->as_allocated += size; 463 464 return mem; 465 } 466 467 int 468 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 469 { 470 struct agp_softc *sc = device_get_softc(dev); 471 472 if (mem->am_is_bound) 473 return EBUSY; 474 475 sc->as_allocated -= mem->am_size; 476 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 477 vm_object_deallocate(mem->am_obj); 478 free(mem, M_AGP); 479 return 0; 480 } 481 482 int 483 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 484 vm_offset_t offset) 485 { 486 struct agp_softc *sc = device_get_softc(dev); 487 vm_offset_t i, j, k; 488 vm_page_t m; 489 int error; 490 491 /* Do some sanity checks first. */ 492 if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 || 493 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 494 device_printf(dev, "binding memory at bad offset %#x\n", 495 (int)offset); 496 return EINVAL; 497 } 498 499 /* 500 * Allocate the pages early, before acquiring the lock, 501 * because vm_page_grab() used with VM_ALLOC_RETRY may 502 * block and we can't hold a mutex while blocking. 503 */ 504 VM_OBJECT_LOCK(mem->am_obj); 505 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 506 /* 507 * Find a page from the object and wire it 508 * down. This page will be mapped using one or more 509 * entries in the GATT (assuming that PAGE_SIZE >= 510 * AGP_PAGE_SIZE. If this is the first call to bind, 511 * the pages will be allocated and zeroed. 512 */ 513 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 514 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 515 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m)); 516 } 517 VM_OBJECT_UNLOCK(mem->am_obj); 518 519 mtx_lock(&sc->as_lock); 520 521 if (mem->am_is_bound) { 522 device_printf(dev, "memory already bound\n"); 523 error = EINVAL; 524 VM_OBJECT_LOCK(mem->am_obj); 525 goto bad; 526 } 527 528 /* 529 * Bind the individual pages and flush the chipset's 530 * TLB. 531 * 532 * XXX Presumably, this needs to be the pci address on alpha 533 * (i.e. use alpha_XXX_dmamap()). I don't have access to any 534 * alpha AGP hardware to check. 535 */ 536 VM_OBJECT_LOCK(mem->am_obj); 537 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 538 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 539 540 /* 541 * Install entries in the GATT, making sure that if 542 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 543 * aligned to PAGE_SIZE, we don't modify too many GATT 544 * entries. 545 */ 546 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 547 j += AGP_PAGE_SIZE) { 548 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 549 AGP_DPF("binding offset %#x to pa %#x\n", 550 offset + i + j, pa); 551 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 552 if (error) { 553 /* 554 * Bail out. Reverse all the mappings 555 * and unwire the pages. 556 */ 557 vm_page_lock_queues(); 558 vm_page_wakeup(m); 559 vm_page_unlock_queues(); 560 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 561 AGP_UNBIND_PAGE(dev, offset + k); 562 goto bad; 563 } 564 } 565 vm_page_lock_queues(); 566 vm_page_wakeup(m); 567 vm_page_unlock_queues(); 568 } 569 VM_OBJECT_UNLOCK(mem->am_obj); 570 571 /* 572 * Flush the cpu cache since we are providing a new mapping 573 * for these pages. 574 */ 575 agp_flush_cache(); 576 577 /* 578 * Make sure the chipset gets the new mappings. 579 */ 580 AGP_FLUSH_TLB(dev); 581 582 mem->am_offset = offset; 583 mem->am_is_bound = 1; 584 585 mtx_unlock(&sc->as_lock); 586 587 return 0; 588 bad: 589 mtx_unlock(&sc->as_lock); 590 VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED); 591 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 592 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 593 vm_page_lock_queues(); 594 vm_page_unwire(m, 0); 595 vm_page_unlock_queues(); 596 } 597 VM_OBJECT_UNLOCK(mem->am_obj); 598 599 return error; 600 } 601 602 int 603 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 604 { 605 struct agp_softc *sc = device_get_softc(dev); 606 vm_page_t m; 607 int i; 608 609 mtx_lock(&sc->as_lock); 610 611 if (!mem->am_is_bound) { 612 device_printf(dev, "memory is not bound\n"); 613 mtx_unlock(&sc->as_lock); 614 return EINVAL; 615 } 616 617 618 /* 619 * Unbind the individual pages and flush the chipset's 620 * TLB. Unwire the pages so they can be swapped. 621 */ 622 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 623 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 624 VM_OBJECT_LOCK(mem->am_obj); 625 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 626 m = vm_page_lookup(mem->am_obj, atop(i)); 627 vm_page_lock_queues(); 628 vm_page_unwire(m, 0); 629 vm_page_unlock_queues(); 630 } 631 VM_OBJECT_UNLOCK(mem->am_obj); 632 633 agp_flush_cache(); 634 AGP_FLUSH_TLB(dev); 635 636 mem->am_offset = 0; 637 mem->am_is_bound = 0; 638 639 mtx_unlock(&sc->as_lock); 640 641 return 0; 642 } 643 644 /* Helper functions for implementing user/kernel api */ 645 646 static int 647 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 648 { 649 struct agp_softc *sc = device_get_softc(dev); 650 651 if (sc->as_state != AGP_ACQUIRE_FREE) 652 return EBUSY; 653 sc->as_state = state; 654 655 return 0; 656 } 657 658 static int 659 agp_release_helper(device_t dev, enum agp_acquire_state state) 660 { 661 struct agp_softc *sc = device_get_softc(dev); 662 663 if (sc->as_state == AGP_ACQUIRE_FREE) 664 return 0; 665 666 if (sc->as_state != state) 667 return EBUSY; 668 669 sc->as_state = AGP_ACQUIRE_FREE; 670 return 0; 671 } 672 673 static struct agp_memory * 674 agp_find_memory(device_t dev, int id) 675 { 676 struct agp_softc *sc = device_get_softc(dev); 677 struct agp_memory *mem; 678 679 AGP_DPF("searching for memory block %d\n", id); 680 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 681 AGP_DPF("considering memory block %d\n", mem->am_id); 682 if (mem->am_id == id) 683 return mem; 684 } 685 return 0; 686 } 687 688 /* Implementation of the userland ioctl api */ 689 690 static int 691 agp_info_user(device_t dev, agp_info *info) 692 { 693 struct agp_softc *sc = device_get_softc(dev); 694 695 bzero(info, sizeof *info); 696 info->bridge_id = pci_get_devid(dev); 697 info->agp_mode = 698 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 699 info->aper_base = rman_get_start(sc->as_aperture); 700 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 701 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 702 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 703 704 return 0; 705 } 706 707 static int 708 agp_setup_user(device_t dev, agp_setup *setup) 709 { 710 return AGP_ENABLE(dev, setup->agp_mode); 711 } 712 713 static int 714 agp_allocate_user(device_t dev, agp_allocate *alloc) 715 { 716 struct agp_memory *mem; 717 718 mem = AGP_ALLOC_MEMORY(dev, 719 alloc->type, 720 alloc->pg_count << AGP_PAGE_SHIFT); 721 if (mem) { 722 alloc->key = mem->am_id; 723 alloc->physical = mem->am_physical; 724 return 0; 725 } else { 726 return ENOMEM; 727 } 728 } 729 730 static int 731 agp_deallocate_user(device_t dev, int id) 732 { 733 struct agp_memory *mem = agp_find_memory(dev, id);; 734 735 if (mem) { 736 AGP_FREE_MEMORY(dev, mem); 737 return 0; 738 } else { 739 return ENOENT; 740 } 741 } 742 743 static int 744 agp_bind_user(device_t dev, agp_bind *bind) 745 { 746 struct agp_memory *mem = agp_find_memory(dev, bind->key); 747 748 if (!mem) 749 return ENOENT; 750 751 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 752 } 753 754 static int 755 agp_unbind_user(device_t dev, agp_unbind *unbind) 756 { 757 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 758 759 if (!mem) 760 return ENOENT; 761 762 return AGP_UNBIND_MEMORY(dev, mem); 763 } 764 765 static int 766 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 767 { 768 device_t dev = KDEV2DEV(kdev); 769 struct agp_softc *sc = device_get_softc(dev); 770 771 if (!sc->as_isopen) { 772 sc->as_isopen = 1; 773 device_busy(dev); 774 } 775 776 return 0; 777 } 778 779 static int 780 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 781 { 782 device_t dev = KDEV2DEV(kdev); 783 struct agp_softc *sc = device_get_softc(dev); 784 struct agp_memory *mem; 785 786 /* 787 * Clear the GATT and force release on last close 788 */ 789 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 790 if (mem->am_is_bound) 791 AGP_UNBIND_MEMORY(dev, mem); 792 AGP_FREE_MEMORY(dev, mem); 793 } 794 if (sc->as_state == AGP_ACQUIRE_USER) 795 agp_release_helper(dev, AGP_ACQUIRE_USER); 796 sc->as_isopen = 0; 797 device_unbusy(dev); 798 799 return 0; 800 } 801 802 static int 803 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 804 { 805 device_t dev = KDEV2DEV(kdev); 806 807 switch (cmd) { 808 case AGPIOC_INFO: 809 return agp_info_user(dev, (agp_info *) data); 810 811 case AGPIOC_ACQUIRE: 812 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 813 814 case AGPIOC_RELEASE: 815 return agp_release_helper(dev, AGP_ACQUIRE_USER); 816 817 case AGPIOC_SETUP: 818 return agp_setup_user(dev, (agp_setup *)data); 819 820 case AGPIOC_ALLOCATE: 821 return agp_allocate_user(dev, (agp_allocate *)data); 822 823 case AGPIOC_DEALLOCATE: 824 return agp_deallocate_user(dev, *(int *) data); 825 826 case AGPIOC_BIND: 827 return agp_bind_user(dev, (agp_bind *)data); 828 829 case AGPIOC_UNBIND: 830 return agp_unbind_user(dev, (agp_unbind *)data); 831 832 } 833 834 return EINVAL; 835 } 836 837 static int 838 agp_mmap(struct cdev *kdev, vm_offset_t offset, vm_paddr_t *paddr, int prot) 839 { 840 device_t dev = KDEV2DEV(kdev); 841 struct agp_softc *sc = device_get_softc(dev); 842 843 if (offset > AGP_GET_APERTURE(dev)) 844 return -1; 845 *paddr = rman_get_start(sc->as_aperture) + offset; 846 return 0; 847 } 848 849 /* Implementation of the kernel api */ 850 851 device_t 852 agp_find_device() 853 { 854 if (!agp_devclass) 855 return 0; 856 return devclass_get_device(agp_devclass, 0); 857 } 858 859 enum agp_acquire_state 860 agp_state(device_t dev) 861 { 862 struct agp_softc *sc = device_get_softc(dev); 863 return sc->as_state; 864 } 865 866 void 867 agp_get_info(device_t dev, struct agp_info *info) 868 { 869 struct agp_softc *sc = device_get_softc(dev); 870 871 info->ai_mode = 872 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 873 info->ai_aperture_base = rman_get_start(sc->as_aperture); 874 info->ai_aperture_size = rman_get_size(sc->as_aperture); 875 info->ai_aperture_va = (vm_offset_t) rman_get_virtual(sc->as_aperture); 876 info->ai_memory_allowed = sc->as_maxmem; 877 info->ai_memory_used = sc->as_allocated; 878 } 879 880 int 881 agp_acquire(device_t dev) 882 { 883 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 884 } 885 886 int 887 agp_release(device_t dev) 888 { 889 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 890 } 891 892 int 893 agp_enable(device_t dev, u_int32_t mode) 894 { 895 return AGP_ENABLE(dev, mode); 896 } 897 898 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 899 { 900 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 901 } 902 903 void agp_free_memory(device_t dev, void *handle) 904 { 905 struct agp_memory *mem = (struct agp_memory *) handle; 906 AGP_FREE_MEMORY(dev, mem); 907 } 908 909 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 910 { 911 struct agp_memory *mem = (struct agp_memory *) handle; 912 return AGP_BIND_MEMORY(dev, mem, offset); 913 } 914 915 int agp_unbind_memory(device_t dev, void *handle) 916 { 917 struct agp_memory *mem = (struct agp_memory *) handle; 918 return AGP_UNBIND_MEMORY(dev, mem); 919 } 920 921 void agp_memory_info(device_t dev, void *handle, struct 922 agp_memory_info *mi) 923 { 924 struct agp_memory *mem = (struct agp_memory *) handle; 925 926 mi->ami_size = mem->am_size; 927 mi->ami_physical = mem->am_physical; 928 mi->ami_offset = mem->am_offset; 929 mi->ami_is_bound = mem->am_is_bound; 930 } 931