xref: /freebsd/sys/dev/age/if_age.c (revision c0020399a650364d0134f79f3fa319f84064372d)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 
71 #include <dev/age/if_agereg.h>
72 #include <dev/age/if_agevar.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 #ifndef	IFCAP_VLAN_HWTSO
78 #define	IFCAP_VLAN_HWTSO	0
79 #endif
80 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81 
82 MODULE_DEPEND(age, pci, 1, 1, 1);
83 MODULE_DEPEND(age, ether, 1, 1, 1);
84 MODULE_DEPEND(age, miibus, 1, 1, 1);
85 
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
91 
92 /*
93  * Devices supported by this driver.
94  */
95 static struct age_dev {
96 	uint16_t	age_vendorid;
97 	uint16_t	age_deviceid;
98 	const char	*age_name;
99 } age_devs[] = {
100 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
101 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
102 };
103 
104 static int age_miibus_readreg(device_t, int, int);
105 static int age_miibus_writereg(device_t, int, int, int);
106 static void age_miibus_statchg(device_t);
107 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
108 static int age_mediachange(struct ifnet *);
109 static int age_probe(device_t);
110 static void age_get_macaddr(struct age_softc *);
111 static void age_phy_reset(struct age_softc *);
112 static int age_attach(device_t);
113 static int age_detach(device_t);
114 static void age_sysctl_node(struct age_softc *);
115 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
116 static int age_check_boundary(struct age_softc *);
117 static int age_dma_alloc(struct age_softc *);
118 static void age_dma_free(struct age_softc *);
119 static int age_shutdown(device_t);
120 static void age_setwol(struct age_softc *);
121 static int age_suspend(device_t);
122 static int age_resume(device_t);
123 static int age_encap(struct age_softc *, struct mbuf **);
124 static void age_tx_task(void *, int);
125 static void age_start(struct ifnet *);
126 static void age_watchdog(struct age_softc *);
127 static int age_ioctl(struct ifnet *, u_long, caddr_t);
128 static void age_mac_config(struct age_softc *);
129 static void age_link_task(void *, int);
130 static void age_stats_update(struct age_softc *);
131 static int age_intr(void *);
132 static void age_int_task(void *, int);
133 static void age_txintr(struct age_softc *, int);
134 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
135 static int age_rxintr(struct age_softc *, int, int);
136 static void age_tick(void *);
137 static void age_reset(struct age_softc *);
138 static void age_init(void *);
139 static void age_init_locked(struct age_softc *);
140 static void age_stop(struct age_softc *);
141 static void age_stop_txmac(struct age_softc *);
142 static void age_stop_rxmac(struct age_softc *);
143 static void age_init_tx_ring(struct age_softc *);
144 static int age_init_rx_ring(struct age_softc *);
145 static void age_init_rr_ring(struct age_softc *);
146 static void age_init_cmb_block(struct age_softc *);
147 static void age_init_smb_block(struct age_softc *);
148 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
149 static void age_rxvlan(struct age_softc *);
150 static void age_rxfilter(struct age_softc *);
151 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
152 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
153 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
154 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
155 
156 
157 static device_method_t age_methods[] = {
158 	/* Device interface. */
159 	DEVMETHOD(device_probe,		age_probe),
160 	DEVMETHOD(device_attach,	age_attach),
161 	DEVMETHOD(device_detach,	age_detach),
162 	DEVMETHOD(device_shutdown,	age_shutdown),
163 	DEVMETHOD(device_suspend,	age_suspend),
164 	DEVMETHOD(device_resume,	age_resume),
165 
166 	/* MII interface. */
167 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
168 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
169 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
170 
171 	{ NULL, NULL }
172 };
173 
174 static driver_t age_driver = {
175 	"age",
176 	age_methods,
177 	sizeof(struct age_softc)
178 };
179 
180 static devclass_t age_devclass;
181 
182 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
183 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
184 
185 static struct resource_spec age_res_spec_mem[] = {
186 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
187 	{ -1,			0,		0 }
188 };
189 
190 static struct resource_spec age_irq_spec_legacy[] = {
191 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
192 	{ -1,			0,		0 }
193 };
194 
195 static struct resource_spec age_irq_spec_msi[] = {
196 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197 	{ -1,			0,		0 }
198 };
199 
200 static struct resource_spec age_irq_spec_msix[] = {
201 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202 	{ -1,			0,		0 }
203 };
204 
205 /*
206  *	Read a PHY register on the MII of the L1.
207  */
208 static int
209 age_miibus_readreg(device_t dev, int phy, int reg)
210 {
211 	struct age_softc *sc;
212 	uint32_t v;
213 	int i;
214 
215 	sc = device_get_softc(dev);
216 	if (phy != sc->age_phyaddr)
217 		return (0);
218 
219 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
220 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
221 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
222 		DELAY(1);
223 		v = CSR_READ_4(sc, AGE_MDIO);
224 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
225 			break;
226 	}
227 
228 	if (i == 0) {
229 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
230 		return (0);
231 	}
232 
233 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
234 }
235 
236 /*
237  *	Write a PHY register on the MII of the L1.
238  */
239 static int
240 age_miibus_writereg(device_t dev, int phy, int reg, int val)
241 {
242 	struct age_softc *sc;
243 	uint32_t v;
244 	int i;
245 
246 	sc = device_get_softc(dev);
247 	if (phy != sc->age_phyaddr)
248 		return (0);
249 
250 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
251 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
252 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
253 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
254 		DELAY(1);
255 		v = CSR_READ_4(sc, AGE_MDIO);
256 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
257 			break;
258 	}
259 
260 	if (i == 0)
261 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
262 
263 	return (0);
264 }
265 
266 /*
267  *	Callback from MII layer when media changes.
268  */
269 static void
270 age_miibus_statchg(device_t dev)
271 {
272 	struct age_softc *sc;
273 
274 	sc = device_get_softc(dev);
275 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
276 }
277 
278 /*
279  *	Get the current interface media status.
280  */
281 static void
282 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
283 {
284 	struct age_softc *sc;
285 	struct mii_data *mii;
286 
287 	sc = ifp->if_softc;
288 	AGE_LOCK(sc);
289 	mii = device_get_softc(sc->age_miibus);
290 
291 	mii_pollstat(mii);
292 	AGE_UNLOCK(sc);
293 	ifmr->ifm_status = mii->mii_media_status;
294 	ifmr->ifm_active = mii->mii_media_active;
295 }
296 
297 /*
298  *	Set hardware to newly-selected media.
299  */
300 static int
301 age_mediachange(struct ifnet *ifp)
302 {
303 	struct age_softc *sc;
304 	struct mii_data *mii;
305 	struct mii_softc *miisc;
306 	int error;
307 
308 	sc = ifp->if_softc;
309 	AGE_LOCK(sc);
310 	mii = device_get_softc(sc->age_miibus);
311 	if (mii->mii_instance != 0) {
312 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
313 			mii_phy_reset(miisc);
314 	}
315 	error = mii_mediachg(mii);
316 	AGE_UNLOCK(sc);
317 
318 	return (error);
319 }
320 
321 static int
322 age_probe(device_t dev)
323 {
324 	struct age_dev *sp;
325 	int i;
326 	uint16_t vendor, devid;
327 
328 	vendor = pci_get_vendor(dev);
329 	devid = pci_get_device(dev);
330 	sp = age_devs;
331 	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
332 	    i++, sp++) {
333 		if (vendor == sp->age_vendorid &&
334 		    devid == sp->age_deviceid) {
335 			device_set_desc(dev, sp->age_name);
336 			return (BUS_PROBE_DEFAULT);
337 		}
338 	}
339 
340 	return (ENXIO);
341 }
342 
343 static void
344 age_get_macaddr(struct age_softc *sc)
345 {
346 	uint32_t ea[2], reg;
347 	int i, vpdc;
348 
349 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
350 	if ((reg & SPI_VPD_ENB) != 0) {
351 		/* Get VPD stored in TWSI EEPROM. */
352 		reg &= ~SPI_VPD_ENB;
353 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
354 	}
355 
356 	if (pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
357 		/*
358 		 * PCI VPD capability found, let TWSI reload EEPROM.
359 		 * This will set ethernet address of controller.
360 		 */
361 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
362 		    TWSI_CTRL_SW_LD_START);
363 		for (i = 100; i > 0; i--) {
364 			DELAY(1000);
365 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
366 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
367 				break;
368 		}
369 		if (i == 0)
370 			device_printf(sc->age_dev,
371 			    "reloading EEPROM timeout!\n");
372 	} else {
373 		if (bootverbose)
374 			device_printf(sc->age_dev,
375 			    "PCI VPD capability not found!\n");
376 	}
377 
378 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
379 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
380 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
381 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
382 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
383 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
384 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
385 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
386 }
387 
388 static void
389 age_phy_reset(struct age_softc *sc)
390 {
391 	uint16_t reg, pn;
392 	int i, linkup;
393 
394 	/* Reset PHY. */
395 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
396 	DELAY(2000);
397 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
398 	DELAY(2000);
399 
400 #define	ATPHY_DBG_ADDR		0x1D
401 #define	ATPHY_DBG_DATA		0x1E
402 #define	ATPHY_CDTC		0x16
403 #define	PHY_CDTC_ENB		0x0001
404 #define	PHY_CDTC_POFF		8
405 #define	ATPHY_CDTS		0x1C
406 #define	PHY_CDTS_STAT_OK	0x0000
407 #define	PHY_CDTS_STAT_SHORT	0x0100
408 #define	PHY_CDTS_STAT_OPEN	0x0200
409 #define	PHY_CDTS_STAT_INVAL	0x0300
410 #define	PHY_CDTS_STAT_MASK	0x0300
411 
412 	/* Check power saving mode. Magic from Linux. */
413 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
414 	for (linkup = 0, pn = 0; pn < 4; pn++) {
415 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
416 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
417 		for (i = 200; i > 0; i--) {
418 			DELAY(1000);
419 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
420 			    ATPHY_CDTC);
421 			if ((reg & PHY_CDTC_ENB) == 0)
422 				break;
423 		}
424 		DELAY(1000);
425 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
426 		    ATPHY_CDTS);
427 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
428 			linkup++;
429 			break;
430 		}
431 	}
432 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
433 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
434 	if (linkup == 0) {
435 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
436 		    ATPHY_DBG_ADDR, 0);
437 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438 		    ATPHY_DBG_DATA, 0x124E);
439 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
440 		    ATPHY_DBG_ADDR, 1);
441 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
442 		    ATPHY_DBG_DATA);
443 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
444 		    ATPHY_DBG_DATA, reg | 0x03);
445 		/* XXX */
446 		DELAY(1500 * 1000);
447 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
448 		    ATPHY_DBG_ADDR, 0);
449 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
450 		    ATPHY_DBG_DATA, 0x024E);
451     }
452 
453 #undef	ATPHY_DBG_ADDR
454 #undef	ATPHY_DBG_DATA
455 #undef	ATPHY_CDTC
456 #undef	PHY_CDTC_ENB
457 #undef	PHY_CDTC_POFF
458 #undef	ATPHY_CDTS
459 #undef	PHY_CDTS_STAT_OK
460 #undef	PHY_CDTS_STAT_SHORT
461 #undef	PHY_CDTS_STAT_OPEN
462 #undef	PHY_CDTS_STAT_INVAL
463 #undef	PHY_CDTS_STAT_MASK
464 }
465 
466 static int
467 age_attach(device_t dev)
468 {
469 	struct age_softc *sc;
470 	struct ifnet *ifp;
471 	uint16_t burst;
472 	int error, i, msic, msixc, pmc;
473 
474 	error = 0;
475 	sc = device_get_softc(dev);
476 	sc->age_dev = dev;
477 
478 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
479 	    MTX_DEF);
480 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
481 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
482 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
483 
484 	/* Map the device. */
485 	pci_enable_busmaster(dev);
486 	sc->age_res_spec = age_res_spec_mem;
487 	sc->age_irq_spec = age_irq_spec_legacy;
488 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
489 	if (error != 0) {
490 		device_printf(dev, "cannot allocate memory resources.\n");
491 		goto fail;
492 	}
493 
494 	/* Set PHY address. */
495 	sc->age_phyaddr = AGE_PHY_ADDR;
496 
497 	/* Reset PHY. */
498 	age_phy_reset(sc);
499 
500 	/* Reset the ethernet controller. */
501 	age_reset(sc);
502 
503 	/* Get PCI and chip id/revision. */
504 	sc->age_rev = pci_get_revid(dev);
505 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
506 	    MASTER_CHIP_REV_SHIFT;
507 	if (bootverbose) {
508 		device_printf(dev, "PCI device revision : 0x%04x\n",
509 		    sc->age_rev);
510 		device_printf(dev, "Chip id/revision : 0x%04x\n",
511 		    sc->age_chip_rev);
512 	}
513 
514 	/*
515 	 * XXX
516 	 * Unintialized hardware returns an invalid chip id/revision
517 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
518 	 * unplugged cable results in putting hardware into automatic
519 	 * power down mode which in turn returns invalld chip revision.
520 	 */
521 	if (sc->age_chip_rev == 0xFFFF) {
522 		device_printf(dev,"invalid chip revision : 0x%04x -- "
523 		    "not initialized?\n", sc->age_chip_rev);
524 		error = ENXIO;
525 		goto fail;
526 	}
527 
528 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
529 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
530 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
531 
532 	/* Allocate IRQ resources. */
533 	msixc = pci_msix_count(dev);
534 	msic = pci_msi_count(dev);
535 	if (bootverbose) {
536 		device_printf(dev, "MSIX count : %d\n", msixc);
537 		device_printf(dev, "MSI count : %d\n", msic);
538 	}
539 
540 	/* Prefer MSIX over MSI. */
541 	if (msix_disable == 0 || msi_disable == 0) {
542 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
543 		    pci_alloc_msix(dev, &msixc) == 0) {
544 			if (msic == AGE_MSIX_MESSAGES) {
545 				device_printf(dev, "Using %d MSIX messages.\n",
546 				    msixc);
547 				sc->age_flags |= AGE_FLAG_MSIX;
548 				sc->age_irq_spec = age_irq_spec_msix;
549 			} else
550 				pci_release_msi(dev);
551 		}
552 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
553 		    msic == AGE_MSI_MESSAGES &&
554 		    pci_alloc_msi(dev, &msic) == 0) {
555 			if (msic == AGE_MSI_MESSAGES) {
556 				device_printf(dev, "Using %d MSI messages.\n",
557 				    msic);
558 				sc->age_flags |= AGE_FLAG_MSI;
559 				sc->age_irq_spec = age_irq_spec_msi;
560 			} else
561 				pci_release_msi(dev);
562 		}
563 	}
564 
565 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
566 	if (error != 0) {
567 		device_printf(dev, "cannot allocate IRQ resources.\n");
568 		goto fail;
569 	}
570 
571 
572 	/* Get DMA parameters from PCIe device control register. */
573 	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
574 		sc->age_flags |= AGE_FLAG_PCIE;
575 		burst = pci_read_config(dev, i + 0x08, 2);
576 		/* Max read request size. */
577 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
578 		    DMA_CFG_RD_BURST_SHIFT;
579 		/* Max payload size. */
580 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
581 		    DMA_CFG_WR_BURST_SHIFT;
582 		if (bootverbose) {
583 			device_printf(dev, "Read request size : %d bytes.\n",
584 			    128 << ((burst >> 12) & 0x07));
585 			device_printf(dev, "TLP payload size : %d bytes.\n",
586 			    128 << ((burst >> 5) & 0x07));
587 		}
588 	} else {
589 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
590 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
591 	}
592 
593 	/* Create device sysctl node. */
594 	age_sysctl_node(sc);
595 
596 	if ((error = age_dma_alloc(sc) != 0))
597 		goto fail;
598 
599 	/* Load station address. */
600 	age_get_macaddr(sc);
601 
602 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
603 	if (ifp == NULL) {
604 		device_printf(dev, "cannot allocate ifnet structure.\n");
605 		error = ENXIO;
606 		goto fail;
607 	}
608 
609 	ifp->if_softc = sc;
610 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
611 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
612 	ifp->if_ioctl = age_ioctl;
613 	ifp->if_start = age_start;
614 	ifp->if_init = age_init;
615 	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
616 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
617 	IFQ_SET_READY(&ifp->if_snd);
618 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
619 	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
620 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
621 		sc->age_flags |= AGE_FLAG_PMCAP;
622 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
623 	}
624 	ifp->if_capenable = ifp->if_capabilities;
625 
626 	/* Set up MII bus. */
627 	if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
628 	    age_mediastatus)) != 0) {
629 		device_printf(dev, "no PHY found!\n");
630 		goto fail;
631 	}
632 
633 	ether_ifattach(ifp, sc->age_eaddr);
634 
635 	/* VLAN capability setup. */
636 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
637 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
638 	ifp->if_capenable = ifp->if_capabilities;
639 
640 	/* Tell the upper layer(s) we support long frames. */
641 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
642 
643 	/* Create local taskq. */
644 	TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp);
645 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
646 	    taskqueue_thread_enqueue, &sc->age_tq);
647 	if (sc->age_tq == NULL) {
648 		device_printf(dev, "could not create taskqueue.\n");
649 		ether_ifdetach(ifp);
650 		error = ENXIO;
651 		goto fail;
652 	}
653 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
654 	    device_get_nameunit(sc->age_dev));
655 
656 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
657 		msic = AGE_MSIX_MESSAGES;
658 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
659 		msic = AGE_MSI_MESSAGES;
660 	else
661 		msic = 1;
662 	for (i = 0; i < msic; i++) {
663 		error = bus_setup_intr(dev, sc->age_irq[i],
664 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
665 		    &sc->age_intrhand[i]);
666 		if (error != 0)
667 			break;
668 	}
669 	if (error != 0) {
670 		device_printf(dev, "could not set up interrupt handler.\n");
671 		taskqueue_free(sc->age_tq);
672 		sc->age_tq = NULL;
673 		ether_ifdetach(ifp);
674 		goto fail;
675 	}
676 
677 fail:
678 	if (error != 0)
679 		age_detach(dev);
680 
681 	return (error);
682 }
683 
684 static int
685 age_detach(device_t dev)
686 {
687 	struct age_softc *sc;
688 	struct ifnet *ifp;
689 	int i, msic;
690 
691 	sc = device_get_softc(dev);
692 
693 	ifp = sc->age_ifp;
694 	if (device_is_attached(dev)) {
695 		AGE_LOCK(sc);
696 		sc->age_flags |= AGE_FLAG_DETACH;
697 		age_stop(sc);
698 		AGE_UNLOCK(sc);
699 		callout_drain(&sc->age_tick_ch);
700 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
701 		taskqueue_drain(sc->age_tq, &sc->age_tx_task);
702 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
703 		ether_ifdetach(ifp);
704 	}
705 
706 	if (sc->age_tq != NULL) {
707 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
708 		taskqueue_free(sc->age_tq);
709 		sc->age_tq = NULL;
710 	}
711 
712 	if (sc->age_miibus != NULL) {
713 		device_delete_child(dev, sc->age_miibus);
714 		sc->age_miibus = NULL;
715 	}
716 	bus_generic_detach(dev);
717 	age_dma_free(sc);
718 
719 	if (ifp != NULL) {
720 		if_free(ifp);
721 		sc->age_ifp = NULL;
722 	}
723 
724 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
725 		msic = AGE_MSIX_MESSAGES;
726 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
727 		msic = AGE_MSI_MESSAGES;
728 	else
729 		msic = 1;
730 	for (i = 0; i < msic; i++) {
731 		if (sc->age_intrhand[i] != NULL) {
732 			bus_teardown_intr(dev, sc->age_irq[i],
733 			    sc->age_intrhand[i]);
734 			sc->age_intrhand[i] = NULL;
735 		}
736 	}
737 
738 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
739 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
740 		pci_release_msi(dev);
741 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
742 	mtx_destroy(&sc->age_mtx);
743 
744 	return (0);
745 }
746 
747 static void
748 age_sysctl_node(struct age_softc *sc)
749 {
750 	int error;
751 
752 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
753 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
754 	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
755 	    "I", "Statistics");
756 
757 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
758 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
759 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
760 	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
761 
762 	/* Pull in device tunables. */
763 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
764 	error = resource_int_value(device_get_name(sc->age_dev),
765 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
766 	if (error == 0) {
767 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
768 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
769 			device_printf(sc->age_dev,
770 			    "int_mod value out of range; using default: %d\n",
771 			    AGE_IM_TIMER_DEFAULT);
772 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
773 		}
774 	}
775 
776 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
777 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
778 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
779 	    0, sysctl_hw_age_proc_limit, "I",
780 	    "max number of Rx events to process");
781 
782 	/* Pull in device tunables. */
783 	sc->age_process_limit = AGE_PROC_DEFAULT;
784 	error = resource_int_value(device_get_name(sc->age_dev),
785 	    device_get_unit(sc->age_dev), "process_limit",
786 	    &sc->age_process_limit);
787 	if (error == 0) {
788 		if (sc->age_process_limit < AGE_PROC_MIN ||
789 		    sc->age_process_limit > AGE_PROC_MAX) {
790 			device_printf(sc->age_dev,
791 			    "process_limit value out of range; "
792 			    "using default: %d\n", AGE_PROC_DEFAULT);
793 			sc->age_process_limit = AGE_PROC_DEFAULT;
794 		}
795 	}
796 }
797 
798 struct age_dmamap_arg {
799 	bus_addr_t	age_busaddr;
800 };
801 
802 static void
803 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
804 {
805 	struct age_dmamap_arg *ctx;
806 
807 	if (error != 0)
808 		return;
809 
810 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
811 
812 	ctx = (struct age_dmamap_arg *)arg;
813 	ctx->age_busaddr = segs[0].ds_addr;
814 }
815 
816 /*
817  * Attansic L1 controller have single register to specify high
818  * address part of DMA blocks. So all descriptor structures and
819  * DMA memory blocks should have the same high address of given
820  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
821  */
822 static int
823 age_check_boundary(struct age_softc *sc)
824 {
825 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
826 	bus_addr_t cmb_block_end, smb_block_end;
827 
828 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
829 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
830 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
831 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
832 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
833 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
834 
835 	if ((AGE_ADDR_HI(tx_ring_end) !=
836 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
837 	    (AGE_ADDR_HI(rx_ring_end) !=
838 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
839 	    (AGE_ADDR_HI(rr_ring_end) !=
840 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
841 	    (AGE_ADDR_HI(cmb_block_end) !=
842 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
843 	    (AGE_ADDR_HI(smb_block_end) !=
844 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
845 		return (EFBIG);
846 
847 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
848 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
849 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
850 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
851 		return (EFBIG);
852 
853 	return (0);
854 }
855 
856 static int
857 age_dma_alloc(struct age_softc *sc)
858 {
859 	struct age_txdesc *txd;
860 	struct age_rxdesc *rxd;
861 	bus_addr_t lowaddr;
862 	struct age_dmamap_arg ctx;
863 	int error, i;
864 
865 	lowaddr = BUS_SPACE_MAXADDR;
866 
867 again:
868 	/* Create parent ring/DMA block tag. */
869 	error = bus_dma_tag_create(
870 	    bus_get_dma_tag(sc->age_dev), /* parent */
871 	    1, 0,			/* alignment, boundary */
872 	    lowaddr,			/* lowaddr */
873 	    BUS_SPACE_MAXADDR,		/* highaddr */
874 	    NULL, NULL,			/* filter, filterarg */
875 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
876 	    0,				/* nsegments */
877 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
878 	    0,				/* flags */
879 	    NULL, NULL,			/* lockfunc, lockarg */
880 	    &sc->age_cdata.age_parent_tag);
881 	if (error != 0) {
882 		device_printf(sc->age_dev,
883 		    "could not create parent DMA tag.\n");
884 		goto fail;
885 	}
886 
887 	/* Create tag for Tx ring. */
888 	error = bus_dma_tag_create(
889 	    sc->age_cdata.age_parent_tag, /* parent */
890 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
891 	    BUS_SPACE_MAXADDR,		/* lowaddr */
892 	    BUS_SPACE_MAXADDR,		/* highaddr */
893 	    NULL, NULL,			/* filter, filterarg */
894 	    AGE_TX_RING_SZ,		/* maxsize */
895 	    1,				/* nsegments */
896 	    AGE_TX_RING_SZ,		/* maxsegsize */
897 	    0,				/* flags */
898 	    NULL, NULL,			/* lockfunc, lockarg */
899 	    &sc->age_cdata.age_tx_ring_tag);
900 	if (error != 0) {
901 		device_printf(sc->age_dev,
902 		    "could not create Tx ring DMA tag.\n");
903 		goto fail;
904 	}
905 
906 	/* Create tag for Rx ring. */
907 	error = bus_dma_tag_create(
908 	    sc->age_cdata.age_parent_tag, /* parent */
909 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
910 	    BUS_SPACE_MAXADDR,		/* lowaddr */
911 	    BUS_SPACE_MAXADDR,		/* highaddr */
912 	    NULL, NULL,			/* filter, filterarg */
913 	    AGE_RX_RING_SZ,		/* maxsize */
914 	    1,				/* nsegments */
915 	    AGE_RX_RING_SZ,		/* maxsegsize */
916 	    0,				/* flags */
917 	    NULL, NULL,			/* lockfunc, lockarg */
918 	    &sc->age_cdata.age_rx_ring_tag);
919 	if (error != 0) {
920 		device_printf(sc->age_dev,
921 		    "could not create Rx ring DMA tag.\n");
922 		goto fail;
923 	}
924 
925 	/* Create tag for Rx return ring. */
926 	error = bus_dma_tag_create(
927 	    sc->age_cdata.age_parent_tag, /* parent */
928 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
929 	    BUS_SPACE_MAXADDR,		/* lowaddr */
930 	    BUS_SPACE_MAXADDR,		/* highaddr */
931 	    NULL, NULL,			/* filter, filterarg */
932 	    AGE_RR_RING_SZ,		/* maxsize */
933 	    1,				/* nsegments */
934 	    AGE_RR_RING_SZ,		/* maxsegsize */
935 	    0,				/* flags */
936 	    NULL, NULL,			/* lockfunc, lockarg */
937 	    &sc->age_cdata.age_rr_ring_tag);
938 	if (error != 0) {
939 		device_printf(sc->age_dev,
940 		    "could not create Rx return ring DMA tag.\n");
941 		goto fail;
942 	}
943 
944 	/* Create tag for coalesing message block. */
945 	error = bus_dma_tag_create(
946 	    sc->age_cdata.age_parent_tag, /* parent */
947 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
948 	    BUS_SPACE_MAXADDR,		/* lowaddr */
949 	    BUS_SPACE_MAXADDR,		/* highaddr */
950 	    NULL, NULL,			/* filter, filterarg */
951 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
952 	    1,				/* nsegments */
953 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
954 	    0,				/* flags */
955 	    NULL, NULL,			/* lockfunc, lockarg */
956 	    &sc->age_cdata.age_cmb_block_tag);
957 	if (error != 0) {
958 		device_printf(sc->age_dev,
959 		    "could not create CMB DMA tag.\n");
960 		goto fail;
961 	}
962 
963 	/* Create tag for statistics message block. */
964 	error = bus_dma_tag_create(
965 	    sc->age_cdata.age_parent_tag, /* parent */
966 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
967 	    BUS_SPACE_MAXADDR,		/* lowaddr */
968 	    BUS_SPACE_MAXADDR,		/* highaddr */
969 	    NULL, NULL,			/* filter, filterarg */
970 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
971 	    1,				/* nsegments */
972 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
973 	    0,				/* flags */
974 	    NULL, NULL,			/* lockfunc, lockarg */
975 	    &sc->age_cdata.age_smb_block_tag);
976 	if (error != 0) {
977 		device_printf(sc->age_dev,
978 		    "could not create SMB DMA tag.\n");
979 		goto fail;
980 	}
981 
982 	/* Allocate DMA'able memory and load the DMA map. */
983 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
984 	    (void **)&sc->age_rdata.age_tx_ring,
985 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
986 	    &sc->age_cdata.age_tx_ring_map);
987 	if (error != 0) {
988 		device_printf(sc->age_dev,
989 		    "could not allocate DMA'able memory for Tx ring.\n");
990 		goto fail;
991 	}
992 	ctx.age_busaddr = 0;
993 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
994 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
995 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
996 	if (error != 0 || ctx.age_busaddr == 0) {
997 		device_printf(sc->age_dev,
998 		    "could not load DMA'able memory for Tx ring.\n");
999 		goto fail;
1000 	}
1001 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
1002 	/* Rx ring */
1003 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1004 	    (void **)&sc->age_rdata.age_rx_ring,
1005 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1006 	    &sc->age_cdata.age_rx_ring_map);
1007 	if (error != 0) {
1008 		device_printf(sc->age_dev,
1009 		    "could not allocate DMA'able memory for Rx ring.\n");
1010 		goto fail;
1011 	}
1012 	ctx.age_busaddr = 0;
1013 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1014 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1015 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1016 	if (error != 0 || ctx.age_busaddr == 0) {
1017 		device_printf(sc->age_dev,
1018 		    "could not load DMA'able memory for Rx ring.\n");
1019 		goto fail;
1020 	}
1021 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1022 	/* Rx return ring */
1023 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1024 	    (void **)&sc->age_rdata.age_rr_ring,
1025 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1026 	    &sc->age_cdata.age_rr_ring_map);
1027 	if (error != 0) {
1028 		device_printf(sc->age_dev,
1029 		    "could not allocate DMA'able memory for Rx return ring.\n");
1030 		goto fail;
1031 	}
1032 	ctx.age_busaddr = 0;
1033 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1034 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1035 	    AGE_RR_RING_SZ, age_dmamap_cb,
1036 	    &ctx, 0);
1037 	if (error != 0 || ctx.age_busaddr == 0) {
1038 		device_printf(sc->age_dev,
1039 		    "could not load DMA'able memory for Rx return ring.\n");
1040 		goto fail;
1041 	}
1042 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1043 	/* CMB block */
1044 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1045 	    (void **)&sc->age_rdata.age_cmb_block,
1046 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1047 	    &sc->age_cdata.age_cmb_block_map);
1048 	if (error != 0) {
1049 		device_printf(sc->age_dev,
1050 		    "could not allocate DMA'able memory for CMB block.\n");
1051 		goto fail;
1052 	}
1053 	ctx.age_busaddr = 0;
1054 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1055 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1056 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1057 	if (error != 0 || ctx.age_busaddr == 0) {
1058 		device_printf(sc->age_dev,
1059 		    "could not load DMA'able memory for CMB block.\n");
1060 		goto fail;
1061 	}
1062 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1063 	/* SMB block */
1064 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1065 	    (void **)&sc->age_rdata.age_smb_block,
1066 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1067 	    &sc->age_cdata.age_smb_block_map);
1068 	if (error != 0) {
1069 		device_printf(sc->age_dev,
1070 		    "could not allocate DMA'able memory for SMB block.\n");
1071 		goto fail;
1072 	}
1073 	ctx.age_busaddr = 0;
1074 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1075 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1076 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1077 	if (error != 0 || ctx.age_busaddr == 0) {
1078 		device_printf(sc->age_dev,
1079 		    "could not load DMA'able memory for SMB block.\n");
1080 		goto fail;
1081 	}
1082 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1083 
1084 	/*
1085 	 * All ring buffer and DMA blocks should have the same
1086 	 * high address part of 64bit DMA address space.
1087 	 */
1088 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1089 	    (error = age_check_boundary(sc)) != 0) {
1090 		device_printf(sc->age_dev, "4GB boundary crossed, "
1091 		    "switching to 32bit DMA addressing mode.\n");
1092 		age_dma_free(sc);
1093 		/* Limit DMA address space to 32bit and try again. */
1094 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1095 		goto again;
1096 	}
1097 
1098 	/*
1099 	 * Create Tx/Rx buffer parent tag.
1100 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1101 	 * so it needs separate parent DMA tag.
1102 	 */
1103 	error = bus_dma_tag_create(
1104 	    bus_get_dma_tag(sc->age_dev), /* parent */
1105 	    1, 0,			/* alignment, boundary */
1106 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1107 	    BUS_SPACE_MAXADDR,		/* highaddr */
1108 	    NULL, NULL,			/* filter, filterarg */
1109 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1110 	    0,				/* nsegments */
1111 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1112 	    0,				/* flags */
1113 	    NULL, NULL,			/* lockfunc, lockarg */
1114 	    &sc->age_cdata.age_buffer_tag);
1115 	if (error != 0) {
1116 		device_printf(sc->age_dev,
1117 		    "could not create parent buffer DMA tag.\n");
1118 		goto fail;
1119 	}
1120 
1121 	/* Create tag for Tx buffers. */
1122 	error = bus_dma_tag_create(
1123 	    sc->age_cdata.age_buffer_tag, /* parent */
1124 	    1, 0,			/* alignment, boundary */
1125 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1126 	    BUS_SPACE_MAXADDR,		/* highaddr */
1127 	    NULL, NULL,			/* filter, filterarg */
1128 	    AGE_TSO_MAXSIZE,		/* maxsize */
1129 	    AGE_MAXTXSEGS,		/* nsegments */
1130 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1131 	    0,				/* flags */
1132 	    NULL, NULL,			/* lockfunc, lockarg */
1133 	    &sc->age_cdata.age_tx_tag);
1134 	if (error != 0) {
1135 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1136 		goto fail;
1137 	}
1138 
1139 	/* Create tag for Rx buffers. */
1140 	error = bus_dma_tag_create(
1141 	    sc->age_cdata.age_buffer_tag, /* parent */
1142 	    1, 0,			/* alignment, boundary */
1143 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1144 	    BUS_SPACE_MAXADDR,		/* highaddr */
1145 	    NULL, NULL,			/* filter, filterarg */
1146 	    MCLBYTES,			/* maxsize */
1147 	    1,				/* nsegments */
1148 	    MCLBYTES,			/* maxsegsize */
1149 	    0,				/* flags */
1150 	    NULL, NULL,			/* lockfunc, lockarg */
1151 	    &sc->age_cdata.age_rx_tag);
1152 	if (error != 0) {
1153 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1154 		goto fail;
1155 	}
1156 
1157 	/* Create DMA maps for Tx buffers. */
1158 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1159 		txd = &sc->age_cdata.age_txdesc[i];
1160 		txd->tx_m = NULL;
1161 		txd->tx_dmamap = NULL;
1162 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1163 		    &txd->tx_dmamap);
1164 		if (error != 0) {
1165 			device_printf(sc->age_dev,
1166 			    "could not create Tx dmamap.\n");
1167 			goto fail;
1168 		}
1169 	}
1170 	/* Create DMA maps for Rx buffers. */
1171 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1172 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1173 		device_printf(sc->age_dev,
1174 		    "could not create spare Rx dmamap.\n");
1175 		goto fail;
1176 	}
1177 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1178 		rxd = &sc->age_cdata.age_rxdesc[i];
1179 		rxd->rx_m = NULL;
1180 		rxd->rx_dmamap = NULL;
1181 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1182 		    &rxd->rx_dmamap);
1183 		if (error != 0) {
1184 			device_printf(sc->age_dev,
1185 			    "could not create Rx dmamap.\n");
1186 			goto fail;
1187 		}
1188 	}
1189 
1190 fail:
1191 	return (error);
1192 }
1193 
1194 static void
1195 age_dma_free(struct age_softc *sc)
1196 {
1197 	struct age_txdesc *txd;
1198 	struct age_rxdesc *rxd;
1199 	int i;
1200 
1201 	/* Tx buffers */
1202 	if (sc->age_cdata.age_tx_tag != NULL) {
1203 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1204 			txd = &sc->age_cdata.age_txdesc[i];
1205 			if (txd->tx_dmamap != NULL) {
1206 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1207 				    txd->tx_dmamap);
1208 				txd->tx_dmamap = NULL;
1209 			}
1210 		}
1211 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1212 		sc->age_cdata.age_tx_tag = NULL;
1213 	}
1214 	/* Rx buffers */
1215 	if (sc->age_cdata.age_rx_tag != NULL) {
1216 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1217 			rxd = &sc->age_cdata.age_rxdesc[i];
1218 			if (rxd->rx_dmamap != NULL) {
1219 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1220 				    rxd->rx_dmamap);
1221 				rxd->rx_dmamap = NULL;
1222 			}
1223 		}
1224 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1225 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1226 			    sc->age_cdata.age_rx_sparemap);
1227 			sc->age_cdata.age_rx_sparemap = NULL;
1228 		}
1229 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1230 		sc->age_cdata.age_rx_tag = NULL;
1231 	}
1232 	/* Tx ring. */
1233 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1234 		if (sc->age_cdata.age_tx_ring_map != NULL)
1235 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1236 			    sc->age_cdata.age_tx_ring_map);
1237 		if (sc->age_cdata.age_tx_ring_map != NULL &&
1238 		    sc->age_rdata.age_tx_ring != NULL)
1239 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1240 			    sc->age_rdata.age_tx_ring,
1241 			    sc->age_cdata.age_tx_ring_map);
1242 		sc->age_rdata.age_tx_ring = NULL;
1243 		sc->age_cdata.age_tx_ring_map = NULL;
1244 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1245 		sc->age_cdata.age_tx_ring_tag = NULL;
1246 	}
1247 	/* Rx ring. */
1248 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1249 		if (sc->age_cdata.age_rx_ring_map != NULL)
1250 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1251 			    sc->age_cdata.age_rx_ring_map);
1252 		if (sc->age_cdata.age_rx_ring_map != NULL &&
1253 		    sc->age_rdata.age_rx_ring != NULL)
1254 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1255 			    sc->age_rdata.age_rx_ring,
1256 			    sc->age_cdata.age_rx_ring_map);
1257 		sc->age_rdata.age_rx_ring = NULL;
1258 		sc->age_cdata.age_rx_ring_map = NULL;
1259 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1260 		sc->age_cdata.age_rx_ring_tag = NULL;
1261 	}
1262 	/* Rx return ring. */
1263 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1264 		if (sc->age_cdata.age_rr_ring_map != NULL)
1265 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1266 			    sc->age_cdata.age_rr_ring_map);
1267 		if (sc->age_cdata.age_rr_ring_map != NULL &&
1268 		    sc->age_rdata.age_rr_ring != NULL)
1269 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1270 			    sc->age_rdata.age_rr_ring,
1271 			    sc->age_cdata.age_rr_ring_map);
1272 		sc->age_rdata.age_rr_ring = NULL;
1273 		sc->age_cdata.age_rr_ring_map = NULL;
1274 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1275 		sc->age_cdata.age_rr_ring_tag = NULL;
1276 	}
1277 	/* CMB block */
1278 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1279 		if (sc->age_cdata.age_cmb_block_map != NULL)
1280 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1281 			    sc->age_cdata.age_cmb_block_map);
1282 		if (sc->age_cdata.age_cmb_block_map != NULL &&
1283 		    sc->age_rdata.age_cmb_block != NULL)
1284 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1285 			    sc->age_rdata.age_cmb_block,
1286 			    sc->age_cdata.age_cmb_block_map);
1287 		sc->age_rdata.age_cmb_block = NULL;
1288 		sc->age_cdata.age_cmb_block_map = NULL;
1289 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1290 		sc->age_cdata.age_cmb_block_tag = NULL;
1291 	}
1292 	/* SMB block */
1293 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1294 		if (sc->age_cdata.age_smb_block_map != NULL)
1295 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1296 			    sc->age_cdata.age_smb_block_map);
1297 		if (sc->age_cdata.age_smb_block_map != NULL &&
1298 		    sc->age_rdata.age_smb_block != NULL)
1299 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1300 			    sc->age_rdata.age_smb_block,
1301 			    sc->age_cdata.age_smb_block_map);
1302 		sc->age_rdata.age_smb_block = NULL;
1303 		sc->age_cdata.age_smb_block_map = NULL;
1304 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1305 		sc->age_cdata.age_smb_block_tag = NULL;
1306 	}
1307 
1308 	if (sc->age_cdata.age_buffer_tag != NULL) {
1309 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1310 		sc->age_cdata.age_buffer_tag = NULL;
1311 	}
1312 	if (sc->age_cdata.age_parent_tag != NULL) {
1313 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1314 		sc->age_cdata.age_parent_tag = NULL;
1315 	}
1316 }
1317 
1318 /*
1319  *	Make sure the interface is stopped at reboot time.
1320  */
1321 static int
1322 age_shutdown(device_t dev)
1323 {
1324 
1325 	return (age_suspend(dev));
1326 }
1327 
1328 static void
1329 age_setwol(struct age_softc *sc)
1330 {
1331 	struct ifnet *ifp;
1332 	struct mii_data *mii;
1333 	uint32_t reg, pmcs;
1334 	uint16_t pmstat;
1335 	int aneg, i, pmc;
1336 
1337 	AGE_LOCK_ASSERT(sc);
1338 
1339 	if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1340 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1341 		/*
1342 		 * No PME capability, PHY power down.
1343 		 * XXX
1344 		 * Due to an unknown reason powering down PHY resulted
1345 		 * in unexpected results such as inaccessbility of
1346 		 * hardware of freshly rebooted system. Disable
1347 		 * powering down PHY until I got more information for
1348 		 * Attansic/Atheros PHY hardwares.
1349 		 */
1350 #ifdef notyet
1351 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1352 		    MII_BMCR, BMCR_PDOWN);
1353 #endif
1354 		return;
1355 	}
1356 
1357 	ifp = sc->age_ifp;
1358 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1359 		/*
1360 		 * Note, this driver resets the link speed to 10/100Mbps with
1361 		 * auto-negotiation but we don't know whether that operation
1362 		 * would succeed or not as it have no control after powering
1363 		 * off. If the renegotiation fail WOL may not work. Running
1364 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1365 		 * specified in PCI specification and that would result in
1366 		 * complete shutdowning power to ethernet controller.
1367 		 *
1368 		 * TODO
1369 		 *  Save current negotiated media speed/duplex/flow-control
1370 		 *  to softc and restore the same link again after resuming.
1371 		 *  PHY handling such as power down/resetting to 100Mbps
1372 		 *  may be better handled in suspend method in phy driver.
1373 		 */
1374 		mii = device_get_softc(sc->age_miibus);
1375 		mii_pollstat(mii);
1376 		aneg = 0;
1377 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1378 			switch IFM_SUBTYPE(mii->mii_media_active) {
1379 			case IFM_10_T:
1380 			case IFM_100_TX:
1381 				goto got_link;
1382 			case IFM_1000_T:
1383 				aneg++;
1384 			default:
1385 				break;
1386 			}
1387 		}
1388 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1389 		    MII_100T2CR, 0);
1390 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1391 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1392 		    ANAR_10 | ANAR_CSMA);
1393 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1394 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1395 		DELAY(1000);
1396 		if (aneg != 0) {
1397 			/* Poll link state until age(4) get a 10/100 link. */
1398 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1399 				mii_pollstat(mii);
1400 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1401 					switch (IFM_SUBTYPE(
1402 					    mii->mii_media_active)) {
1403 					case IFM_10_T:
1404 					case IFM_100_TX:
1405 						age_mac_config(sc);
1406 						goto got_link;
1407 					default:
1408 						break;
1409 					}
1410 				}
1411 				AGE_UNLOCK(sc);
1412 				pause("agelnk", hz);
1413 				AGE_LOCK(sc);
1414 			}
1415 			if (i == MII_ANEGTICKS_GIGE)
1416 				device_printf(sc->age_dev,
1417 				    "establishing link failed, "
1418 				    "WOL may not work!");
1419 		}
1420 		/*
1421 		 * No link, force MAC to have 100Mbps, full-duplex link.
1422 		 * This is the last resort and may/may not work.
1423 		 */
1424 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1425 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1426 		age_mac_config(sc);
1427 	}
1428 
1429 got_link:
1430 	pmcs = 0;
1431 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1432 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1433 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1434 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1435 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1436 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1437 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1438 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1439 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1440 		reg |= MAC_CFG_RX_ENB;
1441 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1442 	}
1443 
1444 	/* Request PME. */
1445 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1446 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1447 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1448 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1449 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1450 #ifdef notyet
1451 	/* See above for powering down PHY issues. */
1452 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1453 		/* No WOL, PHY power down. */
1454 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1455 		    MII_BMCR, BMCR_PDOWN);
1456 	}
1457 #endif
1458 }
1459 
1460 static int
1461 age_suspend(device_t dev)
1462 {
1463 	struct age_softc *sc;
1464 
1465 	sc = device_get_softc(dev);
1466 
1467 	AGE_LOCK(sc);
1468 	age_stop(sc);
1469 	age_setwol(sc);
1470 	AGE_UNLOCK(sc);
1471 
1472 	return (0);
1473 }
1474 
1475 static int
1476 age_resume(device_t dev)
1477 {
1478 	struct age_softc *sc;
1479 	struct ifnet *ifp;
1480 	uint16_t cmd;
1481 
1482 	sc = device_get_softc(dev);
1483 
1484 	AGE_LOCK(sc);
1485 	/*
1486 	 * Clear INTx emulation disable for hardwares that
1487 	 * is set in resume event. From Linux.
1488 	 */
1489 	cmd = pci_read_config(sc->age_dev, PCIR_COMMAND, 2);
1490 	if ((cmd & 0x0400) != 0) {
1491 		cmd &= ~0x0400;
1492 		pci_write_config(sc->age_dev, PCIR_COMMAND, cmd, 2);
1493 	}
1494 	AGE_UNLOCK(sc);
1495 	age_phy_reset(sc);
1496 	AGE_LOCK(sc);
1497 	ifp = sc->age_ifp;
1498 	if ((ifp->if_flags & IFF_UP) != 0)
1499 		age_init_locked(sc);
1500 
1501 	AGE_UNLOCK(sc);
1502 
1503 	return (0);
1504 }
1505 
1506 static int
1507 age_encap(struct age_softc *sc, struct mbuf **m_head)
1508 {
1509 	struct age_txdesc *txd, *txd_last;
1510 	struct tx_desc *desc;
1511 	struct mbuf *m;
1512 	struct ip *ip;
1513 	struct tcphdr *tcp;
1514 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1515 	bus_dmamap_t map;
1516 	uint32_t cflags, ip_off, poff, vtag;
1517 	int error, i, nsegs, prod, si;
1518 
1519 	AGE_LOCK_ASSERT(sc);
1520 
1521 	M_ASSERTPKTHDR((*m_head));
1522 
1523 	m = *m_head;
1524 	ip = NULL;
1525 	tcp = NULL;
1526 	cflags = vtag = 0;
1527 	ip_off = poff = 0;
1528 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1529 		/*
1530 		 * L1 requires offset of TCP/UDP payload in its Tx
1531 		 * descriptor to perform hardware Tx checksum offload.
1532 		 * Additionally, TSO requires IP/TCP header size and
1533 		 * modification of IP/TCP header in order to make TSO
1534 		 * engine work. This kind of operation takes many CPU
1535 		 * cycles on FreeBSD so fast host CPU is needed to get
1536 		 * smooth TSO performance.
1537 		 */
1538 		struct ether_header *eh;
1539 
1540 		if (M_WRITABLE(m) == 0) {
1541 			/* Get a writable copy. */
1542 			m = m_dup(*m_head, M_DONTWAIT);
1543 			/* Release original mbufs. */
1544 			m_freem(*m_head);
1545 			if (m == NULL) {
1546 				*m_head = NULL;
1547 				return (ENOBUFS);
1548 			}
1549 			*m_head = m;
1550 		}
1551 		ip_off = sizeof(struct ether_header);
1552 		m = m_pullup(m, ip_off);
1553 		if (m == NULL) {
1554 			*m_head = NULL;
1555 			return (ENOBUFS);
1556 		}
1557 		eh = mtod(m, struct ether_header *);
1558 		/*
1559 		 * Check if hardware VLAN insertion is off.
1560 		 * Additional check for LLC/SNAP frame?
1561 		 */
1562 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1563 			ip_off = sizeof(struct ether_vlan_header);
1564 			m = m_pullup(m, ip_off);
1565 			if (m == NULL) {
1566 				*m_head = NULL;
1567 				return (ENOBUFS);
1568 			}
1569 		}
1570 		m = m_pullup(m, ip_off + sizeof(struct ip));
1571 		if (m == NULL) {
1572 			*m_head = NULL;
1573 			return (ENOBUFS);
1574 		}
1575 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1576 		poff = ip_off + (ip->ip_hl << 2);
1577 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1578 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1579 			if (m == NULL) {
1580 				*m_head = NULL;
1581 				return (ENOBUFS);
1582 			}
1583 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1584 			/*
1585 			 * L1 requires IP/TCP header size and offset as
1586 			 * well as TCP pseudo checksum which complicates
1587 			 * TSO configuration. I guess this comes from the
1588 			 * adherence to Microsoft NDIS Large Send
1589 			 * specification which requires insertion of
1590 			 * pseudo checksum by upper stack. The pseudo
1591 			 * checksum that NDIS refers to doesn't include
1592 			 * TCP payload length so age(4) should recompute
1593 			 * the pseudo checksum here. Hopefully this wouldn't
1594 			 * be much burden on modern CPUs.
1595 			 * Reset IP checksum and recompute TCP pseudo
1596 			 * checksum as NDIS specification said.
1597 			 */
1598 			ip->ip_sum = 0;
1599 			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1600 				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1601 				    ip->ip_dst.s_addr,
1602 				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1603 			else
1604 				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1605 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1606 		}
1607 		*m_head = m;
1608 	}
1609 
1610 	si = prod = sc->age_cdata.age_tx_prod;
1611 	txd = &sc->age_cdata.age_txdesc[prod];
1612 	txd_last = txd;
1613 	map = txd->tx_dmamap;
1614 
1615 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1616 	    *m_head, txsegs, &nsegs, 0);
1617 	if (error == EFBIG) {
1618 		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1619 		if (m == NULL) {
1620 			m_freem(*m_head);
1621 			*m_head = NULL;
1622 			return (ENOMEM);
1623 		}
1624 		*m_head = m;
1625 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1626 		    *m_head, txsegs, &nsegs, 0);
1627 		if (error != 0) {
1628 			m_freem(*m_head);
1629 			*m_head = NULL;
1630 			return (error);
1631 		}
1632 	} else if (error != 0)
1633 		return (error);
1634 	if (nsegs == 0) {
1635 		m_freem(*m_head);
1636 		*m_head = NULL;
1637 		return (EIO);
1638 	}
1639 
1640 	/* Check descriptor overrun. */
1641 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1642 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1643 		return (ENOBUFS);
1644 	}
1645 
1646 	m = *m_head;
1647 	/* Configure Tx IP/TCP/UDP checksum offload. */
1648 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1649 		cflags |= AGE_TD_CSUM;
1650 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1651 			cflags |= AGE_TD_TCPCSUM;
1652 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1653 			cflags |= AGE_TD_UDPCSUM;
1654 		/* Set checksum start offset. */
1655 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1656 		/* Set checksum insertion position of TCP/UDP. */
1657 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1658 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1659 	}
1660 
1661 	/* Configure TSO. */
1662 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1663 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1664 			/* Not TSO but IP/TCP checksum offload. */
1665 			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1666 			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1667 			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1668 		} else {
1669 			/* Request TSO and set MSS. */
1670 			cflags |= AGE_TD_TSO_IPV4;
1671 			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1672 			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1673 			    AGE_TD_TSO_MSS_SHIFT);
1674 		}
1675 		/* Set IP/TCP header size. */
1676 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1677 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1678 	}
1679 
1680 	/* Configure VLAN hardware tag insertion. */
1681 	if ((m->m_flags & M_VLANTAG) != 0) {
1682 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1683 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1684 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1685 	}
1686 
1687 	desc = NULL;
1688 	for (i = 0; i < nsegs; i++) {
1689 		desc = &sc->age_rdata.age_tx_ring[prod];
1690 		desc->addr = htole64(txsegs[i].ds_addr);
1691 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1692 		desc->flags = htole32(cflags);
1693 		sc->age_cdata.age_tx_cnt++;
1694 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1695 	}
1696 	/* Update producer index. */
1697 	sc->age_cdata.age_tx_prod = prod;
1698 
1699 	/* Set EOP on the last descriptor. */
1700 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1701 	desc = &sc->age_rdata.age_tx_ring[prod];
1702 	desc->flags |= htole32(AGE_TD_EOP);
1703 
1704 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1705 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1706 		desc = &sc->age_rdata.age_tx_ring[si];
1707 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1708 	}
1709 
1710 	/* Swap dmamap of the first and the last. */
1711 	txd = &sc->age_cdata.age_txdesc[prod];
1712 	map = txd_last->tx_dmamap;
1713 	txd_last->tx_dmamap = txd->tx_dmamap;
1714 	txd->tx_dmamap = map;
1715 	txd->tx_m = m;
1716 
1717 	/* Sync descriptors. */
1718 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1719 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1720 	    sc->age_cdata.age_tx_ring_map,
1721 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1722 
1723 	return (0);
1724 }
1725 
1726 static void
1727 age_tx_task(void *arg, int pending)
1728 {
1729 	struct ifnet *ifp;
1730 
1731 	ifp = (struct ifnet *)arg;
1732 	age_start(ifp);
1733 }
1734 
1735 static void
1736 age_start(struct ifnet *ifp)
1737 {
1738         struct age_softc *sc;
1739         struct mbuf *m_head;
1740 	int enq;
1741 
1742 	sc = ifp->if_softc;
1743 
1744 	AGE_LOCK(sc);
1745 
1746 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1747 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) {
1748 		AGE_UNLOCK(sc);
1749 		return;
1750 	}
1751 
1752 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1753 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1754 		if (m_head == NULL)
1755 			break;
1756 		/*
1757 		 * Pack the data into the transmit ring. If we
1758 		 * don't have room, set the OACTIVE flag and wait
1759 		 * for the NIC to drain the ring.
1760 		 */
1761 		if (age_encap(sc, &m_head)) {
1762 			if (m_head == NULL)
1763 				break;
1764 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1765 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1766 			break;
1767 		}
1768 
1769 		enq++;
1770 		/*
1771 		 * If there's a BPF listener, bounce a copy of this frame
1772 		 * to him.
1773 		 */
1774 		ETHER_BPF_MTAP(ifp, m_head);
1775 	}
1776 
1777 	if (enq > 0) {
1778 		/* Update mbox. */
1779 		AGE_COMMIT_MBOX(sc);
1780 		/* Set a timeout in case the chip goes out to lunch. */
1781 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1782 	}
1783 
1784 	AGE_UNLOCK(sc);
1785 }
1786 
1787 static void
1788 age_watchdog(struct age_softc *sc)
1789 {
1790 	struct ifnet *ifp;
1791 
1792 	AGE_LOCK_ASSERT(sc);
1793 
1794 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1795 		return;
1796 
1797 	ifp = sc->age_ifp;
1798 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1799 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1800 		ifp->if_oerrors++;
1801 		age_init_locked(sc);
1802 		return;
1803 	}
1804 	if (sc->age_cdata.age_tx_cnt == 0) {
1805 		if_printf(sc->age_ifp,
1806 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1807 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1808 			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1809 		return;
1810 	}
1811 	if_printf(sc->age_ifp, "watchdog timeout\n");
1812 	ifp->if_oerrors++;
1813 	age_init_locked(sc);
1814 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1815 		taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1816 }
1817 
1818 static int
1819 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1820 {
1821 	struct age_softc *sc;
1822 	struct ifreq *ifr;
1823 	struct mii_data *mii;
1824 	uint32_t reg;
1825 	int error, mask;
1826 
1827 	sc = ifp->if_softc;
1828 	ifr = (struct ifreq *)data;
1829 	error = 0;
1830 	switch (cmd) {
1831 	case SIOCSIFMTU:
1832 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1833 			error = EINVAL;
1834 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1835 			AGE_LOCK(sc);
1836 			ifp->if_mtu = ifr->ifr_mtu;
1837 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1838 				age_init_locked(sc);
1839 			AGE_UNLOCK(sc);
1840 		}
1841 		break;
1842 	case SIOCSIFFLAGS:
1843 		AGE_LOCK(sc);
1844 		if ((ifp->if_flags & IFF_UP) != 0) {
1845 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1846 				if (((ifp->if_flags ^ sc->age_if_flags)
1847 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1848 					age_rxfilter(sc);
1849 			} else {
1850 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1851 					age_init_locked(sc);
1852 			}
1853 		} else {
1854 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1855 				age_stop(sc);
1856 		}
1857 		sc->age_if_flags = ifp->if_flags;
1858 		AGE_UNLOCK(sc);
1859 		break;
1860 	case SIOCADDMULTI:
1861 	case SIOCDELMULTI:
1862 		AGE_LOCK(sc);
1863 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1864 			age_rxfilter(sc);
1865 		AGE_UNLOCK(sc);
1866 		break;
1867 	case SIOCSIFMEDIA:
1868 	case SIOCGIFMEDIA:
1869 		mii = device_get_softc(sc->age_miibus);
1870 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1871 		break;
1872 	case SIOCSIFCAP:
1873 		AGE_LOCK(sc);
1874 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1875 		if ((mask & IFCAP_TXCSUM) != 0 &&
1876 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1877 			ifp->if_capenable ^= IFCAP_TXCSUM;
1878 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1879 				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1880 			else
1881 				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1882 		}
1883 		if ((mask & IFCAP_RXCSUM) != 0 &&
1884 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1885 			ifp->if_capenable ^= IFCAP_RXCSUM;
1886 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1887 			reg &= ~MAC_CFG_RXCSUM_ENB;
1888 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1889 				reg |= MAC_CFG_RXCSUM_ENB;
1890 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1891 		}
1892 		if ((mask & IFCAP_TSO4) != 0 &&
1893 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1894 			ifp->if_capenable ^= IFCAP_TSO4;
1895 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1896 				ifp->if_hwassist |= CSUM_TSO;
1897 			else
1898 				ifp->if_hwassist &= ~CSUM_TSO;
1899 		}
1900 
1901 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1902 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1903 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1904 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1905 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1906 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1907 
1908 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1909 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1910 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1911 			age_rxvlan(sc);
1912 		}
1913 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1914 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1915 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1916 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1917 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1918 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1919 		/*
1920 		 * VLAN hardware tagging is required to do checksum
1921 		 * offload or TSO on VLAN interface. Checksum offload
1922 		 * on VLAN interface also requires hardware assistance
1923 		 * of parent interface.
1924 		 */
1925 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
1926 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
1927 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1928 			ifp->if_capenable &=
1929 			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1930 		AGE_UNLOCK(sc);
1931 		VLAN_CAPABILITIES(ifp);
1932 		break;
1933 	default:
1934 		error = ether_ioctl(ifp, cmd, data);
1935 		break;
1936 	}
1937 
1938 	return (error);
1939 }
1940 
1941 static void
1942 age_mac_config(struct age_softc *sc)
1943 {
1944 	struct mii_data *mii;
1945 	uint32_t reg;
1946 
1947 	AGE_LOCK_ASSERT(sc);
1948 
1949 	mii = device_get_softc(sc->age_miibus);
1950 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1951 	reg &= ~MAC_CFG_FULL_DUPLEX;
1952 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1953 	reg &= ~MAC_CFG_SPEED_MASK;
1954 	/* Reprogram MAC with resolved speed/duplex. */
1955 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1956 	case IFM_10_T:
1957 	case IFM_100_TX:
1958 		reg |= MAC_CFG_SPEED_10_100;
1959 		break;
1960 	case IFM_1000_T:
1961 		reg |= MAC_CFG_SPEED_1000;
1962 		break;
1963 	}
1964 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1965 		reg |= MAC_CFG_FULL_DUPLEX;
1966 #ifdef notyet
1967 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1968 			reg |= MAC_CFG_TX_FC;
1969 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1970 			reg |= MAC_CFG_RX_FC;
1971 #endif
1972 	}
1973 
1974 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1975 }
1976 
1977 static void
1978 age_link_task(void *arg, int pending)
1979 {
1980 	struct age_softc *sc;
1981 	struct mii_data *mii;
1982 	struct ifnet *ifp;
1983 	uint32_t reg;
1984 
1985 	sc = (struct age_softc *)arg;
1986 
1987 	AGE_LOCK(sc);
1988 	mii = device_get_softc(sc->age_miibus);
1989 	ifp = sc->age_ifp;
1990 	if (mii == NULL || ifp == NULL ||
1991 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1992 		AGE_UNLOCK(sc);
1993 		return;
1994 	}
1995 
1996 	sc->age_flags &= ~AGE_FLAG_LINK;
1997 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1998 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1999 		case IFM_10_T:
2000 		case IFM_100_TX:
2001 		case IFM_1000_T:
2002 			sc->age_flags |= AGE_FLAG_LINK;
2003 			break;
2004 		default:
2005 			break;
2006 		}
2007 	}
2008 
2009 	/* Stop Rx/Tx MACs. */
2010 	age_stop_rxmac(sc);
2011 	age_stop_txmac(sc);
2012 
2013 	/* Program MACs with resolved speed/duplex/flow-control. */
2014 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2015 		age_mac_config(sc);
2016 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2017 		/* Restart DMA engine and Tx/Rx MAC. */
2018 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2019 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2020 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2021 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2022 	}
2023 
2024 	AGE_UNLOCK(sc);
2025 }
2026 
2027 static void
2028 age_stats_update(struct age_softc *sc)
2029 {
2030 	struct age_stats *stat;
2031 	struct smb *smb;
2032 	struct ifnet *ifp;
2033 
2034 	AGE_LOCK_ASSERT(sc);
2035 
2036 	stat = &sc->age_stat;
2037 
2038 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2039 	    sc->age_cdata.age_smb_block_map,
2040 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2041 
2042 	smb = sc->age_rdata.age_smb_block;
2043 	if (smb->updated == 0)
2044 		return;
2045 
2046 	ifp = sc->age_ifp;
2047 	/* Rx stats. */
2048 	stat->rx_frames += smb->rx_frames;
2049 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2050 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2051 	stat->rx_pause_frames += smb->rx_pause_frames;
2052 	stat->rx_control_frames += smb->rx_control_frames;
2053 	stat->rx_crcerrs += smb->rx_crcerrs;
2054 	stat->rx_lenerrs += smb->rx_lenerrs;
2055 	stat->rx_bytes += smb->rx_bytes;
2056 	stat->rx_runts += smb->rx_runts;
2057 	stat->rx_fragments += smb->rx_fragments;
2058 	stat->rx_pkts_64 += smb->rx_pkts_64;
2059 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2060 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2061 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2062 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2063 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2064 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2065 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2066 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2067 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2068 	stat->rx_alignerrs += smb->rx_alignerrs;
2069 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2070 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2071 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2072 
2073 	/* Tx stats. */
2074 	stat->tx_frames += smb->tx_frames;
2075 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2076 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2077 	stat->tx_pause_frames += smb->tx_pause_frames;
2078 	stat->tx_excess_defer += smb->tx_excess_defer;
2079 	stat->tx_control_frames += smb->tx_control_frames;
2080 	stat->tx_deferred += smb->tx_deferred;
2081 	stat->tx_bytes += smb->tx_bytes;
2082 	stat->tx_pkts_64 += smb->tx_pkts_64;
2083 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2084 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2085 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2086 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2087 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2088 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2089 	stat->tx_single_colls += smb->tx_single_colls;
2090 	stat->tx_multi_colls += smb->tx_multi_colls;
2091 	stat->tx_late_colls += smb->tx_late_colls;
2092 	stat->tx_excess_colls += smb->tx_excess_colls;
2093 	stat->tx_underrun += smb->tx_underrun;
2094 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2095 	stat->tx_lenerrs += smb->tx_lenerrs;
2096 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2097 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2098 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2099 
2100 	/* Update counters in ifnet. */
2101 	ifp->if_opackets += smb->tx_frames;
2102 
2103 	ifp->if_collisions += smb->tx_single_colls +
2104 	    smb->tx_multi_colls + smb->tx_late_colls +
2105 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2106 
2107 	ifp->if_oerrors += smb->tx_excess_colls +
2108 	    smb->tx_late_colls + smb->tx_underrun +
2109 	    smb->tx_pkts_truncated;
2110 
2111 	ifp->if_ipackets += smb->rx_frames;
2112 
2113 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2114 	    smb->rx_runts + smb->rx_pkts_truncated +
2115 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2116 	    smb->rx_alignerrs;
2117 
2118 	/* Update done, clear. */
2119 	smb->updated = 0;
2120 
2121 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2122 	    sc->age_cdata.age_smb_block_map,
2123 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2124 }
2125 
2126 static int
2127 age_intr(void *arg)
2128 {
2129 	struct age_softc *sc;
2130 	uint32_t status;
2131 
2132 	sc = (struct age_softc *)arg;
2133 
2134 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2135 	if (status == 0 || (status & AGE_INTRS) == 0)
2136 		return (FILTER_STRAY);
2137 	/* Disable interrupts. */
2138 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2139 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2140 
2141 	return (FILTER_HANDLED);
2142 }
2143 
2144 static void
2145 age_int_task(void *arg, int pending)
2146 {
2147 	struct age_softc *sc;
2148 	struct ifnet *ifp;
2149 	struct cmb *cmb;
2150 	uint32_t status;
2151 
2152 	sc = (struct age_softc *)arg;
2153 
2154 	AGE_LOCK(sc);
2155 
2156 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2157 	    sc->age_cdata.age_cmb_block_map,
2158 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2159 	cmb = sc->age_rdata.age_cmb_block;
2160 	status = le32toh(cmb->intr_status);
2161 	if (sc->age_morework != 0)
2162 		status |= INTR_CMB_RX;
2163 	if ((status & AGE_INTRS) == 0)
2164 		goto done;
2165 
2166 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2167 	    TPD_CONS_SHIFT;
2168 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2169 	    RRD_PROD_SHIFT;
2170 	/* Let hardware know CMB was served. */
2171 	cmb->intr_status = 0;
2172 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2173 	    sc->age_cdata.age_cmb_block_map,
2174 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2175 
2176 #if 0
2177 	printf("INTR: 0x%08x\n", status);
2178 	status &= ~INTR_DIS_DMA;
2179 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2180 #endif
2181 	ifp = sc->age_ifp;
2182 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2183 		if ((status & INTR_CMB_RX) != 0)
2184 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2185 			    sc->age_process_limit);
2186 		if ((status & INTR_CMB_TX) != 0)
2187 			age_txintr(sc, sc->age_tpd_cons);
2188 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2189 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2190 				device_printf(sc->age_dev,
2191 				    "DMA read error! -- resetting\n");
2192 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2193 				device_printf(sc->age_dev,
2194 				    "DMA write error! -- resetting\n");
2195 			age_init_locked(sc);
2196 		}
2197 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2198 			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
2199 		if ((status & INTR_SMB) != 0)
2200 			age_stats_update(sc);
2201 	}
2202 
2203 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2204 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2205 	    sc->age_cdata.age_cmb_block_map,
2206 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2207 	status = le32toh(cmb->intr_status);
2208 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2209 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2210 		AGE_UNLOCK(sc);
2211 		return;
2212 	}
2213 
2214 done:
2215 	/* Re-enable interrupts. */
2216 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2217 	AGE_UNLOCK(sc);
2218 }
2219 
2220 static void
2221 age_txintr(struct age_softc *sc, int tpd_cons)
2222 {
2223 	struct ifnet *ifp;
2224 	struct age_txdesc *txd;
2225 	int cons, prog;
2226 
2227 	AGE_LOCK_ASSERT(sc);
2228 
2229 	ifp = sc->age_ifp;
2230 
2231 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2232 	    sc->age_cdata.age_tx_ring_map,
2233 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2234 
2235 	/*
2236 	 * Go through our Tx list and free mbufs for those
2237 	 * frames which have been transmitted.
2238 	 */
2239 	cons = sc->age_cdata.age_tx_cons;
2240 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2241 		if (sc->age_cdata.age_tx_cnt <= 0)
2242 			break;
2243 		prog++;
2244 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2245 		sc->age_cdata.age_tx_cnt--;
2246 		txd = &sc->age_cdata.age_txdesc[cons];
2247 		/*
2248 		 * Clear Tx descriptors, it's not required but would
2249 		 * help debugging in case of Tx issues.
2250 		 */
2251 		txd->tx_desc->addr = 0;
2252 		txd->tx_desc->len = 0;
2253 		txd->tx_desc->flags = 0;
2254 
2255 		if (txd->tx_m == NULL)
2256 			continue;
2257 		/* Reclaim transmitted mbufs. */
2258 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2259 		    BUS_DMASYNC_POSTWRITE);
2260 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2261 		m_freem(txd->tx_m);
2262 		txd->tx_m = NULL;
2263 	}
2264 
2265 	if (prog > 0) {
2266 		sc->age_cdata.age_tx_cons = cons;
2267 
2268 		/*
2269 		 * Unarm watchdog timer only when there are no pending
2270 		 * Tx descriptors in queue.
2271 		 */
2272 		if (sc->age_cdata.age_tx_cnt == 0)
2273 			sc->age_watchdog_timer = 0;
2274 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2275 		    sc->age_cdata.age_tx_ring_map,
2276 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2277 	}
2278 }
2279 
2280 /* Receive a frame. */
2281 static void
2282 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2283 {
2284 	struct age_rxdesc *rxd;
2285 	struct rx_desc *desc;
2286 	struct ifnet *ifp;
2287 	struct mbuf *mp, *m;
2288 	uint32_t status, index, vtag;
2289 	int count, nsegs, pktlen;
2290 	int rx_cons;
2291 
2292 	AGE_LOCK_ASSERT(sc);
2293 
2294 	ifp = sc->age_ifp;
2295 	status = le32toh(rxrd->flags);
2296 	index = le32toh(rxrd->index);
2297 	rx_cons = AGE_RX_CONS(index);
2298 	nsegs = AGE_RX_NSEGS(index);
2299 
2300 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2301 	if ((status & AGE_RRD_ERROR) != 0 &&
2302 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2303 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2304 		/*
2305 		 * We want to pass the following frames to upper
2306 		 * layer regardless of error status of Rx return
2307 		 * ring.
2308 		 *
2309 		 *  o IP/TCP/UDP checksum is bad.
2310 		 *  o frame length and protocol specific length
2311 		 *     does not match.
2312 		 */
2313 		sc->age_cdata.age_rx_cons += nsegs;
2314 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2315 		return;
2316 	}
2317 
2318 	pktlen = 0;
2319 	for (count = 0; count < nsegs; count++,
2320 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2321 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2322 		mp = rxd->rx_m;
2323 		desc = rxd->rx_desc;
2324 		/* Add a new receive buffer to the ring. */
2325 		if (age_newbuf(sc, rxd) != 0) {
2326 			ifp->if_iqdrops++;
2327 			/* Reuse Rx buffers. */
2328 			if (sc->age_cdata.age_rxhead != NULL) {
2329 				m_freem(sc->age_cdata.age_rxhead);
2330 				AGE_RXCHAIN_RESET(sc);
2331 			}
2332 			break;
2333 		}
2334 
2335 		/* The length of the first mbuf is computed last. */
2336 		if (count != 0) {
2337 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2338 			pktlen += mp->m_len;
2339 		}
2340 
2341 		/* Chain received mbufs. */
2342 		if (sc->age_cdata.age_rxhead == NULL) {
2343 			sc->age_cdata.age_rxhead = mp;
2344 			sc->age_cdata.age_rxtail = mp;
2345 		} else {
2346 			mp->m_flags &= ~M_PKTHDR;
2347 			sc->age_cdata.age_rxprev_tail =
2348 			    sc->age_cdata.age_rxtail;
2349 			sc->age_cdata.age_rxtail->m_next = mp;
2350 			sc->age_cdata.age_rxtail = mp;
2351 		}
2352 
2353 		if (count == nsegs - 1) {
2354 			/*
2355 			 * It seems that L1 controller has no way
2356 			 * to tell hardware to strip CRC bytes.
2357 			 */
2358 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2359 			if (nsegs > 1) {
2360 				/* Remove the CRC bytes in chained mbufs. */
2361 				pktlen -= ETHER_CRC_LEN;
2362 				if (mp->m_len <= ETHER_CRC_LEN) {
2363 					sc->age_cdata.age_rxtail =
2364 					    sc->age_cdata.age_rxprev_tail;
2365 					sc->age_cdata.age_rxtail->m_len -=
2366 					    (ETHER_CRC_LEN - mp->m_len);
2367 					sc->age_cdata.age_rxtail->m_next = NULL;
2368 					m_freem(mp);
2369 				} else {
2370 					mp->m_len -= ETHER_CRC_LEN;
2371 				}
2372 			}
2373 
2374 			m = sc->age_cdata.age_rxhead;
2375 			m->m_flags |= M_PKTHDR;
2376 			m->m_pkthdr.rcvif = ifp;
2377 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2378 			/* Set the first mbuf length. */
2379 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2380 
2381 			/*
2382 			 * Set checksum information.
2383 			 * It seems that L1 controller can compute partial
2384 			 * checksum. The partial checksum value can be used
2385 			 * to accelerate checksum computation for fragmented
2386 			 * TCP/UDP packets. Upper network stack already
2387 			 * takes advantage of the partial checksum value in
2388 			 * IP reassembly stage. But I'm not sure the
2389 			 * correctness of the partial hardware checksum
2390 			 * assistance due to lack of data sheet. If it is
2391 			 * proven to work on L1 I'll enable it.
2392 			 */
2393 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2394 			    (status & AGE_RRD_IPV4) != 0) {
2395 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2396 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2397 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2398 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2399 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2400 					m->m_pkthdr.csum_flags |=
2401 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2402 					m->m_pkthdr.csum_data = 0xffff;
2403 				}
2404 				/*
2405 				 * Don't mark bad checksum for TCP/UDP frames
2406 				 * as fragmented frames may always have set
2407 				 * bad checksummed bit of descriptor status.
2408 				 */
2409 			}
2410 
2411 			/* Check for VLAN tagged frames. */
2412 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2413 			    (status & AGE_RRD_VLAN) != 0) {
2414 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2415 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2416 				m->m_flags |= M_VLANTAG;
2417 			}
2418 
2419 			/* Pass it on. */
2420 			AGE_UNLOCK(sc);
2421 			(*ifp->if_input)(ifp, m);
2422 			AGE_LOCK(sc);
2423 
2424 			/* Reset mbuf chains. */
2425 			AGE_RXCHAIN_RESET(sc);
2426 		}
2427 	}
2428 
2429 	if (count != nsegs) {
2430 		sc->age_cdata.age_rx_cons += nsegs;
2431 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2432 	} else
2433 		sc->age_cdata.age_rx_cons = rx_cons;
2434 }
2435 
2436 static int
2437 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2438 {
2439 	struct rx_rdesc *rxrd;
2440 	int rr_cons, nsegs, pktlen, prog;
2441 
2442 	AGE_LOCK_ASSERT(sc);
2443 
2444 	rr_cons = sc->age_cdata.age_rr_cons;
2445 	if (rr_cons == rr_prod)
2446 		return (0);
2447 
2448 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2449 	    sc->age_cdata.age_rr_ring_map,
2450 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2451 
2452 	for (prog = 0; rr_cons != rr_prod; prog++) {
2453 		if (count <= 0)
2454 			break;
2455 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2456 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2457 		if (nsegs == 0)
2458 			break;
2459 		/*
2460 		 * Check number of segments against received bytes.
2461 		 * Non-matching value would indicate that hardware
2462 		 * is still trying to update Rx return descriptors.
2463 		 * I'm not sure whether this check is really needed.
2464 		 */
2465 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2466 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2467 		    (MCLBYTES - ETHER_ALIGN)))
2468 			break;
2469 
2470 		prog++;
2471 		/* Received a frame. */
2472 		age_rxeof(sc, rxrd);
2473 		/* Clear return ring. */
2474 		rxrd->index = 0;
2475 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2476 	}
2477 
2478 	if (prog > 0) {
2479 		/* Update the consumer index. */
2480 		sc->age_cdata.age_rr_cons = rr_cons;
2481 
2482 		/* Sync descriptors. */
2483 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2484 		    sc->age_cdata.age_rr_ring_map,
2485 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2486 
2487 		/* Notify hardware availability of new Rx buffers. */
2488 		AGE_COMMIT_MBOX(sc);
2489 	}
2490 
2491 	return (count > 0 ? 0 : EAGAIN);
2492 }
2493 
2494 static void
2495 age_tick(void *arg)
2496 {
2497 	struct age_softc *sc;
2498 	struct mii_data *mii;
2499 
2500 	sc = (struct age_softc *)arg;
2501 
2502 	AGE_LOCK_ASSERT(sc);
2503 
2504 	mii = device_get_softc(sc->age_miibus);
2505 	mii_tick(mii);
2506 	age_watchdog(sc);
2507 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2508 }
2509 
2510 static void
2511 age_reset(struct age_softc *sc)
2512 {
2513 	uint32_t reg;
2514 	int i;
2515 
2516 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2517 	CSR_READ_4(sc, AGE_MASTER_CFG);
2518 	DELAY(1000);
2519 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2520 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2521 			break;
2522 		DELAY(10);
2523 	}
2524 
2525 	if (i == 0)
2526 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2527 	/* Initialize PCIe module. From Linux. */
2528 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2529 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2530 }
2531 
2532 static void
2533 age_init(void *xsc)
2534 {
2535 	struct age_softc *sc;
2536 
2537 	sc = (struct age_softc *)xsc;
2538 	AGE_LOCK(sc);
2539 	age_init_locked(sc);
2540 	AGE_UNLOCK(sc);
2541 }
2542 
2543 static void
2544 age_init_locked(struct age_softc *sc)
2545 {
2546 	struct ifnet *ifp;
2547 	struct mii_data *mii;
2548 	uint8_t eaddr[ETHER_ADDR_LEN];
2549 	bus_addr_t paddr;
2550 	uint32_t reg, fsize;
2551 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2552 	int error;
2553 
2554 	AGE_LOCK_ASSERT(sc);
2555 
2556 	ifp = sc->age_ifp;
2557 	mii = device_get_softc(sc->age_miibus);
2558 
2559 	/*
2560 	 * Cancel any pending I/O.
2561 	 */
2562 	age_stop(sc);
2563 
2564 	/*
2565 	 * Reset the chip to a known state.
2566 	 */
2567 	age_reset(sc);
2568 
2569 	/* Initialize descriptors. */
2570 	error = age_init_rx_ring(sc);
2571         if (error != 0) {
2572                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2573                 age_stop(sc);
2574 		return;
2575         }
2576 	age_init_rr_ring(sc);
2577 	age_init_tx_ring(sc);
2578 	age_init_cmb_block(sc);
2579 	age_init_smb_block(sc);
2580 
2581 	/* Reprogram the station address. */
2582 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2583 	CSR_WRITE_4(sc, AGE_PAR0,
2584 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2585 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2586 
2587 	/* Set descriptor base addresses. */
2588 	paddr = sc->age_rdata.age_tx_ring_paddr;
2589 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2590 	paddr = sc->age_rdata.age_rx_ring_paddr;
2591 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2592 	paddr = sc->age_rdata.age_rr_ring_paddr;
2593 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2594 	paddr = sc->age_rdata.age_tx_ring_paddr;
2595 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2596 	paddr = sc->age_rdata.age_cmb_block_paddr;
2597 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2598 	paddr = sc->age_rdata.age_smb_block_paddr;
2599 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2600 	/* Set Rx/Rx return descriptor counter. */
2601 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2602 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2603 	    DESC_RRD_CNT_MASK) |
2604 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2605 	/* Set Tx descriptor counter. */
2606 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2607 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2608 
2609 	/* Tell hardware that we're ready to load descriptors. */
2610 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2611 
2612 	/*
2613 	 * Initialize mailbox register.
2614 	 * Updated producer/consumer index information is exchanged
2615 	 * through this mailbox register. However Tx producer and
2616 	 * Rx return consumer/Rx producer are all shared such that
2617 	 * it's hard to separate code path between Tx and Rx without
2618 	 * locking. If L1 hardware have a separate mail box register
2619 	 * for Tx and Rx consumer/producer management we could have
2620 	 * indepent Tx/Rx handler which in turn Rx handler could have
2621 	 * been run without any locking.
2622 	 */
2623 	AGE_COMMIT_MBOX(sc);
2624 
2625 	/* Configure IPG/IFG parameters. */
2626 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2627 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2628 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2629 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2630 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2631 
2632 	/* Set parameters for half-duplex media. */
2633 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2634 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2635 	    HDPX_CFG_LCOL_MASK) |
2636 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2637 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2638 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2639 	    HDPX_CFG_ABEBT_MASK) |
2640 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2641 	    HDPX_CFG_JAMIPG_MASK));
2642 
2643 	/* Configure interrupt moderation timer. */
2644 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2645 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2646 	reg &= ~MASTER_MTIMER_ENB;
2647 	if (AGE_USECS(sc->age_int_mod) == 0)
2648 		reg &= ~MASTER_ITIMER_ENB;
2649 	else
2650 		reg |= MASTER_ITIMER_ENB;
2651 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2652 	if (bootverbose)
2653 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2654 		    sc->age_int_mod);
2655 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2656 
2657 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2658 	if (ifp->if_mtu < ETHERMTU)
2659 		sc->age_max_frame_size = ETHERMTU;
2660 	else
2661 		sc->age_max_frame_size = ifp->if_mtu;
2662 	sc->age_max_frame_size += ETHER_HDR_LEN +
2663 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2664 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2665 	/* Configure jumbo frame. */
2666 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2667 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2668 	    (((fsize / sizeof(uint64_t)) <<
2669 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2670 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2671 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2672 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2673 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2674 
2675 	/* Configure flow-control parameters. From Linux. */
2676 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2677 		/*
2678 		 * Magic workaround for old-L1.
2679 		 * Don't know which hw revision requires this magic.
2680 		 */
2681 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2682 		/*
2683 		 * Another magic workaround for flow-control mode
2684 		 * change. From Linux.
2685 		 */
2686 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2687 	}
2688 	/*
2689 	 * TODO
2690 	 *  Should understand pause parameter relationships between FIFO
2691 	 *  size and number of Rx descriptors and Rx return descriptors.
2692 	 *
2693 	 *  Magic parameters came from Linux.
2694 	 */
2695 	switch (sc->age_chip_rev) {
2696 	case 0x8001:
2697 	case 0x9001:
2698 	case 0x9002:
2699 	case 0x9003:
2700 		rxf_hi = AGE_RX_RING_CNT / 16;
2701 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2702 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2703 		rrd_lo = AGE_RR_RING_CNT / 16;
2704 		break;
2705 	default:
2706 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2707 		rxf_lo = reg / 16;
2708 		if (rxf_lo < 192)
2709 			rxf_lo = 192;
2710 		rxf_hi = (reg * 7) / 8;
2711 		if (rxf_hi < rxf_lo)
2712 			rxf_hi = rxf_lo + 16;
2713 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2714 		rrd_lo = reg / 8;
2715 		rrd_hi = (reg * 7) / 8;
2716 		if (rrd_lo < 2)
2717 			rrd_lo = 2;
2718 		if (rrd_hi < rrd_lo)
2719 			rrd_hi = rrd_lo + 3;
2720 		break;
2721 	}
2722 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2723 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2724 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2725 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2726 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2727 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2728 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2729 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2730 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2731 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2732 
2733 	/* Configure RxQ. */
2734 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2735 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2736 	    RXQ_CFG_RD_BURST_MASK) |
2737 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2738 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2739 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2740 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2741 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2742 
2743 	/* Configure TxQ. */
2744 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2745 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2746 	    TXQ_CFG_TPD_BURST_MASK) |
2747 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2748 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2749 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2750 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2751 	    TXQ_CFG_ENB);
2752 
2753 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2754 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2755 	    TX_JUMBO_TPD_TH_MASK) |
2756 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2757 	    TX_JUMBO_TPD_IPG_MASK));
2758 	/* Configure DMA parameters. */
2759 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2760 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2761 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2762 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2763 
2764 	/* Configure CMB DMA write threshold. */
2765 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2766 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2767 	    CMB_WR_THRESH_RRD_MASK) |
2768 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2769 	    CMB_WR_THRESH_TPD_MASK));
2770 
2771 	/* Set CMB/SMB timer and enable them. */
2772 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2773 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2774 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2775 	/* Request SMB updates for every seconds. */
2776 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2777 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2778 
2779 	/*
2780 	 * Disable all WOL bits as WOL can interfere normal Rx
2781 	 * operation.
2782 	 */
2783 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2784 
2785 	/*
2786 	 * Configure Tx/Rx MACs.
2787 	 *  - Auto-padding for short frames.
2788 	 *  - Enable CRC generation.
2789 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2790 	 *  of MAC is followed after link establishment.
2791 	 */
2792 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2793 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2794 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2795 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2796 	    MAC_CFG_PREAMBLE_MASK));
2797 	/* Set up the receive filter. */
2798 	age_rxfilter(sc);
2799 	age_rxvlan(sc);
2800 
2801 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2802 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2803 		reg |= MAC_CFG_RXCSUM_ENB;
2804 
2805 	/* Ack all pending interrupts and clear it. */
2806 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2807 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2808 
2809 	/* Finally enable Tx/Rx MAC. */
2810 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2811 
2812 	sc->age_flags &= ~AGE_FLAG_LINK;
2813 	/* Switch to the current media. */
2814 	mii_mediachg(mii);
2815 
2816 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2817 
2818 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2819 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2820 }
2821 
2822 static void
2823 age_stop(struct age_softc *sc)
2824 {
2825 	struct ifnet *ifp;
2826 	struct age_txdesc *txd;
2827 	struct age_rxdesc *rxd;
2828 	uint32_t reg;
2829 	int i;
2830 
2831 	AGE_LOCK_ASSERT(sc);
2832 	/*
2833 	 * Mark the interface down and cancel the watchdog timer.
2834 	 */
2835 	ifp = sc->age_ifp;
2836 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2837 	sc->age_flags &= ~AGE_FLAG_LINK;
2838 	callout_stop(&sc->age_tick_ch);
2839 	sc->age_watchdog_timer = 0;
2840 
2841 	/*
2842 	 * Disable interrupts.
2843 	 */
2844 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2845 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2846 	/* Stop CMB/SMB updates. */
2847 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2848 	/* Stop Rx/Tx MAC. */
2849 	age_stop_rxmac(sc);
2850 	age_stop_txmac(sc);
2851 	/* Stop DMA. */
2852 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2853 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2854 	/* Stop TxQ/RxQ. */
2855 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2856 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2857 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2858 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2859 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2860 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2861 			break;
2862 		DELAY(10);
2863 	}
2864 	if (i == 0)
2865 		device_printf(sc->age_dev,
2866 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2867 
2868 	 /* Reclaim Rx buffers that have been processed. */
2869 	if (sc->age_cdata.age_rxhead != NULL)
2870 		m_freem(sc->age_cdata.age_rxhead);
2871 	AGE_RXCHAIN_RESET(sc);
2872 	/*
2873 	 * Free RX and TX mbufs still in the queues.
2874 	 */
2875 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2876 		rxd = &sc->age_cdata.age_rxdesc[i];
2877 		if (rxd->rx_m != NULL) {
2878 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2879 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2880 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2881 			    rxd->rx_dmamap);
2882 			m_freem(rxd->rx_m);
2883 			rxd->rx_m = NULL;
2884 		}
2885         }
2886 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2887 		txd = &sc->age_cdata.age_txdesc[i];
2888 		if (txd->tx_m != NULL) {
2889 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2890 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2891 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2892 			    txd->tx_dmamap);
2893 			m_freem(txd->tx_m);
2894 			txd->tx_m = NULL;
2895 		}
2896         }
2897 }
2898 
2899 static void
2900 age_stop_txmac(struct age_softc *sc)
2901 {
2902 	uint32_t reg;
2903 	int i;
2904 
2905 	AGE_LOCK_ASSERT(sc);
2906 
2907 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2908 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2909 		reg &= ~MAC_CFG_TX_ENB;
2910 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2911 	}
2912 	/* Stop Tx DMA engine. */
2913 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2914 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2915 		reg &= ~DMA_CFG_RD_ENB;
2916 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2917 	}
2918 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2919 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2920 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2921 			break;
2922 		DELAY(10);
2923 	}
2924 	if (i == 0)
2925 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2926 }
2927 
2928 static void
2929 age_stop_rxmac(struct age_softc *sc)
2930 {
2931 	uint32_t reg;
2932 	int i;
2933 
2934 	AGE_LOCK_ASSERT(sc);
2935 
2936 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2937 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2938 		reg &= ~MAC_CFG_RX_ENB;
2939 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2940 	}
2941 	/* Stop Rx DMA engine. */
2942 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2943 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2944 		reg &= ~DMA_CFG_WR_ENB;
2945 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2946 	}
2947 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2948 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2949 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2950 			break;
2951 		DELAY(10);
2952 	}
2953 	if (i == 0)
2954 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2955 }
2956 
2957 static void
2958 age_init_tx_ring(struct age_softc *sc)
2959 {
2960 	struct age_ring_data *rd;
2961 	struct age_txdesc *txd;
2962 	int i;
2963 
2964 	AGE_LOCK_ASSERT(sc);
2965 
2966 	sc->age_cdata.age_tx_prod = 0;
2967 	sc->age_cdata.age_tx_cons = 0;
2968 	sc->age_cdata.age_tx_cnt = 0;
2969 
2970 	rd = &sc->age_rdata;
2971 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2972 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2973 		txd = &sc->age_cdata.age_txdesc[i];
2974 		txd->tx_desc = &rd->age_tx_ring[i];
2975 		txd->tx_m = NULL;
2976 	}
2977 
2978 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2979 	    sc->age_cdata.age_tx_ring_map,
2980 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2981 }
2982 
2983 static int
2984 age_init_rx_ring(struct age_softc *sc)
2985 {
2986 	struct age_ring_data *rd;
2987 	struct age_rxdesc *rxd;
2988 	int i;
2989 
2990 	AGE_LOCK_ASSERT(sc);
2991 
2992 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2993 	sc->age_morework = 0;
2994 	rd = &sc->age_rdata;
2995 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2996 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2997 		rxd = &sc->age_cdata.age_rxdesc[i];
2998 		rxd->rx_m = NULL;
2999 		rxd->rx_desc = &rd->age_rx_ring[i];
3000 		if (age_newbuf(sc, rxd) != 0)
3001 			return (ENOBUFS);
3002 	}
3003 
3004 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3005 	    sc->age_cdata.age_rx_ring_map,
3006 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3007 
3008 	return (0);
3009 }
3010 
3011 static void
3012 age_init_rr_ring(struct age_softc *sc)
3013 {
3014 	struct age_ring_data *rd;
3015 
3016 	AGE_LOCK_ASSERT(sc);
3017 
3018 	sc->age_cdata.age_rr_cons = 0;
3019 	AGE_RXCHAIN_RESET(sc);
3020 
3021 	rd = &sc->age_rdata;
3022 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3023 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3024 	    sc->age_cdata.age_rr_ring_map,
3025 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3026 }
3027 
3028 static void
3029 age_init_cmb_block(struct age_softc *sc)
3030 {
3031 	struct age_ring_data *rd;
3032 
3033 	AGE_LOCK_ASSERT(sc);
3034 
3035 	rd = &sc->age_rdata;
3036 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3037 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3038 	    sc->age_cdata.age_cmb_block_map,
3039 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3040 }
3041 
3042 static void
3043 age_init_smb_block(struct age_softc *sc)
3044 {
3045 	struct age_ring_data *rd;
3046 
3047 	AGE_LOCK_ASSERT(sc);
3048 
3049 	rd = &sc->age_rdata;
3050 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3051 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3052 	    sc->age_cdata.age_smb_block_map,
3053 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3054 }
3055 
3056 static int
3057 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3058 {
3059 	struct rx_desc *desc;
3060 	struct mbuf *m;
3061 	bus_dma_segment_t segs[1];
3062 	bus_dmamap_t map;
3063 	int nsegs;
3064 
3065 	AGE_LOCK_ASSERT(sc);
3066 
3067 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3068 	if (m == NULL)
3069 		return (ENOBUFS);
3070 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3071 	m_adj(m, ETHER_ALIGN);
3072 
3073 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3074 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3075 		m_freem(m);
3076 		return (ENOBUFS);
3077 	}
3078 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3079 
3080 	if (rxd->rx_m != NULL) {
3081 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3082 		    BUS_DMASYNC_POSTREAD);
3083 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3084 	}
3085 	map = rxd->rx_dmamap;
3086 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3087 	sc->age_cdata.age_rx_sparemap = map;
3088 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3089 	    BUS_DMASYNC_PREREAD);
3090 	rxd->rx_m = m;
3091 
3092 	desc = rxd->rx_desc;
3093 	desc->addr = htole64(segs[0].ds_addr);
3094 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3095 	    AGE_RD_LEN_SHIFT);
3096 	return (0);
3097 }
3098 
3099 static void
3100 age_rxvlan(struct age_softc *sc)
3101 {
3102 	struct ifnet *ifp;
3103 	uint32_t reg;
3104 
3105 	AGE_LOCK_ASSERT(sc);
3106 
3107 	ifp = sc->age_ifp;
3108 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3109 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3110 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3111 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3112 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3113 }
3114 
3115 static void
3116 age_rxfilter(struct age_softc *sc)
3117 {
3118 	struct ifnet *ifp;
3119 	struct ifmultiaddr *ifma;
3120 	uint32_t crc;
3121 	uint32_t mchash[2];
3122 	uint32_t rxcfg;
3123 
3124 	AGE_LOCK_ASSERT(sc);
3125 
3126 	ifp = sc->age_ifp;
3127 
3128 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3129 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3130 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3131 		rxcfg |= MAC_CFG_BCAST;
3132 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3133 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3134 			rxcfg |= MAC_CFG_PROMISC;
3135 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3136 			rxcfg |= MAC_CFG_ALLMULTI;
3137 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3138 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3139 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3140 		return;
3141 	}
3142 
3143 	/* Program new filter. */
3144 	bzero(mchash, sizeof(mchash));
3145 
3146 	IF_ADDR_LOCK(ifp);
3147 	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3148 		if (ifma->ifma_addr->sa_family != AF_LINK)
3149 			continue;
3150 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
3151 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3152 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3153 	}
3154 	IF_ADDR_UNLOCK(ifp);
3155 
3156 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3157 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3158 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3159 }
3160 
3161 static int
3162 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3163 {
3164 	struct age_softc *sc;
3165 	struct age_stats *stats;
3166 	int error, result;
3167 
3168 	result = -1;
3169 	error = sysctl_handle_int(oidp, &result, 0, req);
3170 
3171 	if (error != 0 || req->newptr == NULL)
3172 		return (error);
3173 
3174 	if (result != 1)
3175 		return (error);
3176 
3177 	sc = (struct age_softc *)arg1;
3178 	stats = &sc->age_stat;
3179 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3180 	printf("Transmit good frames : %ju\n",
3181 	    (uintmax_t)stats->tx_frames);
3182 	printf("Transmit good broadcast frames : %ju\n",
3183 	    (uintmax_t)stats->tx_bcast_frames);
3184 	printf("Transmit good multicast frames : %ju\n",
3185 	    (uintmax_t)stats->tx_mcast_frames);
3186 	printf("Transmit pause control frames : %u\n",
3187 	    stats->tx_pause_frames);
3188 	printf("Transmit control frames : %u\n",
3189 	    stats->tx_control_frames);
3190 	printf("Transmit frames with excessive deferrals : %u\n",
3191 	    stats->tx_excess_defer);
3192 	printf("Transmit deferrals : %u\n",
3193 	    stats->tx_deferred);
3194 	printf("Transmit good octets : %ju\n",
3195 	    (uintmax_t)stats->tx_bytes);
3196 	printf("Transmit good broadcast octets : %ju\n",
3197 	    (uintmax_t)stats->tx_bcast_bytes);
3198 	printf("Transmit good multicast octets : %ju\n",
3199 	    (uintmax_t)stats->tx_mcast_bytes);
3200 	printf("Transmit frames 64 bytes : %ju\n",
3201 	    (uintmax_t)stats->tx_pkts_64);
3202 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3203 	    (uintmax_t)stats->tx_pkts_65_127);
3204 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3205 	    (uintmax_t)stats->tx_pkts_128_255);
3206 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3207 	    (uintmax_t)stats->tx_pkts_256_511);
3208 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3209 	    (uintmax_t)stats->tx_pkts_512_1023);
3210 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3211 	    (uintmax_t)stats->tx_pkts_1024_1518);
3212 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3213 	    (uintmax_t)stats->tx_pkts_1519_max);
3214 	printf("Transmit single collisions : %u\n",
3215 	    stats->tx_single_colls);
3216 	printf("Transmit multiple collisions : %u\n",
3217 	    stats->tx_multi_colls);
3218 	printf("Transmit late collisions : %u\n",
3219 	    stats->tx_late_colls);
3220 	printf("Transmit abort due to excessive collisions : %u\n",
3221 	    stats->tx_excess_colls);
3222 	printf("Transmit underruns due to FIFO underruns : %u\n",
3223 	    stats->tx_underrun);
3224 	printf("Transmit descriptor write-back errors : %u\n",
3225 	    stats->tx_desc_underrun);
3226 	printf("Transmit frames with length mismatched frame size : %u\n",
3227 	    stats->tx_lenerrs);
3228 	printf("Transmit frames with truncated due to MTU size : %u\n",
3229 	    stats->tx_lenerrs);
3230 
3231 	printf("Receive good frames : %ju\n",
3232 	    (uintmax_t)stats->rx_frames);
3233 	printf("Receive good broadcast frames : %ju\n",
3234 	    (uintmax_t)stats->rx_bcast_frames);
3235 	printf("Receive good multicast frames : %ju\n",
3236 	    (uintmax_t)stats->rx_mcast_frames);
3237 	printf("Receive pause control frames : %u\n",
3238 	    stats->rx_pause_frames);
3239 	printf("Receive control frames : %u\n",
3240 	    stats->rx_control_frames);
3241 	printf("Receive CRC errors : %u\n",
3242 	    stats->rx_crcerrs);
3243 	printf("Receive frames with length errors : %u\n",
3244 	    stats->rx_lenerrs);
3245 	printf("Receive good octets : %ju\n",
3246 	    (uintmax_t)stats->rx_bytes);
3247 	printf("Receive good broadcast octets : %ju\n",
3248 	    (uintmax_t)stats->rx_bcast_bytes);
3249 	printf("Receive good multicast octets : %ju\n",
3250 	    (uintmax_t)stats->rx_mcast_bytes);
3251 	printf("Receive frames too short : %u\n",
3252 	    stats->rx_runts);
3253 	printf("Receive fragmented frames : %ju\n",
3254 	    (uintmax_t)stats->rx_fragments);
3255 	printf("Receive frames 64 bytes : %ju\n",
3256 	    (uintmax_t)stats->rx_pkts_64);
3257 	printf("Receive frames 65 to 127 bytes : %ju\n",
3258 	    (uintmax_t)stats->rx_pkts_65_127);
3259 	printf("Receive frames 128 to 255 bytes : %ju\n",
3260 	    (uintmax_t)stats->rx_pkts_128_255);
3261 	printf("Receive frames 256 to 511 bytes : %ju\n",
3262 	    (uintmax_t)stats->rx_pkts_256_511);
3263 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3264 	    (uintmax_t)stats->rx_pkts_512_1023);
3265 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3266 	    (uintmax_t)stats->rx_pkts_1024_1518);
3267 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3268 	    (uintmax_t)stats->rx_pkts_1519_max);
3269 	printf("Receive frames too long : %ju\n",
3270 	    (uint64_t)stats->rx_pkts_truncated);
3271 	printf("Receive frames with FIFO overflow : %u\n",
3272 	    stats->rx_fifo_oflows);
3273 	printf("Receive frames with return descriptor overflow : %u\n",
3274 	    stats->rx_desc_oflows);
3275 	printf("Receive frames with alignment errors : %u\n",
3276 	    stats->rx_alignerrs);
3277 	printf("Receive frames dropped due to address filtering : %ju\n",
3278 	    (uint64_t)stats->rx_pkts_filtered);
3279 
3280 	return (error);
3281 }
3282 
3283 static int
3284 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3285 {
3286 	int error, value;
3287 
3288 	if (arg1 == NULL)
3289 		return (EINVAL);
3290 	value = *(int *)arg1;
3291 	error = sysctl_handle_int(oidp, &value, 0, req);
3292 	if (error || req->newptr == NULL)
3293 		return (error);
3294 	if (value < low || value > high)
3295 		return (EINVAL);
3296         *(int *)arg1 = value;
3297 
3298         return (0);
3299 }
3300 
3301 static int
3302 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3303 {
3304 	return (sysctl_int_range(oidp, arg1, arg2, req,
3305 	    AGE_PROC_MIN, AGE_PROC_MAX));
3306 }
3307 
3308 static int
3309 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3310 {
3311 
3312 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3313 	    AGE_IM_TIMER_MAX));
3314 }
3315