xref: /freebsd/sys/dev/age/if_age.c (revision cb14a3fe5122c879eae1fb480ed7ce82a699ddb6)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/rman.h>
40 #include <sys/module.h>
41 #include <sys/queue.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 #include <sys/taskqueue.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 
71 #include <dev/age/if_agereg.h>
72 #include <dev/age/if_agevar.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78 
79 MODULE_DEPEND(age, pci, 1, 1, 1);
80 MODULE_DEPEND(age, ether, 1, 1, 1);
81 MODULE_DEPEND(age, miibus, 1, 1, 1);
82 
83 /* Tunables. */
84 static int msi_disable = 0;
85 static int msix_disable = 0;
86 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88 
89 /*
90  * Devices supported by this driver.
91  */
92 static struct age_dev {
93 	uint16_t	age_vendorid;
94 	uint16_t	age_deviceid;
95 	const char	*age_name;
96 } age_devs[] = {
97 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99 };
100 
101 static int age_miibus_readreg(device_t, int, int);
102 static int age_miibus_writereg(device_t, int, int, int);
103 static void age_miibus_statchg(device_t);
104 static void age_mediastatus(if_t, struct ifmediareq *);
105 static int age_mediachange(if_t);
106 static int age_probe(device_t);
107 static void age_get_macaddr(struct age_softc *);
108 static void age_phy_reset(struct age_softc *);
109 static int age_attach(device_t);
110 static int age_detach(device_t);
111 static void age_sysctl_node(struct age_softc *);
112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 static int age_check_boundary(struct age_softc *);
114 static int age_dma_alloc(struct age_softc *);
115 static void age_dma_free(struct age_softc *);
116 static int age_shutdown(device_t);
117 static void age_setwol(struct age_softc *);
118 static int age_suspend(device_t);
119 static int age_resume(device_t);
120 static int age_encap(struct age_softc *, struct mbuf **);
121 static void age_start(if_t);
122 static void age_start_locked(if_t);
123 static void age_watchdog(struct age_softc *);
124 static int age_ioctl(if_t, u_long, caddr_t);
125 static void age_mac_config(struct age_softc *);
126 static void age_link_task(void *, int);
127 static void age_stats_update(struct age_softc *);
128 static int age_intr(void *);
129 static void age_int_task(void *, int);
130 static void age_txintr(struct age_softc *, int);
131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132 static int age_rxintr(struct age_softc *, int, int);
133 static void age_tick(void *);
134 static void age_reset(struct age_softc *);
135 static void age_init(void *);
136 static void age_init_locked(struct age_softc *);
137 static void age_stop(struct age_softc *);
138 static void age_stop_txmac(struct age_softc *);
139 static void age_stop_rxmac(struct age_softc *);
140 static void age_init_tx_ring(struct age_softc *);
141 static int age_init_rx_ring(struct age_softc *);
142 static void age_init_rr_ring(struct age_softc *);
143 static void age_init_cmb_block(struct age_softc *);
144 static void age_init_smb_block(struct age_softc *);
145 #ifndef __NO_STRICT_ALIGNMENT
146 static struct mbuf *age_fixup_rx(if_t, struct mbuf *);
147 #endif
148 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
149 static void age_rxvlan(struct age_softc *);
150 static void age_rxfilter(struct age_softc *);
151 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
152 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
153 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
154 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
155 
156 static device_method_t age_methods[] = {
157 	/* Device interface. */
158 	DEVMETHOD(device_probe,		age_probe),
159 	DEVMETHOD(device_attach,	age_attach),
160 	DEVMETHOD(device_detach,	age_detach),
161 	DEVMETHOD(device_shutdown,	age_shutdown),
162 	DEVMETHOD(device_suspend,	age_suspend),
163 	DEVMETHOD(device_resume,	age_resume),
164 
165 	/* MII interface. */
166 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
167 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
168 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
169 	{ NULL, NULL }
170 };
171 
172 static driver_t age_driver = {
173 	"age",
174 	age_methods,
175 	sizeof(struct age_softc)
176 };
177 
178 DRIVER_MODULE(age, pci, age_driver, 0, 0);
179 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
180     nitems(age_devs));
181 DRIVER_MODULE(miibus, age, miibus_driver, 0, 0);
182 
183 static struct resource_spec age_res_spec_mem[] = {
184 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
185 	{ -1,			0,		0 }
186 };
187 
188 static struct resource_spec age_irq_spec_legacy[] = {
189 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
190 	{ -1,			0,		0 }
191 };
192 
193 static struct resource_spec age_irq_spec_msi[] = {
194 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
195 	{ -1,			0,		0 }
196 };
197 
198 static struct resource_spec age_irq_spec_msix[] = {
199 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
200 	{ -1,			0,		0 }
201 };
202 
203 /*
204  *	Read a PHY register on the MII of the L1.
205  */
206 static int
207 age_miibus_readreg(device_t dev, int phy, int reg)
208 {
209 	struct age_softc *sc;
210 	uint32_t v;
211 	int i;
212 
213 	sc = device_get_softc(dev);
214 
215 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
216 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
217 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
218 		DELAY(1);
219 		v = CSR_READ_4(sc, AGE_MDIO);
220 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
221 			break;
222 	}
223 
224 	if (i == 0) {
225 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
226 		return (0);
227 	}
228 
229 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
230 }
231 
232 /*
233  *	Write a PHY register on the MII of the L1.
234  */
235 static int
236 age_miibus_writereg(device_t dev, int phy, int reg, int val)
237 {
238 	struct age_softc *sc;
239 	uint32_t v;
240 	int i;
241 
242 	sc = device_get_softc(dev);
243 
244 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
245 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
246 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
247 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
248 		DELAY(1);
249 		v = CSR_READ_4(sc, AGE_MDIO);
250 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
251 			break;
252 	}
253 
254 	if (i == 0)
255 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
256 
257 	return (0);
258 }
259 
260 /*
261  *	Callback from MII layer when media changes.
262  */
263 static void
264 age_miibus_statchg(device_t dev)
265 {
266 	struct age_softc *sc;
267 
268 	sc = device_get_softc(dev);
269 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
270 }
271 
272 /*
273  *	Get the current interface media status.
274  */
275 static void
276 age_mediastatus(if_t ifp, struct ifmediareq *ifmr)
277 {
278 	struct age_softc *sc;
279 	struct mii_data *mii;
280 
281 	sc = if_getsoftc(ifp);
282 	AGE_LOCK(sc);
283 	mii = device_get_softc(sc->age_miibus);
284 
285 	mii_pollstat(mii);
286 	ifmr->ifm_status = mii->mii_media_status;
287 	ifmr->ifm_active = mii->mii_media_active;
288 	AGE_UNLOCK(sc);
289 }
290 
291 /*
292  *	Set hardware to newly-selected media.
293  */
294 static int
295 age_mediachange(if_t ifp)
296 {
297 	struct age_softc *sc;
298 	struct mii_data *mii;
299 	struct mii_softc *miisc;
300 	int error;
301 
302 	sc = if_getsoftc(ifp);
303 	AGE_LOCK(sc);
304 	mii = device_get_softc(sc->age_miibus);
305 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
306 		PHY_RESET(miisc);
307 	error = mii_mediachg(mii);
308 	AGE_UNLOCK(sc);
309 
310 	return (error);
311 }
312 
313 static int
314 age_probe(device_t dev)
315 {
316 	struct age_dev *sp;
317 	int i;
318 	uint16_t vendor, devid;
319 
320 	vendor = pci_get_vendor(dev);
321 	devid = pci_get_device(dev);
322 	sp = age_devs;
323 	for (i = 0; i < nitems(age_devs); i++, sp++) {
324 		if (vendor == sp->age_vendorid &&
325 		    devid == sp->age_deviceid) {
326 			device_set_desc(dev, sp->age_name);
327 			return (BUS_PROBE_DEFAULT);
328 		}
329 	}
330 
331 	return (ENXIO);
332 }
333 
334 static void
335 age_get_macaddr(struct age_softc *sc)
336 {
337 	uint32_t ea[2], reg;
338 	int i, vpdc;
339 
340 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
341 	if ((reg & SPI_VPD_ENB) != 0) {
342 		/* Get VPD stored in TWSI EEPROM. */
343 		reg &= ~SPI_VPD_ENB;
344 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
345 	}
346 
347 	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
348 		/*
349 		 * PCI VPD capability found, let TWSI reload EEPROM.
350 		 * This will set ethernet address of controller.
351 		 */
352 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
353 		    TWSI_CTRL_SW_LD_START);
354 		for (i = 100; i > 0; i--) {
355 			DELAY(1000);
356 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
357 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
358 				break;
359 		}
360 		if (i == 0)
361 			device_printf(sc->age_dev,
362 			    "reloading EEPROM timeout!\n");
363 	} else {
364 		if (bootverbose)
365 			device_printf(sc->age_dev,
366 			    "PCI VPD capability not found!\n");
367 	}
368 
369 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
370 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
371 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
372 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
373 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
374 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
375 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
376 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
377 }
378 
379 static void
380 age_phy_reset(struct age_softc *sc)
381 {
382 	uint16_t reg, pn;
383 	int i, linkup;
384 
385 	/* Reset PHY. */
386 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
387 	DELAY(2000);
388 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
389 	DELAY(2000);
390 
391 #define	ATPHY_DBG_ADDR		0x1D
392 #define	ATPHY_DBG_DATA		0x1E
393 #define	ATPHY_CDTC		0x16
394 #define	PHY_CDTC_ENB		0x0001
395 #define	PHY_CDTC_POFF		8
396 #define	ATPHY_CDTS		0x1C
397 #define	PHY_CDTS_STAT_OK	0x0000
398 #define	PHY_CDTS_STAT_SHORT	0x0100
399 #define	PHY_CDTS_STAT_OPEN	0x0200
400 #define	PHY_CDTS_STAT_INVAL	0x0300
401 #define	PHY_CDTS_STAT_MASK	0x0300
402 
403 	/* Check power saving mode. Magic from Linux. */
404 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
405 	for (linkup = 0, pn = 0; pn < 4; pn++) {
406 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
407 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
408 		for (i = 200; i > 0; i--) {
409 			DELAY(1000);
410 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
411 			    ATPHY_CDTC);
412 			if ((reg & PHY_CDTC_ENB) == 0)
413 				break;
414 		}
415 		DELAY(1000);
416 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
417 		    ATPHY_CDTS);
418 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
419 			linkup++;
420 			break;
421 		}
422 	}
423 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
424 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
425 	if (linkup == 0) {
426 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
427 		    ATPHY_DBG_ADDR, 0);
428 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429 		    ATPHY_DBG_DATA, 0x124E);
430 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431 		    ATPHY_DBG_ADDR, 1);
432 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
433 		    ATPHY_DBG_DATA);
434 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435 		    ATPHY_DBG_DATA, reg | 0x03);
436 		/* XXX */
437 		DELAY(1500 * 1000);
438 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
439 		    ATPHY_DBG_ADDR, 0);
440 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441 		    ATPHY_DBG_DATA, 0x024E);
442     }
443 
444 #undef	ATPHY_DBG_ADDR
445 #undef	ATPHY_DBG_DATA
446 #undef	ATPHY_CDTC
447 #undef	PHY_CDTC_ENB
448 #undef	PHY_CDTC_POFF
449 #undef	ATPHY_CDTS
450 #undef	PHY_CDTS_STAT_OK
451 #undef	PHY_CDTS_STAT_SHORT
452 #undef	PHY_CDTS_STAT_OPEN
453 #undef	PHY_CDTS_STAT_INVAL
454 #undef	PHY_CDTS_STAT_MASK
455 }
456 
457 static int
458 age_attach(device_t dev)
459 {
460 	struct age_softc *sc;
461 	if_t ifp;
462 	uint16_t burst;
463 	int error, i, msic, msixc, pmc;
464 
465 	error = 0;
466 	sc = device_get_softc(dev);
467 	sc->age_dev = dev;
468 
469 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
470 	    MTX_DEF);
471 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
472 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
473 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
474 
475 	/* Map the device. */
476 	pci_enable_busmaster(dev);
477 	sc->age_res_spec = age_res_spec_mem;
478 	sc->age_irq_spec = age_irq_spec_legacy;
479 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
480 	if (error != 0) {
481 		device_printf(dev, "cannot allocate memory resources.\n");
482 		goto fail;
483 	}
484 
485 	/* Set PHY address. */
486 	sc->age_phyaddr = AGE_PHY_ADDR;
487 
488 	/* Reset PHY. */
489 	age_phy_reset(sc);
490 
491 	/* Reset the ethernet controller. */
492 	age_reset(sc);
493 
494 	/* Get PCI and chip id/revision. */
495 	sc->age_rev = pci_get_revid(dev);
496 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
497 	    MASTER_CHIP_REV_SHIFT;
498 	if (bootverbose) {
499 		device_printf(dev, "PCI device revision : 0x%04x\n",
500 		    sc->age_rev);
501 		device_printf(dev, "Chip id/revision : 0x%04x\n",
502 		    sc->age_chip_rev);
503 	}
504 
505 	/*
506 	 * XXX
507 	 * Unintialized hardware returns an invalid chip id/revision
508 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
509 	 * unplugged cable results in putting hardware into automatic
510 	 * power down mode which in turn returns invalld chip revision.
511 	 */
512 	if (sc->age_chip_rev == 0xFFFF) {
513 		device_printf(dev,"invalid chip revision : 0x%04x -- "
514 		    "not initialized?\n", sc->age_chip_rev);
515 		error = ENXIO;
516 		goto fail;
517 	}
518 
519 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
520 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
521 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
522 
523 	/* Allocate IRQ resources. */
524 	msixc = pci_msix_count(dev);
525 	msic = pci_msi_count(dev);
526 	if (bootverbose) {
527 		device_printf(dev, "MSIX count : %d\n", msixc);
528 		device_printf(dev, "MSI count : %d\n", msic);
529 	}
530 
531 	/* Prefer MSIX over MSI. */
532 	if (msix_disable == 0 || msi_disable == 0) {
533 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
534 		    pci_alloc_msix(dev, &msixc) == 0) {
535 			if (msic == AGE_MSIX_MESSAGES) {
536 				device_printf(dev, "Using %d MSIX messages.\n",
537 				    msixc);
538 				sc->age_flags |= AGE_FLAG_MSIX;
539 				sc->age_irq_spec = age_irq_spec_msix;
540 			} else
541 				pci_release_msi(dev);
542 		}
543 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
544 		    msic == AGE_MSI_MESSAGES &&
545 		    pci_alloc_msi(dev, &msic) == 0) {
546 			if (msic == AGE_MSI_MESSAGES) {
547 				device_printf(dev, "Using %d MSI messages.\n",
548 				    msic);
549 				sc->age_flags |= AGE_FLAG_MSI;
550 				sc->age_irq_spec = age_irq_spec_msi;
551 			} else
552 				pci_release_msi(dev);
553 		}
554 	}
555 
556 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
557 	if (error != 0) {
558 		device_printf(dev, "cannot allocate IRQ resources.\n");
559 		goto fail;
560 	}
561 
562 	/* Get DMA parameters from PCIe device control register. */
563 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
564 		sc->age_flags |= AGE_FLAG_PCIE;
565 		burst = pci_read_config(dev, i + 0x08, 2);
566 		/* Max read request size. */
567 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
568 		    DMA_CFG_RD_BURST_SHIFT;
569 		/* Max payload size. */
570 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
571 		    DMA_CFG_WR_BURST_SHIFT;
572 		if (bootverbose) {
573 			device_printf(dev, "Read request size : %d bytes.\n",
574 			    128 << ((burst >> 12) & 0x07));
575 			device_printf(dev, "TLP payload size : %d bytes.\n",
576 			    128 << ((burst >> 5) & 0x07));
577 		}
578 	} else {
579 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
580 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
581 	}
582 
583 	/* Create device sysctl node. */
584 	age_sysctl_node(sc);
585 
586 	if ((error = age_dma_alloc(sc)) != 0)
587 		goto fail;
588 
589 	/* Load station address. */
590 	age_get_macaddr(sc);
591 
592 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
593 	if (ifp == NULL) {
594 		device_printf(dev, "cannot allocate ifnet structure.\n");
595 		error = ENXIO;
596 		goto fail;
597 	}
598 
599 	if_setsoftc(ifp, sc);
600 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
601 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
602 	if_setioctlfn(ifp, age_ioctl);
603 	if_setstartfn(ifp, age_start);
604 	if_setinitfn(ifp, age_init);
605 	if_setsendqlen(ifp, AGE_TX_RING_CNT - 1);
606 	if_setsendqready(ifp);
607 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
608 	if_sethwassist(ifp, AGE_CSUM_FEATURES | CSUM_TSO);
609 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
610 		sc->age_flags |= AGE_FLAG_PMCAP;
611 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST, 0);
612 	}
613 	if_setcapenable(ifp, if_getcapabilities(ifp));
614 
615 	/* Set up MII bus. */
616 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
617 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
618 	    0);
619 	if (error != 0) {
620 		device_printf(dev, "attaching PHYs failed\n");
621 		goto fail;
622 	}
623 
624 	ether_ifattach(ifp, sc->age_eaddr);
625 
626 	/* VLAN capability setup. */
627 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
628 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
629 	if_setcapenable(ifp, if_getcapabilities(ifp));
630 
631 	/* Tell the upper layer(s) we support long frames. */
632 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
633 
634 	/* Create local taskq. */
635 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
636 	    taskqueue_thread_enqueue, &sc->age_tq);
637 	if (sc->age_tq == NULL) {
638 		device_printf(dev, "could not create taskqueue.\n");
639 		ether_ifdetach(ifp);
640 		error = ENXIO;
641 		goto fail;
642 	}
643 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
644 	    device_get_nameunit(sc->age_dev));
645 
646 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
647 		msic = AGE_MSIX_MESSAGES;
648 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
649 		msic = AGE_MSI_MESSAGES;
650 	else
651 		msic = 1;
652 	for (i = 0; i < msic; i++) {
653 		error = bus_setup_intr(dev, sc->age_irq[i],
654 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
655 		    &sc->age_intrhand[i]);
656 		if (error != 0)
657 			break;
658 	}
659 	if (error != 0) {
660 		device_printf(dev, "could not set up interrupt handler.\n");
661 		taskqueue_free(sc->age_tq);
662 		sc->age_tq = NULL;
663 		ether_ifdetach(ifp);
664 		goto fail;
665 	}
666 
667 fail:
668 	if (error != 0)
669 		age_detach(dev);
670 
671 	return (error);
672 }
673 
674 static int
675 age_detach(device_t dev)
676 {
677 	struct age_softc *sc;
678 	if_t ifp;
679 	int i, msic;
680 
681 	sc = device_get_softc(dev);
682 
683 	ifp = sc->age_ifp;
684 	if (device_is_attached(dev)) {
685 		AGE_LOCK(sc);
686 		sc->age_flags |= AGE_FLAG_DETACH;
687 		age_stop(sc);
688 		AGE_UNLOCK(sc);
689 		callout_drain(&sc->age_tick_ch);
690 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
691 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
692 		ether_ifdetach(ifp);
693 	}
694 
695 	if (sc->age_tq != NULL) {
696 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
697 		taskqueue_free(sc->age_tq);
698 		sc->age_tq = NULL;
699 	}
700 
701 	if (sc->age_miibus != NULL) {
702 		device_delete_child(dev, sc->age_miibus);
703 		sc->age_miibus = NULL;
704 	}
705 	bus_generic_detach(dev);
706 	age_dma_free(sc);
707 
708 	if (ifp != NULL) {
709 		if_free(ifp);
710 		sc->age_ifp = NULL;
711 	}
712 
713 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
714 		msic = AGE_MSIX_MESSAGES;
715 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
716 		msic = AGE_MSI_MESSAGES;
717 	else
718 		msic = 1;
719 	for (i = 0; i < msic; i++) {
720 		if (sc->age_intrhand[i] != NULL) {
721 			bus_teardown_intr(dev, sc->age_irq[i],
722 			    sc->age_intrhand[i]);
723 			sc->age_intrhand[i] = NULL;
724 		}
725 	}
726 
727 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
728 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
729 		pci_release_msi(dev);
730 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
731 	mtx_destroy(&sc->age_mtx);
732 
733 	return (0);
734 }
735 
736 static void
737 age_sysctl_node(struct age_softc *sc)
738 {
739 	int error;
740 
741 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
742 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
743 	    "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
744 	    sc, 0, sysctl_age_stats, "I", "Statistics");
745 
746 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
747 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
748 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
749 	    &sc->age_int_mod, 0, sysctl_hw_age_int_mod, "I",
750 	    "age interrupt moderation");
751 
752 	/* Pull in device tunables. */
753 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
754 	error = resource_int_value(device_get_name(sc->age_dev),
755 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
756 	if (error == 0) {
757 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
758 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
759 			device_printf(sc->age_dev,
760 			    "int_mod value out of range; using default: %d\n",
761 			    AGE_IM_TIMER_DEFAULT);
762 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
763 		}
764 	}
765 
766 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
767 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
768 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
769 	    &sc->age_process_limit, 0, sysctl_hw_age_proc_limit, "I",
770 	    "max number of Rx events to process");
771 
772 	/* Pull in device tunables. */
773 	sc->age_process_limit = AGE_PROC_DEFAULT;
774 	error = resource_int_value(device_get_name(sc->age_dev),
775 	    device_get_unit(sc->age_dev), "process_limit",
776 	    &sc->age_process_limit);
777 	if (error == 0) {
778 		if (sc->age_process_limit < AGE_PROC_MIN ||
779 		    sc->age_process_limit > AGE_PROC_MAX) {
780 			device_printf(sc->age_dev,
781 			    "process_limit value out of range; "
782 			    "using default: %d\n", AGE_PROC_DEFAULT);
783 			sc->age_process_limit = AGE_PROC_DEFAULT;
784 		}
785 	}
786 }
787 
788 struct age_dmamap_arg {
789 	bus_addr_t	age_busaddr;
790 };
791 
792 static void
793 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
794 {
795 	struct age_dmamap_arg *ctx;
796 
797 	if (error != 0)
798 		return;
799 
800 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
801 
802 	ctx = (struct age_dmamap_arg *)arg;
803 	ctx->age_busaddr = segs[0].ds_addr;
804 }
805 
806 /*
807  * Attansic L1 controller have single register to specify high
808  * address part of DMA blocks. So all descriptor structures and
809  * DMA memory blocks should have the same high address of given
810  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
811  */
812 static int
813 age_check_boundary(struct age_softc *sc)
814 {
815 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
816 	bus_addr_t cmb_block_end, smb_block_end;
817 
818 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
819 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
820 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
821 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
822 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
823 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
824 
825 	if ((AGE_ADDR_HI(tx_ring_end) !=
826 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
827 	    (AGE_ADDR_HI(rx_ring_end) !=
828 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
829 	    (AGE_ADDR_HI(rr_ring_end) !=
830 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
831 	    (AGE_ADDR_HI(cmb_block_end) !=
832 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
833 	    (AGE_ADDR_HI(smb_block_end) !=
834 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
835 		return (EFBIG);
836 
837 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
838 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
839 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
840 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
841 		return (EFBIG);
842 
843 	return (0);
844 }
845 
846 static int
847 age_dma_alloc(struct age_softc *sc)
848 {
849 	struct age_txdesc *txd;
850 	struct age_rxdesc *rxd;
851 	bus_addr_t lowaddr;
852 	struct age_dmamap_arg ctx;
853 	int error, i;
854 
855 	lowaddr = BUS_SPACE_MAXADDR;
856 
857 again:
858 	/* Create parent ring/DMA block tag. */
859 	error = bus_dma_tag_create(
860 	    bus_get_dma_tag(sc->age_dev), /* parent */
861 	    1, 0,			/* alignment, boundary */
862 	    lowaddr,			/* lowaddr */
863 	    BUS_SPACE_MAXADDR,		/* highaddr */
864 	    NULL, NULL,			/* filter, filterarg */
865 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
866 	    0,				/* nsegments */
867 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
868 	    0,				/* flags */
869 	    NULL, NULL,			/* lockfunc, lockarg */
870 	    &sc->age_cdata.age_parent_tag);
871 	if (error != 0) {
872 		device_printf(sc->age_dev,
873 		    "could not create parent DMA tag.\n");
874 		goto fail;
875 	}
876 
877 	/* Create tag for Tx ring. */
878 	error = bus_dma_tag_create(
879 	    sc->age_cdata.age_parent_tag, /* parent */
880 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
881 	    BUS_SPACE_MAXADDR,		/* lowaddr */
882 	    BUS_SPACE_MAXADDR,		/* highaddr */
883 	    NULL, NULL,			/* filter, filterarg */
884 	    AGE_TX_RING_SZ,		/* maxsize */
885 	    1,				/* nsegments */
886 	    AGE_TX_RING_SZ,		/* maxsegsize */
887 	    0,				/* flags */
888 	    NULL, NULL,			/* lockfunc, lockarg */
889 	    &sc->age_cdata.age_tx_ring_tag);
890 	if (error != 0) {
891 		device_printf(sc->age_dev,
892 		    "could not create Tx ring DMA tag.\n");
893 		goto fail;
894 	}
895 
896 	/* Create tag for Rx ring. */
897 	error = bus_dma_tag_create(
898 	    sc->age_cdata.age_parent_tag, /* parent */
899 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
900 	    BUS_SPACE_MAXADDR,		/* lowaddr */
901 	    BUS_SPACE_MAXADDR,		/* highaddr */
902 	    NULL, NULL,			/* filter, filterarg */
903 	    AGE_RX_RING_SZ,		/* maxsize */
904 	    1,				/* nsegments */
905 	    AGE_RX_RING_SZ,		/* maxsegsize */
906 	    0,				/* flags */
907 	    NULL, NULL,			/* lockfunc, lockarg */
908 	    &sc->age_cdata.age_rx_ring_tag);
909 	if (error != 0) {
910 		device_printf(sc->age_dev,
911 		    "could not create Rx ring DMA tag.\n");
912 		goto fail;
913 	}
914 
915 	/* Create tag for Rx return ring. */
916 	error = bus_dma_tag_create(
917 	    sc->age_cdata.age_parent_tag, /* parent */
918 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
919 	    BUS_SPACE_MAXADDR,		/* lowaddr */
920 	    BUS_SPACE_MAXADDR,		/* highaddr */
921 	    NULL, NULL,			/* filter, filterarg */
922 	    AGE_RR_RING_SZ,		/* maxsize */
923 	    1,				/* nsegments */
924 	    AGE_RR_RING_SZ,		/* maxsegsize */
925 	    0,				/* flags */
926 	    NULL, NULL,			/* lockfunc, lockarg */
927 	    &sc->age_cdata.age_rr_ring_tag);
928 	if (error != 0) {
929 		device_printf(sc->age_dev,
930 		    "could not create Rx return ring DMA tag.\n");
931 		goto fail;
932 	}
933 
934 	/* Create tag for coalesing message block. */
935 	error = bus_dma_tag_create(
936 	    sc->age_cdata.age_parent_tag, /* parent */
937 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
938 	    BUS_SPACE_MAXADDR,		/* lowaddr */
939 	    BUS_SPACE_MAXADDR,		/* highaddr */
940 	    NULL, NULL,			/* filter, filterarg */
941 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
942 	    1,				/* nsegments */
943 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
944 	    0,				/* flags */
945 	    NULL, NULL,			/* lockfunc, lockarg */
946 	    &sc->age_cdata.age_cmb_block_tag);
947 	if (error != 0) {
948 		device_printf(sc->age_dev,
949 		    "could not create CMB DMA tag.\n");
950 		goto fail;
951 	}
952 
953 	/* Create tag for statistics message block. */
954 	error = bus_dma_tag_create(
955 	    sc->age_cdata.age_parent_tag, /* parent */
956 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
957 	    BUS_SPACE_MAXADDR,		/* lowaddr */
958 	    BUS_SPACE_MAXADDR,		/* highaddr */
959 	    NULL, NULL,			/* filter, filterarg */
960 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
961 	    1,				/* nsegments */
962 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
963 	    0,				/* flags */
964 	    NULL, NULL,			/* lockfunc, lockarg */
965 	    &sc->age_cdata.age_smb_block_tag);
966 	if (error != 0) {
967 		device_printf(sc->age_dev,
968 		    "could not create SMB DMA tag.\n");
969 		goto fail;
970 	}
971 
972 	/* Allocate DMA'able memory and load the DMA map. */
973 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
974 	    (void **)&sc->age_rdata.age_tx_ring,
975 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
976 	    &sc->age_cdata.age_tx_ring_map);
977 	if (error != 0) {
978 		device_printf(sc->age_dev,
979 		    "could not allocate DMA'able memory for Tx ring.\n");
980 		goto fail;
981 	}
982 	ctx.age_busaddr = 0;
983 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
984 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
985 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
986 	if (error != 0 || ctx.age_busaddr == 0) {
987 		device_printf(sc->age_dev,
988 		    "could not load DMA'able memory for Tx ring.\n");
989 		goto fail;
990 	}
991 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
992 	/* Rx ring */
993 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
994 	    (void **)&sc->age_rdata.age_rx_ring,
995 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
996 	    &sc->age_cdata.age_rx_ring_map);
997 	if (error != 0) {
998 		device_printf(sc->age_dev,
999 		    "could not allocate DMA'able memory for Rx ring.\n");
1000 		goto fail;
1001 	}
1002 	ctx.age_busaddr = 0;
1003 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1004 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1005 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1006 	if (error != 0 || ctx.age_busaddr == 0) {
1007 		device_printf(sc->age_dev,
1008 		    "could not load DMA'able memory for Rx ring.\n");
1009 		goto fail;
1010 	}
1011 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1012 	/* Rx return ring */
1013 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1014 	    (void **)&sc->age_rdata.age_rr_ring,
1015 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1016 	    &sc->age_cdata.age_rr_ring_map);
1017 	if (error != 0) {
1018 		device_printf(sc->age_dev,
1019 		    "could not allocate DMA'able memory for Rx return ring.\n");
1020 		goto fail;
1021 	}
1022 	ctx.age_busaddr = 0;
1023 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1024 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1025 	    AGE_RR_RING_SZ, age_dmamap_cb,
1026 	    &ctx, 0);
1027 	if (error != 0 || ctx.age_busaddr == 0) {
1028 		device_printf(sc->age_dev,
1029 		    "could not load DMA'able memory for Rx return ring.\n");
1030 		goto fail;
1031 	}
1032 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1033 	/* CMB block */
1034 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1035 	    (void **)&sc->age_rdata.age_cmb_block,
1036 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1037 	    &sc->age_cdata.age_cmb_block_map);
1038 	if (error != 0) {
1039 		device_printf(sc->age_dev,
1040 		    "could not allocate DMA'able memory for CMB block.\n");
1041 		goto fail;
1042 	}
1043 	ctx.age_busaddr = 0;
1044 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1045 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1046 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1047 	if (error != 0 || ctx.age_busaddr == 0) {
1048 		device_printf(sc->age_dev,
1049 		    "could not load DMA'able memory for CMB block.\n");
1050 		goto fail;
1051 	}
1052 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1053 	/* SMB block */
1054 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1055 	    (void **)&sc->age_rdata.age_smb_block,
1056 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1057 	    &sc->age_cdata.age_smb_block_map);
1058 	if (error != 0) {
1059 		device_printf(sc->age_dev,
1060 		    "could not allocate DMA'able memory for SMB block.\n");
1061 		goto fail;
1062 	}
1063 	ctx.age_busaddr = 0;
1064 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1065 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1066 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1067 	if (error != 0 || ctx.age_busaddr == 0) {
1068 		device_printf(sc->age_dev,
1069 		    "could not load DMA'able memory for SMB block.\n");
1070 		goto fail;
1071 	}
1072 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1073 
1074 	/*
1075 	 * All ring buffer and DMA blocks should have the same
1076 	 * high address part of 64bit DMA address space.
1077 	 */
1078 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1079 	    (error = age_check_boundary(sc)) != 0) {
1080 		device_printf(sc->age_dev, "4GB boundary crossed, "
1081 		    "switching to 32bit DMA addressing mode.\n");
1082 		age_dma_free(sc);
1083 		/* Limit DMA address space to 32bit and try again. */
1084 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1085 		goto again;
1086 	}
1087 
1088 	/*
1089 	 * Create Tx/Rx buffer parent tag.
1090 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1091 	 * so it needs separate parent DMA tag.
1092 	 * XXX
1093 	 * It seems enabling 64bit DMA causes data corruption. Limit
1094 	 * DMA address space to 32bit.
1095 	 */
1096 	error = bus_dma_tag_create(
1097 	    bus_get_dma_tag(sc->age_dev), /* parent */
1098 	    1, 0,			/* alignment, boundary */
1099 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1100 	    BUS_SPACE_MAXADDR,		/* highaddr */
1101 	    NULL, NULL,			/* filter, filterarg */
1102 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1103 	    0,				/* nsegments */
1104 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1105 	    0,				/* flags */
1106 	    NULL, NULL,			/* lockfunc, lockarg */
1107 	    &sc->age_cdata.age_buffer_tag);
1108 	if (error != 0) {
1109 		device_printf(sc->age_dev,
1110 		    "could not create parent buffer DMA tag.\n");
1111 		goto fail;
1112 	}
1113 
1114 	/* Create tag for Tx buffers. */
1115 	error = bus_dma_tag_create(
1116 	    sc->age_cdata.age_buffer_tag, /* parent */
1117 	    1, 0,			/* alignment, boundary */
1118 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1119 	    BUS_SPACE_MAXADDR,		/* highaddr */
1120 	    NULL, NULL,			/* filter, filterarg */
1121 	    AGE_TSO_MAXSIZE,		/* maxsize */
1122 	    AGE_MAXTXSEGS,		/* nsegments */
1123 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1124 	    0,				/* flags */
1125 	    NULL, NULL,			/* lockfunc, lockarg */
1126 	    &sc->age_cdata.age_tx_tag);
1127 	if (error != 0) {
1128 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1129 		goto fail;
1130 	}
1131 
1132 	/* Create tag for Rx buffers. */
1133 	error = bus_dma_tag_create(
1134 	    sc->age_cdata.age_buffer_tag, /* parent */
1135 	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1136 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1137 	    BUS_SPACE_MAXADDR,		/* highaddr */
1138 	    NULL, NULL,			/* filter, filterarg */
1139 	    MCLBYTES,			/* maxsize */
1140 	    1,				/* nsegments */
1141 	    MCLBYTES,			/* maxsegsize */
1142 	    0,				/* flags */
1143 	    NULL, NULL,			/* lockfunc, lockarg */
1144 	    &sc->age_cdata.age_rx_tag);
1145 	if (error != 0) {
1146 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1147 		goto fail;
1148 	}
1149 
1150 	/* Create DMA maps for Tx buffers. */
1151 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1152 		txd = &sc->age_cdata.age_txdesc[i];
1153 		txd->tx_m = NULL;
1154 		txd->tx_dmamap = NULL;
1155 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1156 		    &txd->tx_dmamap);
1157 		if (error != 0) {
1158 			device_printf(sc->age_dev,
1159 			    "could not create Tx dmamap.\n");
1160 			goto fail;
1161 		}
1162 	}
1163 	/* Create DMA maps for Rx buffers. */
1164 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1165 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1166 		device_printf(sc->age_dev,
1167 		    "could not create spare Rx dmamap.\n");
1168 		goto fail;
1169 	}
1170 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1171 		rxd = &sc->age_cdata.age_rxdesc[i];
1172 		rxd->rx_m = NULL;
1173 		rxd->rx_dmamap = NULL;
1174 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1175 		    &rxd->rx_dmamap);
1176 		if (error != 0) {
1177 			device_printf(sc->age_dev,
1178 			    "could not create Rx dmamap.\n");
1179 			goto fail;
1180 		}
1181 	}
1182 
1183 fail:
1184 	return (error);
1185 }
1186 
1187 static void
1188 age_dma_free(struct age_softc *sc)
1189 {
1190 	struct age_txdesc *txd;
1191 	struct age_rxdesc *rxd;
1192 	int i;
1193 
1194 	/* Tx buffers */
1195 	if (sc->age_cdata.age_tx_tag != NULL) {
1196 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1197 			txd = &sc->age_cdata.age_txdesc[i];
1198 			if (txd->tx_dmamap != NULL) {
1199 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1200 				    txd->tx_dmamap);
1201 				txd->tx_dmamap = NULL;
1202 			}
1203 		}
1204 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1205 		sc->age_cdata.age_tx_tag = NULL;
1206 	}
1207 	/* Rx buffers */
1208 	if (sc->age_cdata.age_rx_tag != NULL) {
1209 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1210 			rxd = &sc->age_cdata.age_rxdesc[i];
1211 			if (rxd->rx_dmamap != NULL) {
1212 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1213 				    rxd->rx_dmamap);
1214 				rxd->rx_dmamap = NULL;
1215 			}
1216 		}
1217 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1218 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1219 			    sc->age_cdata.age_rx_sparemap);
1220 			sc->age_cdata.age_rx_sparemap = NULL;
1221 		}
1222 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1223 		sc->age_cdata.age_rx_tag = NULL;
1224 	}
1225 	/* Tx ring. */
1226 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1227 		if (sc->age_rdata.age_tx_ring_paddr != 0)
1228 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1229 			    sc->age_cdata.age_tx_ring_map);
1230 		if (sc->age_rdata.age_tx_ring != NULL)
1231 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1232 			    sc->age_rdata.age_tx_ring,
1233 			    sc->age_cdata.age_tx_ring_map);
1234 		sc->age_rdata.age_tx_ring_paddr = 0;
1235 		sc->age_rdata.age_tx_ring = NULL;
1236 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1237 		sc->age_cdata.age_tx_ring_tag = NULL;
1238 	}
1239 	/* Rx ring. */
1240 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1241 		if (sc->age_rdata.age_rx_ring_paddr != 0)
1242 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1243 			    sc->age_cdata.age_rx_ring_map);
1244 		if (sc->age_rdata.age_rx_ring != NULL)
1245 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1246 			    sc->age_rdata.age_rx_ring,
1247 			    sc->age_cdata.age_rx_ring_map);
1248 		sc->age_rdata.age_rx_ring_paddr = 0;
1249 		sc->age_rdata.age_rx_ring = NULL;
1250 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1251 		sc->age_cdata.age_rx_ring_tag = NULL;
1252 	}
1253 	/* Rx return ring. */
1254 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1255 		if (sc->age_rdata.age_rr_ring_paddr != 0)
1256 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1257 			    sc->age_cdata.age_rr_ring_map);
1258 		if (sc->age_rdata.age_rr_ring != NULL)
1259 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1260 			    sc->age_rdata.age_rr_ring,
1261 			    sc->age_cdata.age_rr_ring_map);
1262 		sc->age_rdata.age_rr_ring_paddr = 0;
1263 		sc->age_rdata.age_rr_ring = NULL;
1264 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1265 		sc->age_cdata.age_rr_ring_tag = NULL;
1266 	}
1267 	/* CMB block */
1268 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1269 		if (sc->age_rdata.age_cmb_block_paddr != 0)
1270 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1271 			    sc->age_cdata.age_cmb_block_map);
1272 		if (sc->age_rdata.age_cmb_block != NULL)
1273 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1274 			    sc->age_rdata.age_cmb_block,
1275 			    sc->age_cdata.age_cmb_block_map);
1276 		sc->age_rdata.age_cmb_block_paddr = 0;
1277 		sc->age_rdata.age_cmb_block = NULL;
1278 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1279 		sc->age_cdata.age_cmb_block_tag = NULL;
1280 	}
1281 	/* SMB block */
1282 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1283 		if (sc->age_rdata.age_smb_block_paddr != 0)
1284 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1285 			    sc->age_cdata.age_smb_block_map);
1286 		if (sc->age_rdata.age_smb_block != NULL)
1287 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1288 			    sc->age_rdata.age_smb_block,
1289 			    sc->age_cdata.age_smb_block_map);
1290 		sc->age_rdata.age_smb_block_paddr = 0;
1291 		sc->age_rdata.age_smb_block = NULL;
1292 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1293 		sc->age_cdata.age_smb_block_tag = NULL;
1294 	}
1295 
1296 	if (sc->age_cdata.age_buffer_tag != NULL) {
1297 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1298 		sc->age_cdata.age_buffer_tag = NULL;
1299 	}
1300 	if (sc->age_cdata.age_parent_tag != NULL) {
1301 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1302 		sc->age_cdata.age_parent_tag = NULL;
1303 	}
1304 }
1305 
1306 /*
1307  *	Make sure the interface is stopped at reboot time.
1308  */
1309 static int
1310 age_shutdown(device_t dev)
1311 {
1312 
1313 	return (age_suspend(dev));
1314 }
1315 
1316 static void
1317 age_setwol(struct age_softc *sc)
1318 {
1319 	if_t ifp;
1320 	struct mii_data *mii;
1321 	uint32_t reg, pmcs;
1322 	uint16_t pmstat;
1323 	int aneg, i, pmc;
1324 
1325 	AGE_LOCK_ASSERT(sc);
1326 
1327 	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1328 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1329 		/*
1330 		 * No PME capability, PHY power down.
1331 		 * XXX
1332 		 * Due to an unknown reason powering down PHY resulted
1333 		 * in unexpected results such as inaccessbility of
1334 		 * hardware of freshly rebooted system. Disable
1335 		 * powering down PHY until I got more information for
1336 		 * Attansic/Atheros PHY hardwares.
1337 		 */
1338 #ifdef notyet
1339 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1340 		    MII_BMCR, BMCR_PDOWN);
1341 #endif
1342 		return;
1343 	}
1344 
1345 	ifp = sc->age_ifp;
1346 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1347 		/*
1348 		 * Note, this driver resets the link speed to 10/100Mbps with
1349 		 * auto-negotiation but we don't know whether that operation
1350 		 * would succeed or not as it have no control after powering
1351 		 * off. If the renegotiation fail WOL may not work. Running
1352 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1353 		 * specified in PCI specification and that would result in
1354 		 * complete shutdowning power to ethernet controller.
1355 		 *
1356 		 * TODO
1357 		 *  Save current negotiated media speed/duplex/flow-control
1358 		 *  to softc and restore the same link again after resuming.
1359 		 *  PHY handling such as power down/resetting to 100Mbps
1360 		 *  may be better handled in suspend method in phy driver.
1361 		 */
1362 		mii = device_get_softc(sc->age_miibus);
1363 		mii_pollstat(mii);
1364 		aneg = 0;
1365 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1366 			switch IFM_SUBTYPE(mii->mii_media_active) {
1367 			case IFM_10_T:
1368 			case IFM_100_TX:
1369 				goto got_link;
1370 			case IFM_1000_T:
1371 				aneg++;
1372 			default:
1373 				break;
1374 			}
1375 		}
1376 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1377 		    MII_100T2CR, 0);
1378 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1379 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1380 		    ANAR_10 | ANAR_CSMA);
1381 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1382 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1383 		DELAY(1000);
1384 		if (aneg != 0) {
1385 			/* Poll link state until age(4) get a 10/100 link. */
1386 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1387 				mii_pollstat(mii);
1388 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1389 					switch (IFM_SUBTYPE(
1390 					    mii->mii_media_active)) {
1391 					case IFM_10_T:
1392 					case IFM_100_TX:
1393 						age_mac_config(sc);
1394 						goto got_link;
1395 					default:
1396 						break;
1397 					}
1398 				}
1399 				AGE_UNLOCK(sc);
1400 				pause("agelnk", hz);
1401 				AGE_LOCK(sc);
1402 			}
1403 			if (i == MII_ANEGTICKS_GIGE)
1404 				device_printf(sc->age_dev,
1405 				    "establishing link failed, "
1406 				    "WOL may not work!");
1407 		}
1408 		/*
1409 		 * No link, force MAC to have 100Mbps, full-duplex link.
1410 		 * This is the last resort and may/may not work.
1411 		 */
1412 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1413 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1414 		age_mac_config(sc);
1415 	}
1416 
1417 got_link:
1418 	pmcs = 0;
1419 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
1420 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1421 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1422 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1423 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1424 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1425 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
1426 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1427 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1428 		reg |= MAC_CFG_RX_ENB;
1429 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1430 	}
1431 
1432 	/* Request PME. */
1433 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1434 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1435 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1436 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1437 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1438 #ifdef notyet
1439 	/* See above for powering down PHY issues. */
1440 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1441 		/* No WOL, PHY power down. */
1442 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1443 		    MII_BMCR, BMCR_PDOWN);
1444 	}
1445 #endif
1446 }
1447 
1448 static int
1449 age_suspend(device_t dev)
1450 {
1451 	struct age_softc *sc;
1452 
1453 	sc = device_get_softc(dev);
1454 
1455 	AGE_LOCK(sc);
1456 	age_stop(sc);
1457 	age_setwol(sc);
1458 	AGE_UNLOCK(sc);
1459 
1460 	return (0);
1461 }
1462 
1463 static int
1464 age_resume(device_t dev)
1465 {
1466 	struct age_softc *sc;
1467 	if_t ifp;
1468 
1469 	sc = device_get_softc(dev);
1470 
1471 	AGE_LOCK(sc);
1472 	age_phy_reset(sc);
1473 	ifp = sc->age_ifp;
1474 	if ((if_getflags(ifp) & IFF_UP) != 0)
1475 		age_init_locked(sc);
1476 
1477 	AGE_UNLOCK(sc);
1478 
1479 	return (0);
1480 }
1481 
1482 static int
1483 age_encap(struct age_softc *sc, struct mbuf **m_head)
1484 {
1485 	struct age_txdesc *txd, *txd_last;
1486 	struct tx_desc *desc;
1487 	struct mbuf *m;
1488 	struct ip *ip;
1489 	struct tcphdr *tcp;
1490 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1491 	bus_dmamap_t map;
1492 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1493 	int error, i, nsegs, prod, si;
1494 
1495 	AGE_LOCK_ASSERT(sc);
1496 
1497 	M_ASSERTPKTHDR((*m_head));
1498 
1499 	m = *m_head;
1500 	ip = NULL;
1501 	tcp = NULL;
1502 	cflags = vtag = 0;
1503 	ip_off = poff = 0;
1504 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1505 		/*
1506 		 * L1 requires offset of TCP/UDP payload in its Tx
1507 		 * descriptor to perform hardware Tx checksum offload.
1508 		 * Additionally, TSO requires IP/TCP header size and
1509 		 * modification of IP/TCP header in order to make TSO
1510 		 * engine work. This kind of operation takes many CPU
1511 		 * cycles on FreeBSD so fast host CPU is needed to get
1512 		 * smooth TSO performance.
1513 		 */
1514 		struct ether_header *eh;
1515 
1516 		if (M_WRITABLE(m) == 0) {
1517 			/* Get a writable copy. */
1518 			m = m_dup(*m_head, M_NOWAIT);
1519 			/* Release original mbufs. */
1520 			m_freem(*m_head);
1521 			if (m == NULL) {
1522 				*m_head = NULL;
1523 				return (ENOBUFS);
1524 			}
1525 			*m_head = m;
1526 		}
1527 		ip_off = sizeof(struct ether_header);
1528 		m = m_pullup(m, ip_off);
1529 		if (m == NULL) {
1530 			*m_head = NULL;
1531 			return (ENOBUFS);
1532 		}
1533 		eh = mtod(m, struct ether_header *);
1534 		/*
1535 		 * Check if hardware VLAN insertion is off.
1536 		 * Additional check for LLC/SNAP frame?
1537 		 */
1538 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1539 			ip_off = sizeof(struct ether_vlan_header);
1540 			m = m_pullup(m, ip_off);
1541 			if (m == NULL) {
1542 				*m_head = NULL;
1543 				return (ENOBUFS);
1544 			}
1545 		}
1546 		m = m_pullup(m, ip_off + sizeof(struct ip));
1547 		if (m == NULL) {
1548 			*m_head = NULL;
1549 			return (ENOBUFS);
1550 		}
1551 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1552 		poff = ip_off + (ip->ip_hl << 2);
1553 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1554 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1555 			if (m == NULL) {
1556 				*m_head = NULL;
1557 				return (ENOBUFS);
1558 			}
1559 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1560 			m = m_pullup(m, poff + (tcp->th_off << 2));
1561 			if (m == NULL) {
1562 				*m_head = NULL;
1563 				return (ENOBUFS);
1564 			}
1565 			/*
1566 			 * L1 requires IP/TCP header size and offset as
1567 			 * well as TCP pseudo checksum which complicates
1568 			 * TSO configuration. I guess this comes from the
1569 			 * adherence to Microsoft NDIS Large Send
1570 			 * specification which requires insertion of
1571 			 * pseudo checksum by upper stack. The pseudo
1572 			 * checksum that NDIS refers to doesn't include
1573 			 * TCP payload length so age(4) should recompute
1574 			 * the pseudo checksum here. Hopefully this wouldn't
1575 			 * be much burden on modern CPUs.
1576 			 * Reset IP checksum and recompute TCP pseudo
1577 			 * checksum as NDIS specification said.
1578 			 */
1579 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1580 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1581 			ip->ip_sum = 0;
1582 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1583 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1584 		}
1585 		*m_head = m;
1586 	}
1587 
1588 	si = prod = sc->age_cdata.age_tx_prod;
1589 	txd = &sc->age_cdata.age_txdesc[prod];
1590 	txd_last = txd;
1591 	map = txd->tx_dmamap;
1592 
1593 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1594 	    *m_head, txsegs, &nsegs, 0);
1595 	if (error == EFBIG) {
1596 		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1597 		if (m == NULL) {
1598 			m_freem(*m_head);
1599 			*m_head = NULL;
1600 			return (ENOMEM);
1601 		}
1602 		*m_head = m;
1603 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1604 		    *m_head, txsegs, &nsegs, 0);
1605 		if (error != 0) {
1606 			m_freem(*m_head);
1607 			*m_head = NULL;
1608 			return (error);
1609 		}
1610 	} else if (error != 0)
1611 		return (error);
1612 	if (nsegs == 0) {
1613 		m_freem(*m_head);
1614 		*m_head = NULL;
1615 		return (EIO);
1616 	}
1617 
1618 	/* Check descriptor overrun. */
1619 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1620 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1621 		return (ENOBUFS);
1622 	}
1623 
1624 	m = *m_head;
1625 	/* Configure VLAN hardware tag insertion. */
1626 	if ((m->m_flags & M_VLANTAG) != 0) {
1627 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1628 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1629 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1630 	}
1631 
1632 	desc = NULL;
1633 	i = 0;
1634 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1635 		/* Request TSO and set MSS. */
1636 		cflags |= AGE_TD_TSO_IPV4;
1637 		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1638 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1639 		    AGE_TD_TSO_MSS_SHIFT);
1640 		/* Set IP/TCP header size. */
1641 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1642 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1643 		/*
1644 		 * L1 requires the first buffer should only hold IP/TCP
1645 		 * header data. TCP payload should be handled in other
1646 		 * descriptors.
1647 		 */
1648 		hdrlen = poff + (tcp->th_off << 2);
1649 		desc = &sc->age_rdata.age_tx_ring[prod];
1650 		desc->addr = htole64(txsegs[0].ds_addr);
1651 		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1652 		desc->flags = htole32(cflags);
1653 		sc->age_cdata.age_tx_cnt++;
1654 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1655 		if (m->m_len - hdrlen > 0) {
1656 			/* Handle remaining payload of the 1st fragment. */
1657 			desc = &sc->age_rdata.age_tx_ring[prod];
1658 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1659 			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1660 			    vtag);
1661 			desc->flags = htole32(cflags);
1662 			sc->age_cdata.age_tx_cnt++;
1663 			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1664 		}
1665 		/* Handle remaining fragments. */
1666 		i = 1;
1667 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1668 		/* Configure Tx IP/TCP/UDP checksum offload. */
1669 		cflags |= AGE_TD_CSUM;
1670 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1671 			cflags |= AGE_TD_TCPCSUM;
1672 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1673 			cflags |= AGE_TD_UDPCSUM;
1674 		/* Set checksum start offset. */
1675 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1676 		/* Set checksum insertion position of TCP/UDP. */
1677 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1678 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1679 	}
1680 	for (; i < nsegs; i++) {
1681 		desc = &sc->age_rdata.age_tx_ring[prod];
1682 		desc->addr = htole64(txsegs[i].ds_addr);
1683 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1684 		desc->flags = htole32(cflags);
1685 		sc->age_cdata.age_tx_cnt++;
1686 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1687 	}
1688 	/* Update producer index. */
1689 	sc->age_cdata.age_tx_prod = prod;
1690 
1691 	/* Set EOP on the last descriptor. */
1692 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1693 	desc = &sc->age_rdata.age_tx_ring[prod];
1694 	desc->flags |= htole32(AGE_TD_EOP);
1695 
1696 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1697 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1698 		desc = &sc->age_rdata.age_tx_ring[si];
1699 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1700 	}
1701 
1702 	/* Swap dmamap of the first and the last. */
1703 	txd = &sc->age_cdata.age_txdesc[prod];
1704 	map = txd_last->tx_dmamap;
1705 	txd_last->tx_dmamap = txd->tx_dmamap;
1706 	txd->tx_dmamap = map;
1707 	txd->tx_m = m;
1708 
1709 	/* Sync descriptors. */
1710 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1711 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1712 	    sc->age_cdata.age_tx_ring_map,
1713 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1714 
1715 	return (0);
1716 }
1717 
1718 static void
1719 age_start(if_t ifp)
1720 {
1721         struct age_softc *sc;
1722 
1723 	sc = if_getsoftc(ifp);
1724 	AGE_LOCK(sc);
1725 	age_start_locked(ifp);
1726 	AGE_UNLOCK(sc);
1727 }
1728 
1729 static void
1730 age_start_locked(if_t ifp)
1731 {
1732         struct age_softc *sc;
1733         struct mbuf *m_head;
1734 	int enq;
1735 
1736 	sc = if_getsoftc(ifp);
1737 
1738 	AGE_LOCK_ASSERT(sc);
1739 
1740 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1741 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1742 		return;
1743 
1744 	for (enq = 0; !if_sendq_empty(ifp); ) {
1745 		m_head = if_dequeue(ifp);
1746 		if (m_head == NULL)
1747 			break;
1748 		/*
1749 		 * Pack the data into the transmit ring. If we
1750 		 * don't have room, set the OACTIVE flag and wait
1751 		 * for the NIC to drain the ring.
1752 		 */
1753 		if (age_encap(sc, &m_head)) {
1754 			if (m_head == NULL)
1755 				break;
1756 			if_sendq_prepend(ifp, m_head);
1757 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1758 			break;
1759 		}
1760 
1761 		enq++;
1762 		/*
1763 		 * If there's a BPF listener, bounce a copy of this frame
1764 		 * to him.
1765 		 */
1766 		ETHER_BPF_MTAP(ifp, m_head);
1767 	}
1768 
1769 	if (enq > 0) {
1770 		/* Update mbox. */
1771 		AGE_COMMIT_MBOX(sc);
1772 		/* Set a timeout in case the chip goes out to lunch. */
1773 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1774 	}
1775 }
1776 
1777 static void
1778 age_watchdog(struct age_softc *sc)
1779 {
1780 	if_t ifp;
1781 
1782 	AGE_LOCK_ASSERT(sc);
1783 
1784 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1785 		return;
1786 
1787 	ifp = sc->age_ifp;
1788 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1789 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1790 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1791 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1792 		age_init_locked(sc);
1793 		return;
1794 	}
1795 	if (sc->age_cdata.age_tx_cnt == 0) {
1796 		if_printf(sc->age_ifp,
1797 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1798 		if (!if_sendq_empty(ifp))
1799 			age_start_locked(ifp);
1800 		return;
1801 	}
1802 	if_printf(sc->age_ifp, "watchdog timeout\n");
1803 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1804 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1805 	age_init_locked(sc);
1806 	if (!if_sendq_empty(ifp))
1807 		age_start_locked(ifp);
1808 }
1809 
1810 static int
1811 age_ioctl(if_t ifp, u_long cmd, caddr_t data)
1812 {
1813 	struct age_softc *sc;
1814 	struct ifreq *ifr;
1815 	struct mii_data *mii;
1816 	uint32_t reg;
1817 	int error, mask;
1818 
1819 	sc = if_getsoftc(ifp);
1820 	ifr = (struct ifreq *)data;
1821 	error = 0;
1822 	switch (cmd) {
1823 	case SIOCSIFMTU:
1824 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1825 			error = EINVAL;
1826 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1827 			AGE_LOCK(sc);
1828 			if_setmtu(ifp, ifr->ifr_mtu);
1829 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1830 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1831 				age_init_locked(sc);
1832 			}
1833 			AGE_UNLOCK(sc);
1834 		}
1835 		break;
1836 	case SIOCSIFFLAGS:
1837 		AGE_LOCK(sc);
1838 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1839 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1840 				if (((if_getflags(ifp) ^ sc->age_if_flags)
1841 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1842 					age_rxfilter(sc);
1843 			} else {
1844 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1845 					age_init_locked(sc);
1846 			}
1847 		} else {
1848 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1849 				age_stop(sc);
1850 		}
1851 		sc->age_if_flags = if_getflags(ifp);
1852 		AGE_UNLOCK(sc);
1853 		break;
1854 	case SIOCADDMULTI:
1855 	case SIOCDELMULTI:
1856 		AGE_LOCK(sc);
1857 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1858 			age_rxfilter(sc);
1859 		AGE_UNLOCK(sc);
1860 		break;
1861 	case SIOCSIFMEDIA:
1862 	case SIOCGIFMEDIA:
1863 		mii = device_get_softc(sc->age_miibus);
1864 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1865 		break;
1866 	case SIOCSIFCAP:
1867 		AGE_LOCK(sc);
1868 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1869 		if ((mask & IFCAP_TXCSUM) != 0 &&
1870 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1871 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1872 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1873 				if_sethwassistbits(ifp, AGE_CSUM_FEATURES, 0);
1874 			else
1875 				if_sethwassistbits(ifp, 0, AGE_CSUM_FEATURES);
1876 		}
1877 		if ((mask & IFCAP_RXCSUM) != 0 &&
1878 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
1879 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1880 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1881 			reg &= ~MAC_CFG_RXCSUM_ENB;
1882 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1883 				reg |= MAC_CFG_RXCSUM_ENB;
1884 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1885 		}
1886 		if ((mask & IFCAP_TSO4) != 0 &&
1887 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1888 			if_togglecapenable(ifp, IFCAP_TSO4);
1889 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
1890 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1891 			else
1892 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1893 		}
1894 
1895 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1896 		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
1897 			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
1898 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1899 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1900 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1901 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1902 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
1903 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
1904 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1905 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1906 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1907 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1908 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1909 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1910 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1911 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
1912 			age_rxvlan(sc);
1913 		}
1914 		AGE_UNLOCK(sc);
1915 		VLAN_CAPABILITIES(ifp);
1916 		break;
1917 	default:
1918 		error = ether_ioctl(ifp, cmd, data);
1919 		break;
1920 	}
1921 
1922 	return (error);
1923 }
1924 
1925 static void
1926 age_mac_config(struct age_softc *sc)
1927 {
1928 	struct mii_data *mii;
1929 	uint32_t reg;
1930 
1931 	AGE_LOCK_ASSERT(sc);
1932 
1933 	mii = device_get_softc(sc->age_miibus);
1934 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1935 	reg &= ~MAC_CFG_FULL_DUPLEX;
1936 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1937 	reg &= ~MAC_CFG_SPEED_MASK;
1938 	/* Reprogram MAC with resolved speed/duplex. */
1939 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1940 	case IFM_10_T:
1941 	case IFM_100_TX:
1942 		reg |= MAC_CFG_SPEED_10_100;
1943 		break;
1944 	case IFM_1000_T:
1945 		reg |= MAC_CFG_SPEED_1000;
1946 		break;
1947 	}
1948 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1949 		reg |= MAC_CFG_FULL_DUPLEX;
1950 #ifdef notyet
1951 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1952 			reg |= MAC_CFG_TX_FC;
1953 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1954 			reg |= MAC_CFG_RX_FC;
1955 #endif
1956 	}
1957 
1958 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1959 }
1960 
1961 static void
1962 age_link_task(void *arg, int pending)
1963 {
1964 	struct age_softc *sc;
1965 	struct mii_data *mii;
1966 	if_t ifp;
1967 	uint32_t reg;
1968 
1969 	sc = (struct age_softc *)arg;
1970 
1971 	AGE_LOCK(sc);
1972 	mii = device_get_softc(sc->age_miibus);
1973 	ifp = sc->age_ifp;
1974 	if (mii == NULL || ifp == NULL ||
1975 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1976 		AGE_UNLOCK(sc);
1977 		return;
1978 	}
1979 
1980 	sc->age_flags &= ~AGE_FLAG_LINK;
1981 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1982 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1983 		case IFM_10_T:
1984 		case IFM_100_TX:
1985 		case IFM_1000_T:
1986 			sc->age_flags |= AGE_FLAG_LINK;
1987 			break;
1988 		default:
1989 			break;
1990 		}
1991 	}
1992 
1993 	/* Stop Rx/Tx MACs. */
1994 	age_stop_rxmac(sc);
1995 	age_stop_txmac(sc);
1996 
1997 	/* Program MACs with resolved speed/duplex/flow-control. */
1998 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1999 		age_mac_config(sc);
2000 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2001 		/* Restart DMA engine and Tx/Rx MAC. */
2002 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2003 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2004 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2005 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2006 	}
2007 
2008 	AGE_UNLOCK(sc);
2009 }
2010 
2011 static void
2012 age_stats_update(struct age_softc *sc)
2013 {
2014 	struct age_stats *stat;
2015 	struct smb *smb;
2016 	if_t ifp;
2017 
2018 	AGE_LOCK_ASSERT(sc);
2019 
2020 	stat = &sc->age_stat;
2021 
2022 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2023 	    sc->age_cdata.age_smb_block_map,
2024 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2025 
2026 	smb = sc->age_rdata.age_smb_block;
2027 	if (smb->updated == 0)
2028 		return;
2029 
2030 	ifp = sc->age_ifp;
2031 	/* Rx stats. */
2032 	stat->rx_frames += smb->rx_frames;
2033 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2034 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2035 	stat->rx_pause_frames += smb->rx_pause_frames;
2036 	stat->rx_control_frames += smb->rx_control_frames;
2037 	stat->rx_crcerrs += smb->rx_crcerrs;
2038 	stat->rx_lenerrs += smb->rx_lenerrs;
2039 	stat->rx_bytes += smb->rx_bytes;
2040 	stat->rx_runts += smb->rx_runts;
2041 	stat->rx_fragments += smb->rx_fragments;
2042 	stat->rx_pkts_64 += smb->rx_pkts_64;
2043 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2044 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2045 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2046 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2047 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2048 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2049 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2050 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2051 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2052 	stat->rx_alignerrs += smb->rx_alignerrs;
2053 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2054 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2055 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2056 
2057 	/* Tx stats. */
2058 	stat->tx_frames += smb->tx_frames;
2059 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2060 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2061 	stat->tx_pause_frames += smb->tx_pause_frames;
2062 	stat->tx_excess_defer += smb->tx_excess_defer;
2063 	stat->tx_control_frames += smb->tx_control_frames;
2064 	stat->tx_deferred += smb->tx_deferred;
2065 	stat->tx_bytes += smb->tx_bytes;
2066 	stat->tx_pkts_64 += smb->tx_pkts_64;
2067 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2068 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2069 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2070 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2071 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2072 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2073 	stat->tx_single_colls += smb->tx_single_colls;
2074 	stat->tx_multi_colls += smb->tx_multi_colls;
2075 	stat->tx_late_colls += smb->tx_late_colls;
2076 	stat->tx_excess_colls += smb->tx_excess_colls;
2077 	stat->tx_underrun += smb->tx_underrun;
2078 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2079 	stat->tx_lenerrs += smb->tx_lenerrs;
2080 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2081 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2082 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2083 
2084 	/* Update counters in ifnet. */
2085 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2086 
2087 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2088 	    smb->tx_multi_colls + smb->tx_late_colls +
2089 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2090 
2091 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2092 	    smb->tx_late_colls + smb->tx_underrun +
2093 	    smb->tx_pkts_truncated);
2094 
2095 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2096 
2097 	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2098 	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2099 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2100 	    smb->rx_alignerrs);
2101 
2102 	/* Update done, clear. */
2103 	smb->updated = 0;
2104 
2105 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2106 	    sc->age_cdata.age_smb_block_map,
2107 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2108 }
2109 
2110 static int
2111 age_intr(void *arg)
2112 {
2113 	struct age_softc *sc;
2114 	uint32_t status;
2115 
2116 	sc = (struct age_softc *)arg;
2117 
2118 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2119 	if (status == 0 || (status & AGE_INTRS) == 0)
2120 		return (FILTER_STRAY);
2121 	/* Disable interrupts. */
2122 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2123 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2124 
2125 	return (FILTER_HANDLED);
2126 }
2127 
2128 static void
2129 age_int_task(void *arg, int pending)
2130 {
2131 	struct age_softc *sc;
2132 	if_t ifp;
2133 	struct cmb *cmb;
2134 	uint32_t status;
2135 
2136 	sc = (struct age_softc *)arg;
2137 
2138 	AGE_LOCK(sc);
2139 
2140 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2141 	    sc->age_cdata.age_cmb_block_map,
2142 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2143 	cmb = sc->age_rdata.age_cmb_block;
2144 	status = le32toh(cmb->intr_status);
2145 	if (sc->age_morework != 0)
2146 		status |= INTR_CMB_RX;
2147 	if ((status & AGE_INTRS) == 0)
2148 		goto done;
2149 
2150 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2151 	    TPD_CONS_SHIFT;
2152 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2153 	    RRD_PROD_SHIFT;
2154 	/* Let hardware know CMB was served. */
2155 	cmb->intr_status = 0;
2156 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2157 	    sc->age_cdata.age_cmb_block_map,
2158 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2159 
2160 	ifp = sc->age_ifp;
2161 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2162 		if ((status & INTR_CMB_RX) != 0)
2163 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2164 			    sc->age_process_limit);
2165 		if ((status & INTR_CMB_TX) != 0)
2166 			age_txintr(sc, sc->age_tpd_cons);
2167 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2168 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2169 				device_printf(sc->age_dev,
2170 				    "DMA read error! -- resetting\n");
2171 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2172 				device_printf(sc->age_dev,
2173 				    "DMA write error! -- resetting\n");
2174 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2175 			age_init_locked(sc);
2176 		}
2177 		if (!if_sendq_empty(ifp))
2178 			age_start_locked(ifp);
2179 		if ((status & INTR_SMB) != 0)
2180 			age_stats_update(sc);
2181 	}
2182 
2183 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2184 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2185 	    sc->age_cdata.age_cmb_block_map,
2186 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2187 	status = le32toh(cmb->intr_status);
2188 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2189 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2190 		AGE_UNLOCK(sc);
2191 		return;
2192 	}
2193 
2194 done:
2195 	/* Re-enable interrupts. */
2196 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2197 	AGE_UNLOCK(sc);
2198 }
2199 
2200 static void
2201 age_txintr(struct age_softc *sc, int tpd_cons)
2202 {
2203 	if_t ifp;
2204 	struct age_txdesc *txd;
2205 	int cons, prog;
2206 
2207 	AGE_LOCK_ASSERT(sc);
2208 
2209 	ifp = sc->age_ifp;
2210 
2211 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2212 	    sc->age_cdata.age_tx_ring_map,
2213 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2214 
2215 	/*
2216 	 * Go through our Tx list and free mbufs for those
2217 	 * frames which have been transmitted.
2218 	 */
2219 	cons = sc->age_cdata.age_tx_cons;
2220 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2221 		if (sc->age_cdata.age_tx_cnt <= 0)
2222 			break;
2223 		prog++;
2224 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2225 		sc->age_cdata.age_tx_cnt--;
2226 		txd = &sc->age_cdata.age_txdesc[cons];
2227 		/*
2228 		 * Clear Tx descriptors, it's not required but would
2229 		 * help debugging in case of Tx issues.
2230 		 */
2231 		txd->tx_desc->addr = 0;
2232 		txd->tx_desc->len = 0;
2233 		txd->tx_desc->flags = 0;
2234 
2235 		if (txd->tx_m == NULL)
2236 			continue;
2237 		/* Reclaim transmitted mbufs. */
2238 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2239 		    BUS_DMASYNC_POSTWRITE);
2240 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2241 		m_freem(txd->tx_m);
2242 		txd->tx_m = NULL;
2243 	}
2244 
2245 	if (prog > 0) {
2246 		sc->age_cdata.age_tx_cons = cons;
2247 
2248 		/*
2249 		 * Unarm watchdog timer only when there are no pending
2250 		 * Tx descriptors in queue.
2251 		 */
2252 		if (sc->age_cdata.age_tx_cnt == 0)
2253 			sc->age_watchdog_timer = 0;
2254 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2255 		    sc->age_cdata.age_tx_ring_map,
2256 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2257 	}
2258 }
2259 
2260 #ifndef __NO_STRICT_ALIGNMENT
2261 static struct mbuf *
2262 age_fixup_rx(if_t ifp, struct mbuf *m)
2263 {
2264 	struct mbuf *n;
2265         int i;
2266         uint16_t *src, *dst;
2267 
2268 	src = mtod(m, uint16_t *);
2269 	dst = src - 3;
2270 
2271 	if (m->m_next == NULL) {
2272 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2273 			*dst++ = *src++;
2274 		m->m_data -= 6;
2275 		return (m);
2276 	}
2277 	/*
2278 	 * Append a new mbuf to received mbuf chain and copy ethernet
2279 	 * header from the mbuf chain. This can save lots of CPU
2280 	 * cycles for jumbo frame.
2281 	 */
2282 	MGETHDR(n, M_NOWAIT, MT_DATA);
2283 	if (n == NULL) {
2284 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2285 		m_freem(m);
2286 		return (NULL);
2287 	}
2288 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2289 	m->m_data += ETHER_HDR_LEN;
2290 	m->m_len -= ETHER_HDR_LEN;
2291 	n->m_len = ETHER_HDR_LEN;
2292 	M_MOVE_PKTHDR(n, m);
2293 	n->m_next = m;
2294 	return (n);
2295 }
2296 #endif
2297 
2298 /* Receive a frame. */
2299 static void
2300 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2301 {
2302 	struct age_rxdesc *rxd;
2303 	if_t ifp;
2304 	struct mbuf *mp, *m;
2305 	uint32_t status, index, vtag;
2306 	int count, nsegs;
2307 	int rx_cons;
2308 
2309 	AGE_LOCK_ASSERT(sc);
2310 
2311 	ifp = sc->age_ifp;
2312 	status = le32toh(rxrd->flags);
2313 	index = le32toh(rxrd->index);
2314 	rx_cons = AGE_RX_CONS(index);
2315 	nsegs = AGE_RX_NSEGS(index);
2316 
2317 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2318 	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2319 		/*
2320 		 * We want to pass the following frames to upper
2321 		 * layer regardless of error status of Rx return
2322 		 * ring.
2323 		 *
2324 		 *  o IP/TCP/UDP checksum is bad.
2325 		 *  o frame length and protocol specific length
2326 		 *     does not match.
2327 		 */
2328 		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2329 		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2330 		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2331 			return;
2332 	}
2333 
2334 	for (count = 0; count < nsegs; count++,
2335 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2336 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2337 		mp = rxd->rx_m;
2338 		/* Add a new receive buffer to the ring. */
2339 		if (age_newbuf(sc, rxd) != 0) {
2340 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2341 			/* Reuse Rx buffers. */
2342 			if (sc->age_cdata.age_rxhead != NULL)
2343 				m_freem(sc->age_cdata.age_rxhead);
2344 			break;
2345 		}
2346 
2347 		/*
2348 		 * Assume we've received a full sized frame.
2349 		 * Actual size is fixed when we encounter the end of
2350 		 * multi-segmented frame.
2351 		 */
2352 		mp->m_len = AGE_RX_BUF_SIZE;
2353 
2354 		/* Chain received mbufs. */
2355 		if (sc->age_cdata.age_rxhead == NULL) {
2356 			sc->age_cdata.age_rxhead = mp;
2357 			sc->age_cdata.age_rxtail = mp;
2358 		} else {
2359 			mp->m_flags &= ~M_PKTHDR;
2360 			sc->age_cdata.age_rxprev_tail =
2361 			    sc->age_cdata.age_rxtail;
2362 			sc->age_cdata.age_rxtail->m_next = mp;
2363 			sc->age_cdata.age_rxtail = mp;
2364 		}
2365 
2366 		if (count == nsegs - 1) {
2367 			/* Last desc. for this frame. */
2368 			m = sc->age_cdata.age_rxhead;
2369 			m->m_flags |= M_PKTHDR;
2370 			/*
2371 			 * It seems that L1 controller has no way
2372 			 * to tell hardware to strip CRC bytes.
2373 			 */
2374 			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2375 			    ETHER_CRC_LEN;
2376 			if (nsegs > 1) {
2377 				/* Set last mbuf size. */
2378 				mp->m_len = sc->age_cdata.age_rxlen -
2379 				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2380 				/* Remove the CRC bytes in chained mbufs. */
2381 				if (mp->m_len <= ETHER_CRC_LEN) {
2382 					sc->age_cdata.age_rxtail =
2383 					    sc->age_cdata.age_rxprev_tail;
2384 					sc->age_cdata.age_rxtail->m_len -=
2385 					    (ETHER_CRC_LEN - mp->m_len);
2386 					sc->age_cdata.age_rxtail->m_next = NULL;
2387 					m_freem(mp);
2388 				} else {
2389 					mp->m_len -= ETHER_CRC_LEN;
2390 				}
2391 			} else
2392 				m->m_len = m->m_pkthdr.len;
2393 			m->m_pkthdr.rcvif = ifp;
2394 			/*
2395 			 * Set checksum information.
2396 			 * It seems that L1 controller can compute partial
2397 			 * checksum. The partial checksum value can be used
2398 			 * to accelerate checksum computation for fragmented
2399 			 * TCP/UDP packets. Upper network stack already
2400 			 * takes advantage of the partial checksum value in
2401 			 * IP reassembly stage. But I'm not sure the
2402 			 * correctness of the partial hardware checksum
2403 			 * assistance due to lack of data sheet. If it is
2404 			 * proven to work on L1 I'll enable it.
2405 			 */
2406 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2407 			    (status & AGE_RRD_IPV4) != 0) {
2408 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2409 					m->m_pkthdr.csum_flags |=
2410 					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2411 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2412 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2413 					m->m_pkthdr.csum_flags |=
2414 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2415 					m->m_pkthdr.csum_data = 0xffff;
2416 				}
2417 				/*
2418 				 * Don't mark bad checksum for TCP/UDP frames
2419 				 * as fragmented frames may always have set
2420 				 * bad checksummed bit of descriptor status.
2421 				 */
2422 			}
2423 
2424 			/* Check for VLAN tagged frames. */
2425 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2426 			    (status & AGE_RRD_VLAN) != 0) {
2427 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2428 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2429 				m->m_flags |= M_VLANTAG;
2430 			}
2431 #ifndef __NO_STRICT_ALIGNMENT
2432 			m = age_fixup_rx(ifp, m);
2433 			if (m != NULL)
2434 #endif
2435 			{
2436 			/* Pass it on. */
2437 			AGE_UNLOCK(sc);
2438 			if_input(ifp, m);
2439 			AGE_LOCK(sc);
2440 			}
2441 		}
2442 	}
2443 
2444 	/* Reset mbuf chains. */
2445 	AGE_RXCHAIN_RESET(sc);
2446 }
2447 
2448 static int
2449 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2450 {
2451 	struct rx_rdesc *rxrd;
2452 	int rr_cons, nsegs, pktlen, prog;
2453 
2454 	AGE_LOCK_ASSERT(sc);
2455 
2456 	rr_cons = sc->age_cdata.age_rr_cons;
2457 	if (rr_cons == rr_prod)
2458 		return (0);
2459 
2460 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2461 	    sc->age_cdata.age_rr_ring_map,
2462 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2463 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2464 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2465 
2466 	for (prog = 0; rr_cons != rr_prod; prog++) {
2467 		if (count-- <= 0)
2468 			break;
2469 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2470 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2471 		if (nsegs == 0)
2472 			break;
2473 		/*
2474 		 * Check number of segments against received bytes.
2475 		 * Non-matching value would indicate that hardware
2476 		 * is still trying to update Rx return descriptors.
2477 		 * I'm not sure whether this check is really needed.
2478 		 */
2479 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2480 		if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2481 			break;
2482 
2483 		/* Received a frame. */
2484 		age_rxeof(sc, rxrd);
2485 		/* Clear return ring. */
2486 		rxrd->index = 0;
2487 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2488 		sc->age_cdata.age_rx_cons += nsegs;
2489 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2490 	}
2491 
2492 	if (prog > 0) {
2493 		/* Update the consumer index. */
2494 		sc->age_cdata.age_rr_cons = rr_cons;
2495 
2496 		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2497 		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2498 		/* Sync descriptors. */
2499 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2500 		    sc->age_cdata.age_rr_ring_map,
2501 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2502 
2503 		/* Notify hardware availability of new Rx buffers. */
2504 		AGE_COMMIT_MBOX(sc);
2505 	}
2506 
2507 	return (count > 0 ? 0 : EAGAIN);
2508 }
2509 
2510 static void
2511 age_tick(void *arg)
2512 {
2513 	struct age_softc *sc;
2514 	struct mii_data *mii;
2515 
2516 	sc = (struct age_softc *)arg;
2517 
2518 	AGE_LOCK_ASSERT(sc);
2519 
2520 	mii = device_get_softc(sc->age_miibus);
2521 	mii_tick(mii);
2522 	age_watchdog(sc);
2523 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2524 }
2525 
2526 static void
2527 age_reset(struct age_softc *sc)
2528 {
2529 	uint32_t reg;
2530 	int i;
2531 
2532 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2533 	CSR_READ_4(sc, AGE_MASTER_CFG);
2534 	DELAY(1000);
2535 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2536 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2537 			break;
2538 		DELAY(10);
2539 	}
2540 
2541 	if (i == 0)
2542 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2543 	/* Initialize PCIe module. From Linux. */
2544 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2545 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2546 }
2547 
2548 static void
2549 age_init(void *xsc)
2550 {
2551 	struct age_softc *sc;
2552 
2553 	sc = (struct age_softc *)xsc;
2554 	AGE_LOCK(sc);
2555 	age_init_locked(sc);
2556 	AGE_UNLOCK(sc);
2557 }
2558 
2559 static void
2560 age_init_locked(struct age_softc *sc)
2561 {
2562 	if_t ifp;
2563 	struct mii_data *mii;
2564 	uint8_t eaddr[ETHER_ADDR_LEN];
2565 	bus_addr_t paddr;
2566 	uint32_t reg, fsize;
2567 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2568 	int error;
2569 
2570 	AGE_LOCK_ASSERT(sc);
2571 
2572 	ifp = sc->age_ifp;
2573 	mii = device_get_softc(sc->age_miibus);
2574 
2575 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2576 		return;
2577 
2578 	/*
2579 	 * Cancel any pending I/O.
2580 	 */
2581 	age_stop(sc);
2582 
2583 	/*
2584 	 * Reset the chip to a known state.
2585 	 */
2586 	age_reset(sc);
2587 
2588 	/* Initialize descriptors. */
2589 	error = age_init_rx_ring(sc);
2590         if (error != 0) {
2591                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2592                 age_stop(sc);
2593 		return;
2594         }
2595 	age_init_rr_ring(sc);
2596 	age_init_tx_ring(sc);
2597 	age_init_cmb_block(sc);
2598 	age_init_smb_block(sc);
2599 
2600 	/* Reprogram the station address. */
2601 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2602 	CSR_WRITE_4(sc, AGE_PAR0,
2603 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2604 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2605 
2606 	/* Set descriptor base addresses. */
2607 	paddr = sc->age_rdata.age_tx_ring_paddr;
2608 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2609 	paddr = sc->age_rdata.age_rx_ring_paddr;
2610 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2611 	paddr = sc->age_rdata.age_rr_ring_paddr;
2612 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2613 	paddr = sc->age_rdata.age_tx_ring_paddr;
2614 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2615 	paddr = sc->age_rdata.age_cmb_block_paddr;
2616 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2617 	paddr = sc->age_rdata.age_smb_block_paddr;
2618 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2619 	/* Set Rx/Rx return descriptor counter. */
2620 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2621 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2622 	    DESC_RRD_CNT_MASK) |
2623 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2624 	/* Set Tx descriptor counter. */
2625 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2626 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2627 
2628 	/* Tell hardware that we're ready to load descriptors. */
2629 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2630 
2631 	/*
2632 	 * Initialize mailbox register.
2633 	 * Updated producer/consumer index information is exchanged
2634 	 * through this mailbox register. However Tx producer and
2635 	 * Rx return consumer/Rx producer are all shared such that
2636 	 * it's hard to separate code path between Tx and Rx without
2637 	 * locking. If L1 hardware have a separate mail box register
2638 	 * for Tx and Rx consumer/producer management we could have
2639 	 * independent Tx/Rx handler which in turn Rx handler could have
2640 	 * been run without any locking.
2641 	 */
2642 	AGE_COMMIT_MBOX(sc);
2643 
2644 	/* Configure IPG/IFG parameters. */
2645 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2646 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2647 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2648 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2649 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2650 
2651 	/* Set parameters for half-duplex media. */
2652 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2653 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2654 	    HDPX_CFG_LCOL_MASK) |
2655 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2656 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2657 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2658 	    HDPX_CFG_ABEBT_MASK) |
2659 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2660 	    HDPX_CFG_JAMIPG_MASK));
2661 
2662 	/* Configure interrupt moderation timer. */
2663 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2664 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2665 	reg &= ~MASTER_MTIMER_ENB;
2666 	if (AGE_USECS(sc->age_int_mod) == 0)
2667 		reg &= ~MASTER_ITIMER_ENB;
2668 	else
2669 		reg |= MASTER_ITIMER_ENB;
2670 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2671 	if (bootverbose)
2672 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2673 		    sc->age_int_mod);
2674 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2675 
2676 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2677 	if (if_getmtu(ifp) < ETHERMTU)
2678 		sc->age_max_frame_size = ETHERMTU;
2679 	else
2680 		sc->age_max_frame_size = if_getmtu(ifp);
2681 	sc->age_max_frame_size += ETHER_HDR_LEN +
2682 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2683 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2684 	/* Configure jumbo frame. */
2685 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2686 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2687 	    (((fsize / sizeof(uint64_t)) <<
2688 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2689 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2690 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2691 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2692 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2693 
2694 	/* Configure flow-control parameters. From Linux. */
2695 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2696 		/*
2697 		 * Magic workaround for old-L1.
2698 		 * Don't know which hw revision requires this magic.
2699 		 */
2700 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2701 		/*
2702 		 * Another magic workaround for flow-control mode
2703 		 * change. From Linux.
2704 		 */
2705 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2706 	}
2707 	/*
2708 	 * TODO
2709 	 *  Should understand pause parameter relationships between FIFO
2710 	 *  size and number of Rx descriptors and Rx return descriptors.
2711 	 *
2712 	 *  Magic parameters came from Linux.
2713 	 */
2714 	switch (sc->age_chip_rev) {
2715 	case 0x8001:
2716 	case 0x9001:
2717 	case 0x9002:
2718 	case 0x9003:
2719 		rxf_hi = AGE_RX_RING_CNT / 16;
2720 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2721 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2722 		rrd_lo = AGE_RR_RING_CNT / 16;
2723 		break;
2724 	default:
2725 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2726 		rxf_lo = reg / 16;
2727 		if (rxf_lo < 192)
2728 			rxf_lo = 192;
2729 		rxf_hi = (reg * 7) / 8;
2730 		if (rxf_hi < rxf_lo)
2731 			rxf_hi = rxf_lo + 16;
2732 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2733 		rrd_lo = reg / 8;
2734 		rrd_hi = (reg * 7) / 8;
2735 		if (rrd_lo < 2)
2736 			rrd_lo = 2;
2737 		if (rrd_hi < rrd_lo)
2738 			rrd_hi = rrd_lo + 3;
2739 		break;
2740 	}
2741 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2742 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2743 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2744 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2745 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2746 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2747 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2748 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2749 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2750 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2751 
2752 	/* Configure RxQ. */
2753 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2754 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2755 	    RXQ_CFG_RD_BURST_MASK) |
2756 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2757 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2758 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2759 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2760 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2761 
2762 	/* Configure TxQ. */
2763 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2764 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2765 	    TXQ_CFG_TPD_BURST_MASK) |
2766 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2767 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2768 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2769 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2770 	    TXQ_CFG_ENB);
2771 
2772 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2773 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2774 	    TX_JUMBO_TPD_TH_MASK) |
2775 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2776 	    TX_JUMBO_TPD_IPG_MASK));
2777 	/* Configure DMA parameters. */
2778 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2779 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2780 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2781 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2782 
2783 	/* Configure CMB DMA write threshold. */
2784 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2785 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2786 	    CMB_WR_THRESH_RRD_MASK) |
2787 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2788 	    CMB_WR_THRESH_TPD_MASK));
2789 
2790 	/* Set CMB/SMB timer and enable them. */
2791 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2792 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2793 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2794 	/* Request SMB updates for every seconds. */
2795 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2796 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2797 
2798 	/*
2799 	 * Disable all WOL bits as WOL can interfere normal Rx
2800 	 * operation.
2801 	 */
2802 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2803 
2804 	/*
2805 	 * Configure Tx/Rx MACs.
2806 	 *  - Auto-padding for short frames.
2807 	 *  - Enable CRC generation.
2808 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2809 	 *  of MAC is followed after link establishment.
2810 	 */
2811 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2812 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2813 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2814 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2815 	    MAC_CFG_PREAMBLE_MASK));
2816 	/* Set up the receive filter. */
2817 	age_rxfilter(sc);
2818 	age_rxvlan(sc);
2819 
2820 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2821 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2822 		reg |= MAC_CFG_RXCSUM_ENB;
2823 
2824 	/* Ack all pending interrupts and clear it. */
2825 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2826 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2827 
2828 	/* Finally enable Tx/Rx MAC. */
2829 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2830 
2831 	sc->age_flags &= ~AGE_FLAG_LINK;
2832 	/* Switch to the current media. */
2833 	mii_mediachg(mii);
2834 
2835 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2836 
2837 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2838 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2839 }
2840 
2841 static void
2842 age_stop(struct age_softc *sc)
2843 {
2844 	if_t ifp;
2845 	struct age_txdesc *txd;
2846 	struct age_rxdesc *rxd;
2847 	uint32_t reg;
2848 	int i;
2849 
2850 	AGE_LOCK_ASSERT(sc);
2851 	/*
2852 	 * Mark the interface down and cancel the watchdog timer.
2853 	 */
2854 	ifp = sc->age_ifp;
2855 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2856 	sc->age_flags &= ~AGE_FLAG_LINK;
2857 	callout_stop(&sc->age_tick_ch);
2858 	sc->age_watchdog_timer = 0;
2859 
2860 	/*
2861 	 * Disable interrupts.
2862 	 */
2863 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2864 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2865 	/* Stop CMB/SMB updates. */
2866 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2867 	/* Stop Rx/Tx MAC. */
2868 	age_stop_rxmac(sc);
2869 	age_stop_txmac(sc);
2870 	/* Stop DMA. */
2871 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2872 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2873 	/* Stop TxQ/RxQ. */
2874 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2875 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2876 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2877 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2878 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2879 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2880 			break;
2881 		DELAY(10);
2882 	}
2883 	if (i == 0)
2884 		device_printf(sc->age_dev,
2885 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2886 
2887 	 /* Reclaim Rx buffers that have been processed. */
2888 	if (sc->age_cdata.age_rxhead != NULL)
2889 		m_freem(sc->age_cdata.age_rxhead);
2890 	AGE_RXCHAIN_RESET(sc);
2891 	/*
2892 	 * Free RX and TX mbufs still in the queues.
2893 	 */
2894 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2895 		rxd = &sc->age_cdata.age_rxdesc[i];
2896 		if (rxd->rx_m != NULL) {
2897 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2898 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2899 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2900 			    rxd->rx_dmamap);
2901 			m_freem(rxd->rx_m);
2902 			rxd->rx_m = NULL;
2903 		}
2904         }
2905 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2906 		txd = &sc->age_cdata.age_txdesc[i];
2907 		if (txd->tx_m != NULL) {
2908 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2909 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2910 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2911 			    txd->tx_dmamap);
2912 			m_freem(txd->tx_m);
2913 			txd->tx_m = NULL;
2914 		}
2915         }
2916 }
2917 
2918 static void
2919 age_stop_txmac(struct age_softc *sc)
2920 {
2921 	uint32_t reg;
2922 	int i;
2923 
2924 	AGE_LOCK_ASSERT(sc);
2925 
2926 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2927 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2928 		reg &= ~MAC_CFG_TX_ENB;
2929 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2930 	}
2931 	/* Stop Tx DMA engine. */
2932 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2933 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2934 		reg &= ~DMA_CFG_RD_ENB;
2935 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2936 	}
2937 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2938 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2939 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2940 			break;
2941 		DELAY(10);
2942 	}
2943 	if (i == 0)
2944 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2945 }
2946 
2947 static void
2948 age_stop_rxmac(struct age_softc *sc)
2949 {
2950 	uint32_t reg;
2951 	int i;
2952 
2953 	AGE_LOCK_ASSERT(sc);
2954 
2955 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2956 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2957 		reg &= ~MAC_CFG_RX_ENB;
2958 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2959 	}
2960 	/* Stop Rx DMA engine. */
2961 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2962 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2963 		reg &= ~DMA_CFG_WR_ENB;
2964 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2965 	}
2966 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2967 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2968 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2969 			break;
2970 		DELAY(10);
2971 	}
2972 	if (i == 0)
2973 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2974 }
2975 
2976 static void
2977 age_init_tx_ring(struct age_softc *sc)
2978 {
2979 	struct age_ring_data *rd;
2980 	struct age_txdesc *txd;
2981 	int i;
2982 
2983 	AGE_LOCK_ASSERT(sc);
2984 
2985 	sc->age_cdata.age_tx_prod = 0;
2986 	sc->age_cdata.age_tx_cons = 0;
2987 	sc->age_cdata.age_tx_cnt = 0;
2988 
2989 	rd = &sc->age_rdata;
2990 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2991 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2992 		txd = &sc->age_cdata.age_txdesc[i];
2993 		txd->tx_desc = &rd->age_tx_ring[i];
2994 		txd->tx_m = NULL;
2995 	}
2996 
2997 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2998 	    sc->age_cdata.age_tx_ring_map,
2999 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3000 }
3001 
3002 static int
3003 age_init_rx_ring(struct age_softc *sc)
3004 {
3005 	struct age_ring_data *rd;
3006 	struct age_rxdesc *rxd;
3007 	int i;
3008 
3009 	AGE_LOCK_ASSERT(sc);
3010 
3011 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3012 	sc->age_morework = 0;
3013 	rd = &sc->age_rdata;
3014 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3015 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3016 		rxd = &sc->age_cdata.age_rxdesc[i];
3017 		rxd->rx_m = NULL;
3018 		rxd->rx_desc = &rd->age_rx_ring[i];
3019 		if (age_newbuf(sc, rxd) != 0)
3020 			return (ENOBUFS);
3021 	}
3022 
3023 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3024 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3025 
3026 	return (0);
3027 }
3028 
3029 static void
3030 age_init_rr_ring(struct age_softc *sc)
3031 {
3032 	struct age_ring_data *rd;
3033 
3034 	AGE_LOCK_ASSERT(sc);
3035 
3036 	sc->age_cdata.age_rr_cons = 0;
3037 	AGE_RXCHAIN_RESET(sc);
3038 
3039 	rd = &sc->age_rdata;
3040 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3041 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3042 	    sc->age_cdata.age_rr_ring_map,
3043 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3044 }
3045 
3046 static void
3047 age_init_cmb_block(struct age_softc *sc)
3048 {
3049 	struct age_ring_data *rd;
3050 
3051 	AGE_LOCK_ASSERT(sc);
3052 
3053 	rd = &sc->age_rdata;
3054 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3055 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3056 	    sc->age_cdata.age_cmb_block_map,
3057 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3058 }
3059 
3060 static void
3061 age_init_smb_block(struct age_softc *sc)
3062 {
3063 	struct age_ring_data *rd;
3064 
3065 	AGE_LOCK_ASSERT(sc);
3066 
3067 	rd = &sc->age_rdata;
3068 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3069 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3070 	    sc->age_cdata.age_smb_block_map,
3071 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3072 }
3073 
3074 static int
3075 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3076 {
3077 	struct rx_desc *desc;
3078 	struct mbuf *m;
3079 	bus_dma_segment_t segs[1];
3080 	bus_dmamap_t map;
3081 	int nsegs;
3082 
3083 	AGE_LOCK_ASSERT(sc);
3084 
3085 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3086 	if (m == NULL)
3087 		return (ENOBUFS);
3088 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3089 #ifndef __NO_STRICT_ALIGNMENT
3090 	m_adj(m, AGE_RX_BUF_ALIGN);
3091 #endif
3092 
3093 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3094 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3095 		m_freem(m);
3096 		return (ENOBUFS);
3097 	}
3098 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3099 
3100 	if (rxd->rx_m != NULL) {
3101 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3102 		    BUS_DMASYNC_POSTREAD);
3103 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3104 	}
3105 	map = rxd->rx_dmamap;
3106 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3107 	sc->age_cdata.age_rx_sparemap = map;
3108 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3109 	    BUS_DMASYNC_PREREAD);
3110 	rxd->rx_m = m;
3111 
3112 	desc = rxd->rx_desc;
3113 	desc->addr = htole64(segs[0].ds_addr);
3114 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3115 	    AGE_RD_LEN_SHIFT);
3116 	return (0);
3117 }
3118 
3119 static void
3120 age_rxvlan(struct age_softc *sc)
3121 {
3122 	if_t ifp;
3123 	uint32_t reg;
3124 
3125 	AGE_LOCK_ASSERT(sc);
3126 
3127 	ifp = sc->age_ifp;
3128 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3129 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3130 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3131 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3132 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3133 }
3134 
3135 static u_int
3136 age_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3137 {
3138 	uint32_t *mchash = arg;
3139 	uint32_t crc;
3140 
3141 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3142 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3143 
3144 	return (1);
3145 }
3146 
3147 static void
3148 age_rxfilter(struct age_softc *sc)
3149 {
3150 	if_t ifp;
3151 	uint32_t mchash[2];
3152 	uint32_t rxcfg;
3153 
3154 	AGE_LOCK_ASSERT(sc);
3155 
3156 	ifp = sc->age_ifp;
3157 
3158 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3159 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3160 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3161 		rxcfg |= MAC_CFG_BCAST;
3162 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3163 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3164 			rxcfg |= MAC_CFG_PROMISC;
3165 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3166 			rxcfg |= MAC_CFG_ALLMULTI;
3167 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3168 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3169 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3170 		return;
3171 	}
3172 
3173 	/* Program new filter. */
3174 	bzero(mchash, sizeof(mchash));
3175 	if_foreach_llmaddr(ifp, age_hash_maddr, mchash);
3176 
3177 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3178 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3179 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3180 }
3181 
3182 static int
3183 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3184 {
3185 	struct age_softc *sc;
3186 	struct age_stats *stats;
3187 	int error, result;
3188 
3189 	result = -1;
3190 	error = sysctl_handle_int(oidp, &result, 0, req);
3191 
3192 	if (error != 0 || req->newptr == NULL)
3193 		return (error);
3194 
3195 	if (result != 1)
3196 		return (error);
3197 
3198 	sc = (struct age_softc *)arg1;
3199 	stats = &sc->age_stat;
3200 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3201 	printf("Transmit good frames : %ju\n",
3202 	    (uintmax_t)stats->tx_frames);
3203 	printf("Transmit good broadcast frames : %ju\n",
3204 	    (uintmax_t)stats->tx_bcast_frames);
3205 	printf("Transmit good multicast frames : %ju\n",
3206 	    (uintmax_t)stats->tx_mcast_frames);
3207 	printf("Transmit pause control frames : %u\n",
3208 	    stats->tx_pause_frames);
3209 	printf("Transmit control frames : %u\n",
3210 	    stats->tx_control_frames);
3211 	printf("Transmit frames with excessive deferrals : %u\n",
3212 	    stats->tx_excess_defer);
3213 	printf("Transmit deferrals : %u\n",
3214 	    stats->tx_deferred);
3215 	printf("Transmit good octets : %ju\n",
3216 	    (uintmax_t)stats->tx_bytes);
3217 	printf("Transmit good broadcast octets : %ju\n",
3218 	    (uintmax_t)stats->tx_bcast_bytes);
3219 	printf("Transmit good multicast octets : %ju\n",
3220 	    (uintmax_t)stats->tx_mcast_bytes);
3221 	printf("Transmit frames 64 bytes : %ju\n",
3222 	    (uintmax_t)stats->tx_pkts_64);
3223 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3224 	    (uintmax_t)stats->tx_pkts_65_127);
3225 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3226 	    (uintmax_t)stats->tx_pkts_128_255);
3227 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3228 	    (uintmax_t)stats->tx_pkts_256_511);
3229 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3230 	    (uintmax_t)stats->tx_pkts_512_1023);
3231 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3232 	    (uintmax_t)stats->tx_pkts_1024_1518);
3233 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3234 	    (uintmax_t)stats->tx_pkts_1519_max);
3235 	printf("Transmit single collisions : %u\n",
3236 	    stats->tx_single_colls);
3237 	printf("Transmit multiple collisions : %u\n",
3238 	    stats->tx_multi_colls);
3239 	printf("Transmit late collisions : %u\n",
3240 	    stats->tx_late_colls);
3241 	printf("Transmit abort due to excessive collisions : %u\n",
3242 	    stats->tx_excess_colls);
3243 	printf("Transmit underruns due to FIFO underruns : %u\n",
3244 	    stats->tx_underrun);
3245 	printf("Transmit descriptor write-back errors : %u\n",
3246 	    stats->tx_desc_underrun);
3247 	printf("Transmit frames with length mismatched frame size : %u\n",
3248 	    stats->tx_lenerrs);
3249 	printf("Transmit frames with truncated due to MTU size : %u\n",
3250 	    stats->tx_lenerrs);
3251 
3252 	printf("Receive good frames : %ju\n",
3253 	    (uintmax_t)stats->rx_frames);
3254 	printf("Receive good broadcast frames : %ju\n",
3255 	    (uintmax_t)stats->rx_bcast_frames);
3256 	printf("Receive good multicast frames : %ju\n",
3257 	    (uintmax_t)stats->rx_mcast_frames);
3258 	printf("Receive pause control frames : %u\n",
3259 	    stats->rx_pause_frames);
3260 	printf("Receive control frames : %u\n",
3261 	    stats->rx_control_frames);
3262 	printf("Receive CRC errors : %u\n",
3263 	    stats->rx_crcerrs);
3264 	printf("Receive frames with length errors : %u\n",
3265 	    stats->rx_lenerrs);
3266 	printf("Receive good octets : %ju\n",
3267 	    (uintmax_t)stats->rx_bytes);
3268 	printf("Receive good broadcast octets : %ju\n",
3269 	    (uintmax_t)stats->rx_bcast_bytes);
3270 	printf("Receive good multicast octets : %ju\n",
3271 	    (uintmax_t)stats->rx_mcast_bytes);
3272 	printf("Receive frames too short : %u\n",
3273 	    stats->rx_runts);
3274 	printf("Receive fragmented frames : %ju\n",
3275 	    (uintmax_t)stats->rx_fragments);
3276 	printf("Receive frames 64 bytes : %ju\n",
3277 	    (uintmax_t)stats->rx_pkts_64);
3278 	printf("Receive frames 65 to 127 bytes : %ju\n",
3279 	    (uintmax_t)stats->rx_pkts_65_127);
3280 	printf("Receive frames 128 to 255 bytes : %ju\n",
3281 	    (uintmax_t)stats->rx_pkts_128_255);
3282 	printf("Receive frames 256 to 511 bytes : %ju\n",
3283 	    (uintmax_t)stats->rx_pkts_256_511);
3284 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3285 	    (uintmax_t)stats->rx_pkts_512_1023);
3286 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3287 	    (uintmax_t)stats->rx_pkts_1024_1518);
3288 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3289 	    (uintmax_t)stats->rx_pkts_1519_max);
3290 	printf("Receive frames too long : %ju\n",
3291 	    (uint64_t)stats->rx_pkts_truncated);
3292 	printf("Receive frames with FIFO overflow : %u\n",
3293 	    stats->rx_fifo_oflows);
3294 	printf("Receive frames with return descriptor overflow : %u\n",
3295 	    stats->rx_desc_oflows);
3296 	printf("Receive frames with alignment errors : %u\n",
3297 	    stats->rx_alignerrs);
3298 	printf("Receive frames dropped due to address filtering : %ju\n",
3299 	    (uint64_t)stats->rx_pkts_filtered);
3300 
3301 	return (error);
3302 }
3303 
3304 static int
3305 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3306 {
3307 	int error, value;
3308 
3309 	if (arg1 == NULL)
3310 		return (EINVAL);
3311 	value = *(int *)arg1;
3312 	error = sysctl_handle_int(oidp, &value, 0, req);
3313 	if (error || req->newptr == NULL)
3314 		return (error);
3315 	if (value < low || value > high)
3316 		return (EINVAL);
3317         *(int *)arg1 = value;
3318 
3319         return (0);
3320 }
3321 
3322 static int
3323 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3324 {
3325 	return (sysctl_int_range(oidp, arg1, arg2, req,
3326 	    AGE_PROC_MIN, AGE_PROC_MAX));
3327 }
3328 
3329 static int
3330 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3331 {
3332 
3333 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3334 	    AGE_IM_TIMER_MAX));
3335 }
3336