xref: /freebsd/sys/dev/age/if_age.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/rman.h>
40 #include <sys/module.h>
41 #include <sys/queue.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 #include <sys/taskqueue.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 
71 #include <dev/age/if_agereg.h>
72 #include <dev/age/if_agevar.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78 
79 MODULE_DEPEND(age, pci, 1, 1, 1);
80 MODULE_DEPEND(age, ether, 1, 1, 1);
81 MODULE_DEPEND(age, miibus, 1, 1, 1);
82 
83 /* Tunables. */
84 static int msi_disable = 0;
85 static int msix_disable = 0;
86 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88 
89 /*
90  * Devices supported by this driver.
91  */
92 static struct age_dev {
93 	uint16_t	age_vendorid;
94 	uint16_t	age_deviceid;
95 	const char	*age_name;
96 } age_devs[] = {
97 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99 };
100 
101 static int age_miibus_readreg(device_t, int, int);
102 static int age_miibus_writereg(device_t, int, int, int);
103 static void age_miibus_statchg(device_t);
104 static void age_mediastatus(if_t, struct ifmediareq *);
105 static int age_mediachange(if_t);
106 static int age_probe(device_t);
107 static void age_get_macaddr(struct age_softc *);
108 static void age_phy_reset(struct age_softc *);
109 static int age_attach(device_t);
110 static int age_detach(device_t);
111 static void age_sysctl_node(struct age_softc *);
112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 static int age_check_boundary(struct age_softc *);
114 static int age_dma_alloc(struct age_softc *);
115 static void age_dma_free(struct age_softc *);
116 static int age_shutdown(device_t);
117 static void age_setwol(struct age_softc *);
118 static int age_suspend(device_t);
119 static int age_resume(device_t);
120 static int age_encap(struct age_softc *, struct mbuf **);
121 static void age_start(if_t);
122 static void age_start_locked(if_t);
123 static void age_watchdog(struct age_softc *);
124 static int age_ioctl(if_t, u_long, caddr_t);
125 static void age_mac_config(struct age_softc *);
126 static void age_link_task(void *, int);
127 static void age_stats_update(struct age_softc *);
128 static int age_intr(void *);
129 static void age_int_task(void *, int);
130 static void age_txintr(struct age_softc *, int);
131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132 static int age_rxintr(struct age_softc *, int, int);
133 static void age_tick(void *);
134 static void age_reset(struct age_softc *);
135 static void age_init(void *);
136 static void age_init_locked(struct age_softc *);
137 static void age_stop(struct age_softc *);
138 static void age_stop_txmac(struct age_softc *);
139 static void age_stop_rxmac(struct age_softc *);
140 static void age_init_tx_ring(struct age_softc *);
141 static int age_init_rx_ring(struct age_softc *);
142 static void age_init_rr_ring(struct age_softc *);
143 static void age_init_cmb_block(struct age_softc *);
144 static void age_init_smb_block(struct age_softc *);
145 #ifndef __NO_STRICT_ALIGNMENT
146 static struct mbuf *age_fixup_rx(if_t, struct mbuf *);
147 #endif
148 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
149 static void age_rxvlan(struct age_softc *);
150 static void age_rxfilter(struct age_softc *);
151 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
152 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
153 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
154 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
155 
156 static device_method_t age_methods[] = {
157 	/* Device interface. */
158 	DEVMETHOD(device_probe,		age_probe),
159 	DEVMETHOD(device_attach,	age_attach),
160 	DEVMETHOD(device_detach,	age_detach),
161 	DEVMETHOD(device_shutdown,	age_shutdown),
162 	DEVMETHOD(device_suspend,	age_suspend),
163 	DEVMETHOD(device_resume,	age_resume),
164 
165 	/* MII interface. */
166 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
167 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
168 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
169 	{ NULL, NULL }
170 };
171 
172 static driver_t age_driver = {
173 	"age",
174 	age_methods,
175 	sizeof(struct age_softc)
176 };
177 
178 DRIVER_MODULE(age, pci, age_driver, 0, 0);
179 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
180     nitems(age_devs));
181 DRIVER_MODULE(miibus, age, miibus_driver, 0, 0);
182 
183 static struct resource_spec age_res_spec_mem[] = {
184 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
185 	{ -1,			0,		0 }
186 };
187 
188 static struct resource_spec age_irq_spec_legacy[] = {
189 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
190 	{ -1,			0,		0 }
191 };
192 
193 static struct resource_spec age_irq_spec_msi[] = {
194 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
195 	{ -1,			0,		0 }
196 };
197 
198 static struct resource_spec age_irq_spec_msix[] = {
199 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
200 	{ -1,			0,		0 }
201 };
202 
203 /*
204  *	Read a PHY register on the MII of the L1.
205  */
206 static int
207 age_miibus_readreg(device_t dev, int phy, int reg)
208 {
209 	struct age_softc *sc;
210 	uint32_t v;
211 	int i;
212 
213 	sc = device_get_softc(dev);
214 
215 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
216 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
217 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
218 		DELAY(1);
219 		v = CSR_READ_4(sc, AGE_MDIO);
220 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
221 			break;
222 	}
223 
224 	if (i == 0) {
225 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
226 		return (0);
227 	}
228 
229 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
230 }
231 
232 /*
233  *	Write a PHY register on the MII of the L1.
234  */
235 static int
236 age_miibus_writereg(device_t dev, int phy, int reg, int val)
237 {
238 	struct age_softc *sc;
239 	uint32_t v;
240 	int i;
241 
242 	sc = device_get_softc(dev);
243 
244 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
245 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
246 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
247 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
248 		DELAY(1);
249 		v = CSR_READ_4(sc, AGE_MDIO);
250 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
251 			break;
252 	}
253 
254 	if (i == 0)
255 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
256 
257 	return (0);
258 }
259 
260 /*
261  *	Callback from MII layer when media changes.
262  */
263 static void
264 age_miibus_statchg(device_t dev)
265 {
266 	struct age_softc *sc;
267 
268 	sc = device_get_softc(dev);
269 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
270 }
271 
272 /*
273  *	Get the current interface media status.
274  */
275 static void
276 age_mediastatus(if_t ifp, struct ifmediareq *ifmr)
277 {
278 	struct age_softc *sc;
279 	struct mii_data *mii;
280 
281 	sc = if_getsoftc(ifp);
282 	AGE_LOCK(sc);
283 	mii = device_get_softc(sc->age_miibus);
284 
285 	mii_pollstat(mii);
286 	ifmr->ifm_status = mii->mii_media_status;
287 	ifmr->ifm_active = mii->mii_media_active;
288 	AGE_UNLOCK(sc);
289 }
290 
291 /*
292  *	Set hardware to newly-selected media.
293  */
294 static int
295 age_mediachange(if_t ifp)
296 {
297 	struct age_softc *sc;
298 	struct mii_data *mii;
299 	struct mii_softc *miisc;
300 	int error;
301 
302 	sc = if_getsoftc(ifp);
303 	AGE_LOCK(sc);
304 	mii = device_get_softc(sc->age_miibus);
305 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
306 		PHY_RESET(miisc);
307 	error = mii_mediachg(mii);
308 	AGE_UNLOCK(sc);
309 
310 	return (error);
311 }
312 
313 static int
314 age_probe(device_t dev)
315 {
316 	struct age_dev *sp;
317 	int i;
318 	uint16_t vendor, devid;
319 
320 	vendor = pci_get_vendor(dev);
321 	devid = pci_get_device(dev);
322 	sp = age_devs;
323 	for (i = 0; i < nitems(age_devs); i++, sp++) {
324 		if (vendor == sp->age_vendorid &&
325 		    devid == sp->age_deviceid) {
326 			device_set_desc(dev, sp->age_name);
327 			return (BUS_PROBE_DEFAULT);
328 		}
329 	}
330 
331 	return (ENXIO);
332 }
333 
334 static void
335 age_get_macaddr(struct age_softc *sc)
336 {
337 	uint32_t ea[2], reg;
338 	int i, vpdc;
339 
340 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
341 	if ((reg & SPI_VPD_ENB) != 0) {
342 		/* Get VPD stored in TWSI EEPROM. */
343 		reg &= ~SPI_VPD_ENB;
344 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
345 	}
346 
347 	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
348 		/*
349 		 * PCI VPD capability found, let TWSI reload EEPROM.
350 		 * This will set ethernet address of controller.
351 		 */
352 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
353 		    TWSI_CTRL_SW_LD_START);
354 		for (i = 100; i > 0; i--) {
355 			DELAY(1000);
356 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
357 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
358 				break;
359 		}
360 		if (i == 0)
361 			device_printf(sc->age_dev,
362 			    "reloading EEPROM timeout!\n");
363 	} else {
364 		if (bootverbose)
365 			device_printf(sc->age_dev,
366 			    "PCI VPD capability not found!\n");
367 	}
368 
369 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
370 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
371 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
372 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
373 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
374 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
375 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
376 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
377 }
378 
379 static void
380 age_phy_reset(struct age_softc *sc)
381 {
382 	uint16_t reg, pn;
383 	int i, linkup;
384 
385 	/* Reset PHY. */
386 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
387 	DELAY(2000);
388 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
389 	DELAY(2000);
390 
391 #define	ATPHY_DBG_ADDR		0x1D
392 #define	ATPHY_DBG_DATA		0x1E
393 #define	ATPHY_CDTC		0x16
394 #define	PHY_CDTC_ENB		0x0001
395 #define	PHY_CDTC_POFF		8
396 #define	ATPHY_CDTS		0x1C
397 #define	PHY_CDTS_STAT_OK	0x0000
398 #define	PHY_CDTS_STAT_SHORT	0x0100
399 #define	PHY_CDTS_STAT_OPEN	0x0200
400 #define	PHY_CDTS_STAT_INVAL	0x0300
401 #define	PHY_CDTS_STAT_MASK	0x0300
402 
403 	/* Check power saving mode. Magic from Linux. */
404 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
405 	for (linkup = 0, pn = 0; pn < 4; pn++) {
406 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
407 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
408 		for (i = 200; i > 0; i--) {
409 			DELAY(1000);
410 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
411 			    ATPHY_CDTC);
412 			if ((reg & PHY_CDTC_ENB) == 0)
413 				break;
414 		}
415 		DELAY(1000);
416 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
417 		    ATPHY_CDTS);
418 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
419 			linkup++;
420 			break;
421 		}
422 	}
423 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
424 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
425 	if (linkup == 0) {
426 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
427 		    ATPHY_DBG_ADDR, 0);
428 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429 		    ATPHY_DBG_DATA, 0x124E);
430 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431 		    ATPHY_DBG_ADDR, 1);
432 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
433 		    ATPHY_DBG_DATA);
434 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435 		    ATPHY_DBG_DATA, reg | 0x03);
436 		/* XXX */
437 		DELAY(1500 * 1000);
438 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
439 		    ATPHY_DBG_ADDR, 0);
440 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441 		    ATPHY_DBG_DATA, 0x024E);
442     }
443 
444 #undef	ATPHY_DBG_ADDR
445 #undef	ATPHY_DBG_DATA
446 #undef	ATPHY_CDTC
447 #undef	PHY_CDTC_ENB
448 #undef	PHY_CDTC_POFF
449 #undef	ATPHY_CDTS
450 #undef	PHY_CDTS_STAT_OK
451 #undef	PHY_CDTS_STAT_SHORT
452 #undef	PHY_CDTS_STAT_OPEN
453 #undef	PHY_CDTS_STAT_INVAL
454 #undef	PHY_CDTS_STAT_MASK
455 }
456 
457 static int
458 age_attach(device_t dev)
459 {
460 	struct age_softc *sc;
461 	if_t ifp;
462 	uint16_t burst;
463 	int error, i, msic, msixc, pmc;
464 
465 	error = 0;
466 	sc = device_get_softc(dev);
467 	sc->age_dev = dev;
468 
469 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
470 	    MTX_DEF);
471 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
472 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
473 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
474 
475 	/* Map the device. */
476 	pci_enable_busmaster(dev);
477 	sc->age_res_spec = age_res_spec_mem;
478 	sc->age_irq_spec = age_irq_spec_legacy;
479 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
480 	if (error != 0) {
481 		device_printf(dev, "cannot allocate memory resources.\n");
482 		goto fail;
483 	}
484 
485 	/* Set PHY address. */
486 	sc->age_phyaddr = AGE_PHY_ADDR;
487 
488 	/* Reset PHY. */
489 	age_phy_reset(sc);
490 
491 	/* Reset the ethernet controller. */
492 	age_reset(sc);
493 
494 	/* Get PCI and chip id/revision. */
495 	sc->age_rev = pci_get_revid(dev);
496 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
497 	    MASTER_CHIP_REV_SHIFT;
498 	if (bootverbose) {
499 		device_printf(dev, "PCI device revision : 0x%04x\n",
500 		    sc->age_rev);
501 		device_printf(dev, "Chip id/revision : 0x%04x\n",
502 		    sc->age_chip_rev);
503 	}
504 
505 	/*
506 	 * XXX
507 	 * Unintialized hardware returns an invalid chip id/revision
508 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
509 	 * unplugged cable results in putting hardware into automatic
510 	 * power down mode which in turn returns invalld chip revision.
511 	 */
512 	if (sc->age_chip_rev == 0xFFFF) {
513 		device_printf(dev,"invalid chip revision : 0x%04x -- "
514 		    "not initialized?\n", sc->age_chip_rev);
515 		error = ENXIO;
516 		goto fail;
517 	}
518 
519 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
520 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
521 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
522 
523 	/* Allocate IRQ resources. */
524 	msixc = pci_msix_count(dev);
525 	msic = pci_msi_count(dev);
526 	if (bootverbose) {
527 		device_printf(dev, "MSIX count : %d\n", msixc);
528 		device_printf(dev, "MSI count : %d\n", msic);
529 	}
530 
531 	/* Prefer MSIX over MSI. */
532 	if (msix_disable == 0 || msi_disable == 0) {
533 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
534 		    pci_alloc_msix(dev, &msixc) == 0) {
535 			if (msic == AGE_MSIX_MESSAGES) {
536 				device_printf(dev, "Using %d MSIX messages.\n",
537 				    msixc);
538 				sc->age_flags |= AGE_FLAG_MSIX;
539 				sc->age_irq_spec = age_irq_spec_msix;
540 			} else
541 				pci_release_msi(dev);
542 		}
543 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
544 		    msic == AGE_MSI_MESSAGES &&
545 		    pci_alloc_msi(dev, &msic) == 0) {
546 			if (msic == AGE_MSI_MESSAGES) {
547 				device_printf(dev, "Using %d MSI messages.\n",
548 				    msic);
549 				sc->age_flags |= AGE_FLAG_MSI;
550 				sc->age_irq_spec = age_irq_spec_msi;
551 			} else
552 				pci_release_msi(dev);
553 		}
554 	}
555 
556 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
557 	if (error != 0) {
558 		device_printf(dev, "cannot allocate IRQ resources.\n");
559 		goto fail;
560 	}
561 
562 	/* Get DMA parameters from PCIe device control register. */
563 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
564 		sc->age_flags |= AGE_FLAG_PCIE;
565 		burst = pci_read_config(dev, i + 0x08, 2);
566 		/* Max read request size. */
567 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
568 		    DMA_CFG_RD_BURST_SHIFT;
569 		/* Max payload size. */
570 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
571 		    DMA_CFG_WR_BURST_SHIFT;
572 		if (bootverbose) {
573 			device_printf(dev, "Read request size : %d bytes.\n",
574 			    128 << ((burst >> 12) & 0x07));
575 			device_printf(dev, "TLP payload size : %d bytes.\n",
576 			    128 << ((burst >> 5) & 0x07));
577 		}
578 	} else {
579 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
580 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
581 	}
582 
583 	/* Create device sysctl node. */
584 	age_sysctl_node(sc);
585 
586 	if ((error = age_dma_alloc(sc)) != 0)
587 		goto fail;
588 
589 	/* Load station address. */
590 	age_get_macaddr(sc);
591 
592 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
593 	if_setsoftc(ifp, sc);
594 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
595 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
596 	if_setioctlfn(ifp, age_ioctl);
597 	if_setstartfn(ifp, age_start);
598 	if_setinitfn(ifp, age_init);
599 	if_setsendqlen(ifp, AGE_TX_RING_CNT - 1);
600 	if_setsendqready(ifp);
601 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
602 	if_sethwassist(ifp, AGE_CSUM_FEATURES | CSUM_TSO);
603 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
604 		sc->age_flags |= AGE_FLAG_PMCAP;
605 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST, 0);
606 	}
607 	if_setcapenable(ifp, if_getcapabilities(ifp));
608 
609 	/* Set up MII bus. */
610 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
611 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
612 	    0);
613 	if (error != 0) {
614 		device_printf(dev, "attaching PHYs failed\n");
615 		goto fail;
616 	}
617 
618 	ether_ifattach(ifp, sc->age_eaddr);
619 
620 	/* VLAN capability setup. */
621 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
622 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
623 	if_setcapenable(ifp, if_getcapabilities(ifp));
624 
625 	/* Tell the upper layer(s) we support long frames. */
626 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
627 
628 	/* Create local taskq. */
629 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
630 	    taskqueue_thread_enqueue, &sc->age_tq);
631 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
632 	    device_get_nameunit(sc->age_dev));
633 
634 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
635 		msic = AGE_MSIX_MESSAGES;
636 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
637 		msic = AGE_MSI_MESSAGES;
638 	else
639 		msic = 1;
640 	for (i = 0; i < msic; i++) {
641 		error = bus_setup_intr(dev, sc->age_irq[i],
642 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
643 		    &sc->age_intrhand[i]);
644 		if (error != 0)
645 			break;
646 	}
647 	if (error != 0) {
648 		device_printf(dev, "could not set up interrupt handler.\n");
649 		taskqueue_free(sc->age_tq);
650 		sc->age_tq = NULL;
651 		ether_ifdetach(ifp);
652 		goto fail;
653 	}
654 
655 fail:
656 	if (error != 0)
657 		age_detach(dev);
658 
659 	return (error);
660 }
661 
662 static int
663 age_detach(device_t dev)
664 {
665 	struct age_softc *sc;
666 	if_t ifp;
667 	int i, msic;
668 
669 	sc = device_get_softc(dev);
670 
671 	ifp = sc->age_ifp;
672 	if (device_is_attached(dev)) {
673 		AGE_LOCK(sc);
674 		sc->age_flags |= AGE_FLAG_DETACH;
675 		age_stop(sc);
676 		AGE_UNLOCK(sc);
677 		callout_drain(&sc->age_tick_ch);
678 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
679 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
680 		ether_ifdetach(ifp);
681 	}
682 
683 	if (sc->age_tq != NULL) {
684 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
685 		taskqueue_free(sc->age_tq);
686 		sc->age_tq = NULL;
687 	}
688 
689 	if (sc->age_miibus != NULL) {
690 		device_delete_child(dev, sc->age_miibus);
691 		sc->age_miibus = NULL;
692 	}
693 	bus_generic_detach(dev);
694 	age_dma_free(sc);
695 
696 	if (ifp != NULL) {
697 		if_free(ifp);
698 		sc->age_ifp = NULL;
699 	}
700 
701 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
702 		msic = AGE_MSIX_MESSAGES;
703 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
704 		msic = AGE_MSI_MESSAGES;
705 	else
706 		msic = 1;
707 	for (i = 0; i < msic; i++) {
708 		if (sc->age_intrhand[i] != NULL) {
709 			bus_teardown_intr(dev, sc->age_irq[i],
710 			    sc->age_intrhand[i]);
711 			sc->age_intrhand[i] = NULL;
712 		}
713 	}
714 
715 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
716 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
717 		pci_release_msi(dev);
718 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
719 	mtx_destroy(&sc->age_mtx);
720 
721 	return (0);
722 }
723 
724 static void
725 age_sysctl_node(struct age_softc *sc)
726 {
727 	int error;
728 
729 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
730 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
731 	    "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
732 	    sc, 0, sysctl_age_stats, "I", "Statistics");
733 
734 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
735 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
736 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
737 	    &sc->age_int_mod, 0, sysctl_hw_age_int_mod, "I",
738 	    "age interrupt moderation");
739 
740 	/* Pull in device tunables. */
741 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
742 	error = resource_int_value(device_get_name(sc->age_dev),
743 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
744 	if (error == 0) {
745 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
746 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
747 			device_printf(sc->age_dev,
748 			    "int_mod value out of range; using default: %d\n",
749 			    AGE_IM_TIMER_DEFAULT);
750 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
751 		}
752 	}
753 
754 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
755 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
756 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
757 	    &sc->age_process_limit, 0, sysctl_hw_age_proc_limit, "I",
758 	    "max number of Rx events to process");
759 
760 	/* Pull in device tunables. */
761 	sc->age_process_limit = AGE_PROC_DEFAULT;
762 	error = resource_int_value(device_get_name(sc->age_dev),
763 	    device_get_unit(sc->age_dev), "process_limit",
764 	    &sc->age_process_limit);
765 	if (error == 0) {
766 		if (sc->age_process_limit < AGE_PROC_MIN ||
767 		    sc->age_process_limit > AGE_PROC_MAX) {
768 			device_printf(sc->age_dev,
769 			    "process_limit value out of range; "
770 			    "using default: %d\n", AGE_PROC_DEFAULT);
771 			sc->age_process_limit = AGE_PROC_DEFAULT;
772 		}
773 	}
774 }
775 
776 struct age_dmamap_arg {
777 	bus_addr_t	age_busaddr;
778 };
779 
780 static void
781 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
782 {
783 	struct age_dmamap_arg *ctx;
784 
785 	if (error != 0)
786 		return;
787 
788 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
789 
790 	ctx = (struct age_dmamap_arg *)arg;
791 	ctx->age_busaddr = segs[0].ds_addr;
792 }
793 
794 /*
795  * Attansic L1 controller have single register to specify high
796  * address part of DMA blocks. So all descriptor structures and
797  * DMA memory blocks should have the same high address of given
798  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
799  */
800 static int
801 age_check_boundary(struct age_softc *sc)
802 {
803 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
804 	bus_addr_t cmb_block_end, smb_block_end;
805 
806 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
807 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
808 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
809 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
810 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
811 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
812 
813 	if ((AGE_ADDR_HI(tx_ring_end) !=
814 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
815 	    (AGE_ADDR_HI(rx_ring_end) !=
816 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
817 	    (AGE_ADDR_HI(rr_ring_end) !=
818 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
819 	    (AGE_ADDR_HI(cmb_block_end) !=
820 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
821 	    (AGE_ADDR_HI(smb_block_end) !=
822 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
823 		return (EFBIG);
824 
825 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
826 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
827 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
828 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
829 		return (EFBIG);
830 
831 	return (0);
832 }
833 
834 static int
835 age_dma_alloc(struct age_softc *sc)
836 {
837 	struct age_txdesc *txd;
838 	struct age_rxdesc *rxd;
839 	bus_addr_t lowaddr;
840 	struct age_dmamap_arg ctx;
841 	int error, i;
842 
843 	lowaddr = BUS_SPACE_MAXADDR;
844 
845 again:
846 	/* Create parent ring/DMA block tag. */
847 	error = bus_dma_tag_create(
848 	    bus_get_dma_tag(sc->age_dev), /* parent */
849 	    1, 0,			/* alignment, boundary */
850 	    lowaddr,			/* lowaddr */
851 	    BUS_SPACE_MAXADDR,		/* highaddr */
852 	    NULL, NULL,			/* filter, filterarg */
853 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
854 	    0,				/* nsegments */
855 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
856 	    0,				/* flags */
857 	    NULL, NULL,			/* lockfunc, lockarg */
858 	    &sc->age_cdata.age_parent_tag);
859 	if (error != 0) {
860 		device_printf(sc->age_dev,
861 		    "could not create parent DMA tag.\n");
862 		goto fail;
863 	}
864 
865 	/* Create tag for Tx ring. */
866 	error = bus_dma_tag_create(
867 	    sc->age_cdata.age_parent_tag, /* parent */
868 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
869 	    BUS_SPACE_MAXADDR,		/* lowaddr */
870 	    BUS_SPACE_MAXADDR,		/* highaddr */
871 	    NULL, NULL,			/* filter, filterarg */
872 	    AGE_TX_RING_SZ,		/* maxsize */
873 	    1,				/* nsegments */
874 	    AGE_TX_RING_SZ,		/* maxsegsize */
875 	    0,				/* flags */
876 	    NULL, NULL,			/* lockfunc, lockarg */
877 	    &sc->age_cdata.age_tx_ring_tag);
878 	if (error != 0) {
879 		device_printf(sc->age_dev,
880 		    "could not create Tx ring DMA tag.\n");
881 		goto fail;
882 	}
883 
884 	/* Create tag for Rx ring. */
885 	error = bus_dma_tag_create(
886 	    sc->age_cdata.age_parent_tag, /* parent */
887 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
888 	    BUS_SPACE_MAXADDR,		/* lowaddr */
889 	    BUS_SPACE_MAXADDR,		/* highaddr */
890 	    NULL, NULL,			/* filter, filterarg */
891 	    AGE_RX_RING_SZ,		/* maxsize */
892 	    1,				/* nsegments */
893 	    AGE_RX_RING_SZ,		/* maxsegsize */
894 	    0,				/* flags */
895 	    NULL, NULL,			/* lockfunc, lockarg */
896 	    &sc->age_cdata.age_rx_ring_tag);
897 	if (error != 0) {
898 		device_printf(sc->age_dev,
899 		    "could not create Rx ring DMA tag.\n");
900 		goto fail;
901 	}
902 
903 	/* Create tag for Rx return ring. */
904 	error = bus_dma_tag_create(
905 	    sc->age_cdata.age_parent_tag, /* parent */
906 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
907 	    BUS_SPACE_MAXADDR,		/* lowaddr */
908 	    BUS_SPACE_MAXADDR,		/* highaddr */
909 	    NULL, NULL,			/* filter, filterarg */
910 	    AGE_RR_RING_SZ,		/* maxsize */
911 	    1,				/* nsegments */
912 	    AGE_RR_RING_SZ,		/* maxsegsize */
913 	    0,				/* flags */
914 	    NULL, NULL,			/* lockfunc, lockarg */
915 	    &sc->age_cdata.age_rr_ring_tag);
916 	if (error != 0) {
917 		device_printf(sc->age_dev,
918 		    "could not create Rx return ring DMA tag.\n");
919 		goto fail;
920 	}
921 
922 	/* Create tag for coalesing message block. */
923 	error = bus_dma_tag_create(
924 	    sc->age_cdata.age_parent_tag, /* parent */
925 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
926 	    BUS_SPACE_MAXADDR,		/* lowaddr */
927 	    BUS_SPACE_MAXADDR,		/* highaddr */
928 	    NULL, NULL,			/* filter, filterarg */
929 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
930 	    1,				/* nsegments */
931 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
932 	    0,				/* flags */
933 	    NULL, NULL,			/* lockfunc, lockarg */
934 	    &sc->age_cdata.age_cmb_block_tag);
935 	if (error != 0) {
936 		device_printf(sc->age_dev,
937 		    "could not create CMB DMA tag.\n");
938 		goto fail;
939 	}
940 
941 	/* Create tag for statistics message block. */
942 	error = bus_dma_tag_create(
943 	    sc->age_cdata.age_parent_tag, /* parent */
944 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
945 	    BUS_SPACE_MAXADDR,		/* lowaddr */
946 	    BUS_SPACE_MAXADDR,		/* highaddr */
947 	    NULL, NULL,			/* filter, filterarg */
948 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
949 	    1,				/* nsegments */
950 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
951 	    0,				/* flags */
952 	    NULL, NULL,			/* lockfunc, lockarg */
953 	    &sc->age_cdata.age_smb_block_tag);
954 	if (error != 0) {
955 		device_printf(sc->age_dev,
956 		    "could not create SMB DMA tag.\n");
957 		goto fail;
958 	}
959 
960 	/* Allocate DMA'able memory and load the DMA map. */
961 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
962 	    (void **)&sc->age_rdata.age_tx_ring,
963 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
964 	    &sc->age_cdata.age_tx_ring_map);
965 	if (error != 0) {
966 		device_printf(sc->age_dev,
967 		    "could not allocate DMA'able memory for Tx ring.\n");
968 		goto fail;
969 	}
970 	ctx.age_busaddr = 0;
971 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
972 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
973 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
974 	if (error != 0 || ctx.age_busaddr == 0) {
975 		device_printf(sc->age_dev,
976 		    "could not load DMA'able memory for Tx ring.\n");
977 		goto fail;
978 	}
979 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
980 	/* Rx ring */
981 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
982 	    (void **)&sc->age_rdata.age_rx_ring,
983 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
984 	    &sc->age_cdata.age_rx_ring_map);
985 	if (error != 0) {
986 		device_printf(sc->age_dev,
987 		    "could not allocate DMA'able memory for Rx ring.\n");
988 		goto fail;
989 	}
990 	ctx.age_busaddr = 0;
991 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
992 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
993 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
994 	if (error != 0 || ctx.age_busaddr == 0) {
995 		device_printf(sc->age_dev,
996 		    "could not load DMA'able memory for Rx ring.\n");
997 		goto fail;
998 	}
999 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1000 	/* Rx return ring */
1001 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1002 	    (void **)&sc->age_rdata.age_rr_ring,
1003 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1004 	    &sc->age_cdata.age_rr_ring_map);
1005 	if (error != 0) {
1006 		device_printf(sc->age_dev,
1007 		    "could not allocate DMA'able memory for Rx return ring.\n");
1008 		goto fail;
1009 	}
1010 	ctx.age_busaddr = 0;
1011 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1012 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1013 	    AGE_RR_RING_SZ, age_dmamap_cb,
1014 	    &ctx, 0);
1015 	if (error != 0 || ctx.age_busaddr == 0) {
1016 		device_printf(sc->age_dev,
1017 		    "could not load DMA'able memory for Rx return ring.\n");
1018 		goto fail;
1019 	}
1020 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1021 	/* CMB block */
1022 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1023 	    (void **)&sc->age_rdata.age_cmb_block,
1024 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1025 	    &sc->age_cdata.age_cmb_block_map);
1026 	if (error != 0) {
1027 		device_printf(sc->age_dev,
1028 		    "could not allocate DMA'able memory for CMB block.\n");
1029 		goto fail;
1030 	}
1031 	ctx.age_busaddr = 0;
1032 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1033 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1034 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1035 	if (error != 0 || ctx.age_busaddr == 0) {
1036 		device_printf(sc->age_dev,
1037 		    "could not load DMA'able memory for CMB block.\n");
1038 		goto fail;
1039 	}
1040 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1041 	/* SMB block */
1042 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1043 	    (void **)&sc->age_rdata.age_smb_block,
1044 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1045 	    &sc->age_cdata.age_smb_block_map);
1046 	if (error != 0) {
1047 		device_printf(sc->age_dev,
1048 		    "could not allocate DMA'able memory for SMB block.\n");
1049 		goto fail;
1050 	}
1051 	ctx.age_busaddr = 0;
1052 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1053 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1054 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1055 	if (error != 0 || ctx.age_busaddr == 0) {
1056 		device_printf(sc->age_dev,
1057 		    "could not load DMA'able memory for SMB block.\n");
1058 		goto fail;
1059 	}
1060 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1061 
1062 	/*
1063 	 * All ring buffer and DMA blocks should have the same
1064 	 * high address part of 64bit DMA address space.
1065 	 */
1066 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1067 	    (error = age_check_boundary(sc)) != 0) {
1068 		device_printf(sc->age_dev, "4GB boundary crossed, "
1069 		    "switching to 32bit DMA addressing mode.\n");
1070 		age_dma_free(sc);
1071 		/* Limit DMA address space to 32bit and try again. */
1072 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1073 		goto again;
1074 	}
1075 
1076 	/*
1077 	 * Create Tx/Rx buffer parent tag.
1078 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1079 	 * so it needs separate parent DMA tag.
1080 	 * XXX
1081 	 * It seems enabling 64bit DMA causes data corruption. Limit
1082 	 * DMA address space to 32bit.
1083 	 */
1084 	error = bus_dma_tag_create(
1085 	    bus_get_dma_tag(sc->age_dev), /* parent */
1086 	    1, 0,			/* alignment, boundary */
1087 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1088 	    BUS_SPACE_MAXADDR,		/* highaddr */
1089 	    NULL, NULL,			/* filter, filterarg */
1090 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1091 	    0,				/* nsegments */
1092 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1093 	    0,				/* flags */
1094 	    NULL, NULL,			/* lockfunc, lockarg */
1095 	    &sc->age_cdata.age_buffer_tag);
1096 	if (error != 0) {
1097 		device_printf(sc->age_dev,
1098 		    "could not create parent buffer DMA tag.\n");
1099 		goto fail;
1100 	}
1101 
1102 	/* Create tag for Tx buffers. */
1103 	error = bus_dma_tag_create(
1104 	    sc->age_cdata.age_buffer_tag, /* parent */
1105 	    1, 0,			/* alignment, boundary */
1106 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1107 	    BUS_SPACE_MAXADDR,		/* highaddr */
1108 	    NULL, NULL,			/* filter, filterarg */
1109 	    AGE_TSO_MAXSIZE,		/* maxsize */
1110 	    AGE_MAXTXSEGS,		/* nsegments */
1111 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1112 	    0,				/* flags */
1113 	    NULL, NULL,			/* lockfunc, lockarg */
1114 	    &sc->age_cdata.age_tx_tag);
1115 	if (error != 0) {
1116 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1117 		goto fail;
1118 	}
1119 
1120 	/* Create tag for Rx buffers. */
1121 	error = bus_dma_tag_create(
1122 	    sc->age_cdata.age_buffer_tag, /* parent */
1123 	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1124 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1125 	    BUS_SPACE_MAXADDR,		/* highaddr */
1126 	    NULL, NULL,			/* filter, filterarg */
1127 	    MCLBYTES,			/* maxsize */
1128 	    1,				/* nsegments */
1129 	    MCLBYTES,			/* maxsegsize */
1130 	    0,				/* flags */
1131 	    NULL, NULL,			/* lockfunc, lockarg */
1132 	    &sc->age_cdata.age_rx_tag);
1133 	if (error != 0) {
1134 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1135 		goto fail;
1136 	}
1137 
1138 	/* Create DMA maps for Tx buffers. */
1139 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1140 		txd = &sc->age_cdata.age_txdesc[i];
1141 		txd->tx_m = NULL;
1142 		txd->tx_dmamap = NULL;
1143 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1144 		    &txd->tx_dmamap);
1145 		if (error != 0) {
1146 			device_printf(sc->age_dev,
1147 			    "could not create Tx dmamap.\n");
1148 			goto fail;
1149 		}
1150 	}
1151 	/* Create DMA maps for Rx buffers. */
1152 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1153 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1154 		device_printf(sc->age_dev,
1155 		    "could not create spare Rx dmamap.\n");
1156 		goto fail;
1157 	}
1158 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1159 		rxd = &sc->age_cdata.age_rxdesc[i];
1160 		rxd->rx_m = NULL;
1161 		rxd->rx_dmamap = NULL;
1162 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1163 		    &rxd->rx_dmamap);
1164 		if (error != 0) {
1165 			device_printf(sc->age_dev,
1166 			    "could not create Rx dmamap.\n");
1167 			goto fail;
1168 		}
1169 	}
1170 
1171 fail:
1172 	return (error);
1173 }
1174 
1175 static void
1176 age_dma_free(struct age_softc *sc)
1177 {
1178 	struct age_txdesc *txd;
1179 	struct age_rxdesc *rxd;
1180 	int i;
1181 
1182 	/* Tx buffers */
1183 	if (sc->age_cdata.age_tx_tag != NULL) {
1184 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1185 			txd = &sc->age_cdata.age_txdesc[i];
1186 			if (txd->tx_dmamap != NULL) {
1187 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1188 				    txd->tx_dmamap);
1189 				txd->tx_dmamap = NULL;
1190 			}
1191 		}
1192 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1193 		sc->age_cdata.age_tx_tag = NULL;
1194 	}
1195 	/* Rx buffers */
1196 	if (sc->age_cdata.age_rx_tag != NULL) {
1197 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1198 			rxd = &sc->age_cdata.age_rxdesc[i];
1199 			if (rxd->rx_dmamap != NULL) {
1200 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1201 				    rxd->rx_dmamap);
1202 				rxd->rx_dmamap = NULL;
1203 			}
1204 		}
1205 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1206 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1207 			    sc->age_cdata.age_rx_sparemap);
1208 			sc->age_cdata.age_rx_sparemap = NULL;
1209 		}
1210 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1211 		sc->age_cdata.age_rx_tag = NULL;
1212 	}
1213 	/* Tx ring. */
1214 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1215 		if (sc->age_rdata.age_tx_ring_paddr != 0)
1216 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1217 			    sc->age_cdata.age_tx_ring_map);
1218 		if (sc->age_rdata.age_tx_ring != NULL)
1219 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1220 			    sc->age_rdata.age_tx_ring,
1221 			    sc->age_cdata.age_tx_ring_map);
1222 		sc->age_rdata.age_tx_ring_paddr = 0;
1223 		sc->age_rdata.age_tx_ring = NULL;
1224 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1225 		sc->age_cdata.age_tx_ring_tag = NULL;
1226 	}
1227 	/* Rx ring. */
1228 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1229 		if (sc->age_rdata.age_rx_ring_paddr != 0)
1230 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1231 			    sc->age_cdata.age_rx_ring_map);
1232 		if (sc->age_rdata.age_rx_ring != NULL)
1233 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1234 			    sc->age_rdata.age_rx_ring,
1235 			    sc->age_cdata.age_rx_ring_map);
1236 		sc->age_rdata.age_rx_ring_paddr = 0;
1237 		sc->age_rdata.age_rx_ring = NULL;
1238 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1239 		sc->age_cdata.age_rx_ring_tag = NULL;
1240 	}
1241 	/* Rx return ring. */
1242 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1243 		if (sc->age_rdata.age_rr_ring_paddr != 0)
1244 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1245 			    sc->age_cdata.age_rr_ring_map);
1246 		if (sc->age_rdata.age_rr_ring != NULL)
1247 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1248 			    sc->age_rdata.age_rr_ring,
1249 			    sc->age_cdata.age_rr_ring_map);
1250 		sc->age_rdata.age_rr_ring_paddr = 0;
1251 		sc->age_rdata.age_rr_ring = NULL;
1252 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1253 		sc->age_cdata.age_rr_ring_tag = NULL;
1254 	}
1255 	/* CMB block */
1256 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1257 		if (sc->age_rdata.age_cmb_block_paddr != 0)
1258 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1259 			    sc->age_cdata.age_cmb_block_map);
1260 		if (sc->age_rdata.age_cmb_block != NULL)
1261 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1262 			    sc->age_rdata.age_cmb_block,
1263 			    sc->age_cdata.age_cmb_block_map);
1264 		sc->age_rdata.age_cmb_block_paddr = 0;
1265 		sc->age_rdata.age_cmb_block = NULL;
1266 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1267 		sc->age_cdata.age_cmb_block_tag = NULL;
1268 	}
1269 	/* SMB block */
1270 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1271 		if (sc->age_rdata.age_smb_block_paddr != 0)
1272 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1273 			    sc->age_cdata.age_smb_block_map);
1274 		if (sc->age_rdata.age_smb_block != NULL)
1275 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1276 			    sc->age_rdata.age_smb_block,
1277 			    sc->age_cdata.age_smb_block_map);
1278 		sc->age_rdata.age_smb_block_paddr = 0;
1279 		sc->age_rdata.age_smb_block = NULL;
1280 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1281 		sc->age_cdata.age_smb_block_tag = NULL;
1282 	}
1283 
1284 	if (sc->age_cdata.age_buffer_tag != NULL) {
1285 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1286 		sc->age_cdata.age_buffer_tag = NULL;
1287 	}
1288 	if (sc->age_cdata.age_parent_tag != NULL) {
1289 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1290 		sc->age_cdata.age_parent_tag = NULL;
1291 	}
1292 }
1293 
1294 /*
1295  *	Make sure the interface is stopped at reboot time.
1296  */
1297 static int
1298 age_shutdown(device_t dev)
1299 {
1300 
1301 	return (age_suspend(dev));
1302 }
1303 
1304 static void
1305 age_setwol(struct age_softc *sc)
1306 {
1307 	if_t ifp;
1308 	struct mii_data *mii;
1309 	uint32_t reg, pmcs;
1310 	uint16_t pmstat;
1311 	int aneg, i, pmc;
1312 
1313 	AGE_LOCK_ASSERT(sc);
1314 
1315 	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1316 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1317 		/*
1318 		 * No PME capability, PHY power down.
1319 		 * XXX
1320 		 * Due to an unknown reason powering down PHY resulted
1321 		 * in unexpected results such as inaccessbility of
1322 		 * hardware of freshly rebooted system. Disable
1323 		 * powering down PHY until I got more information for
1324 		 * Attansic/Atheros PHY hardwares.
1325 		 */
1326 #ifdef notyet
1327 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1328 		    MII_BMCR, BMCR_PDOWN);
1329 #endif
1330 		return;
1331 	}
1332 
1333 	ifp = sc->age_ifp;
1334 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1335 		/*
1336 		 * Note, this driver resets the link speed to 10/100Mbps with
1337 		 * auto-negotiation but we don't know whether that operation
1338 		 * would succeed or not as it have no control after powering
1339 		 * off. If the renegotiation fail WOL may not work. Running
1340 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1341 		 * specified in PCI specification and that would result in
1342 		 * complete shutdowning power to ethernet controller.
1343 		 *
1344 		 * TODO
1345 		 *  Save current negotiated media speed/duplex/flow-control
1346 		 *  to softc and restore the same link again after resuming.
1347 		 *  PHY handling such as power down/resetting to 100Mbps
1348 		 *  may be better handled in suspend method in phy driver.
1349 		 */
1350 		mii = device_get_softc(sc->age_miibus);
1351 		mii_pollstat(mii);
1352 		aneg = 0;
1353 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1354 			switch IFM_SUBTYPE(mii->mii_media_active) {
1355 			case IFM_10_T:
1356 			case IFM_100_TX:
1357 				goto got_link;
1358 			case IFM_1000_T:
1359 				aneg++;
1360 			default:
1361 				break;
1362 			}
1363 		}
1364 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1365 		    MII_100T2CR, 0);
1366 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1367 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1368 		    ANAR_10 | ANAR_CSMA);
1369 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1370 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1371 		DELAY(1000);
1372 		if (aneg != 0) {
1373 			/* Poll link state until age(4) get a 10/100 link. */
1374 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1375 				mii_pollstat(mii);
1376 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1377 					switch (IFM_SUBTYPE(
1378 					    mii->mii_media_active)) {
1379 					case IFM_10_T:
1380 					case IFM_100_TX:
1381 						age_mac_config(sc);
1382 						goto got_link;
1383 					default:
1384 						break;
1385 					}
1386 				}
1387 				AGE_UNLOCK(sc);
1388 				pause("agelnk", hz);
1389 				AGE_LOCK(sc);
1390 			}
1391 			if (i == MII_ANEGTICKS_GIGE)
1392 				device_printf(sc->age_dev,
1393 				    "establishing link failed, "
1394 				    "WOL may not work!");
1395 		}
1396 		/*
1397 		 * No link, force MAC to have 100Mbps, full-duplex link.
1398 		 * This is the last resort and may/may not work.
1399 		 */
1400 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1401 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1402 		age_mac_config(sc);
1403 	}
1404 
1405 got_link:
1406 	pmcs = 0;
1407 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
1408 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1409 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1410 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1411 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1412 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1413 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
1414 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1415 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1416 		reg |= MAC_CFG_RX_ENB;
1417 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1418 	}
1419 
1420 	/* Request PME. */
1421 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1422 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1423 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1424 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1425 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1426 #ifdef notyet
1427 	/* See above for powering down PHY issues. */
1428 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1429 		/* No WOL, PHY power down. */
1430 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1431 		    MII_BMCR, BMCR_PDOWN);
1432 	}
1433 #endif
1434 }
1435 
1436 static int
1437 age_suspend(device_t dev)
1438 {
1439 	struct age_softc *sc;
1440 
1441 	sc = device_get_softc(dev);
1442 
1443 	AGE_LOCK(sc);
1444 	age_stop(sc);
1445 	age_setwol(sc);
1446 	AGE_UNLOCK(sc);
1447 
1448 	return (0);
1449 }
1450 
1451 static int
1452 age_resume(device_t dev)
1453 {
1454 	struct age_softc *sc;
1455 	if_t ifp;
1456 
1457 	sc = device_get_softc(dev);
1458 
1459 	AGE_LOCK(sc);
1460 	age_phy_reset(sc);
1461 	ifp = sc->age_ifp;
1462 	if ((if_getflags(ifp) & IFF_UP) != 0)
1463 		age_init_locked(sc);
1464 
1465 	AGE_UNLOCK(sc);
1466 
1467 	return (0);
1468 }
1469 
1470 static int
1471 age_encap(struct age_softc *sc, struct mbuf **m_head)
1472 {
1473 	struct age_txdesc *txd, *txd_last;
1474 	struct tx_desc *desc;
1475 	struct mbuf *m;
1476 	struct ip *ip;
1477 	struct tcphdr *tcp;
1478 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1479 	bus_dmamap_t map;
1480 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1481 	int error, i, nsegs, prod, si;
1482 
1483 	AGE_LOCK_ASSERT(sc);
1484 
1485 	M_ASSERTPKTHDR((*m_head));
1486 
1487 	m = *m_head;
1488 	ip = NULL;
1489 	tcp = NULL;
1490 	cflags = vtag = 0;
1491 	ip_off = poff = 0;
1492 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1493 		/*
1494 		 * L1 requires offset of TCP/UDP payload in its Tx
1495 		 * descriptor to perform hardware Tx checksum offload.
1496 		 * Additionally, TSO requires IP/TCP header size and
1497 		 * modification of IP/TCP header in order to make TSO
1498 		 * engine work. This kind of operation takes many CPU
1499 		 * cycles on FreeBSD so fast host CPU is needed to get
1500 		 * smooth TSO performance.
1501 		 */
1502 		struct ether_header *eh;
1503 
1504 		if (M_WRITABLE(m) == 0) {
1505 			/* Get a writable copy. */
1506 			m = m_dup(*m_head, M_NOWAIT);
1507 			/* Release original mbufs. */
1508 			m_freem(*m_head);
1509 			if (m == NULL) {
1510 				*m_head = NULL;
1511 				return (ENOBUFS);
1512 			}
1513 			*m_head = m;
1514 		}
1515 		ip_off = sizeof(struct ether_header);
1516 		m = m_pullup(m, ip_off);
1517 		if (m == NULL) {
1518 			*m_head = NULL;
1519 			return (ENOBUFS);
1520 		}
1521 		eh = mtod(m, struct ether_header *);
1522 		/*
1523 		 * Check if hardware VLAN insertion is off.
1524 		 * Additional check for LLC/SNAP frame?
1525 		 */
1526 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1527 			ip_off = sizeof(struct ether_vlan_header);
1528 			m = m_pullup(m, ip_off);
1529 			if (m == NULL) {
1530 				*m_head = NULL;
1531 				return (ENOBUFS);
1532 			}
1533 		}
1534 		m = m_pullup(m, ip_off + sizeof(struct ip));
1535 		if (m == NULL) {
1536 			*m_head = NULL;
1537 			return (ENOBUFS);
1538 		}
1539 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1540 		poff = ip_off + (ip->ip_hl << 2);
1541 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1542 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1543 			if (m == NULL) {
1544 				*m_head = NULL;
1545 				return (ENOBUFS);
1546 			}
1547 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1548 			m = m_pullup(m, poff + (tcp->th_off << 2));
1549 			if (m == NULL) {
1550 				*m_head = NULL;
1551 				return (ENOBUFS);
1552 			}
1553 			/*
1554 			 * L1 requires IP/TCP header size and offset as
1555 			 * well as TCP pseudo checksum which complicates
1556 			 * TSO configuration. I guess this comes from the
1557 			 * adherence to Microsoft NDIS Large Send
1558 			 * specification which requires insertion of
1559 			 * pseudo checksum by upper stack. The pseudo
1560 			 * checksum that NDIS refers to doesn't include
1561 			 * TCP payload length so age(4) should recompute
1562 			 * the pseudo checksum here. Hopefully this wouldn't
1563 			 * be much burden on modern CPUs.
1564 			 * Reset IP checksum and recompute TCP pseudo
1565 			 * checksum as NDIS specification said.
1566 			 */
1567 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1568 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1569 			ip->ip_sum = 0;
1570 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1571 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1572 		}
1573 		*m_head = m;
1574 	}
1575 
1576 	si = prod = sc->age_cdata.age_tx_prod;
1577 	txd = &sc->age_cdata.age_txdesc[prod];
1578 	txd_last = txd;
1579 	map = txd->tx_dmamap;
1580 
1581 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1582 	    *m_head, txsegs, &nsegs, 0);
1583 	if (error == EFBIG) {
1584 		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1585 		if (m == NULL) {
1586 			m_freem(*m_head);
1587 			*m_head = NULL;
1588 			return (ENOMEM);
1589 		}
1590 		*m_head = m;
1591 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1592 		    *m_head, txsegs, &nsegs, 0);
1593 		if (error != 0) {
1594 			m_freem(*m_head);
1595 			*m_head = NULL;
1596 			return (error);
1597 		}
1598 	} else if (error != 0)
1599 		return (error);
1600 	if (nsegs == 0) {
1601 		m_freem(*m_head);
1602 		*m_head = NULL;
1603 		return (EIO);
1604 	}
1605 
1606 	/* Check descriptor overrun. */
1607 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1608 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1609 		return (ENOBUFS);
1610 	}
1611 
1612 	m = *m_head;
1613 	/* Configure VLAN hardware tag insertion. */
1614 	if ((m->m_flags & M_VLANTAG) != 0) {
1615 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1616 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1617 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1618 	}
1619 
1620 	desc = NULL;
1621 	i = 0;
1622 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1623 		/* Request TSO and set MSS. */
1624 		cflags |= AGE_TD_TSO_IPV4;
1625 		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1626 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1627 		    AGE_TD_TSO_MSS_SHIFT);
1628 		/* Set IP/TCP header size. */
1629 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1630 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1631 		/*
1632 		 * L1 requires the first buffer should only hold IP/TCP
1633 		 * header data. TCP payload should be handled in other
1634 		 * descriptors.
1635 		 */
1636 		hdrlen = poff + (tcp->th_off << 2);
1637 		desc = &sc->age_rdata.age_tx_ring[prod];
1638 		desc->addr = htole64(txsegs[0].ds_addr);
1639 		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1640 		desc->flags = htole32(cflags);
1641 		sc->age_cdata.age_tx_cnt++;
1642 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1643 		if (m->m_len - hdrlen > 0) {
1644 			/* Handle remaining payload of the 1st fragment. */
1645 			desc = &sc->age_rdata.age_tx_ring[prod];
1646 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1647 			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1648 			    vtag);
1649 			desc->flags = htole32(cflags);
1650 			sc->age_cdata.age_tx_cnt++;
1651 			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1652 		}
1653 		/* Handle remaining fragments. */
1654 		i = 1;
1655 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1656 		/* Configure Tx IP/TCP/UDP checksum offload. */
1657 		cflags |= AGE_TD_CSUM;
1658 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1659 			cflags |= AGE_TD_TCPCSUM;
1660 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1661 			cflags |= AGE_TD_UDPCSUM;
1662 		/* Set checksum start offset. */
1663 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1664 		/* Set checksum insertion position of TCP/UDP. */
1665 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1666 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1667 	}
1668 	for (; i < nsegs; i++) {
1669 		desc = &sc->age_rdata.age_tx_ring[prod];
1670 		desc->addr = htole64(txsegs[i].ds_addr);
1671 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1672 		desc->flags = htole32(cflags);
1673 		sc->age_cdata.age_tx_cnt++;
1674 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1675 	}
1676 	/* Update producer index. */
1677 	sc->age_cdata.age_tx_prod = prod;
1678 
1679 	/* Set EOP on the last descriptor. */
1680 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1681 	desc = &sc->age_rdata.age_tx_ring[prod];
1682 	desc->flags |= htole32(AGE_TD_EOP);
1683 
1684 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1685 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1686 		desc = &sc->age_rdata.age_tx_ring[si];
1687 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1688 	}
1689 
1690 	/* Swap dmamap of the first and the last. */
1691 	txd = &sc->age_cdata.age_txdesc[prod];
1692 	map = txd_last->tx_dmamap;
1693 	txd_last->tx_dmamap = txd->tx_dmamap;
1694 	txd->tx_dmamap = map;
1695 	txd->tx_m = m;
1696 
1697 	/* Sync descriptors. */
1698 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1699 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1700 	    sc->age_cdata.age_tx_ring_map,
1701 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1702 
1703 	return (0);
1704 }
1705 
1706 static void
1707 age_start(if_t ifp)
1708 {
1709         struct age_softc *sc;
1710 
1711 	sc = if_getsoftc(ifp);
1712 	AGE_LOCK(sc);
1713 	age_start_locked(ifp);
1714 	AGE_UNLOCK(sc);
1715 }
1716 
1717 static void
1718 age_start_locked(if_t ifp)
1719 {
1720         struct age_softc *sc;
1721         struct mbuf *m_head;
1722 	int enq;
1723 
1724 	sc = if_getsoftc(ifp);
1725 
1726 	AGE_LOCK_ASSERT(sc);
1727 
1728 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1729 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1730 		return;
1731 
1732 	for (enq = 0; !if_sendq_empty(ifp); ) {
1733 		m_head = if_dequeue(ifp);
1734 		if (m_head == NULL)
1735 			break;
1736 		/*
1737 		 * Pack the data into the transmit ring. If we
1738 		 * don't have room, set the OACTIVE flag and wait
1739 		 * for the NIC to drain the ring.
1740 		 */
1741 		if (age_encap(sc, &m_head)) {
1742 			if (m_head == NULL)
1743 				break;
1744 			if_sendq_prepend(ifp, m_head);
1745 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1746 			break;
1747 		}
1748 
1749 		enq++;
1750 		/*
1751 		 * If there's a BPF listener, bounce a copy of this frame
1752 		 * to him.
1753 		 */
1754 		ETHER_BPF_MTAP(ifp, m_head);
1755 	}
1756 
1757 	if (enq > 0) {
1758 		/* Update mbox. */
1759 		AGE_COMMIT_MBOX(sc);
1760 		/* Set a timeout in case the chip goes out to lunch. */
1761 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1762 	}
1763 }
1764 
1765 static void
1766 age_watchdog(struct age_softc *sc)
1767 {
1768 	if_t ifp;
1769 
1770 	AGE_LOCK_ASSERT(sc);
1771 
1772 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1773 		return;
1774 
1775 	ifp = sc->age_ifp;
1776 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1777 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1778 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1779 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1780 		age_init_locked(sc);
1781 		return;
1782 	}
1783 	if (sc->age_cdata.age_tx_cnt == 0) {
1784 		if_printf(sc->age_ifp,
1785 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1786 		if (!if_sendq_empty(ifp))
1787 			age_start_locked(ifp);
1788 		return;
1789 	}
1790 	if_printf(sc->age_ifp, "watchdog timeout\n");
1791 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1792 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1793 	age_init_locked(sc);
1794 	if (!if_sendq_empty(ifp))
1795 		age_start_locked(ifp);
1796 }
1797 
1798 static int
1799 age_ioctl(if_t ifp, u_long cmd, caddr_t data)
1800 {
1801 	struct age_softc *sc;
1802 	struct ifreq *ifr;
1803 	struct mii_data *mii;
1804 	uint32_t reg;
1805 	int error, mask;
1806 
1807 	sc = if_getsoftc(ifp);
1808 	ifr = (struct ifreq *)data;
1809 	error = 0;
1810 	switch (cmd) {
1811 	case SIOCSIFMTU:
1812 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1813 			error = EINVAL;
1814 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1815 			AGE_LOCK(sc);
1816 			if_setmtu(ifp, ifr->ifr_mtu);
1817 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1818 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1819 				age_init_locked(sc);
1820 			}
1821 			AGE_UNLOCK(sc);
1822 		}
1823 		break;
1824 	case SIOCSIFFLAGS:
1825 		AGE_LOCK(sc);
1826 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1827 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1828 				if (((if_getflags(ifp) ^ sc->age_if_flags)
1829 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1830 					age_rxfilter(sc);
1831 			} else {
1832 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1833 					age_init_locked(sc);
1834 			}
1835 		} else {
1836 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1837 				age_stop(sc);
1838 		}
1839 		sc->age_if_flags = if_getflags(ifp);
1840 		AGE_UNLOCK(sc);
1841 		break;
1842 	case SIOCADDMULTI:
1843 	case SIOCDELMULTI:
1844 		AGE_LOCK(sc);
1845 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1846 			age_rxfilter(sc);
1847 		AGE_UNLOCK(sc);
1848 		break;
1849 	case SIOCSIFMEDIA:
1850 	case SIOCGIFMEDIA:
1851 		mii = device_get_softc(sc->age_miibus);
1852 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1853 		break;
1854 	case SIOCSIFCAP:
1855 		AGE_LOCK(sc);
1856 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1857 		if ((mask & IFCAP_TXCSUM) != 0 &&
1858 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1859 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1860 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1861 				if_sethwassistbits(ifp, AGE_CSUM_FEATURES, 0);
1862 			else
1863 				if_sethwassistbits(ifp, 0, AGE_CSUM_FEATURES);
1864 		}
1865 		if ((mask & IFCAP_RXCSUM) != 0 &&
1866 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
1867 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1868 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1869 			reg &= ~MAC_CFG_RXCSUM_ENB;
1870 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1871 				reg |= MAC_CFG_RXCSUM_ENB;
1872 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1873 		}
1874 		if ((mask & IFCAP_TSO4) != 0 &&
1875 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1876 			if_togglecapenable(ifp, IFCAP_TSO4);
1877 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
1878 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1879 			else
1880 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1881 		}
1882 
1883 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1884 		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
1885 			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
1886 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1887 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1888 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1889 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1890 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
1891 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
1892 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1893 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1894 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1895 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1896 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1897 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1898 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1899 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
1900 			age_rxvlan(sc);
1901 		}
1902 		AGE_UNLOCK(sc);
1903 		VLAN_CAPABILITIES(ifp);
1904 		break;
1905 	default:
1906 		error = ether_ioctl(ifp, cmd, data);
1907 		break;
1908 	}
1909 
1910 	return (error);
1911 }
1912 
1913 static void
1914 age_mac_config(struct age_softc *sc)
1915 {
1916 	struct mii_data *mii;
1917 	uint32_t reg;
1918 
1919 	AGE_LOCK_ASSERT(sc);
1920 
1921 	mii = device_get_softc(sc->age_miibus);
1922 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1923 	reg &= ~MAC_CFG_FULL_DUPLEX;
1924 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1925 	reg &= ~MAC_CFG_SPEED_MASK;
1926 	/* Reprogram MAC with resolved speed/duplex. */
1927 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1928 	case IFM_10_T:
1929 	case IFM_100_TX:
1930 		reg |= MAC_CFG_SPEED_10_100;
1931 		break;
1932 	case IFM_1000_T:
1933 		reg |= MAC_CFG_SPEED_1000;
1934 		break;
1935 	}
1936 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1937 		reg |= MAC_CFG_FULL_DUPLEX;
1938 #ifdef notyet
1939 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1940 			reg |= MAC_CFG_TX_FC;
1941 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1942 			reg |= MAC_CFG_RX_FC;
1943 #endif
1944 	}
1945 
1946 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1947 }
1948 
1949 static void
1950 age_link_task(void *arg, int pending)
1951 {
1952 	struct age_softc *sc;
1953 	struct mii_data *mii;
1954 	if_t ifp;
1955 	uint32_t reg;
1956 
1957 	sc = (struct age_softc *)arg;
1958 
1959 	AGE_LOCK(sc);
1960 	mii = device_get_softc(sc->age_miibus);
1961 	ifp = sc->age_ifp;
1962 	if (mii == NULL || ifp == NULL ||
1963 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1964 		AGE_UNLOCK(sc);
1965 		return;
1966 	}
1967 
1968 	sc->age_flags &= ~AGE_FLAG_LINK;
1969 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1970 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1971 		case IFM_10_T:
1972 		case IFM_100_TX:
1973 		case IFM_1000_T:
1974 			sc->age_flags |= AGE_FLAG_LINK;
1975 			break;
1976 		default:
1977 			break;
1978 		}
1979 	}
1980 
1981 	/* Stop Rx/Tx MACs. */
1982 	age_stop_rxmac(sc);
1983 	age_stop_txmac(sc);
1984 
1985 	/* Program MACs with resolved speed/duplex/flow-control. */
1986 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1987 		age_mac_config(sc);
1988 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1989 		/* Restart DMA engine and Tx/Rx MAC. */
1990 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1991 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1992 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1993 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1994 	}
1995 
1996 	AGE_UNLOCK(sc);
1997 }
1998 
1999 static void
2000 age_stats_update(struct age_softc *sc)
2001 {
2002 	struct age_stats *stat;
2003 	struct smb *smb;
2004 	if_t ifp;
2005 
2006 	AGE_LOCK_ASSERT(sc);
2007 
2008 	stat = &sc->age_stat;
2009 
2010 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2011 	    sc->age_cdata.age_smb_block_map,
2012 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2013 
2014 	smb = sc->age_rdata.age_smb_block;
2015 	if (smb->updated == 0)
2016 		return;
2017 
2018 	ifp = sc->age_ifp;
2019 	/* Rx stats. */
2020 	stat->rx_frames += smb->rx_frames;
2021 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2022 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2023 	stat->rx_pause_frames += smb->rx_pause_frames;
2024 	stat->rx_control_frames += smb->rx_control_frames;
2025 	stat->rx_crcerrs += smb->rx_crcerrs;
2026 	stat->rx_lenerrs += smb->rx_lenerrs;
2027 	stat->rx_bytes += smb->rx_bytes;
2028 	stat->rx_runts += smb->rx_runts;
2029 	stat->rx_fragments += smb->rx_fragments;
2030 	stat->rx_pkts_64 += smb->rx_pkts_64;
2031 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2032 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2033 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2034 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2035 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2036 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2037 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2038 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2039 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2040 	stat->rx_alignerrs += smb->rx_alignerrs;
2041 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2042 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2043 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2044 
2045 	/* Tx stats. */
2046 	stat->tx_frames += smb->tx_frames;
2047 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2048 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2049 	stat->tx_pause_frames += smb->tx_pause_frames;
2050 	stat->tx_excess_defer += smb->tx_excess_defer;
2051 	stat->tx_control_frames += smb->tx_control_frames;
2052 	stat->tx_deferred += smb->tx_deferred;
2053 	stat->tx_bytes += smb->tx_bytes;
2054 	stat->tx_pkts_64 += smb->tx_pkts_64;
2055 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2056 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2057 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2058 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2059 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2060 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2061 	stat->tx_single_colls += smb->tx_single_colls;
2062 	stat->tx_multi_colls += smb->tx_multi_colls;
2063 	stat->tx_late_colls += smb->tx_late_colls;
2064 	stat->tx_excess_colls += smb->tx_excess_colls;
2065 	stat->tx_underrun += smb->tx_underrun;
2066 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2067 	stat->tx_lenerrs += smb->tx_lenerrs;
2068 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2069 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2070 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2071 
2072 	/* Update counters in ifnet. */
2073 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2074 
2075 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2076 	    smb->tx_multi_colls + smb->tx_late_colls +
2077 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2078 
2079 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2080 	    smb->tx_late_colls + smb->tx_underrun +
2081 	    smb->tx_pkts_truncated);
2082 
2083 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2084 
2085 	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2086 	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2087 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2088 	    smb->rx_alignerrs);
2089 
2090 	/* Update done, clear. */
2091 	smb->updated = 0;
2092 
2093 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2094 	    sc->age_cdata.age_smb_block_map,
2095 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2096 }
2097 
2098 static int
2099 age_intr(void *arg)
2100 {
2101 	struct age_softc *sc;
2102 	uint32_t status;
2103 
2104 	sc = (struct age_softc *)arg;
2105 
2106 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2107 	if (status == 0 || (status & AGE_INTRS) == 0)
2108 		return (FILTER_STRAY);
2109 	/* Disable interrupts. */
2110 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2111 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2112 
2113 	return (FILTER_HANDLED);
2114 }
2115 
2116 static void
2117 age_int_task(void *arg, int pending)
2118 {
2119 	struct age_softc *sc;
2120 	if_t ifp;
2121 	struct cmb *cmb;
2122 	uint32_t status;
2123 
2124 	sc = (struct age_softc *)arg;
2125 
2126 	AGE_LOCK(sc);
2127 
2128 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2129 	    sc->age_cdata.age_cmb_block_map,
2130 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2131 	cmb = sc->age_rdata.age_cmb_block;
2132 	status = le32toh(cmb->intr_status);
2133 	if (sc->age_morework != 0)
2134 		status |= INTR_CMB_RX;
2135 	if ((status & AGE_INTRS) == 0)
2136 		goto done;
2137 
2138 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2139 	    TPD_CONS_SHIFT;
2140 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2141 	    RRD_PROD_SHIFT;
2142 	/* Let hardware know CMB was served. */
2143 	cmb->intr_status = 0;
2144 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2145 	    sc->age_cdata.age_cmb_block_map,
2146 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2147 
2148 	ifp = sc->age_ifp;
2149 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2150 		if ((status & INTR_CMB_RX) != 0)
2151 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2152 			    sc->age_process_limit);
2153 		if ((status & INTR_CMB_TX) != 0)
2154 			age_txintr(sc, sc->age_tpd_cons);
2155 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2156 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2157 				device_printf(sc->age_dev,
2158 				    "DMA read error! -- resetting\n");
2159 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2160 				device_printf(sc->age_dev,
2161 				    "DMA write error! -- resetting\n");
2162 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2163 			age_init_locked(sc);
2164 		}
2165 		if (!if_sendq_empty(ifp))
2166 			age_start_locked(ifp);
2167 		if ((status & INTR_SMB) != 0)
2168 			age_stats_update(sc);
2169 	}
2170 
2171 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2172 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2173 	    sc->age_cdata.age_cmb_block_map,
2174 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2175 	status = le32toh(cmb->intr_status);
2176 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2177 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2178 		AGE_UNLOCK(sc);
2179 		return;
2180 	}
2181 
2182 done:
2183 	/* Re-enable interrupts. */
2184 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2185 	AGE_UNLOCK(sc);
2186 }
2187 
2188 static void
2189 age_txintr(struct age_softc *sc, int tpd_cons)
2190 {
2191 	if_t ifp;
2192 	struct age_txdesc *txd;
2193 	int cons, prog;
2194 
2195 	AGE_LOCK_ASSERT(sc);
2196 
2197 	ifp = sc->age_ifp;
2198 
2199 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2200 	    sc->age_cdata.age_tx_ring_map,
2201 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2202 
2203 	/*
2204 	 * Go through our Tx list and free mbufs for those
2205 	 * frames which have been transmitted.
2206 	 */
2207 	cons = sc->age_cdata.age_tx_cons;
2208 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2209 		if (sc->age_cdata.age_tx_cnt <= 0)
2210 			break;
2211 		prog++;
2212 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2213 		sc->age_cdata.age_tx_cnt--;
2214 		txd = &sc->age_cdata.age_txdesc[cons];
2215 		/*
2216 		 * Clear Tx descriptors, it's not required but would
2217 		 * help debugging in case of Tx issues.
2218 		 */
2219 		txd->tx_desc->addr = 0;
2220 		txd->tx_desc->len = 0;
2221 		txd->tx_desc->flags = 0;
2222 
2223 		if (txd->tx_m == NULL)
2224 			continue;
2225 		/* Reclaim transmitted mbufs. */
2226 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2227 		    BUS_DMASYNC_POSTWRITE);
2228 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2229 		m_freem(txd->tx_m);
2230 		txd->tx_m = NULL;
2231 	}
2232 
2233 	if (prog > 0) {
2234 		sc->age_cdata.age_tx_cons = cons;
2235 
2236 		/*
2237 		 * Unarm watchdog timer only when there are no pending
2238 		 * Tx descriptors in queue.
2239 		 */
2240 		if (sc->age_cdata.age_tx_cnt == 0)
2241 			sc->age_watchdog_timer = 0;
2242 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2243 		    sc->age_cdata.age_tx_ring_map,
2244 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2245 	}
2246 }
2247 
2248 #ifndef __NO_STRICT_ALIGNMENT
2249 static struct mbuf *
2250 age_fixup_rx(if_t ifp, struct mbuf *m)
2251 {
2252 	struct mbuf *n;
2253         int i;
2254         uint16_t *src, *dst;
2255 
2256 	src = mtod(m, uint16_t *);
2257 	dst = src - 3;
2258 
2259 	if (m->m_next == NULL) {
2260 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2261 			*dst++ = *src++;
2262 		m->m_data -= 6;
2263 		return (m);
2264 	}
2265 	/*
2266 	 * Append a new mbuf to received mbuf chain and copy ethernet
2267 	 * header from the mbuf chain. This can save lots of CPU
2268 	 * cycles for jumbo frame.
2269 	 */
2270 	MGETHDR(n, M_NOWAIT, MT_DATA);
2271 	if (n == NULL) {
2272 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2273 		m_freem(m);
2274 		return (NULL);
2275 	}
2276 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2277 	m->m_data += ETHER_HDR_LEN;
2278 	m->m_len -= ETHER_HDR_LEN;
2279 	n->m_len = ETHER_HDR_LEN;
2280 	M_MOVE_PKTHDR(n, m);
2281 	n->m_next = m;
2282 	return (n);
2283 }
2284 #endif
2285 
2286 /* Receive a frame. */
2287 static void
2288 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2289 {
2290 	struct age_rxdesc *rxd;
2291 	if_t ifp;
2292 	struct mbuf *mp, *m;
2293 	uint32_t status, index, vtag;
2294 	int count, nsegs;
2295 	int rx_cons;
2296 
2297 	AGE_LOCK_ASSERT(sc);
2298 
2299 	ifp = sc->age_ifp;
2300 	status = le32toh(rxrd->flags);
2301 	index = le32toh(rxrd->index);
2302 	rx_cons = AGE_RX_CONS(index);
2303 	nsegs = AGE_RX_NSEGS(index);
2304 
2305 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2306 	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2307 		/*
2308 		 * We want to pass the following frames to upper
2309 		 * layer regardless of error status of Rx return
2310 		 * ring.
2311 		 *
2312 		 *  o IP/TCP/UDP checksum is bad.
2313 		 *  o frame length and protocol specific length
2314 		 *     does not match.
2315 		 */
2316 		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2317 		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2318 		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2319 			return;
2320 	}
2321 
2322 	for (count = 0; count < nsegs; count++,
2323 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2324 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2325 		mp = rxd->rx_m;
2326 		/* Add a new receive buffer to the ring. */
2327 		if (age_newbuf(sc, rxd) != 0) {
2328 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2329 			/* Reuse Rx buffers. */
2330 			if (sc->age_cdata.age_rxhead != NULL)
2331 				m_freem(sc->age_cdata.age_rxhead);
2332 			break;
2333 		}
2334 
2335 		/*
2336 		 * Assume we've received a full sized frame.
2337 		 * Actual size is fixed when we encounter the end of
2338 		 * multi-segmented frame.
2339 		 */
2340 		mp->m_len = AGE_RX_BUF_SIZE;
2341 
2342 		/* Chain received mbufs. */
2343 		if (sc->age_cdata.age_rxhead == NULL) {
2344 			sc->age_cdata.age_rxhead = mp;
2345 			sc->age_cdata.age_rxtail = mp;
2346 		} else {
2347 			mp->m_flags &= ~M_PKTHDR;
2348 			sc->age_cdata.age_rxprev_tail =
2349 			    sc->age_cdata.age_rxtail;
2350 			sc->age_cdata.age_rxtail->m_next = mp;
2351 			sc->age_cdata.age_rxtail = mp;
2352 		}
2353 
2354 		if (count == nsegs - 1) {
2355 			/* Last desc. for this frame. */
2356 			m = sc->age_cdata.age_rxhead;
2357 			m->m_flags |= M_PKTHDR;
2358 			/*
2359 			 * It seems that L1 controller has no way
2360 			 * to tell hardware to strip CRC bytes.
2361 			 */
2362 			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2363 			    ETHER_CRC_LEN;
2364 			if (nsegs > 1) {
2365 				/* Set last mbuf size. */
2366 				mp->m_len = sc->age_cdata.age_rxlen -
2367 				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2368 				/* Remove the CRC bytes in chained mbufs. */
2369 				if (mp->m_len <= ETHER_CRC_LEN) {
2370 					sc->age_cdata.age_rxtail =
2371 					    sc->age_cdata.age_rxprev_tail;
2372 					sc->age_cdata.age_rxtail->m_len -=
2373 					    (ETHER_CRC_LEN - mp->m_len);
2374 					sc->age_cdata.age_rxtail->m_next = NULL;
2375 					m_freem(mp);
2376 				} else {
2377 					mp->m_len -= ETHER_CRC_LEN;
2378 				}
2379 			} else
2380 				m->m_len = m->m_pkthdr.len;
2381 			m->m_pkthdr.rcvif = ifp;
2382 			/*
2383 			 * Set checksum information.
2384 			 * It seems that L1 controller can compute partial
2385 			 * checksum. The partial checksum value can be used
2386 			 * to accelerate checksum computation for fragmented
2387 			 * TCP/UDP packets. Upper network stack already
2388 			 * takes advantage of the partial checksum value in
2389 			 * IP reassembly stage. But I'm not sure the
2390 			 * correctness of the partial hardware checksum
2391 			 * assistance due to lack of data sheet. If it is
2392 			 * proven to work on L1 I'll enable it.
2393 			 */
2394 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2395 			    (status & AGE_RRD_IPV4) != 0) {
2396 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2397 					m->m_pkthdr.csum_flags |=
2398 					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2399 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2400 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2401 					m->m_pkthdr.csum_flags |=
2402 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2403 					m->m_pkthdr.csum_data = 0xffff;
2404 				}
2405 				/*
2406 				 * Don't mark bad checksum for TCP/UDP frames
2407 				 * as fragmented frames may always have set
2408 				 * bad checksummed bit of descriptor status.
2409 				 */
2410 			}
2411 
2412 			/* Check for VLAN tagged frames. */
2413 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2414 			    (status & AGE_RRD_VLAN) != 0) {
2415 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2416 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2417 				m->m_flags |= M_VLANTAG;
2418 			}
2419 #ifndef __NO_STRICT_ALIGNMENT
2420 			m = age_fixup_rx(ifp, m);
2421 			if (m != NULL)
2422 #endif
2423 			{
2424 			/* Pass it on. */
2425 			AGE_UNLOCK(sc);
2426 			if_input(ifp, m);
2427 			AGE_LOCK(sc);
2428 			}
2429 		}
2430 	}
2431 
2432 	/* Reset mbuf chains. */
2433 	AGE_RXCHAIN_RESET(sc);
2434 }
2435 
2436 static int
2437 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2438 {
2439 	struct rx_rdesc *rxrd;
2440 	int rr_cons, nsegs, pktlen, prog;
2441 
2442 	AGE_LOCK_ASSERT(sc);
2443 
2444 	rr_cons = sc->age_cdata.age_rr_cons;
2445 	if (rr_cons == rr_prod)
2446 		return (0);
2447 
2448 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2449 	    sc->age_cdata.age_rr_ring_map,
2450 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2451 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2452 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2453 
2454 	for (prog = 0; rr_cons != rr_prod; prog++) {
2455 		if (count-- <= 0)
2456 			break;
2457 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2458 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2459 		if (nsegs == 0)
2460 			break;
2461 		/*
2462 		 * Check number of segments against received bytes.
2463 		 * Non-matching value would indicate that hardware
2464 		 * is still trying to update Rx return descriptors.
2465 		 * I'm not sure whether this check is really needed.
2466 		 */
2467 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2468 		if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2469 			break;
2470 
2471 		/* Received a frame. */
2472 		age_rxeof(sc, rxrd);
2473 		/* Clear return ring. */
2474 		rxrd->index = 0;
2475 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2476 		sc->age_cdata.age_rx_cons += nsegs;
2477 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2478 	}
2479 
2480 	if (prog > 0) {
2481 		/* Update the consumer index. */
2482 		sc->age_cdata.age_rr_cons = rr_cons;
2483 
2484 		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2485 		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2486 		/* Sync descriptors. */
2487 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2488 		    sc->age_cdata.age_rr_ring_map,
2489 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2490 
2491 		/* Notify hardware availability of new Rx buffers. */
2492 		AGE_COMMIT_MBOX(sc);
2493 	}
2494 
2495 	return (count > 0 ? 0 : EAGAIN);
2496 }
2497 
2498 static void
2499 age_tick(void *arg)
2500 {
2501 	struct age_softc *sc;
2502 	struct mii_data *mii;
2503 
2504 	sc = (struct age_softc *)arg;
2505 
2506 	AGE_LOCK_ASSERT(sc);
2507 
2508 	mii = device_get_softc(sc->age_miibus);
2509 	mii_tick(mii);
2510 	age_watchdog(sc);
2511 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2512 }
2513 
2514 static void
2515 age_reset(struct age_softc *sc)
2516 {
2517 	uint32_t reg;
2518 	int i;
2519 
2520 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2521 	CSR_READ_4(sc, AGE_MASTER_CFG);
2522 	DELAY(1000);
2523 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2524 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2525 			break;
2526 		DELAY(10);
2527 	}
2528 
2529 	if (i == 0)
2530 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2531 	/* Initialize PCIe module. From Linux. */
2532 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2533 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2534 }
2535 
2536 static void
2537 age_init(void *xsc)
2538 {
2539 	struct age_softc *sc;
2540 
2541 	sc = (struct age_softc *)xsc;
2542 	AGE_LOCK(sc);
2543 	age_init_locked(sc);
2544 	AGE_UNLOCK(sc);
2545 }
2546 
2547 static void
2548 age_init_locked(struct age_softc *sc)
2549 {
2550 	if_t ifp;
2551 	struct mii_data *mii;
2552 	uint8_t eaddr[ETHER_ADDR_LEN];
2553 	bus_addr_t paddr;
2554 	uint32_t reg, fsize;
2555 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2556 	int error;
2557 
2558 	AGE_LOCK_ASSERT(sc);
2559 
2560 	ifp = sc->age_ifp;
2561 	mii = device_get_softc(sc->age_miibus);
2562 
2563 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2564 		return;
2565 
2566 	/*
2567 	 * Cancel any pending I/O.
2568 	 */
2569 	age_stop(sc);
2570 
2571 	/*
2572 	 * Reset the chip to a known state.
2573 	 */
2574 	age_reset(sc);
2575 
2576 	/* Initialize descriptors. */
2577 	error = age_init_rx_ring(sc);
2578         if (error != 0) {
2579                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2580                 age_stop(sc);
2581 		return;
2582         }
2583 	age_init_rr_ring(sc);
2584 	age_init_tx_ring(sc);
2585 	age_init_cmb_block(sc);
2586 	age_init_smb_block(sc);
2587 
2588 	/* Reprogram the station address. */
2589 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2590 	CSR_WRITE_4(sc, AGE_PAR0,
2591 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2592 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2593 
2594 	/* Set descriptor base addresses. */
2595 	paddr = sc->age_rdata.age_tx_ring_paddr;
2596 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2597 	paddr = sc->age_rdata.age_rx_ring_paddr;
2598 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2599 	paddr = sc->age_rdata.age_rr_ring_paddr;
2600 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2601 	paddr = sc->age_rdata.age_tx_ring_paddr;
2602 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2603 	paddr = sc->age_rdata.age_cmb_block_paddr;
2604 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2605 	paddr = sc->age_rdata.age_smb_block_paddr;
2606 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2607 	/* Set Rx/Rx return descriptor counter. */
2608 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2609 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2610 	    DESC_RRD_CNT_MASK) |
2611 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2612 	/* Set Tx descriptor counter. */
2613 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2614 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2615 
2616 	/* Tell hardware that we're ready to load descriptors. */
2617 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2618 
2619 	/*
2620 	 * Initialize mailbox register.
2621 	 * Updated producer/consumer index information is exchanged
2622 	 * through this mailbox register. However Tx producer and
2623 	 * Rx return consumer/Rx producer are all shared such that
2624 	 * it's hard to separate code path between Tx and Rx without
2625 	 * locking. If L1 hardware have a separate mail box register
2626 	 * for Tx and Rx consumer/producer management we could have
2627 	 * independent Tx/Rx handler which in turn Rx handler could have
2628 	 * been run without any locking.
2629 	 */
2630 	AGE_COMMIT_MBOX(sc);
2631 
2632 	/* Configure IPG/IFG parameters. */
2633 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2634 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2635 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2636 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2637 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2638 
2639 	/* Set parameters for half-duplex media. */
2640 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2641 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2642 	    HDPX_CFG_LCOL_MASK) |
2643 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2644 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2645 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2646 	    HDPX_CFG_ABEBT_MASK) |
2647 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2648 	    HDPX_CFG_JAMIPG_MASK));
2649 
2650 	/* Configure interrupt moderation timer. */
2651 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2652 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2653 	reg &= ~MASTER_MTIMER_ENB;
2654 	if (AGE_USECS(sc->age_int_mod) == 0)
2655 		reg &= ~MASTER_ITIMER_ENB;
2656 	else
2657 		reg |= MASTER_ITIMER_ENB;
2658 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2659 	if (bootverbose)
2660 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2661 		    sc->age_int_mod);
2662 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2663 
2664 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2665 	if (if_getmtu(ifp) < ETHERMTU)
2666 		sc->age_max_frame_size = ETHERMTU;
2667 	else
2668 		sc->age_max_frame_size = if_getmtu(ifp);
2669 	sc->age_max_frame_size += ETHER_HDR_LEN +
2670 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2671 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2672 	/* Configure jumbo frame. */
2673 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2674 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2675 	    (((fsize / sizeof(uint64_t)) <<
2676 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2677 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2678 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2679 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2680 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2681 
2682 	/* Configure flow-control parameters. From Linux. */
2683 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2684 		/*
2685 		 * Magic workaround for old-L1.
2686 		 * Don't know which hw revision requires this magic.
2687 		 */
2688 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2689 		/*
2690 		 * Another magic workaround for flow-control mode
2691 		 * change. From Linux.
2692 		 */
2693 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2694 	}
2695 	/*
2696 	 * TODO
2697 	 *  Should understand pause parameter relationships between FIFO
2698 	 *  size and number of Rx descriptors and Rx return descriptors.
2699 	 *
2700 	 *  Magic parameters came from Linux.
2701 	 */
2702 	switch (sc->age_chip_rev) {
2703 	case 0x8001:
2704 	case 0x9001:
2705 	case 0x9002:
2706 	case 0x9003:
2707 		rxf_hi = AGE_RX_RING_CNT / 16;
2708 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2709 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2710 		rrd_lo = AGE_RR_RING_CNT / 16;
2711 		break;
2712 	default:
2713 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2714 		rxf_lo = reg / 16;
2715 		if (rxf_lo < 192)
2716 			rxf_lo = 192;
2717 		rxf_hi = (reg * 7) / 8;
2718 		if (rxf_hi < rxf_lo)
2719 			rxf_hi = rxf_lo + 16;
2720 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2721 		rrd_lo = reg / 8;
2722 		rrd_hi = (reg * 7) / 8;
2723 		if (rrd_lo < 2)
2724 			rrd_lo = 2;
2725 		if (rrd_hi < rrd_lo)
2726 			rrd_hi = rrd_lo + 3;
2727 		break;
2728 	}
2729 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2730 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2731 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2732 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2733 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2734 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2735 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2736 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2737 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2738 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2739 
2740 	/* Configure RxQ. */
2741 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2742 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2743 	    RXQ_CFG_RD_BURST_MASK) |
2744 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2745 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2746 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2747 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2748 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2749 
2750 	/* Configure TxQ. */
2751 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2752 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2753 	    TXQ_CFG_TPD_BURST_MASK) |
2754 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2755 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2756 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2757 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2758 	    TXQ_CFG_ENB);
2759 
2760 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2761 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2762 	    TX_JUMBO_TPD_TH_MASK) |
2763 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2764 	    TX_JUMBO_TPD_IPG_MASK));
2765 	/* Configure DMA parameters. */
2766 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2767 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2768 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2769 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2770 
2771 	/* Configure CMB DMA write threshold. */
2772 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2773 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2774 	    CMB_WR_THRESH_RRD_MASK) |
2775 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2776 	    CMB_WR_THRESH_TPD_MASK));
2777 
2778 	/* Set CMB/SMB timer and enable them. */
2779 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2780 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2781 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2782 	/* Request SMB updates for every seconds. */
2783 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2784 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2785 
2786 	/*
2787 	 * Disable all WOL bits as WOL can interfere normal Rx
2788 	 * operation.
2789 	 */
2790 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2791 
2792 	/*
2793 	 * Configure Tx/Rx MACs.
2794 	 *  - Auto-padding for short frames.
2795 	 *  - Enable CRC generation.
2796 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2797 	 *  of MAC is followed after link establishment.
2798 	 */
2799 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2800 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2801 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2802 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2803 	    MAC_CFG_PREAMBLE_MASK));
2804 	/* Set up the receive filter. */
2805 	age_rxfilter(sc);
2806 	age_rxvlan(sc);
2807 
2808 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2809 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2810 		reg |= MAC_CFG_RXCSUM_ENB;
2811 
2812 	/* Ack all pending interrupts and clear it. */
2813 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2814 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2815 
2816 	/* Finally enable Tx/Rx MAC. */
2817 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2818 
2819 	sc->age_flags &= ~AGE_FLAG_LINK;
2820 	/* Switch to the current media. */
2821 	mii_mediachg(mii);
2822 
2823 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2824 
2825 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2826 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2827 }
2828 
2829 static void
2830 age_stop(struct age_softc *sc)
2831 {
2832 	if_t ifp;
2833 	struct age_txdesc *txd;
2834 	struct age_rxdesc *rxd;
2835 	uint32_t reg;
2836 	int i;
2837 
2838 	AGE_LOCK_ASSERT(sc);
2839 	/*
2840 	 * Mark the interface down and cancel the watchdog timer.
2841 	 */
2842 	ifp = sc->age_ifp;
2843 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2844 	sc->age_flags &= ~AGE_FLAG_LINK;
2845 	callout_stop(&sc->age_tick_ch);
2846 	sc->age_watchdog_timer = 0;
2847 
2848 	/*
2849 	 * Disable interrupts.
2850 	 */
2851 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2852 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2853 	/* Stop CMB/SMB updates. */
2854 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2855 	/* Stop Rx/Tx MAC. */
2856 	age_stop_rxmac(sc);
2857 	age_stop_txmac(sc);
2858 	/* Stop DMA. */
2859 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2860 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2861 	/* Stop TxQ/RxQ. */
2862 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2863 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2864 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2865 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2866 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2867 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2868 			break;
2869 		DELAY(10);
2870 	}
2871 	if (i == 0)
2872 		device_printf(sc->age_dev,
2873 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2874 
2875 	 /* Reclaim Rx buffers that have been processed. */
2876 	if (sc->age_cdata.age_rxhead != NULL)
2877 		m_freem(sc->age_cdata.age_rxhead);
2878 	AGE_RXCHAIN_RESET(sc);
2879 	/*
2880 	 * Free RX and TX mbufs still in the queues.
2881 	 */
2882 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2883 		rxd = &sc->age_cdata.age_rxdesc[i];
2884 		if (rxd->rx_m != NULL) {
2885 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2886 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2887 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2888 			    rxd->rx_dmamap);
2889 			m_freem(rxd->rx_m);
2890 			rxd->rx_m = NULL;
2891 		}
2892         }
2893 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2894 		txd = &sc->age_cdata.age_txdesc[i];
2895 		if (txd->tx_m != NULL) {
2896 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2897 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2898 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2899 			    txd->tx_dmamap);
2900 			m_freem(txd->tx_m);
2901 			txd->tx_m = NULL;
2902 		}
2903         }
2904 }
2905 
2906 static void
2907 age_stop_txmac(struct age_softc *sc)
2908 {
2909 	uint32_t reg;
2910 	int i;
2911 
2912 	AGE_LOCK_ASSERT(sc);
2913 
2914 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2915 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2916 		reg &= ~MAC_CFG_TX_ENB;
2917 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2918 	}
2919 	/* Stop Tx DMA engine. */
2920 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2921 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2922 		reg &= ~DMA_CFG_RD_ENB;
2923 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2924 	}
2925 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2926 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2927 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2928 			break;
2929 		DELAY(10);
2930 	}
2931 	if (i == 0)
2932 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2933 }
2934 
2935 static void
2936 age_stop_rxmac(struct age_softc *sc)
2937 {
2938 	uint32_t reg;
2939 	int i;
2940 
2941 	AGE_LOCK_ASSERT(sc);
2942 
2943 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2944 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2945 		reg &= ~MAC_CFG_RX_ENB;
2946 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2947 	}
2948 	/* Stop Rx DMA engine. */
2949 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2950 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2951 		reg &= ~DMA_CFG_WR_ENB;
2952 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2953 	}
2954 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2955 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2956 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2957 			break;
2958 		DELAY(10);
2959 	}
2960 	if (i == 0)
2961 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2962 }
2963 
2964 static void
2965 age_init_tx_ring(struct age_softc *sc)
2966 {
2967 	struct age_ring_data *rd;
2968 	struct age_txdesc *txd;
2969 	int i;
2970 
2971 	AGE_LOCK_ASSERT(sc);
2972 
2973 	sc->age_cdata.age_tx_prod = 0;
2974 	sc->age_cdata.age_tx_cons = 0;
2975 	sc->age_cdata.age_tx_cnt = 0;
2976 
2977 	rd = &sc->age_rdata;
2978 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2979 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2980 		txd = &sc->age_cdata.age_txdesc[i];
2981 		txd->tx_desc = &rd->age_tx_ring[i];
2982 		txd->tx_m = NULL;
2983 	}
2984 
2985 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2986 	    sc->age_cdata.age_tx_ring_map,
2987 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2988 }
2989 
2990 static int
2991 age_init_rx_ring(struct age_softc *sc)
2992 {
2993 	struct age_ring_data *rd;
2994 	struct age_rxdesc *rxd;
2995 	int i;
2996 
2997 	AGE_LOCK_ASSERT(sc);
2998 
2999 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3000 	sc->age_morework = 0;
3001 	rd = &sc->age_rdata;
3002 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3003 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3004 		rxd = &sc->age_cdata.age_rxdesc[i];
3005 		rxd->rx_m = NULL;
3006 		rxd->rx_desc = &rd->age_rx_ring[i];
3007 		if (age_newbuf(sc, rxd) != 0)
3008 			return (ENOBUFS);
3009 	}
3010 
3011 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3012 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3013 
3014 	return (0);
3015 }
3016 
3017 static void
3018 age_init_rr_ring(struct age_softc *sc)
3019 {
3020 	struct age_ring_data *rd;
3021 
3022 	AGE_LOCK_ASSERT(sc);
3023 
3024 	sc->age_cdata.age_rr_cons = 0;
3025 	AGE_RXCHAIN_RESET(sc);
3026 
3027 	rd = &sc->age_rdata;
3028 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3029 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3030 	    sc->age_cdata.age_rr_ring_map,
3031 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3032 }
3033 
3034 static void
3035 age_init_cmb_block(struct age_softc *sc)
3036 {
3037 	struct age_ring_data *rd;
3038 
3039 	AGE_LOCK_ASSERT(sc);
3040 
3041 	rd = &sc->age_rdata;
3042 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3043 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3044 	    sc->age_cdata.age_cmb_block_map,
3045 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3046 }
3047 
3048 static void
3049 age_init_smb_block(struct age_softc *sc)
3050 {
3051 	struct age_ring_data *rd;
3052 
3053 	AGE_LOCK_ASSERT(sc);
3054 
3055 	rd = &sc->age_rdata;
3056 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3057 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3058 	    sc->age_cdata.age_smb_block_map,
3059 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3060 }
3061 
3062 static int
3063 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3064 {
3065 	struct rx_desc *desc;
3066 	struct mbuf *m;
3067 	bus_dma_segment_t segs[1];
3068 	bus_dmamap_t map;
3069 	int nsegs;
3070 
3071 	AGE_LOCK_ASSERT(sc);
3072 
3073 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3074 	if (m == NULL)
3075 		return (ENOBUFS);
3076 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3077 #ifndef __NO_STRICT_ALIGNMENT
3078 	m_adj(m, AGE_RX_BUF_ALIGN);
3079 #endif
3080 
3081 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3082 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3083 		m_freem(m);
3084 		return (ENOBUFS);
3085 	}
3086 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3087 
3088 	if (rxd->rx_m != NULL) {
3089 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3090 		    BUS_DMASYNC_POSTREAD);
3091 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3092 	}
3093 	map = rxd->rx_dmamap;
3094 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3095 	sc->age_cdata.age_rx_sparemap = map;
3096 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3097 	    BUS_DMASYNC_PREREAD);
3098 	rxd->rx_m = m;
3099 
3100 	desc = rxd->rx_desc;
3101 	desc->addr = htole64(segs[0].ds_addr);
3102 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3103 	    AGE_RD_LEN_SHIFT);
3104 	return (0);
3105 }
3106 
3107 static void
3108 age_rxvlan(struct age_softc *sc)
3109 {
3110 	if_t ifp;
3111 	uint32_t reg;
3112 
3113 	AGE_LOCK_ASSERT(sc);
3114 
3115 	ifp = sc->age_ifp;
3116 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3117 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3118 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3119 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3120 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3121 }
3122 
3123 static u_int
3124 age_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3125 {
3126 	uint32_t *mchash = arg;
3127 	uint32_t crc;
3128 
3129 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3130 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3131 
3132 	return (1);
3133 }
3134 
3135 static void
3136 age_rxfilter(struct age_softc *sc)
3137 {
3138 	if_t ifp;
3139 	uint32_t mchash[2];
3140 	uint32_t rxcfg;
3141 
3142 	AGE_LOCK_ASSERT(sc);
3143 
3144 	ifp = sc->age_ifp;
3145 
3146 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3147 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3148 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3149 		rxcfg |= MAC_CFG_BCAST;
3150 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3151 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3152 			rxcfg |= MAC_CFG_PROMISC;
3153 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3154 			rxcfg |= MAC_CFG_ALLMULTI;
3155 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3156 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3157 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3158 		return;
3159 	}
3160 
3161 	/* Program new filter. */
3162 	bzero(mchash, sizeof(mchash));
3163 	if_foreach_llmaddr(ifp, age_hash_maddr, mchash);
3164 
3165 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3166 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3167 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3168 }
3169 
3170 static int
3171 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3172 {
3173 	struct age_softc *sc;
3174 	struct age_stats *stats;
3175 	int error, result;
3176 
3177 	result = -1;
3178 	error = sysctl_handle_int(oidp, &result, 0, req);
3179 
3180 	if (error != 0 || req->newptr == NULL)
3181 		return (error);
3182 
3183 	if (result != 1)
3184 		return (error);
3185 
3186 	sc = (struct age_softc *)arg1;
3187 	stats = &sc->age_stat;
3188 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3189 	printf("Transmit good frames : %ju\n",
3190 	    (uintmax_t)stats->tx_frames);
3191 	printf("Transmit good broadcast frames : %ju\n",
3192 	    (uintmax_t)stats->tx_bcast_frames);
3193 	printf("Transmit good multicast frames : %ju\n",
3194 	    (uintmax_t)stats->tx_mcast_frames);
3195 	printf("Transmit pause control frames : %u\n",
3196 	    stats->tx_pause_frames);
3197 	printf("Transmit control frames : %u\n",
3198 	    stats->tx_control_frames);
3199 	printf("Transmit frames with excessive deferrals : %u\n",
3200 	    stats->tx_excess_defer);
3201 	printf("Transmit deferrals : %u\n",
3202 	    stats->tx_deferred);
3203 	printf("Transmit good octets : %ju\n",
3204 	    (uintmax_t)stats->tx_bytes);
3205 	printf("Transmit good broadcast octets : %ju\n",
3206 	    (uintmax_t)stats->tx_bcast_bytes);
3207 	printf("Transmit good multicast octets : %ju\n",
3208 	    (uintmax_t)stats->tx_mcast_bytes);
3209 	printf("Transmit frames 64 bytes : %ju\n",
3210 	    (uintmax_t)stats->tx_pkts_64);
3211 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3212 	    (uintmax_t)stats->tx_pkts_65_127);
3213 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3214 	    (uintmax_t)stats->tx_pkts_128_255);
3215 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3216 	    (uintmax_t)stats->tx_pkts_256_511);
3217 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3218 	    (uintmax_t)stats->tx_pkts_512_1023);
3219 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3220 	    (uintmax_t)stats->tx_pkts_1024_1518);
3221 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3222 	    (uintmax_t)stats->tx_pkts_1519_max);
3223 	printf("Transmit single collisions : %u\n",
3224 	    stats->tx_single_colls);
3225 	printf("Transmit multiple collisions : %u\n",
3226 	    stats->tx_multi_colls);
3227 	printf("Transmit late collisions : %u\n",
3228 	    stats->tx_late_colls);
3229 	printf("Transmit abort due to excessive collisions : %u\n",
3230 	    stats->tx_excess_colls);
3231 	printf("Transmit underruns due to FIFO underruns : %u\n",
3232 	    stats->tx_underrun);
3233 	printf("Transmit descriptor write-back errors : %u\n",
3234 	    stats->tx_desc_underrun);
3235 	printf("Transmit frames with length mismatched frame size : %u\n",
3236 	    stats->tx_lenerrs);
3237 	printf("Transmit frames with truncated due to MTU size : %u\n",
3238 	    stats->tx_lenerrs);
3239 
3240 	printf("Receive good frames : %ju\n",
3241 	    (uintmax_t)stats->rx_frames);
3242 	printf("Receive good broadcast frames : %ju\n",
3243 	    (uintmax_t)stats->rx_bcast_frames);
3244 	printf("Receive good multicast frames : %ju\n",
3245 	    (uintmax_t)stats->rx_mcast_frames);
3246 	printf("Receive pause control frames : %u\n",
3247 	    stats->rx_pause_frames);
3248 	printf("Receive control frames : %u\n",
3249 	    stats->rx_control_frames);
3250 	printf("Receive CRC errors : %u\n",
3251 	    stats->rx_crcerrs);
3252 	printf("Receive frames with length errors : %u\n",
3253 	    stats->rx_lenerrs);
3254 	printf("Receive good octets : %ju\n",
3255 	    (uintmax_t)stats->rx_bytes);
3256 	printf("Receive good broadcast octets : %ju\n",
3257 	    (uintmax_t)stats->rx_bcast_bytes);
3258 	printf("Receive good multicast octets : %ju\n",
3259 	    (uintmax_t)stats->rx_mcast_bytes);
3260 	printf("Receive frames too short : %u\n",
3261 	    stats->rx_runts);
3262 	printf("Receive fragmented frames : %ju\n",
3263 	    (uintmax_t)stats->rx_fragments);
3264 	printf("Receive frames 64 bytes : %ju\n",
3265 	    (uintmax_t)stats->rx_pkts_64);
3266 	printf("Receive frames 65 to 127 bytes : %ju\n",
3267 	    (uintmax_t)stats->rx_pkts_65_127);
3268 	printf("Receive frames 128 to 255 bytes : %ju\n",
3269 	    (uintmax_t)stats->rx_pkts_128_255);
3270 	printf("Receive frames 256 to 511 bytes : %ju\n",
3271 	    (uintmax_t)stats->rx_pkts_256_511);
3272 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3273 	    (uintmax_t)stats->rx_pkts_512_1023);
3274 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3275 	    (uintmax_t)stats->rx_pkts_1024_1518);
3276 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3277 	    (uintmax_t)stats->rx_pkts_1519_max);
3278 	printf("Receive frames too long : %ju\n",
3279 	    (uint64_t)stats->rx_pkts_truncated);
3280 	printf("Receive frames with FIFO overflow : %u\n",
3281 	    stats->rx_fifo_oflows);
3282 	printf("Receive frames with return descriptor overflow : %u\n",
3283 	    stats->rx_desc_oflows);
3284 	printf("Receive frames with alignment errors : %u\n",
3285 	    stats->rx_alignerrs);
3286 	printf("Receive frames dropped due to address filtering : %ju\n",
3287 	    (uint64_t)stats->rx_pkts_filtered);
3288 
3289 	return (error);
3290 }
3291 
3292 static int
3293 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3294 {
3295 	int error, value;
3296 
3297 	if (arg1 == NULL)
3298 		return (EINVAL);
3299 	value = *(int *)arg1;
3300 	error = sysctl_handle_int(oidp, &value, 0, req);
3301 	if (error || req->newptr == NULL)
3302 		return (error);
3303 	if (value < low || value > high)
3304 		return (EINVAL);
3305         *(int *)arg1 = value;
3306 
3307         return (0);
3308 }
3309 
3310 static int
3311 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3312 {
3313 	return (sysctl_int_range(oidp, arg1, arg2, req,
3314 	    AGE_PROC_MIN, AGE_PROC_MAX));
3315 }
3316 
3317 static int
3318 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3319 {
3320 
3321 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3322 	    AGE_IM_TIMER_MAX));
3323 }
3324