xref: /freebsd/sys/dev/age/if_age.c (revision aa0a1e58f0189b0fde359a8bda032887e72057fa)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 
71 #include <dev/age/if_agereg.h>
72 #include <dev/age/if_agevar.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78 
79 MODULE_DEPEND(age, pci, 1, 1, 1);
80 MODULE_DEPEND(age, ether, 1, 1, 1);
81 MODULE_DEPEND(age, miibus, 1, 1, 1);
82 
83 /* Tunables. */
84 static int msi_disable = 0;
85 static int msix_disable = 0;
86 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88 
89 /*
90  * Devices supported by this driver.
91  */
92 static struct age_dev {
93 	uint16_t	age_vendorid;
94 	uint16_t	age_deviceid;
95 	const char	*age_name;
96 } age_devs[] = {
97 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99 };
100 
101 static int age_miibus_readreg(device_t, int, int);
102 static int age_miibus_writereg(device_t, int, int, int);
103 static void age_miibus_statchg(device_t);
104 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105 static int age_mediachange(struct ifnet *);
106 static int age_probe(device_t);
107 static void age_get_macaddr(struct age_softc *);
108 static void age_phy_reset(struct age_softc *);
109 static int age_attach(device_t);
110 static int age_detach(device_t);
111 static void age_sysctl_node(struct age_softc *);
112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 static int age_check_boundary(struct age_softc *);
114 static int age_dma_alloc(struct age_softc *);
115 static void age_dma_free(struct age_softc *);
116 static int age_shutdown(device_t);
117 static void age_setwol(struct age_softc *);
118 static int age_suspend(device_t);
119 static int age_resume(device_t);
120 static int age_encap(struct age_softc *, struct mbuf **);
121 static void age_start(struct ifnet *);
122 static void age_start_locked(struct ifnet *);
123 static void age_watchdog(struct age_softc *);
124 static int age_ioctl(struct ifnet *, u_long, caddr_t);
125 static void age_mac_config(struct age_softc *);
126 static void age_link_task(void *, int);
127 static void age_stats_update(struct age_softc *);
128 static int age_intr(void *);
129 static void age_int_task(void *, int);
130 static void age_txintr(struct age_softc *, int);
131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132 static int age_rxintr(struct age_softc *, int, int);
133 static void age_tick(void *);
134 static void age_reset(struct age_softc *);
135 static void age_init(void *);
136 static void age_init_locked(struct age_softc *);
137 static void age_stop(struct age_softc *);
138 static void age_stop_txmac(struct age_softc *);
139 static void age_stop_rxmac(struct age_softc *);
140 static void age_init_tx_ring(struct age_softc *);
141 static int age_init_rx_ring(struct age_softc *);
142 static void age_init_rr_ring(struct age_softc *);
143 static void age_init_cmb_block(struct age_softc *);
144 static void age_init_smb_block(struct age_softc *);
145 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
146 static void age_rxvlan(struct age_softc *);
147 static void age_rxfilter(struct age_softc *);
148 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
149 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
151 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
152 
153 
154 static device_method_t age_methods[] = {
155 	/* Device interface. */
156 	DEVMETHOD(device_probe,		age_probe),
157 	DEVMETHOD(device_attach,	age_attach),
158 	DEVMETHOD(device_detach,	age_detach),
159 	DEVMETHOD(device_shutdown,	age_shutdown),
160 	DEVMETHOD(device_suspend,	age_suspend),
161 	DEVMETHOD(device_resume,	age_resume),
162 
163 	/* MII interface. */
164 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
165 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
166 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
167 
168 	{ NULL, NULL }
169 };
170 
171 static driver_t age_driver = {
172 	"age",
173 	age_methods,
174 	sizeof(struct age_softc)
175 };
176 
177 static devclass_t age_devclass;
178 
179 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
180 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
181 
182 static struct resource_spec age_res_spec_mem[] = {
183 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
184 	{ -1,			0,		0 }
185 };
186 
187 static struct resource_spec age_irq_spec_legacy[] = {
188 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
189 	{ -1,			0,		0 }
190 };
191 
192 static struct resource_spec age_irq_spec_msi[] = {
193 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
194 	{ -1,			0,		0 }
195 };
196 
197 static struct resource_spec age_irq_spec_msix[] = {
198 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
199 	{ -1,			0,		0 }
200 };
201 
202 /*
203  *	Read a PHY register on the MII of the L1.
204  */
205 static int
206 age_miibus_readreg(device_t dev, int phy, int reg)
207 {
208 	struct age_softc *sc;
209 	uint32_t v;
210 	int i;
211 
212 	sc = device_get_softc(dev);
213 
214 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
215 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
216 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
217 		DELAY(1);
218 		v = CSR_READ_4(sc, AGE_MDIO);
219 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
220 			break;
221 	}
222 
223 	if (i == 0) {
224 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
225 		return (0);
226 	}
227 
228 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229 }
230 
231 /*
232  *	Write a PHY register on the MII of the L1.
233  */
234 static int
235 age_miibus_writereg(device_t dev, int phy, int reg, int val)
236 {
237 	struct age_softc *sc;
238 	uint32_t v;
239 	int i;
240 
241 	sc = device_get_softc(dev);
242 
243 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
244 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
245 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
246 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
247 		DELAY(1);
248 		v = CSR_READ_4(sc, AGE_MDIO);
249 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
250 			break;
251 	}
252 
253 	if (i == 0)
254 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
255 
256 	return (0);
257 }
258 
259 /*
260  *	Callback from MII layer when media changes.
261  */
262 static void
263 age_miibus_statchg(device_t dev)
264 {
265 	struct age_softc *sc;
266 
267 	sc = device_get_softc(dev);
268 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
269 }
270 
271 /*
272  *	Get the current interface media status.
273  */
274 static void
275 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
276 {
277 	struct age_softc *sc;
278 	struct mii_data *mii;
279 
280 	sc = ifp->if_softc;
281 	AGE_LOCK(sc);
282 	mii = device_get_softc(sc->age_miibus);
283 
284 	mii_pollstat(mii);
285 	AGE_UNLOCK(sc);
286 	ifmr->ifm_status = mii->mii_media_status;
287 	ifmr->ifm_active = mii->mii_media_active;
288 }
289 
290 /*
291  *	Set hardware to newly-selected media.
292  */
293 static int
294 age_mediachange(struct ifnet *ifp)
295 {
296 	struct age_softc *sc;
297 	struct mii_data *mii;
298 	struct mii_softc *miisc;
299 	int error;
300 
301 	sc = ifp->if_softc;
302 	AGE_LOCK(sc);
303 	mii = device_get_softc(sc->age_miibus);
304 	if (mii->mii_instance != 0) {
305 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
306 			mii_phy_reset(miisc);
307 	}
308 	error = mii_mediachg(mii);
309 	AGE_UNLOCK(sc);
310 
311 	return (error);
312 }
313 
314 static int
315 age_probe(device_t dev)
316 {
317 	struct age_dev *sp;
318 	int i;
319 	uint16_t vendor, devid;
320 
321 	vendor = pci_get_vendor(dev);
322 	devid = pci_get_device(dev);
323 	sp = age_devs;
324 	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
325 	    i++, sp++) {
326 		if (vendor == sp->age_vendorid &&
327 		    devid == sp->age_deviceid) {
328 			device_set_desc(dev, sp->age_name);
329 			return (BUS_PROBE_DEFAULT);
330 		}
331 	}
332 
333 	return (ENXIO);
334 }
335 
336 static void
337 age_get_macaddr(struct age_softc *sc)
338 {
339 	uint32_t ea[2], reg;
340 	int i, vpdc;
341 
342 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
343 	if ((reg & SPI_VPD_ENB) != 0) {
344 		/* Get VPD stored in TWSI EEPROM. */
345 		reg &= ~SPI_VPD_ENB;
346 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
347 	}
348 
349 	if (pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
350 		/*
351 		 * PCI VPD capability found, let TWSI reload EEPROM.
352 		 * This will set ethernet address of controller.
353 		 */
354 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
355 		    TWSI_CTRL_SW_LD_START);
356 		for (i = 100; i > 0; i--) {
357 			DELAY(1000);
358 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
359 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
360 				break;
361 		}
362 		if (i == 0)
363 			device_printf(sc->age_dev,
364 			    "reloading EEPROM timeout!\n");
365 	} else {
366 		if (bootverbose)
367 			device_printf(sc->age_dev,
368 			    "PCI VPD capability not found!\n");
369 	}
370 
371 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
372 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
373 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
374 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
375 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
376 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
377 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
378 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
379 }
380 
381 static void
382 age_phy_reset(struct age_softc *sc)
383 {
384 	uint16_t reg, pn;
385 	int i, linkup;
386 
387 	/* Reset PHY. */
388 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
389 	DELAY(2000);
390 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
391 	DELAY(2000);
392 
393 #define	ATPHY_DBG_ADDR		0x1D
394 #define	ATPHY_DBG_DATA		0x1E
395 #define	ATPHY_CDTC		0x16
396 #define	PHY_CDTC_ENB		0x0001
397 #define	PHY_CDTC_POFF		8
398 #define	ATPHY_CDTS		0x1C
399 #define	PHY_CDTS_STAT_OK	0x0000
400 #define	PHY_CDTS_STAT_SHORT	0x0100
401 #define	PHY_CDTS_STAT_OPEN	0x0200
402 #define	PHY_CDTS_STAT_INVAL	0x0300
403 #define	PHY_CDTS_STAT_MASK	0x0300
404 
405 	/* Check power saving mode. Magic from Linux. */
406 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
407 	for (linkup = 0, pn = 0; pn < 4; pn++) {
408 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
409 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
410 		for (i = 200; i > 0; i--) {
411 			DELAY(1000);
412 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
413 			    ATPHY_CDTC);
414 			if ((reg & PHY_CDTC_ENB) == 0)
415 				break;
416 		}
417 		DELAY(1000);
418 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
419 		    ATPHY_CDTS);
420 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
421 			linkup++;
422 			break;
423 		}
424 	}
425 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
426 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
427 	if (linkup == 0) {
428 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429 		    ATPHY_DBG_ADDR, 0);
430 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431 		    ATPHY_DBG_DATA, 0x124E);
432 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
433 		    ATPHY_DBG_ADDR, 1);
434 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
435 		    ATPHY_DBG_DATA);
436 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
437 		    ATPHY_DBG_DATA, reg | 0x03);
438 		/* XXX */
439 		DELAY(1500 * 1000);
440 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441 		    ATPHY_DBG_ADDR, 0);
442 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
443 		    ATPHY_DBG_DATA, 0x024E);
444     }
445 
446 #undef	ATPHY_DBG_ADDR
447 #undef	ATPHY_DBG_DATA
448 #undef	ATPHY_CDTC
449 #undef	PHY_CDTC_ENB
450 #undef	PHY_CDTC_POFF
451 #undef	ATPHY_CDTS
452 #undef	PHY_CDTS_STAT_OK
453 #undef	PHY_CDTS_STAT_SHORT
454 #undef	PHY_CDTS_STAT_OPEN
455 #undef	PHY_CDTS_STAT_INVAL
456 #undef	PHY_CDTS_STAT_MASK
457 }
458 
459 static int
460 age_attach(device_t dev)
461 {
462 	struct age_softc *sc;
463 	struct ifnet *ifp;
464 	uint16_t burst;
465 	int error, i, msic, msixc, pmc;
466 
467 	error = 0;
468 	sc = device_get_softc(dev);
469 	sc->age_dev = dev;
470 
471 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
472 	    MTX_DEF);
473 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
474 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
475 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
476 
477 	/* Map the device. */
478 	pci_enable_busmaster(dev);
479 	sc->age_res_spec = age_res_spec_mem;
480 	sc->age_irq_spec = age_irq_spec_legacy;
481 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
482 	if (error != 0) {
483 		device_printf(dev, "cannot allocate memory resources.\n");
484 		goto fail;
485 	}
486 
487 	/* Set PHY address. */
488 	sc->age_phyaddr = AGE_PHY_ADDR;
489 
490 	/* Reset PHY. */
491 	age_phy_reset(sc);
492 
493 	/* Reset the ethernet controller. */
494 	age_reset(sc);
495 
496 	/* Get PCI and chip id/revision. */
497 	sc->age_rev = pci_get_revid(dev);
498 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
499 	    MASTER_CHIP_REV_SHIFT;
500 	if (bootverbose) {
501 		device_printf(dev, "PCI device revision : 0x%04x\n",
502 		    sc->age_rev);
503 		device_printf(dev, "Chip id/revision : 0x%04x\n",
504 		    sc->age_chip_rev);
505 	}
506 
507 	/*
508 	 * XXX
509 	 * Unintialized hardware returns an invalid chip id/revision
510 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
511 	 * unplugged cable results in putting hardware into automatic
512 	 * power down mode which in turn returns invalld chip revision.
513 	 */
514 	if (sc->age_chip_rev == 0xFFFF) {
515 		device_printf(dev,"invalid chip revision : 0x%04x -- "
516 		    "not initialized?\n", sc->age_chip_rev);
517 		error = ENXIO;
518 		goto fail;
519 	}
520 
521 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
522 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
523 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
524 
525 	/* Allocate IRQ resources. */
526 	msixc = pci_msix_count(dev);
527 	msic = pci_msi_count(dev);
528 	if (bootverbose) {
529 		device_printf(dev, "MSIX count : %d\n", msixc);
530 		device_printf(dev, "MSI count : %d\n", msic);
531 	}
532 
533 	/* Prefer MSIX over MSI. */
534 	if (msix_disable == 0 || msi_disable == 0) {
535 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
536 		    pci_alloc_msix(dev, &msixc) == 0) {
537 			if (msic == AGE_MSIX_MESSAGES) {
538 				device_printf(dev, "Using %d MSIX messages.\n",
539 				    msixc);
540 				sc->age_flags |= AGE_FLAG_MSIX;
541 				sc->age_irq_spec = age_irq_spec_msix;
542 			} else
543 				pci_release_msi(dev);
544 		}
545 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
546 		    msic == AGE_MSI_MESSAGES &&
547 		    pci_alloc_msi(dev, &msic) == 0) {
548 			if (msic == AGE_MSI_MESSAGES) {
549 				device_printf(dev, "Using %d MSI messages.\n",
550 				    msic);
551 				sc->age_flags |= AGE_FLAG_MSI;
552 				sc->age_irq_spec = age_irq_spec_msi;
553 			} else
554 				pci_release_msi(dev);
555 		}
556 	}
557 
558 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
559 	if (error != 0) {
560 		device_printf(dev, "cannot allocate IRQ resources.\n");
561 		goto fail;
562 	}
563 
564 
565 	/* Get DMA parameters from PCIe device control register. */
566 	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
567 		sc->age_flags |= AGE_FLAG_PCIE;
568 		burst = pci_read_config(dev, i + 0x08, 2);
569 		/* Max read request size. */
570 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
571 		    DMA_CFG_RD_BURST_SHIFT;
572 		/* Max payload size. */
573 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
574 		    DMA_CFG_WR_BURST_SHIFT;
575 		if (bootverbose) {
576 			device_printf(dev, "Read request size : %d bytes.\n",
577 			    128 << ((burst >> 12) & 0x07));
578 			device_printf(dev, "TLP payload size : %d bytes.\n",
579 			    128 << ((burst >> 5) & 0x07));
580 		}
581 	} else {
582 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
583 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
584 	}
585 
586 	/* Create device sysctl node. */
587 	age_sysctl_node(sc);
588 
589 	if ((error = age_dma_alloc(sc) != 0))
590 		goto fail;
591 
592 	/* Load station address. */
593 	age_get_macaddr(sc);
594 
595 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
596 	if (ifp == NULL) {
597 		device_printf(dev, "cannot allocate ifnet structure.\n");
598 		error = ENXIO;
599 		goto fail;
600 	}
601 
602 	ifp->if_softc = sc;
603 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
604 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
605 	ifp->if_ioctl = age_ioctl;
606 	ifp->if_start = age_start;
607 	ifp->if_init = age_init;
608 	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
609 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
610 	IFQ_SET_READY(&ifp->if_snd);
611 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
612 	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
613 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
614 		sc->age_flags |= AGE_FLAG_PMCAP;
615 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
616 	}
617 	ifp->if_capenable = ifp->if_capabilities;
618 
619 	/* Set up MII bus. */
620 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
621 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
622 	    0);
623 	if (error != 0) {
624 		device_printf(dev, "attaching PHYs failed\n");
625 		goto fail;
626 	}
627 
628 	ether_ifattach(ifp, sc->age_eaddr);
629 
630 	/* VLAN capability setup. */
631 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
632 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
633 	ifp->if_capenable = ifp->if_capabilities;
634 
635 	/* Tell the upper layer(s) we support long frames. */
636 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
637 
638 	/* Create local taskq. */
639 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
640 	    taskqueue_thread_enqueue, &sc->age_tq);
641 	if (sc->age_tq == NULL) {
642 		device_printf(dev, "could not create taskqueue.\n");
643 		ether_ifdetach(ifp);
644 		error = ENXIO;
645 		goto fail;
646 	}
647 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
648 	    device_get_nameunit(sc->age_dev));
649 
650 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
651 		msic = AGE_MSIX_MESSAGES;
652 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
653 		msic = AGE_MSI_MESSAGES;
654 	else
655 		msic = 1;
656 	for (i = 0; i < msic; i++) {
657 		error = bus_setup_intr(dev, sc->age_irq[i],
658 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
659 		    &sc->age_intrhand[i]);
660 		if (error != 0)
661 			break;
662 	}
663 	if (error != 0) {
664 		device_printf(dev, "could not set up interrupt handler.\n");
665 		taskqueue_free(sc->age_tq);
666 		sc->age_tq = NULL;
667 		ether_ifdetach(ifp);
668 		goto fail;
669 	}
670 
671 fail:
672 	if (error != 0)
673 		age_detach(dev);
674 
675 	return (error);
676 }
677 
678 static int
679 age_detach(device_t dev)
680 {
681 	struct age_softc *sc;
682 	struct ifnet *ifp;
683 	int i, msic;
684 
685 	sc = device_get_softc(dev);
686 
687 	ifp = sc->age_ifp;
688 	if (device_is_attached(dev)) {
689 		AGE_LOCK(sc);
690 		sc->age_flags |= AGE_FLAG_DETACH;
691 		age_stop(sc);
692 		AGE_UNLOCK(sc);
693 		callout_drain(&sc->age_tick_ch);
694 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
695 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
696 		ether_ifdetach(ifp);
697 	}
698 
699 	if (sc->age_tq != NULL) {
700 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
701 		taskqueue_free(sc->age_tq);
702 		sc->age_tq = NULL;
703 	}
704 
705 	if (sc->age_miibus != NULL) {
706 		device_delete_child(dev, sc->age_miibus);
707 		sc->age_miibus = NULL;
708 	}
709 	bus_generic_detach(dev);
710 	age_dma_free(sc);
711 
712 	if (ifp != NULL) {
713 		if_free(ifp);
714 		sc->age_ifp = NULL;
715 	}
716 
717 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
718 		msic = AGE_MSIX_MESSAGES;
719 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
720 		msic = AGE_MSI_MESSAGES;
721 	else
722 		msic = 1;
723 	for (i = 0; i < msic; i++) {
724 		if (sc->age_intrhand[i] != NULL) {
725 			bus_teardown_intr(dev, sc->age_irq[i],
726 			    sc->age_intrhand[i]);
727 			sc->age_intrhand[i] = NULL;
728 		}
729 	}
730 
731 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
732 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
733 		pci_release_msi(dev);
734 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
735 	mtx_destroy(&sc->age_mtx);
736 
737 	return (0);
738 }
739 
740 static void
741 age_sysctl_node(struct age_softc *sc)
742 {
743 	int error;
744 
745 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
746 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
747 	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
748 	    "I", "Statistics");
749 
750 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
751 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
752 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
753 	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
754 
755 	/* Pull in device tunables. */
756 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
757 	error = resource_int_value(device_get_name(sc->age_dev),
758 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
759 	if (error == 0) {
760 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
761 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
762 			device_printf(sc->age_dev,
763 			    "int_mod value out of range; using default: %d\n",
764 			    AGE_IM_TIMER_DEFAULT);
765 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
766 		}
767 	}
768 
769 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
770 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
771 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
772 	    0, sysctl_hw_age_proc_limit, "I",
773 	    "max number of Rx events to process");
774 
775 	/* Pull in device tunables. */
776 	sc->age_process_limit = AGE_PROC_DEFAULT;
777 	error = resource_int_value(device_get_name(sc->age_dev),
778 	    device_get_unit(sc->age_dev), "process_limit",
779 	    &sc->age_process_limit);
780 	if (error == 0) {
781 		if (sc->age_process_limit < AGE_PROC_MIN ||
782 		    sc->age_process_limit > AGE_PROC_MAX) {
783 			device_printf(sc->age_dev,
784 			    "process_limit value out of range; "
785 			    "using default: %d\n", AGE_PROC_DEFAULT);
786 			sc->age_process_limit = AGE_PROC_DEFAULT;
787 		}
788 	}
789 }
790 
791 struct age_dmamap_arg {
792 	bus_addr_t	age_busaddr;
793 };
794 
795 static void
796 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
797 {
798 	struct age_dmamap_arg *ctx;
799 
800 	if (error != 0)
801 		return;
802 
803 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
804 
805 	ctx = (struct age_dmamap_arg *)arg;
806 	ctx->age_busaddr = segs[0].ds_addr;
807 }
808 
809 /*
810  * Attansic L1 controller have single register to specify high
811  * address part of DMA blocks. So all descriptor structures and
812  * DMA memory blocks should have the same high address of given
813  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
814  */
815 static int
816 age_check_boundary(struct age_softc *sc)
817 {
818 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
819 	bus_addr_t cmb_block_end, smb_block_end;
820 
821 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
822 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
823 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
824 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
825 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
826 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
827 
828 	if ((AGE_ADDR_HI(tx_ring_end) !=
829 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
830 	    (AGE_ADDR_HI(rx_ring_end) !=
831 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
832 	    (AGE_ADDR_HI(rr_ring_end) !=
833 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
834 	    (AGE_ADDR_HI(cmb_block_end) !=
835 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
836 	    (AGE_ADDR_HI(smb_block_end) !=
837 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
838 		return (EFBIG);
839 
840 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
841 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
842 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
843 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
844 		return (EFBIG);
845 
846 	return (0);
847 }
848 
849 static int
850 age_dma_alloc(struct age_softc *sc)
851 {
852 	struct age_txdesc *txd;
853 	struct age_rxdesc *rxd;
854 	bus_addr_t lowaddr;
855 	struct age_dmamap_arg ctx;
856 	int error, i;
857 
858 	lowaddr = BUS_SPACE_MAXADDR;
859 
860 again:
861 	/* Create parent ring/DMA block tag. */
862 	error = bus_dma_tag_create(
863 	    bus_get_dma_tag(sc->age_dev), /* parent */
864 	    1, 0,			/* alignment, boundary */
865 	    lowaddr,			/* lowaddr */
866 	    BUS_SPACE_MAXADDR,		/* highaddr */
867 	    NULL, NULL,			/* filter, filterarg */
868 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
869 	    0,				/* nsegments */
870 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
871 	    0,				/* flags */
872 	    NULL, NULL,			/* lockfunc, lockarg */
873 	    &sc->age_cdata.age_parent_tag);
874 	if (error != 0) {
875 		device_printf(sc->age_dev,
876 		    "could not create parent DMA tag.\n");
877 		goto fail;
878 	}
879 
880 	/* Create tag for Tx ring. */
881 	error = bus_dma_tag_create(
882 	    sc->age_cdata.age_parent_tag, /* parent */
883 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
884 	    BUS_SPACE_MAXADDR,		/* lowaddr */
885 	    BUS_SPACE_MAXADDR,		/* highaddr */
886 	    NULL, NULL,			/* filter, filterarg */
887 	    AGE_TX_RING_SZ,		/* maxsize */
888 	    1,				/* nsegments */
889 	    AGE_TX_RING_SZ,		/* maxsegsize */
890 	    0,				/* flags */
891 	    NULL, NULL,			/* lockfunc, lockarg */
892 	    &sc->age_cdata.age_tx_ring_tag);
893 	if (error != 0) {
894 		device_printf(sc->age_dev,
895 		    "could not create Tx ring DMA tag.\n");
896 		goto fail;
897 	}
898 
899 	/* Create tag for Rx ring. */
900 	error = bus_dma_tag_create(
901 	    sc->age_cdata.age_parent_tag, /* parent */
902 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
903 	    BUS_SPACE_MAXADDR,		/* lowaddr */
904 	    BUS_SPACE_MAXADDR,		/* highaddr */
905 	    NULL, NULL,			/* filter, filterarg */
906 	    AGE_RX_RING_SZ,		/* maxsize */
907 	    1,				/* nsegments */
908 	    AGE_RX_RING_SZ,		/* maxsegsize */
909 	    0,				/* flags */
910 	    NULL, NULL,			/* lockfunc, lockarg */
911 	    &sc->age_cdata.age_rx_ring_tag);
912 	if (error != 0) {
913 		device_printf(sc->age_dev,
914 		    "could not create Rx ring DMA tag.\n");
915 		goto fail;
916 	}
917 
918 	/* Create tag for Rx return ring. */
919 	error = bus_dma_tag_create(
920 	    sc->age_cdata.age_parent_tag, /* parent */
921 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
922 	    BUS_SPACE_MAXADDR,		/* lowaddr */
923 	    BUS_SPACE_MAXADDR,		/* highaddr */
924 	    NULL, NULL,			/* filter, filterarg */
925 	    AGE_RR_RING_SZ,		/* maxsize */
926 	    1,				/* nsegments */
927 	    AGE_RR_RING_SZ,		/* maxsegsize */
928 	    0,				/* flags */
929 	    NULL, NULL,			/* lockfunc, lockarg */
930 	    &sc->age_cdata.age_rr_ring_tag);
931 	if (error != 0) {
932 		device_printf(sc->age_dev,
933 		    "could not create Rx return ring DMA tag.\n");
934 		goto fail;
935 	}
936 
937 	/* Create tag for coalesing message block. */
938 	error = bus_dma_tag_create(
939 	    sc->age_cdata.age_parent_tag, /* parent */
940 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
941 	    BUS_SPACE_MAXADDR,		/* lowaddr */
942 	    BUS_SPACE_MAXADDR,		/* highaddr */
943 	    NULL, NULL,			/* filter, filterarg */
944 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
945 	    1,				/* nsegments */
946 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
947 	    0,				/* flags */
948 	    NULL, NULL,			/* lockfunc, lockarg */
949 	    &sc->age_cdata.age_cmb_block_tag);
950 	if (error != 0) {
951 		device_printf(sc->age_dev,
952 		    "could not create CMB DMA tag.\n");
953 		goto fail;
954 	}
955 
956 	/* Create tag for statistics message block. */
957 	error = bus_dma_tag_create(
958 	    sc->age_cdata.age_parent_tag, /* parent */
959 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
960 	    BUS_SPACE_MAXADDR,		/* lowaddr */
961 	    BUS_SPACE_MAXADDR,		/* highaddr */
962 	    NULL, NULL,			/* filter, filterarg */
963 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
964 	    1,				/* nsegments */
965 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
966 	    0,				/* flags */
967 	    NULL, NULL,			/* lockfunc, lockarg */
968 	    &sc->age_cdata.age_smb_block_tag);
969 	if (error != 0) {
970 		device_printf(sc->age_dev,
971 		    "could not create SMB DMA tag.\n");
972 		goto fail;
973 	}
974 
975 	/* Allocate DMA'able memory and load the DMA map. */
976 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
977 	    (void **)&sc->age_rdata.age_tx_ring,
978 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
979 	    &sc->age_cdata.age_tx_ring_map);
980 	if (error != 0) {
981 		device_printf(sc->age_dev,
982 		    "could not allocate DMA'able memory for Tx ring.\n");
983 		goto fail;
984 	}
985 	ctx.age_busaddr = 0;
986 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
987 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
988 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
989 	if (error != 0 || ctx.age_busaddr == 0) {
990 		device_printf(sc->age_dev,
991 		    "could not load DMA'able memory for Tx ring.\n");
992 		goto fail;
993 	}
994 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
995 	/* Rx ring */
996 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
997 	    (void **)&sc->age_rdata.age_rx_ring,
998 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
999 	    &sc->age_cdata.age_rx_ring_map);
1000 	if (error != 0) {
1001 		device_printf(sc->age_dev,
1002 		    "could not allocate DMA'able memory for Rx ring.\n");
1003 		goto fail;
1004 	}
1005 	ctx.age_busaddr = 0;
1006 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1007 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1008 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1009 	if (error != 0 || ctx.age_busaddr == 0) {
1010 		device_printf(sc->age_dev,
1011 		    "could not load DMA'able memory for Rx ring.\n");
1012 		goto fail;
1013 	}
1014 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1015 	/* Rx return ring */
1016 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1017 	    (void **)&sc->age_rdata.age_rr_ring,
1018 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1019 	    &sc->age_cdata.age_rr_ring_map);
1020 	if (error != 0) {
1021 		device_printf(sc->age_dev,
1022 		    "could not allocate DMA'able memory for Rx return ring.\n");
1023 		goto fail;
1024 	}
1025 	ctx.age_busaddr = 0;
1026 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1027 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1028 	    AGE_RR_RING_SZ, age_dmamap_cb,
1029 	    &ctx, 0);
1030 	if (error != 0 || ctx.age_busaddr == 0) {
1031 		device_printf(sc->age_dev,
1032 		    "could not load DMA'able memory for Rx return ring.\n");
1033 		goto fail;
1034 	}
1035 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1036 	/* CMB block */
1037 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1038 	    (void **)&sc->age_rdata.age_cmb_block,
1039 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1040 	    &sc->age_cdata.age_cmb_block_map);
1041 	if (error != 0) {
1042 		device_printf(sc->age_dev,
1043 		    "could not allocate DMA'able memory for CMB block.\n");
1044 		goto fail;
1045 	}
1046 	ctx.age_busaddr = 0;
1047 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1048 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1049 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1050 	if (error != 0 || ctx.age_busaddr == 0) {
1051 		device_printf(sc->age_dev,
1052 		    "could not load DMA'able memory for CMB block.\n");
1053 		goto fail;
1054 	}
1055 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1056 	/* SMB block */
1057 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1058 	    (void **)&sc->age_rdata.age_smb_block,
1059 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1060 	    &sc->age_cdata.age_smb_block_map);
1061 	if (error != 0) {
1062 		device_printf(sc->age_dev,
1063 		    "could not allocate DMA'able memory for SMB block.\n");
1064 		goto fail;
1065 	}
1066 	ctx.age_busaddr = 0;
1067 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1068 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1069 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1070 	if (error != 0 || ctx.age_busaddr == 0) {
1071 		device_printf(sc->age_dev,
1072 		    "could not load DMA'able memory for SMB block.\n");
1073 		goto fail;
1074 	}
1075 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1076 
1077 	/*
1078 	 * All ring buffer and DMA blocks should have the same
1079 	 * high address part of 64bit DMA address space.
1080 	 */
1081 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1082 	    (error = age_check_boundary(sc)) != 0) {
1083 		device_printf(sc->age_dev, "4GB boundary crossed, "
1084 		    "switching to 32bit DMA addressing mode.\n");
1085 		age_dma_free(sc);
1086 		/* Limit DMA address space to 32bit and try again. */
1087 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1088 		goto again;
1089 	}
1090 
1091 	/*
1092 	 * Create Tx/Rx buffer parent tag.
1093 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1094 	 * so it needs separate parent DMA tag.
1095 	 */
1096 	error = bus_dma_tag_create(
1097 	    bus_get_dma_tag(sc->age_dev), /* parent */
1098 	    1, 0,			/* alignment, boundary */
1099 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1100 	    BUS_SPACE_MAXADDR,		/* highaddr */
1101 	    NULL, NULL,			/* filter, filterarg */
1102 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1103 	    0,				/* nsegments */
1104 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1105 	    0,				/* flags */
1106 	    NULL, NULL,			/* lockfunc, lockarg */
1107 	    &sc->age_cdata.age_buffer_tag);
1108 	if (error != 0) {
1109 		device_printf(sc->age_dev,
1110 		    "could not create parent buffer DMA tag.\n");
1111 		goto fail;
1112 	}
1113 
1114 	/* Create tag for Tx buffers. */
1115 	error = bus_dma_tag_create(
1116 	    sc->age_cdata.age_buffer_tag, /* parent */
1117 	    1, 0,			/* alignment, boundary */
1118 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1119 	    BUS_SPACE_MAXADDR,		/* highaddr */
1120 	    NULL, NULL,			/* filter, filterarg */
1121 	    AGE_TSO_MAXSIZE,		/* maxsize */
1122 	    AGE_MAXTXSEGS,		/* nsegments */
1123 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1124 	    0,				/* flags */
1125 	    NULL, NULL,			/* lockfunc, lockarg */
1126 	    &sc->age_cdata.age_tx_tag);
1127 	if (error != 0) {
1128 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1129 		goto fail;
1130 	}
1131 
1132 	/* Create tag for Rx buffers. */
1133 	error = bus_dma_tag_create(
1134 	    sc->age_cdata.age_buffer_tag, /* parent */
1135 	    1, 0,			/* alignment, boundary */
1136 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1137 	    BUS_SPACE_MAXADDR,		/* highaddr */
1138 	    NULL, NULL,			/* filter, filterarg */
1139 	    MCLBYTES,			/* maxsize */
1140 	    1,				/* nsegments */
1141 	    MCLBYTES,			/* maxsegsize */
1142 	    0,				/* flags */
1143 	    NULL, NULL,			/* lockfunc, lockarg */
1144 	    &sc->age_cdata.age_rx_tag);
1145 	if (error != 0) {
1146 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1147 		goto fail;
1148 	}
1149 
1150 	/* Create DMA maps for Tx buffers. */
1151 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1152 		txd = &sc->age_cdata.age_txdesc[i];
1153 		txd->tx_m = NULL;
1154 		txd->tx_dmamap = NULL;
1155 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1156 		    &txd->tx_dmamap);
1157 		if (error != 0) {
1158 			device_printf(sc->age_dev,
1159 			    "could not create Tx dmamap.\n");
1160 			goto fail;
1161 		}
1162 	}
1163 	/* Create DMA maps for Rx buffers. */
1164 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1165 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1166 		device_printf(sc->age_dev,
1167 		    "could not create spare Rx dmamap.\n");
1168 		goto fail;
1169 	}
1170 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1171 		rxd = &sc->age_cdata.age_rxdesc[i];
1172 		rxd->rx_m = NULL;
1173 		rxd->rx_dmamap = NULL;
1174 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1175 		    &rxd->rx_dmamap);
1176 		if (error != 0) {
1177 			device_printf(sc->age_dev,
1178 			    "could not create Rx dmamap.\n");
1179 			goto fail;
1180 		}
1181 	}
1182 
1183 fail:
1184 	return (error);
1185 }
1186 
1187 static void
1188 age_dma_free(struct age_softc *sc)
1189 {
1190 	struct age_txdesc *txd;
1191 	struct age_rxdesc *rxd;
1192 	int i;
1193 
1194 	/* Tx buffers */
1195 	if (sc->age_cdata.age_tx_tag != NULL) {
1196 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1197 			txd = &sc->age_cdata.age_txdesc[i];
1198 			if (txd->tx_dmamap != NULL) {
1199 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1200 				    txd->tx_dmamap);
1201 				txd->tx_dmamap = NULL;
1202 			}
1203 		}
1204 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1205 		sc->age_cdata.age_tx_tag = NULL;
1206 	}
1207 	/* Rx buffers */
1208 	if (sc->age_cdata.age_rx_tag != NULL) {
1209 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1210 			rxd = &sc->age_cdata.age_rxdesc[i];
1211 			if (rxd->rx_dmamap != NULL) {
1212 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1213 				    rxd->rx_dmamap);
1214 				rxd->rx_dmamap = NULL;
1215 			}
1216 		}
1217 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1218 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1219 			    sc->age_cdata.age_rx_sparemap);
1220 			sc->age_cdata.age_rx_sparemap = NULL;
1221 		}
1222 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1223 		sc->age_cdata.age_rx_tag = NULL;
1224 	}
1225 	/* Tx ring. */
1226 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1227 		if (sc->age_cdata.age_tx_ring_map != NULL)
1228 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1229 			    sc->age_cdata.age_tx_ring_map);
1230 		if (sc->age_cdata.age_tx_ring_map != NULL &&
1231 		    sc->age_rdata.age_tx_ring != NULL)
1232 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1233 			    sc->age_rdata.age_tx_ring,
1234 			    sc->age_cdata.age_tx_ring_map);
1235 		sc->age_rdata.age_tx_ring = NULL;
1236 		sc->age_cdata.age_tx_ring_map = NULL;
1237 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1238 		sc->age_cdata.age_tx_ring_tag = NULL;
1239 	}
1240 	/* Rx ring. */
1241 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1242 		if (sc->age_cdata.age_rx_ring_map != NULL)
1243 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1244 			    sc->age_cdata.age_rx_ring_map);
1245 		if (sc->age_cdata.age_rx_ring_map != NULL &&
1246 		    sc->age_rdata.age_rx_ring != NULL)
1247 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1248 			    sc->age_rdata.age_rx_ring,
1249 			    sc->age_cdata.age_rx_ring_map);
1250 		sc->age_rdata.age_rx_ring = NULL;
1251 		sc->age_cdata.age_rx_ring_map = NULL;
1252 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1253 		sc->age_cdata.age_rx_ring_tag = NULL;
1254 	}
1255 	/* Rx return ring. */
1256 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1257 		if (sc->age_cdata.age_rr_ring_map != NULL)
1258 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1259 			    sc->age_cdata.age_rr_ring_map);
1260 		if (sc->age_cdata.age_rr_ring_map != NULL &&
1261 		    sc->age_rdata.age_rr_ring != NULL)
1262 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1263 			    sc->age_rdata.age_rr_ring,
1264 			    sc->age_cdata.age_rr_ring_map);
1265 		sc->age_rdata.age_rr_ring = NULL;
1266 		sc->age_cdata.age_rr_ring_map = NULL;
1267 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1268 		sc->age_cdata.age_rr_ring_tag = NULL;
1269 	}
1270 	/* CMB block */
1271 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1272 		if (sc->age_cdata.age_cmb_block_map != NULL)
1273 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1274 			    sc->age_cdata.age_cmb_block_map);
1275 		if (sc->age_cdata.age_cmb_block_map != NULL &&
1276 		    sc->age_rdata.age_cmb_block != NULL)
1277 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1278 			    sc->age_rdata.age_cmb_block,
1279 			    sc->age_cdata.age_cmb_block_map);
1280 		sc->age_rdata.age_cmb_block = NULL;
1281 		sc->age_cdata.age_cmb_block_map = NULL;
1282 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1283 		sc->age_cdata.age_cmb_block_tag = NULL;
1284 	}
1285 	/* SMB block */
1286 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1287 		if (sc->age_cdata.age_smb_block_map != NULL)
1288 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1289 			    sc->age_cdata.age_smb_block_map);
1290 		if (sc->age_cdata.age_smb_block_map != NULL &&
1291 		    sc->age_rdata.age_smb_block != NULL)
1292 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1293 			    sc->age_rdata.age_smb_block,
1294 			    sc->age_cdata.age_smb_block_map);
1295 		sc->age_rdata.age_smb_block = NULL;
1296 		sc->age_cdata.age_smb_block_map = NULL;
1297 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1298 		sc->age_cdata.age_smb_block_tag = NULL;
1299 	}
1300 
1301 	if (sc->age_cdata.age_buffer_tag != NULL) {
1302 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1303 		sc->age_cdata.age_buffer_tag = NULL;
1304 	}
1305 	if (sc->age_cdata.age_parent_tag != NULL) {
1306 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1307 		sc->age_cdata.age_parent_tag = NULL;
1308 	}
1309 }
1310 
1311 /*
1312  *	Make sure the interface is stopped at reboot time.
1313  */
1314 static int
1315 age_shutdown(device_t dev)
1316 {
1317 
1318 	return (age_suspend(dev));
1319 }
1320 
1321 static void
1322 age_setwol(struct age_softc *sc)
1323 {
1324 	struct ifnet *ifp;
1325 	struct mii_data *mii;
1326 	uint32_t reg, pmcs;
1327 	uint16_t pmstat;
1328 	int aneg, i, pmc;
1329 
1330 	AGE_LOCK_ASSERT(sc);
1331 
1332 	if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1333 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1334 		/*
1335 		 * No PME capability, PHY power down.
1336 		 * XXX
1337 		 * Due to an unknown reason powering down PHY resulted
1338 		 * in unexpected results such as inaccessbility of
1339 		 * hardware of freshly rebooted system. Disable
1340 		 * powering down PHY until I got more information for
1341 		 * Attansic/Atheros PHY hardwares.
1342 		 */
1343 #ifdef notyet
1344 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1345 		    MII_BMCR, BMCR_PDOWN);
1346 #endif
1347 		return;
1348 	}
1349 
1350 	ifp = sc->age_ifp;
1351 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1352 		/*
1353 		 * Note, this driver resets the link speed to 10/100Mbps with
1354 		 * auto-negotiation but we don't know whether that operation
1355 		 * would succeed or not as it have no control after powering
1356 		 * off. If the renegotiation fail WOL may not work. Running
1357 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1358 		 * specified in PCI specification and that would result in
1359 		 * complete shutdowning power to ethernet controller.
1360 		 *
1361 		 * TODO
1362 		 *  Save current negotiated media speed/duplex/flow-control
1363 		 *  to softc and restore the same link again after resuming.
1364 		 *  PHY handling such as power down/resetting to 100Mbps
1365 		 *  may be better handled in suspend method in phy driver.
1366 		 */
1367 		mii = device_get_softc(sc->age_miibus);
1368 		mii_pollstat(mii);
1369 		aneg = 0;
1370 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1371 			switch IFM_SUBTYPE(mii->mii_media_active) {
1372 			case IFM_10_T:
1373 			case IFM_100_TX:
1374 				goto got_link;
1375 			case IFM_1000_T:
1376 				aneg++;
1377 			default:
1378 				break;
1379 			}
1380 		}
1381 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1382 		    MII_100T2CR, 0);
1383 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1384 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1385 		    ANAR_10 | ANAR_CSMA);
1386 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1387 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1388 		DELAY(1000);
1389 		if (aneg != 0) {
1390 			/* Poll link state until age(4) get a 10/100 link. */
1391 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1392 				mii_pollstat(mii);
1393 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1394 					switch (IFM_SUBTYPE(
1395 					    mii->mii_media_active)) {
1396 					case IFM_10_T:
1397 					case IFM_100_TX:
1398 						age_mac_config(sc);
1399 						goto got_link;
1400 					default:
1401 						break;
1402 					}
1403 				}
1404 				AGE_UNLOCK(sc);
1405 				pause("agelnk", hz);
1406 				AGE_LOCK(sc);
1407 			}
1408 			if (i == MII_ANEGTICKS_GIGE)
1409 				device_printf(sc->age_dev,
1410 				    "establishing link failed, "
1411 				    "WOL may not work!");
1412 		}
1413 		/*
1414 		 * No link, force MAC to have 100Mbps, full-duplex link.
1415 		 * This is the last resort and may/may not work.
1416 		 */
1417 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1418 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1419 		age_mac_config(sc);
1420 	}
1421 
1422 got_link:
1423 	pmcs = 0;
1424 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1425 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1426 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1427 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1428 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1429 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1430 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1431 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1432 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1433 		reg |= MAC_CFG_RX_ENB;
1434 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1435 	}
1436 
1437 	/* Request PME. */
1438 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1439 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1440 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1441 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1442 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1443 #ifdef notyet
1444 	/* See above for powering down PHY issues. */
1445 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1446 		/* No WOL, PHY power down. */
1447 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1448 		    MII_BMCR, BMCR_PDOWN);
1449 	}
1450 #endif
1451 }
1452 
1453 static int
1454 age_suspend(device_t dev)
1455 {
1456 	struct age_softc *sc;
1457 
1458 	sc = device_get_softc(dev);
1459 
1460 	AGE_LOCK(sc);
1461 	age_stop(sc);
1462 	age_setwol(sc);
1463 	AGE_UNLOCK(sc);
1464 
1465 	return (0);
1466 }
1467 
1468 static int
1469 age_resume(device_t dev)
1470 {
1471 	struct age_softc *sc;
1472 	struct ifnet *ifp;
1473 
1474 	sc = device_get_softc(dev);
1475 
1476 	AGE_LOCK(sc);
1477 	age_phy_reset(sc);
1478 	ifp = sc->age_ifp;
1479 	if ((ifp->if_flags & IFF_UP) != 0)
1480 		age_init_locked(sc);
1481 
1482 	AGE_UNLOCK(sc);
1483 
1484 	return (0);
1485 }
1486 
1487 static int
1488 age_encap(struct age_softc *sc, struct mbuf **m_head)
1489 {
1490 	struct age_txdesc *txd, *txd_last;
1491 	struct tx_desc *desc;
1492 	struct mbuf *m;
1493 	struct ip *ip;
1494 	struct tcphdr *tcp;
1495 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1496 	bus_dmamap_t map;
1497 	uint32_t cflags, ip_off, poff, vtag;
1498 	int error, i, nsegs, prod, si;
1499 
1500 	AGE_LOCK_ASSERT(sc);
1501 
1502 	M_ASSERTPKTHDR((*m_head));
1503 
1504 	m = *m_head;
1505 	ip = NULL;
1506 	tcp = NULL;
1507 	cflags = vtag = 0;
1508 	ip_off = poff = 0;
1509 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1510 		/*
1511 		 * L1 requires offset of TCP/UDP payload in its Tx
1512 		 * descriptor to perform hardware Tx checksum offload.
1513 		 * Additionally, TSO requires IP/TCP header size and
1514 		 * modification of IP/TCP header in order to make TSO
1515 		 * engine work. This kind of operation takes many CPU
1516 		 * cycles on FreeBSD so fast host CPU is needed to get
1517 		 * smooth TSO performance.
1518 		 */
1519 		struct ether_header *eh;
1520 
1521 		if (M_WRITABLE(m) == 0) {
1522 			/* Get a writable copy. */
1523 			m = m_dup(*m_head, M_DONTWAIT);
1524 			/* Release original mbufs. */
1525 			m_freem(*m_head);
1526 			if (m == NULL) {
1527 				*m_head = NULL;
1528 				return (ENOBUFS);
1529 			}
1530 			*m_head = m;
1531 		}
1532 		ip_off = sizeof(struct ether_header);
1533 		m = m_pullup(m, ip_off);
1534 		if (m == NULL) {
1535 			*m_head = NULL;
1536 			return (ENOBUFS);
1537 		}
1538 		eh = mtod(m, struct ether_header *);
1539 		/*
1540 		 * Check if hardware VLAN insertion is off.
1541 		 * Additional check for LLC/SNAP frame?
1542 		 */
1543 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1544 			ip_off = sizeof(struct ether_vlan_header);
1545 			m = m_pullup(m, ip_off);
1546 			if (m == NULL) {
1547 				*m_head = NULL;
1548 				return (ENOBUFS);
1549 			}
1550 		}
1551 		m = m_pullup(m, ip_off + sizeof(struct ip));
1552 		if (m == NULL) {
1553 			*m_head = NULL;
1554 			return (ENOBUFS);
1555 		}
1556 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1557 		poff = ip_off + (ip->ip_hl << 2);
1558 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1559 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1560 			if (m == NULL) {
1561 				*m_head = NULL;
1562 				return (ENOBUFS);
1563 			}
1564 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1565 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1566 			/*
1567 			 * L1 requires IP/TCP header size and offset as
1568 			 * well as TCP pseudo checksum which complicates
1569 			 * TSO configuration. I guess this comes from the
1570 			 * adherence to Microsoft NDIS Large Send
1571 			 * specification which requires insertion of
1572 			 * pseudo checksum by upper stack. The pseudo
1573 			 * checksum that NDIS refers to doesn't include
1574 			 * TCP payload length so age(4) should recompute
1575 			 * the pseudo checksum here. Hopefully this wouldn't
1576 			 * be much burden on modern CPUs.
1577 			 * Reset IP checksum and recompute TCP pseudo
1578 			 * checksum as NDIS specification said.
1579 			 */
1580 			ip->ip_sum = 0;
1581 			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1582 				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1583 				    ip->ip_dst.s_addr,
1584 				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1585 			else
1586 				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1587 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1588 		}
1589 		*m_head = m;
1590 	}
1591 
1592 	si = prod = sc->age_cdata.age_tx_prod;
1593 	txd = &sc->age_cdata.age_txdesc[prod];
1594 	txd_last = txd;
1595 	map = txd->tx_dmamap;
1596 
1597 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1598 	    *m_head, txsegs, &nsegs, 0);
1599 	if (error == EFBIG) {
1600 		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1601 		if (m == NULL) {
1602 			m_freem(*m_head);
1603 			*m_head = NULL;
1604 			return (ENOMEM);
1605 		}
1606 		*m_head = m;
1607 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1608 		    *m_head, txsegs, &nsegs, 0);
1609 		if (error != 0) {
1610 			m_freem(*m_head);
1611 			*m_head = NULL;
1612 			return (error);
1613 		}
1614 	} else if (error != 0)
1615 		return (error);
1616 	if (nsegs == 0) {
1617 		m_freem(*m_head);
1618 		*m_head = NULL;
1619 		return (EIO);
1620 	}
1621 
1622 	/* Check descriptor overrun. */
1623 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1624 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1625 		return (ENOBUFS);
1626 	}
1627 
1628 	m = *m_head;
1629 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1630 		/* Configure TSO. */
1631 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1632 			/* Not TSO but IP/TCP checksum offload. */
1633 			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1634 			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1635 			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1636 		} else {
1637 			/* Request TSO and set MSS. */
1638 			cflags |= AGE_TD_TSO_IPV4;
1639 			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1640 			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1641 			    AGE_TD_TSO_MSS_SHIFT);
1642 		}
1643 		/* Set IP/TCP header size. */
1644 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1645 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1646 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1647 		/* Configure Tx IP/TCP/UDP checksum offload. */
1648 		cflags |= AGE_TD_CSUM;
1649 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1650 			cflags |= AGE_TD_TCPCSUM;
1651 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1652 			cflags |= AGE_TD_UDPCSUM;
1653 		/* Set checksum start offset. */
1654 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1655 		/* Set checksum insertion position of TCP/UDP. */
1656 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1657 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1658 	}
1659 
1660 	/* Configure VLAN hardware tag insertion. */
1661 	if ((m->m_flags & M_VLANTAG) != 0) {
1662 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1663 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1664 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1665 	}
1666 
1667 	desc = NULL;
1668 	for (i = 0; i < nsegs; i++) {
1669 		desc = &sc->age_rdata.age_tx_ring[prod];
1670 		desc->addr = htole64(txsegs[i].ds_addr);
1671 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1672 		desc->flags = htole32(cflags);
1673 		sc->age_cdata.age_tx_cnt++;
1674 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1675 	}
1676 	/* Update producer index. */
1677 	sc->age_cdata.age_tx_prod = prod;
1678 
1679 	/* Set EOP on the last descriptor. */
1680 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1681 	desc = &sc->age_rdata.age_tx_ring[prod];
1682 	desc->flags |= htole32(AGE_TD_EOP);
1683 
1684 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1685 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1686 		desc = &sc->age_rdata.age_tx_ring[si];
1687 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1688 	}
1689 
1690 	/* Swap dmamap of the first and the last. */
1691 	txd = &sc->age_cdata.age_txdesc[prod];
1692 	map = txd_last->tx_dmamap;
1693 	txd_last->tx_dmamap = txd->tx_dmamap;
1694 	txd->tx_dmamap = map;
1695 	txd->tx_m = m;
1696 
1697 	/* Sync descriptors. */
1698 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1699 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1700 	    sc->age_cdata.age_tx_ring_map,
1701 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1702 
1703 	return (0);
1704 }
1705 
1706 static void
1707 age_start(struct ifnet *ifp)
1708 {
1709         struct age_softc *sc;
1710 
1711 	sc = ifp->if_softc;
1712 	AGE_LOCK(sc);
1713 	age_start_locked(ifp);
1714 	AGE_UNLOCK(sc);
1715 }
1716 
1717 static void
1718 age_start_locked(struct ifnet *ifp)
1719 {
1720         struct age_softc *sc;
1721         struct mbuf *m_head;
1722 	int enq;
1723 
1724 	sc = ifp->if_softc;
1725 
1726 	AGE_LOCK_ASSERT(sc);
1727 
1728 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1729 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1730 		return;
1731 
1732 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1733 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1734 		if (m_head == NULL)
1735 			break;
1736 		/*
1737 		 * Pack the data into the transmit ring. If we
1738 		 * don't have room, set the OACTIVE flag and wait
1739 		 * for the NIC to drain the ring.
1740 		 */
1741 		if (age_encap(sc, &m_head)) {
1742 			if (m_head == NULL)
1743 				break;
1744 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1745 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1746 			break;
1747 		}
1748 
1749 		enq++;
1750 		/*
1751 		 * If there's a BPF listener, bounce a copy of this frame
1752 		 * to him.
1753 		 */
1754 		ETHER_BPF_MTAP(ifp, m_head);
1755 	}
1756 
1757 	if (enq > 0) {
1758 		/* Update mbox. */
1759 		AGE_COMMIT_MBOX(sc);
1760 		/* Set a timeout in case the chip goes out to lunch. */
1761 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1762 	}
1763 }
1764 
1765 static void
1766 age_watchdog(struct age_softc *sc)
1767 {
1768 	struct ifnet *ifp;
1769 
1770 	AGE_LOCK_ASSERT(sc);
1771 
1772 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1773 		return;
1774 
1775 	ifp = sc->age_ifp;
1776 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1777 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1778 		ifp->if_oerrors++;
1779 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1780 		age_init_locked(sc);
1781 		return;
1782 	}
1783 	if (sc->age_cdata.age_tx_cnt == 0) {
1784 		if_printf(sc->age_ifp,
1785 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1786 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1787 			age_start_locked(ifp);
1788 		return;
1789 	}
1790 	if_printf(sc->age_ifp, "watchdog timeout\n");
1791 	ifp->if_oerrors++;
1792 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1793 	age_init_locked(sc);
1794 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1795 		age_start_locked(ifp);
1796 }
1797 
1798 static int
1799 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1800 {
1801 	struct age_softc *sc;
1802 	struct ifreq *ifr;
1803 	struct mii_data *mii;
1804 	uint32_t reg;
1805 	int error, mask;
1806 
1807 	sc = ifp->if_softc;
1808 	ifr = (struct ifreq *)data;
1809 	error = 0;
1810 	switch (cmd) {
1811 	case SIOCSIFMTU:
1812 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1813 			error = EINVAL;
1814 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1815 			AGE_LOCK(sc);
1816 			ifp->if_mtu = ifr->ifr_mtu;
1817 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1818 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1819 				age_init_locked(sc);
1820 			}
1821 			AGE_UNLOCK(sc);
1822 		}
1823 		break;
1824 	case SIOCSIFFLAGS:
1825 		AGE_LOCK(sc);
1826 		if ((ifp->if_flags & IFF_UP) != 0) {
1827 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1828 				if (((ifp->if_flags ^ sc->age_if_flags)
1829 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1830 					age_rxfilter(sc);
1831 			} else {
1832 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1833 					age_init_locked(sc);
1834 			}
1835 		} else {
1836 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1837 				age_stop(sc);
1838 		}
1839 		sc->age_if_flags = ifp->if_flags;
1840 		AGE_UNLOCK(sc);
1841 		break;
1842 	case SIOCADDMULTI:
1843 	case SIOCDELMULTI:
1844 		AGE_LOCK(sc);
1845 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1846 			age_rxfilter(sc);
1847 		AGE_UNLOCK(sc);
1848 		break;
1849 	case SIOCSIFMEDIA:
1850 	case SIOCGIFMEDIA:
1851 		mii = device_get_softc(sc->age_miibus);
1852 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1853 		break;
1854 	case SIOCSIFCAP:
1855 		AGE_LOCK(sc);
1856 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1857 		if ((mask & IFCAP_TXCSUM) != 0 &&
1858 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1859 			ifp->if_capenable ^= IFCAP_TXCSUM;
1860 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1861 				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1862 			else
1863 				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1864 		}
1865 		if ((mask & IFCAP_RXCSUM) != 0 &&
1866 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1867 			ifp->if_capenable ^= IFCAP_RXCSUM;
1868 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1869 			reg &= ~MAC_CFG_RXCSUM_ENB;
1870 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1871 				reg |= MAC_CFG_RXCSUM_ENB;
1872 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1873 		}
1874 		if ((mask & IFCAP_TSO4) != 0 &&
1875 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1876 			ifp->if_capenable ^= IFCAP_TSO4;
1877 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1878 				ifp->if_hwassist |= CSUM_TSO;
1879 			else
1880 				ifp->if_hwassist &= ~CSUM_TSO;
1881 		}
1882 
1883 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1884 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1885 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1886 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1887 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1888 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1889 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1890 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1891 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1892 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1893 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1894 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1895 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1896 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1897 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1898 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1899 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1900 			age_rxvlan(sc);
1901 		}
1902 		AGE_UNLOCK(sc);
1903 		VLAN_CAPABILITIES(ifp);
1904 		break;
1905 	default:
1906 		error = ether_ioctl(ifp, cmd, data);
1907 		break;
1908 	}
1909 
1910 	return (error);
1911 }
1912 
1913 static void
1914 age_mac_config(struct age_softc *sc)
1915 {
1916 	struct mii_data *mii;
1917 	uint32_t reg;
1918 
1919 	AGE_LOCK_ASSERT(sc);
1920 
1921 	mii = device_get_softc(sc->age_miibus);
1922 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1923 	reg &= ~MAC_CFG_FULL_DUPLEX;
1924 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1925 	reg &= ~MAC_CFG_SPEED_MASK;
1926 	/* Reprogram MAC with resolved speed/duplex. */
1927 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1928 	case IFM_10_T:
1929 	case IFM_100_TX:
1930 		reg |= MAC_CFG_SPEED_10_100;
1931 		break;
1932 	case IFM_1000_T:
1933 		reg |= MAC_CFG_SPEED_1000;
1934 		break;
1935 	}
1936 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1937 		reg |= MAC_CFG_FULL_DUPLEX;
1938 #ifdef notyet
1939 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1940 			reg |= MAC_CFG_TX_FC;
1941 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1942 			reg |= MAC_CFG_RX_FC;
1943 #endif
1944 	}
1945 
1946 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1947 }
1948 
1949 static void
1950 age_link_task(void *arg, int pending)
1951 {
1952 	struct age_softc *sc;
1953 	struct mii_data *mii;
1954 	struct ifnet *ifp;
1955 	uint32_t reg;
1956 
1957 	sc = (struct age_softc *)arg;
1958 
1959 	AGE_LOCK(sc);
1960 	mii = device_get_softc(sc->age_miibus);
1961 	ifp = sc->age_ifp;
1962 	if (mii == NULL || ifp == NULL ||
1963 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1964 		AGE_UNLOCK(sc);
1965 		return;
1966 	}
1967 
1968 	sc->age_flags &= ~AGE_FLAG_LINK;
1969 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1970 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1971 		case IFM_10_T:
1972 		case IFM_100_TX:
1973 		case IFM_1000_T:
1974 			sc->age_flags |= AGE_FLAG_LINK;
1975 			break;
1976 		default:
1977 			break;
1978 		}
1979 	}
1980 
1981 	/* Stop Rx/Tx MACs. */
1982 	age_stop_rxmac(sc);
1983 	age_stop_txmac(sc);
1984 
1985 	/* Program MACs with resolved speed/duplex/flow-control. */
1986 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1987 		age_mac_config(sc);
1988 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1989 		/* Restart DMA engine and Tx/Rx MAC. */
1990 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1991 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1992 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1993 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1994 	}
1995 
1996 	AGE_UNLOCK(sc);
1997 }
1998 
1999 static void
2000 age_stats_update(struct age_softc *sc)
2001 {
2002 	struct age_stats *stat;
2003 	struct smb *smb;
2004 	struct ifnet *ifp;
2005 
2006 	AGE_LOCK_ASSERT(sc);
2007 
2008 	stat = &sc->age_stat;
2009 
2010 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2011 	    sc->age_cdata.age_smb_block_map,
2012 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2013 
2014 	smb = sc->age_rdata.age_smb_block;
2015 	if (smb->updated == 0)
2016 		return;
2017 
2018 	ifp = sc->age_ifp;
2019 	/* Rx stats. */
2020 	stat->rx_frames += smb->rx_frames;
2021 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2022 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2023 	stat->rx_pause_frames += smb->rx_pause_frames;
2024 	stat->rx_control_frames += smb->rx_control_frames;
2025 	stat->rx_crcerrs += smb->rx_crcerrs;
2026 	stat->rx_lenerrs += smb->rx_lenerrs;
2027 	stat->rx_bytes += smb->rx_bytes;
2028 	stat->rx_runts += smb->rx_runts;
2029 	stat->rx_fragments += smb->rx_fragments;
2030 	stat->rx_pkts_64 += smb->rx_pkts_64;
2031 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2032 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2033 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2034 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2035 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2036 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2037 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2038 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2039 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2040 	stat->rx_alignerrs += smb->rx_alignerrs;
2041 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2042 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2043 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2044 
2045 	/* Tx stats. */
2046 	stat->tx_frames += smb->tx_frames;
2047 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2048 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2049 	stat->tx_pause_frames += smb->tx_pause_frames;
2050 	stat->tx_excess_defer += smb->tx_excess_defer;
2051 	stat->tx_control_frames += smb->tx_control_frames;
2052 	stat->tx_deferred += smb->tx_deferred;
2053 	stat->tx_bytes += smb->tx_bytes;
2054 	stat->tx_pkts_64 += smb->tx_pkts_64;
2055 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2056 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2057 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2058 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2059 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2060 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2061 	stat->tx_single_colls += smb->tx_single_colls;
2062 	stat->tx_multi_colls += smb->tx_multi_colls;
2063 	stat->tx_late_colls += smb->tx_late_colls;
2064 	stat->tx_excess_colls += smb->tx_excess_colls;
2065 	stat->tx_underrun += smb->tx_underrun;
2066 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2067 	stat->tx_lenerrs += smb->tx_lenerrs;
2068 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2069 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2070 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2071 
2072 	/* Update counters in ifnet. */
2073 	ifp->if_opackets += smb->tx_frames;
2074 
2075 	ifp->if_collisions += smb->tx_single_colls +
2076 	    smb->tx_multi_colls + smb->tx_late_colls +
2077 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2078 
2079 	ifp->if_oerrors += smb->tx_excess_colls +
2080 	    smb->tx_late_colls + smb->tx_underrun +
2081 	    smb->tx_pkts_truncated;
2082 
2083 	ifp->if_ipackets += smb->rx_frames;
2084 
2085 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2086 	    smb->rx_runts + smb->rx_pkts_truncated +
2087 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2088 	    smb->rx_alignerrs;
2089 
2090 	/* Update done, clear. */
2091 	smb->updated = 0;
2092 
2093 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2094 	    sc->age_cdata.age_smb_block_map,
2095 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2096 }
2097 
2098 static int
2099 age_intr(void *arg)
2100 {
2101 	struct age_softc *sc;
2102 	uint32_t status;
2103 
2104 	sc = (struct age_softc *)arg;
2105 
2106 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2107 	if (status == 0 || (status & AGE_INTRS) == 0)
2108 		return (FILTER_STRAY);
2109 	/* Disable interrupts. */
2110 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2111 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2112 
2113 	return (FILTER_HANDLED);
2114 }
2115 
2116 static void
2117 age_int_task(void *arg, int pending)
2118 {
2119 	struct age_softc *sc;
2120 	struct ifnet *ifp;
2121 	struct cmb *cmb;
2122 	uint32_t status;
2123 
2124 	sc = (struct age_softc *)arg;
2125 
2126 	AGE_LOCK(sc);
2127 
2128 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2129 	    sc->age_cdata.age_cmb_block_map,
2130 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2131 	cmb = sc->age_rdata.age_cmb_block;
2132 	status = le32toh(cmb->intr_status);
2133 	if (sc->age_morework != 0)
2134 		status |= INTR_CMB_RX;
2135 	if ((status & AGE_INTRS) == 0)
2136 		goto done;
2137 
2138 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2139 	    TPD_CONS_SHIFT;
2140 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2141 	    RRD_PROD_SHIFT;
2142 	/* Let hardware know CMB was served. */
2143 	cmb->intr_status = 0;
2144 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2145 	    sc->age_cdata.age_cmb_block_map,
2146 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2147 
2148 #if 0
2149 	printf("INTR: 0x%08x\n", status);
2150 	status &= ~INTR_DIS_DMA;
2151 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2152 #endif
2153 	ifp = sc->age_ifp;
2154 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2155 		if ((status & INTR_CMB_RX) != 0)
2156 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2157 			    sc->age_process_limit);
2158 		if ((status & INTR_CMB_TX) != 0)
2159 			age_txintr(sc, sc->age_tpd_cons);
2160 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2161 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2162 				device_printf(sc->age_dev,
2163 				    "DMA read error! -- resetting\n");
2164 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2165 				device_printf(sc->age_dev,
2166 				    "DMA write error! -- resetting\n");
2167 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2168 			age_init_locked(sc);
2169 		}
2170 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2171 			age_start_locked(ifp);
2172 		if ((status & INTR_SMB) != 0)
2173 			age_stats_update(sc);
2174 	}
2175 
2176 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2177 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2178 	    sc->age_cdata.age_cmb_block_map,
2179 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2180 	status = le32toh(cmb->intr_status);
2181 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2182 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2183 		AGE_UNLOCK(sc);
2184 		return;
2185 	}
2186 
2187 done:
2188 	/* Re-enable interrupts. */
2189 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2190 	AGE_UNLOCK(sc);
2191 }
2192 
2193 static void
2194 age_txintr(struct age_softc *sc, int tpd_cons)
2195 {
2196 	struct ifnet *ifp;
2197 	struct age_txdesc *txd;
2198 	int cons, prog;
2199 
2200 	AGE_LOCK_ASSERT(sc);
2201 
2202 	ifp = sc->age_ifp;
2203 
2204 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2205 	    sc->age_cdata.age_tx_ring_map,
2206 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2207 
2208 	/*
2209 	 * Go through our Tx list and free mbufs for those
2210 	 * frames which have been transmitted.
2211 	 */
2212 	cons = sc->age_cdata.age_tx_cons;
2213 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2214 		if (sc->age_cdata.age_tx_cnt <= 0)
2215 			break;
2216 		prog++;
2217 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2218 		sc->age_cdata.age_tx_cnt--;
2219 		txd = &sc->age_cdata.age_txdesc[cons];
2220 		/*
2221 		 * Clear Tx descriptors, it's not required but would
2222 		 * help debugging in case of Tx issues.
2223 		 */
2224 		txd->tx_desc->addr = 0;
2225 		txd->tx_desc->len = 0;
2226 		txd->tx_desc->flags = 0;
2227 
2228 		if (txd->tx_m == NULL)
2229 			continue;
2230 		/* Reclaim transmitted mbufs. */
2231 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2232 		    BUS_DMASYNC_POSTWRITE);
2233 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2234 		m_freem(txd->tx_m);
2235 		txd->tx_m = NULL;
2236 	}
2237 
2238 	if (prog > 0) {
2239 		sc->age_cdata.age_tx_cons = cons;
2240 
2241 		/*
2242 		 * Unarm watchdog timer only when there are no pending
2243 		 * Tx descriptors in queue.
2244 		 */
2245 		if (sc->age_cdata.age_tx_cnt == 0)
2246 			sc->age_watchdog_timer = 0;
2247 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2248 		    sc->age_cdata.age_tx_ring_map,
2249 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2250 	}
2251 }
2252 
2253 /* Receive a frame. */
2254 static void
2255 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2256 {
2257 	struct age_rxdesc *rxd;
2258 	struct rx_desc *desc;
2259 	struct ifnet *ifp;
2260 	struct mbuf *mp, *m;
2261 	uint32_t status, index, vtag;
2262 	int count, nsegs, pktlen;
2263 	int rx_cons;
2264 
2265 	AGE_LOCK_ASSERT(sc);
2266 
2267 	ifp = sc->age_ifp;
2268 	status = le32toh(rxrd->flags);
2269 	index = le32toh(rxrd->index);
2270 	rx_cons = AGE_RX_CONS(index);
2271 	nsegs = AGE_RX_NSEGS(index);
2272 
2273 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2274 	if ((status & AGE_RRD_ERROR) != 0 &&
2275 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2276 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2277 		/*
2278 		 * We want to pass the following frames to upper
2279 		 * layer regardless of error status of Rx return
2280 		 * ring.
2281 		 *
2282 		 *  o IP/TCP/UDP checksum is bad.
2283 		 *  o frame length and protocol specific length
2284 		 *     does not match.
2285 		 */
2286 		sc->age_cdata.age_rx_cons += nsegs;
2287 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2288 		return;
2289 	}
2290 
2291 	pktlen = 0;
2292 	for (count = 0; count < nsegs; count++,
2293 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2294 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2295 		mp = rxd->rx_m;
2296 		desc = rxd->rx_desc;
2297 		/* Add a new receive buffer to the ring. */
2298 		if (age_newbuf(sc, rxd) != 0) {
2299 			ifp->if_iqdrops++;
2300 			/* Reuse Rx buffers. */
2301 			if (sc->age_cdata.age_rxhead != NULL) {
2302 				m_freem(sc->age_cdata.age_rxhead);
2303 				AGE_RXCHAIN_RESET(sc);
2304 			}
2305 			break;
2306 		}
2307 
2308 		/* The length of the first mbuf is computed last. */
2309 		if (count != 0) {
2310 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2311 			pktlen += mp->m_len;
2312 		}
2313 
2314 		/* Chain received mbufs. */
2315 		if (sc->age_cdata.age_rxhead == NULL) {
2316 			sc->age_cdata.age_rxhead = mp;
2317 			sc->age_cdata.age_rxtail = mp;
2318 		} else {
2319 			mp->m_flags &= ~M_PKTHDR;
2320 			sc->age_cdata.age_rxprev_tail =
2321 			    sc->age_cdata.age_rxtail;
2322 			sc->age_cdata.age_rxtail->m_next = mp;
2323 			sc->age_cdata.age_rxtail = mp;
2324 		}
2325 
2326 		if (count == nsegs - 1) {
2327 			/*
2328 			 * It seems that L1 controller has no way
2329 			 * to tell hardware to strip CRC bytes.
2330 			 */
2331 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2332 			if (nsegs > 1) {
2333 				/* Remove the CRC bytes in chained mbufs. */
2334 				pktlen -= ETHER_CRC_LEN;
2335 				if (mp->m_len <= ETHER_CRC_LEN) {
2336 					sc->age_cdata.age_rxtail =
2337 					    sc->age_cdata.age_rxprev_tail;
2338 					sc->age_cdata.age_rxtail->m_len -=
2339 					    (ETHER_CRC_LEN - mp->m_len);
2340 					sc->age_cdata.age_rxtail->m_next = NULL;
2341 					m_freem(mp);
2342 				} else {
2343 					mp->m_len -= ETHER_CRC_LEN;
2344 				}
2345 			}
2346 
2347 			m = sc->age_cdata.age_rxhead;
2348 			m->m_flags |= M_PKTHDR;
2349 			m->m_pkthdr.rcvif = ifp;
2350 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2351 			/* Set the first mbuf length. */
2352 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2353 
2354 			/*
2355 			 * Set checksum information.
2356 			 * It seems that L1 controller can compute partial
2357 			 * checksum. The partial checksum value can be used
2358 			 * to accelerate checksum computation for fragmented
2359 			 * TCP/UDP packets. Upper network stack already
2360 			 * takes advantage of the partial checksum value in
2361 			 * IP reassembly stage. But I'm not sure the
2362 			 * correctness of the partial hardware checksum
2363 			 * assistance due to lack of data sheet. If it is
2364 			 * proven to work on L1 I'll enable it.
2365 			 */
2366 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2367 			    (status & AGE_RRD_IPV4) != 0) {
2368 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2369 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2370 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2371 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2372 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2373 					m->m_pkthdr.csum_flags |=
2374 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2375 					m->m_pkthdr.csum_data = 0xffff;
2376 				}
2377 				/*
2378 				 * Don't mark bad checksum for TCP/UDP frames
2379 				 * as fragmented frames may always have set
2380 				 * bad checksummed bit of descriptor status.
2381 				 */
2382 			}
2383 
2384 			/* Check for VLAN tagged frames. */
2385 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2386 			    (status & AGE_RRD_VLAN) != 0) {
2387 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2388 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2389 				m->m_flags |= M_VLANTAG;
2390 			}
2391 
2392 			/* Pass it on. */
2393 			AGE_UNLOCK(sc);
2394 			(*ifp->if_input)(ifp, m);
2395 			AGE_LOCK(sc);
2396 
2397 			/* Reset mbuf chains. */
2398 			AGE_RXCHAIN_RESET(sc);
2399 		}
2400 	}
2401 
2402 	if (count != nsegs) {
2403 		sc->age_cdata.age_rx_cons += nsegs;
2404 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2405 	} else
2406 		sc->age_cdata.age_rx_cons = rx_cons;
2407 }
2408 
2409 static int
2410 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2411 {
2412 	struct rx_rdesc *rxrd;
2413 	int rr_cons, nsegs, pktlen, prog;
2414 
2415 	AGE_LOCK_ASSERT(sc);
2416 
2417 	rr_cons = sc->age_cdata.age_rr_cons;
2418 	if (rr_cons == rr_prod)
2419 		return (0);
2420 
2421 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2422 	    sc->age_cdata.age_rr_ring_map,
2423 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2424 
2425 	for (prog = 0; rr_cons != rr_prod; prog++) {
2426 		if (count <= 0)
2427 			break;
2428 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2429 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2430 		if (nsegs == 0)
2431 			break;
2432 		/*
2433 		 * Check number of segments against received bytes.
2434 		 * Non-matching value would indicate that hardware
2435 		 * is still trying to update Rx return descriptors.
2436 		 * I'm not sure whether this check is really needed.
2437 		 */
2438 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2439 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2440 		    (MCLBYTES - ETHER_ALIGN)))
2441 			break;
2442 
2443 		prog++;
2444 		/* Received a frame. */
2445 		age_rxeof(sc, rxrd);
2446 		/* Clear return ring. */
2447 		rxrd->index = 0;
2448 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2449 	}
2450 
2451 	if (prog > 0) {
2452 		/* Update the consumer index. */
2453 		sc->age_cdata.age_rr_cons = rr_cons;
2454 
2455 		/* Sync descriptors. */
2456 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2457 		    sc->age_cdata.age_rr_ring_map,
2458 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2459 
2460 		/* Notify hardware availability of new Rx buffers. */
2461 		AGE_COMMIT_MBOX(sc);
2462 	}
2463 
2464 	return (count > 0 ? 0 : EAGAIN);
2465 }
2466 
2467 static void
2468 age_tick(void *arg)
2469 {
2470 	struct age_softc *sc;
2471 	struct mii_data *mii;
2472 
2473 	sc = (struct age_softc *)arg;
2474 
2475 	AGE_LOCK_ASSERT(sc);
2476 
2477 	mii = device_get_softc(sc->age_miibus);
2478 	mii_tick(mii);
2479 	age_watchdog(sc);
2480 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2481 }
2482 
2483 static void
2484 age_reset(struct age_softc *sc)
2485 {
2486 	uint32_t reg;
2487 	int i;
2488 
2489 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2490 	CSR_READ_4(sc, AGE_MASTER_CFG);
2491 	DELAY(1000);
2492 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2493 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2494 			break;
2495 		DELAY(10);
2496 	}
2497 
2498 	if (i == 0)
2499 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2500 	/* Initialize PCIe module. From Linux. */
2501 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2502 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2503 }
2504 
2505 static void
2506 age_init(void *xsc)
2507 {
2508 	struct age_softc *sc;
2509 
2510 	sc = (struct age_softc *)xsc;
2511 	AGE_LOCK(sc);
2512 	age_init_locked(sc);
2513 	AGE_UNLOCK(sc);
2514 }
2515 
2516 static void
2517 age_init_locked(struct age_softc *sc)
2518 {
2519 	struct ifnet *ifp;
2520 	struct mii_data *mii;
2521 	uint8_t eaddr[ETHER_ADDR_LEN];
2522 	bus_addr_t paddr;
2523 	uint32_t reg, fsize;
2524 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2525 	int error;
2526 
2527 	AGE_LOCK_ASSERT(sc);
2528 
2529 	ifp = sc->age_ifp;
2530 	mii = device_get_softc(sc->age_miibus);
2531 
2532 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2533 		return;
2534 
2535 	/*
2536 	 * Cancel any pending I/O.
2537 	 */
2538 	age_stop(sc);
2539 
2540 	/*
2541 	 * Reset the chip to a known state.
2542 	 */
2543 	age_reset(sc);
2544 
2545 	/* Initialize descriptors. */
2546 	error = age_init_rx_ring(sc);
2547         if (error != 0) {
2548                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2549                 age_stop(sc);
2550 		return;
2551         }
2552 	age_init_rr_ring(sc);
2553 	age_init_tx_ring(sc);
2554 	age_init_cmb_block(sc);
2555 	age_init_smb_block(sc);
2556 
2557 	/* Reprogram the station address. */
2558 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2559 	CSR_WRITE_4(sc, AGE_PAR0,
2560 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2561 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2562 
2563 	/* Set descriptor base addresses. */
2564 	paddr = sc->age_rdata.age_tx_ring_paddr;
2565 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2566 	paddr = sc->age_rdata.age_rx_ring_paddr;
2567 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2568 	paddr = sc->age_rdata.age_rr_ring_paddr;
2569 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2570 	paddr = sc->age_rdata.age_tx_ring_paddr;
2571 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2572 	paddr = sc->age_rdata.age_cmb_block_paddr;
2573 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2574 	paddr = sc->age_rdata.age_smb_block_paddr;
2575 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2576 	/* Set Rx/Rx return descriptor counter. */
2577 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2578 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2579 	    DESC_RRD_CNT_MASK) |
2580 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2581 	/* Set Tx descriptor counter. */
2582 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2583 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2584 
2585 	/* Tell hardware that we're ready to load descriptors. */
2586 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2587 
2588 	/*
2589 	 * Initialize mailbox register.
2590 	 * Updated producer/consumer index information is exchanged
2591 	 * through this mailbox register. However Tx producer and
2592 	 * Rx return consumer/Rx producer are all shared such that
2593 	 * it's hard to separate code path between Tx and Rx without
2594 	 * locking. If L1 hardware have a separate mail box register
2595 	 * for Tx and Rx consumer/producer management we could have
2596 	 * indepent Tx/Rx handler which in turn Rx handler could have
2597 	 * been run without any locking.
2598 	 */
2599 	AGE_COMMIT_MBOX(sc);
2600 
2601 	/* Configure IPG/IFG parameters. */
2602 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2603 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2604 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2605 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2606 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2607 
2608 	/* Set parameters for half-duplex media. */
2609 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2610 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2611 	    HDPX_CFG_LCOL_MASK) |
2612 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2613 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2614 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2615 	    HDPX_CFG_ABEBT_MASK) |
2616 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2617 	    HDPX_CFG_JAMIPG_MASK));
2618 
2619 	/* Configure interrupt moderation timer. */
2620 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2621 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2622 	reg &= ~MASTER_MTIMER_ENB;
2623 	if (AGE_USECS(sc->age_int_mod) == 0)
2624 		reg &= ~MASTER_ITIMER_ENB;
2625 	else
2626 		reg |= MASTER_ITIMER_ENB;
2627 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2628 	if (bootverbose)
2629 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2630 		    sc->age_int_mod);
2631 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2632 
2633 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2634 	if (ifp->if_mtu < ETHERMTU)
2635 		sc->age_max_frame_size = ETHERMTU;
2636 	else
2637 		sc->age_max_frame_size = ifp->if_mtu;
2638 	sc->age_max_frame_size += ETHER_HDR_LEN +
2639 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2640 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2641 	/* Configure jumbo frame. */
2642 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2643 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2644 	    (((fsize / sizeof(uint64_t)) <<
2645 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2646 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2647 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2648 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2649 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2650 
2651 	/* Configure flow-control parameters. From Linux. */
2652 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2653 		/*
2654 		 * Magic workaround for old-L1.
2655 		 * Don't know which hw revision requires this magic.
2656 		 */
2657 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2658 		/*
2659 		 * Another magic workaround for flow-control mode
2660 		 * change. From Linux.
2661 		 */
2662 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2663 	}
2664 	/*
2665 	 * TODO
2666 	 *  Should understand pause parameter relationships between FIFO
2667 	 *  size and number of Rx descriptors and Rx return descriptors.
2668 	 *
2669 	 *  Magic parameters came from Linux.
2670 	 */
2671 	switch (sc->age_chip_rev) {
2672 	case 0x8001:
2673 	case 0x9001:
2674 	case 0x9002:
2675 	case 0x9003:
2676 		rxf_hi = AGE_RX_RING_CNT / 16;
2677 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2678 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2679 		rrd_lo = AGE_RR_RING_CNT / 16;
2680 		break;
2681 	default:
2682 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2683 		rxf_lo = reg / 16;
2684 		if (rxf_lo < 192)
2685 			rxf_lo = 192;
2686 		rxf_hi = (reg * 7) / 8;
2687 		if (rxf_hi < rxf_lo)
2688 			rxf_hi = rxf_lo + 16;
2689 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2690 		rrd_lo = reg / 8;
2691 		rrd_hi = (reg * 7) / 8;
2692 		if (rrd_lo < 2)
2693 			rrd_lo = 2;
2694 		if (rrd_hi < rrd_lo)
2695 			rrd_hi = rrd_lo + 3;
2696 		break;
2697 	}
2698 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2699 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2700 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2701 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2702 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2703 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2704 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2705 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2706 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2707 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2708 
2709 	/* Configure RxQ. */
2710 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2711 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2712 	    RXQ_CFG_RD_BURST_MASK) |
2713 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2714 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2715 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2716 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2717 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2718 
2719 	/* Configure TxQ. */
2720 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2721 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2722 	    TXQ_CFG_TPD_BURST_MASK) |
2723 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2724 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2725 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2726 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2727 	    TXQ_CFG_ENB);
2728 
2729 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2730 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2731 	    TX_JUMBO_TPD_TH_MASK) |
2732 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2733 	    TX_JUMBO_TPD_IPG_MASK));
2734 	/* Configure DMA parameters. */
2735 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2736 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2737 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2738 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2739 
2740 	/* Configure CMB DMA write threshold. */
2741 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2742 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2743 	    CMB_WR_THRESH_RRD_MASK) |
2744 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2745 	    CMB_WR_THRESH_TPD_MASK));
2746 
2747 	/* Set CMB/SMB timer and enable them. */
2748 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2749 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2750 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2751 	/* Request SMB updates for every seconds. */
2752 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2753 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2754 
2755 	/*
2756 	 * Disable all WOL bits as WOL can interfere normal Rx
2757 	 * operation.
2758 	 */
2759 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2760 
2761 	/*
2762 	 * Configure Tx/Rx MACs.
2763 	 *  - Auto-padding for short frames.
2764 	 *  - Enable CRC generation.
2765 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2766 	 *  of MAC is followed after link establishment.
2767 	 */
2768 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2769 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2770 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2771 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2772 	    MAC_CFG_PREAMBLE_MASK));
2773 	/* Set up the receive filter. */
2774 	age_rxfilter(sc);
2775 	age_rxvlan(sc);
2776 
2777 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2778 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2779 		reg |= MAC_CFG_RXCSUM_ENB;
2780 
2781 	/* Ack all pending interrupts and clear it. */
2782 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2783 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2784 
2785 	/* Finally enable Tx/Rx MAC. */
2786 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2787 
2788 	sc->age_flags &= ~AGE_FLAG_LINK;
2789 	/* Switch to the current media. */
2790 	mii_mediachg(mii);
2791 
2792 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2793 
2794 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2795 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2796 }
2797 
2798 static void
2799 age_stop(struct age_softc *sc)
2800 {
2801 	struct ifnet *ifp;
2802 	struct age_txdesc *txd;
2803 	struct age_rxdesc *rxd;
2804 	uint32_t reg;
2805 	int i;
2806 
2807 	AGE_LOCK_ASSERT(sc);
2808 	/*
2809 	 * Mark the interface down and cancel the watchdog timer.
2810 	 */
2811 	ifp = sc->age_ifp;
2812 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2813 	sc->age_flags &= ~AGE_FLAG_LINK;
2814 	callout_stop(&sc->age_tick_ch);
2815 	sc->age_watchdog_timer = 0;
2816 
2817 	/*
2818 	 * Disable interrupts.
2819 	 */
2820 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2821 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2822 	/* Stop CMB/SMB updates. */
2823 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2824 	/* Stop Rx/Tx MAC. */
2825 	age_stop_rxmac(sc);
2826 	age_stop_txmac(sc);
2827 	/* Stop DMA. */
2828 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2829 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2830 	/* Stop TxQ/RxQ. */
2831 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2832 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2833 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2834 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2835 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2836 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2837 			break;
2838 		DELAY(10);
2839 	}
2840 	if (i == 0)
2841 		device_printf(sc->age_dev,
2842 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2843 
2844 	 /* Reclaim Rx buffers that have been processed. */
2845 	if (sc->age_cdata.age_rxhead != NULL)
2846 		m_freem(sc->age_cdata.age_rxhead);
2847 	AGE_RXCHAIN_RESET(sc);
2848 	/*
2849 	 * Free RX and TX mbufs still in the queues.
2850 	 */
2851 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2852 		rxd = &sc->age_cdata.age_rxdesc[i];
2853 		if (rxd->rx_m != NULL) {
2854 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2855 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2856 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2857 			    rxd->rx_dmamap);
2858 			m_freem(rxd->rx_m);
2859 			rxd->rx_m = NULL;
2860 		}
2861         }
2862 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2863 		txd = &sc->age_cdata.age_txdesc[i];
2864 		if (txd->tx_m != NULL) {
2865 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2866 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2867 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2868 			    txd->tx_dmamap);
2869 			m_freem(txd->tx_m);
2870 			txd->tx_m = NULL;
2871 		}
2872         }
2873 }
2874 
2875 static void
2876 age_stop_txmac(struct age_softc *sc)
2877 {
2878 	uint32_t reg;
2879 	int i;
2880 
2881 	AGE_LOCK_ASSERT(sc);
2882 
2883 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2884 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2885 		reg &= ~MAC_CFG_TX_ENB;
2886 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2887 	}
2888 	/* Stop Tx DMA engine. */
2889 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2890 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2891 		reg &= ~DMA_CFG_RD_ENB;
2892 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2893 	}
2894 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2895 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2896 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2897 			break;
2898 		DELAY(10);
2899 	}
2900 	if (i == 0)
2901 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2902 }
2903 
2904 static void
2905 age_stop_rxmac(struct age_softc *sc)
2906 {
2907 	uint32_t reg;
2908 	int i;
2909 
2910 	AGE_LOCK_ASSERT(sc);
2911 
2912 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2913 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2914 		reg &= ~MAC_CFG_RX_ENB;
2915 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2916 	}
2917 	/* Stop Rx DMA engine. */
2918 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2919 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2920 		reg &= ~DMA_CFG_WR_ENB;
2921 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2922 	}
2923 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2924 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2925 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2926 			break;
2927 		DELAY(10);
2928 	}
2929 	if (i == 0)
2930 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2931 }
2932 
2933 static void
2934 age_init_tx_ring(struct age_softc *sc)
2935 {
2936 	struct age_ring_data *rd;
2937 	struct age_txdesc *txd;
2938 	int i;
2939 
2940 	AGE_LOCK_ASSERT(sc);
2941 
2942 	sc->age_cdata.age_tx_prod = 0;
2943 	sc->age_cdata.age_tx_cons = 0;
2944 	sc->age_cdata.age_tx_cnt = 0;
2945 
2946 	rd = &sc->age_rdata;
2947 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2948 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2949 		txd = &sc->age_cdata.age_txdesc[i];
2950 		txd->tx_desc = &rd->age_tx_ring[i];
2951 		txd->tx_m = NULL;
2952 	}
2953 
2954 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2955 	    sc->age_cdata.age_tx_ring_map,
2956 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2957 }
2958 
2959 static int
2960 age_init_rx_ring(struct age_softc *sc)
2961 {
2962 	struct age_ring_data *rd;
2963 	struct age_rxdesc *rxd;
2964 	int i;
2965 
2966 	AGE_LOCK_ASSERT(sc);
2967 
2968 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2969 	sc->age_morework = 0;
2970 	rd = &sc->age_rdata;
2971 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2972 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2973 		rxd = &sc->age_cdata.age_rxdesc[i];
2974 		rxd->rx_m = NULL;
2975 		rxd->rx_desc = &rd->age_rx_ring[i];
2976 		if (age_newbuf(sc, rxd) != 0)
2977 			return (ENOBUFS);
2978 	}
2979 
2980 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2981 	    sc->age_cdata.age_rx_ring_map,
2982 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2983 
2984 	return (0);
2985 }
2986 
2987 static void
2988 age_init_rr_ring(struct age_softc *sc)
2989 {
2990 	struct age_ring_data *rd;
2991 
2992 	AGE_LOCK_ASSERT(sc);
2993 
2994 	sc->age_cdata.age_rr_cons = 0;
2995 	AGE_RXCHAIN_RESET(sc);
2996 
2997 	rd = &sc->age_rdata;
2998 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2999 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3000 	    sc->age_cdata.age_rr_ring_map,
3001 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3002 }
3003 
3004 static void
3005 age_init_cmb_block(struct age_softc *sc)
3006 {
3007 	struct age_ring_data *rd;
3008 
3009 	AGE_LOCK_ASSERT(sc);
3010 
3011 	rd = &sc->age_rdata;
3012 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3013 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3014 	    sc->age_cdata.age_cmb_block_map,
3015 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3016 }
3017 
3018 static void
3019 age_init_smb_block(struct age_softc *sc)
3020 {
3021 	struct age_ring_data *rd;
3022 
3023 	AGE_LOCK_ASSERT(sc);
3024 
3025 	rd = &sc->age_rdata;
3026 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3027 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3028 	    sc->age_cdata.age_smb_block_map,
3029 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3030 }
3031 
3032 static int
3033 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3034 {
3035 	struct rx_desc *desc;
3036 	struct mbuf *m;
3037 	bus_dma_segment_t segs[1];
3038 	bus_dmamap_t map;
3039 	int nsegs;
3040 
3041 	AGE_LOCK_ASSERT(sc);
3042 
3043 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3044 	if (m == NULL)
3045 		return (ENOBUFS);
3046 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3047 	m_adj(m, ETHER_ALIGN);
3048 
3049 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3050 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3051 		m_freem(m);
3052 		return (ENOBUFS);
3053 	}
3054 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3055 
3056 	if (rxd->rx_m != NULL) {
3057 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3058 		    BUS_DMASYNC_POSTREAD);
3059 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3060 	}
3061 	map = rxd->rx_dmamap;
3062 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3063 	sc->age_cdata.age_rx_sparemap = map;
3064 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3065 	    BUS_DMASYNC_PREREAD);
3066 	rxd->rx_m = m;
3067 
3068 	desc = rxd->rx_desc;
3069 	desc->addr = htole64(segs[0].ds_addr);
3070 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3071 	    AGE_RD_LEN_SHIFT);
3072 	return (0);
3073 }
3074 
3075 static void
3076 age_rxvlan(struct age_softc *sc)
3077 {
3078 	struct ifnet *ifp;
3079 	uint32_t reg;
3080 
3081 	AGE_LOCK_ASSERT(sc);
3082 
3083 	ifp = sc->age_ifp;
3084 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3085 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3086 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3087 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3088 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3089 }
3090 
3091 static void
3092 age_rxfilter(struct age_softc *sc)
3093 {
3094 	struct ifnet *ifp;
3095 	struct ifmultiaddr *ifma;
3096 	uint32_t crc;
3097 	uint32_t mchash[2];
3098 	uint32_t rxcfg;
3099 
3100 	AGE_LOCK_ASSERT(sc);
3101 
3102 	ifp = sc->age_ifp;
3103 
3104 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3105 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3106 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3107 		rxcfg |= MAC_CFG_BCAST;
3108 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3109 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3110 			rxcfg |= MAC_CFG_PROMISC;
3111 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3112 			rxcfg |= MAC_CFG_ALLMULTI;
3113 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3114 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3115 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3116 		return;
3117 	}
3118 
3119 	/* Program new filter. */
3120 	bzero(mchash, sizeof(mchash));
3121 
3122 	if_maddr_rlock(ifp);
3123 	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3124 		if (ifma->ifma_addr->sa_family != AF_LINK)
3125 			continue;
3126 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3127 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3128 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3129 	}
3130 	if_maddr_runlock(ifp);
3131 
3132 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3133 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3134 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3135 }
3136 
3137 static int
3138 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3139 {
3140 	struct age_softc *sc;
3141 	struct age_stats *stats;
3142 	int error, result;
3143 
3144 	result = -1;
3145 	error = sysctl_handle_int(oidp, &result, 0, req);
3146 
3147 	if (error != 0 || req->newptr == NULL)
3148 		return (error);
3149 
3150 	if (result != 1)
3151 		return (error);
3152 
3153 	sc = (struct age_softc *)arg1;
3154 	stats = &sc->age_stat;
3155 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3156 	printf("Transmit good frames : %ju\n",
3157 	    (uintmax_t)stats->tx_frames);
3158 	printf("Transmit good broadcast frames : %ju\n",
3159 	    (uintmax_t)stats->tx_bcast_frames);
3160 	printf("Transmit good multicast frames : %ju\n",
3161 	    (uintmax_t)stats->tx_mcast_frames);
3162 	printf("Transmit pause control frames : %u\n",
3163 	    stats->tx_pause_frames);
3164 	printf("Transmit control frames : %u\n",
3165 	    stats->tx_control_frames);
3166 	printf("Transmit frames with excessive deferrals : %u\n",
3167 	    stats->tx_excess_defer);
3168 	printf("Transmit deferrals : %u\n",
3169 	    stats->tx_deferred);
3170 	printf("Transmit good octets : %ju\n",
3171 	    (uintmax_t)stats->tx_bytes);
3172 	printf("Transmit good broadcast octets : %ju\n",
3173 	    (uintmax_t)stats->tx_bcast_bytes);
3174 	printf("Transmit good multicast octets : %ju\n",
3175 	    (uintmax_t)stats->tx_mcast_bytes);
3176 	printf("Transmit frames 64 bytes : %ju\n",
3177 	    (uintmax_t)stats->tx_pkts_64);
3178 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3179 	    (uintmax_t)stats->tx_pkts_65_127);
3180 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3181 	    (uintmax_t)stats->tx_pkts_128_255);
3182 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3183 	    (uintmax_t)stats->tx_pkts_256_511);
3184 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3185 	    (uintmax_t)stats->tx_pkts_512_1023);
3186 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3187 	    (uintmax_t)stats->tx_pkts_1024_1518);
3188 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3189 	    (uintmax_t)stats->tx_pkts_1519_max);
3190 	printf("Transmit single collisions : %u\n",
3191 	    stats->tx_single_colls);
3192 	printf("Transmit multiple collisions : %u\n",
3193 	    stats->tx_multi_colls);
3194 	printf("Transmit late collisions : %u\n",
3195 	    stats->tx_late_colls);
3196 	printf("Transmit abort due to excessive collisions : %u\n",
3197 	    stats->tx_excess_colls);
3198 	printf("Transmit underruns due to FIFO underruns : %u\n",
3199 	    stats->tx_underrun);
3200 	printf("Transmit descriptor write-back errors : %u\n",
3201 	    stats->tx_desc_underrun);
3202 	printf("Transmit frames with length mismatched frame size : %u\n",
3203 	    stats->tx_lenerrs);
3204 	printf("Transmit frames with truncated due to MTU size : %u\n",
3205 	    stats->tx_lenerrs);
3206 
3207 	printf("Receive good frames : %ju\n",
3208 	    (uintmax_t)stats->rx_frames);
3209 	printf("Receive good broadcast frames : %ju\n",
3210 	    (uintmax_t)stats->rx_bcast_frames);
3211 	printf("Receive good multicast frames : %ju\n",
3212 	    (uintmax_t)stats->rx_mcast_frames);
3213 	printf("Receive pause control frames : %u\n",
3214 	    stats->rx_pause_frames);
3215 	printf("Receive control frames : %u\n",
3216 	    stats->rx_control_frames);
3217 	printf("Receive CRC errors : %u\n",
3218 	    stats->rx_crcerrs);
3219 	printf("Receive frames with length errors : %u\n",
3220 	    stats->rx_lenerrs);
3221 	printf("Receive good octets : %ju\n",
3222 	    (uintmax_t)stats->rx_bytes);
3223 	printf("Receive good broadcast octets : %ju\n",
3224 	    (uintmax_t)stats->rx_bcast_bytes);
3225 	printf("Receive good multicast octets : %ju\n",
3226 	    (uintmax_t)stats->rx_mcast_bytes);
3227 	printf("Receive frames too short : %u\n",
3228 	    stats->rx_runts);
3229 	printf("Receive fragmented frames : %ju\n",
3230 	    (uintmax_t)stats->rx_fragments);
3231 	printf("Receive frames 64 bytes : %ju\n",
3232 	    (uintmax_t)stats->rx_pkts_64);
3233 	printf("Receive frames 65 to 127 bytes : %ju\n",
3234 	    (uintmax_t)stats->rx_pkts_65_127);
3235 	printf("Receive frames 128 to 255 bytes : %ju\n",
3236 	    (uintmax_t)stats->rx_pkts_128_255);
3237 	printf("Receive frames 256 to 511 bytes : %ju\n",
3238 	    (uintmax_t)stats->rx_pkts_256_511);
3239 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3240 	    (uintmax_t)stats->rx_pkts_512_1023);
3241 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3242 	    (uintmax_t)stats->rx_pkts_1024_1518);
3243 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3244 	    (uintmax_t)stats->rx_pkts_1519_max);
3245 	printf("Receive frames too long : %ju\n",
3246 	    (uint64_t)stats->rx_pkts_truncated);
3247 	printf("Receive frames with FIFO overflow : %u\n",
3248 	    stats->rx_fifo_oflows);
3249 	printf("Receive frames with return descriptor overflow : %u\n",
3250 	    stats->rx_desc_oflows);
3251 	printf("Receive frames with alignment errors : %u\n",
3252 	    stats->rx_alignerrs);
3253 	printf("Receive frames dropped due to address filtering : %ju\n",
3254 	    (uint64_t)stats->rx_pkts_filtered);
3255 
3256 	return (error);
3257 }
3258 
3259 static int
3260 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3261 {
3262 	int error, value;
3263 
3264 	if (arg1 == NULL)
3265 		return (EINVAL);
3266 	value = *(int *)arg1;
3267 	error = sysctl_handle_int(oidp, &value, 0, req);
3268 	if (error || req->newptr == NULL)
3269 		return (error);
3270 	if (value < low || value > high)
3271 		return (EINVAL);
3272         *(int *)arg1 = value;
3273 
3274         return (0);
3275 }
3276 
3277 static int
3278 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3279 {
3280 	return (sysctl_int_range(oidp, arg1, arg2, req,
3281 	    AGE_PROC_MIN, AGE_PROC_MAX));
3282 }
3283 
3284 static int
3285 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3286 {
3287 
3288 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3289 	    AGE_IM_TIMER_MAX));
3290 }
3291