xref: /freebsd/sys/dev/age/if_age.c (revision 8ef24a0d4b28fe230e20637f56869cc4148cd2ca)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <machine/bus.h>
70 #include <machine/in_cksum.h>
71 
72 #include <dev/age/if_agereg.h>
73 #include <dev/age/if_agevar.h>
74 
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77 
78 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
79 
80 MODULE_DEPEND(age, pci, 1, 1, 1);
81 MODULE_DEPEND(age, ether, 1, 1, 1);
82 MODULE_DEPEND(age, miibus, 1, 1, 1);
83 
84 /* Tunables. */
85 static int msi_disable = 0;
86 static int msix_disable = 0;
87 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
88 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
89 
90 /*
91  * Devices supported by this driver.
92  */
93 static struct age_dev {
94 	uint16_t	age_vendorid;
95 	uint16_t	age_deviceid;
96 	const char	*age_name;
97 } age_devs[] = {
98 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
99 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
100 };
101 
102 static int age_miibus_readreg(device_t, int, int);
103 static int age_miibus_writereg(device_t, int, int, int);
104 static void age_miibus_statchg(device_t);
105 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
106 static int age_mediachange(struct ifnet *);
107 static int age_probe(device_t);
108 static void age_get_macaddr(struct age_softc *);
109 static void age_phy_reset(struct age_softc *);
110 static int age_attach(device_t);
111 static int age_detach(device_t);
112 static void age_sysctl_node(struct age_softc *);
113 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
114 static int age_check_boundary(struct age_softc *);
115 static int age_dma_alloc(struct age_softc *);
116 static void age_dma_free(struct age_softc *);
117 static int age_shutdown(device_t);
118 static void age_setwol(struct age_softc *);
119 static int age_suspend(device_t);
120 static int age_resume(device_t);
121 static int age_encap(struct age_softc *, struct mbuf **);
122 static void age_start(struct ifnet *);
123 static void age_start_locked(struct ifnet *);
124 static void age_watchdog(struct age_softc *);
125 static int age_ioctl(struct ifnet *, u_long, caddr_t);
126 static void age_mac_config(struct age_softc *);
127 static void age_link_task(void *, int);
128 static void age_stats_update(struct age_softc *);
129 static int age_intr(void *);
130 static void age_int_task(void *, int);
131 static void age_txintr(struct age_softc *, int);
132 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
133 static int age_rxintr(struct age_softc *, int, int);
134 static void age_tick(void *);
135 static void age_reset(struct age_softc *);
136 static void age_init(void *);
137 static void age_init_locked(struct age_softc *);
138 static void age_stop(struct age_softc *);
139 static void age_stop_txmac(struct age_softc *);
140 static void age_stop_rxmac(struct age_softc *);
141 static void age_init_tx_ring(struct age_softc *);
142 static int age_init_rx_ring(struct age_softc *);
143 static void age_init_rr_ring(struct age_softc *);
144 static void age_init_cmb_block(struct age_softc *);
145 static void age_init_smb_block(struct age_softc *);
146 #ifndef __NO_STRICT_ALIGNMENT
147 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
148 #endif
149 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
150 static void age_rxvlan(struct age_softc *);
151 static void age_rxfilter(struct age_softc *);
152 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
153 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
154 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
155 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
156 
157 
158 static device_method_t age_methods[] = {
159 	/* Device interface. */
160 	DEVMETHOD(device_probe,		age_probe),
161 	DEVMETHOD(device_attach,	age_attach),
162 	DEVMETHOD(device_detach,	age_detach),
163 	DEVMETHOD(device_shutdown,	age_shutdown),
164 	DEVMETHOD(device_suspend,	age_suspend),
165 	DEVMETHOD(device_resume,	age_resume),
166 
167 	/* MII interface. */
168 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
169 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
170 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
171 
172 	{ NULL, NULL }
173 };
174 
175 static driver_t age_driver = {
176 	"age",
177 	age_methods,
178 	sizeof(struct age_softc)
179 };
180 
181 static devclass_t age_devclass;
182 
183 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
184 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
185 
186 static struct resource_spec age_res_spec_mem[] = {
187 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
188 	{ -1,			0,		0 }
189 };
190 
191 static struct resource_spec age_irq_spec_legacy[] = {
192 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
193 	{ -1,			0,		0 }
194 };
195 
196 static struct resource_spec age_irq_spec_msi[] = {
197 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
198 	{ -1,			0,		0 }
199 };
200 
201 static struct resource_spec age_irq_spec_msix[] = {
202 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
203 	{ -1,			0,		0 }
204 };
205 
206 /*
207  *	Read a PHY register on the MII of the L1.
208  */
209 static int
210 age_miibus_readreg(device_t dev, int phy, int reg)
211 {
212 	struct age_softc *sc;
213 	uint32_t v;
214 	int i;
215 
216 	sc = device_get_softc(dev);
217 
218 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
219 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
220 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
221 		DELAY(1);
222 		v = CSR_READ_4(sc, AGE_MDIO);
223 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
224 			break;
225 	}
226 
227 	if (i == 0) {
228 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
229 		return (0);
230 	}
231 
232 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
233 }
234 
235 /*
236  *	Write a PHY register on the MII of the L1.
237  */
238 static int
239 age_miibus_writereg(device_t dev, int phy, int reg, int val)
240 {
241 	struct age_softc *sc;
242 	uint32_t v;
243 	int i;
244 
245 	sc = device_get_softc(dev);
246 
247 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
248 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
249 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
250 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
251 		DELAY(1);
252 		v = CSR_READ_4(sc, AGE_MDIO);
253 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
254 			break;
255 	}
256 
257 	if (i == 0)
258 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
259 
260 	return (0);
261 }
262 
263 /*
264  *	Callback from MII layer when media changes.
265  */
266 static void
267 age_miibus_statchg(device_t dev)
268 {
269 	struct age_softc *sc;
270 
271 	sc = device_get_softc(dev);
272 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
273 }
274 
275 /*
276  *	Get the current interface media status.
277  */
278 static void
279 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
280 {
281 	struct age_softc *sc;
282 	struct mii_data *mii;
283 
284 	sc = ifp->if_softc;
285 	AGE_LOCK(sc);
286 	mii = device_get_softc(sc->age_miibus);
287 
288 	mii_pollstat(mii);
289 	ifmr->ifm_status = mii->mii_media_status;
290 	ifmr->ifm_active = mii->mii_media_active;
291 	AGE_UNLOCK(sc);
292 }
293 
294 /*
295  *	Set hardware to newly-selected media.
296  */
297 static int
298 age_mediachange(struct ifnet *ifp)
299 {
300 	struct age_softc *sc;
301 	struct mii_data *mii;
302 	struct mii_softc *miisc;
303 	int error;
304 
305 	sc = ifp->if_softc;
306 	AGE_LOCK(sc);
307 	mii = device_get_softc(sc->age_miibus);
308 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
309 		PHY_RESET(miisc);
310 	error = mii_mediachg(mii);
311 	AGE_UNLOCK(sc);
312 
313 	return (error);
314 }
315 
316 static int
317 age_probe(device_t dev)
318 {
319 	struct age_dev *sp;
320 	int i;
321 	uint16_t vendor, devid;
322 
323 	vendor = pci_get_vendor(dev);
324 	devid = pci_get_device(dev);
325 	sp = age_devs;
326 	for (i = 0; i < nitems(age_devs); i++, sp++) {
327 		if (vendor == sp->age_vendorid &&
328 		    devid == sp->age_deviceid) {
329 			device_set_desc(dev, sp->age_name);
330 			return (BUS_PROBE_DEFAULT);
331 		}
332 	}
333 
334 	return (ENXIO);
335 }
336 
337 static void
338 age_get_macaddr(struct age_softc *sc)
339 {
340 	uint32_t ea[2], reg;
341 	int i, vpdc;
342 
343 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
344 	if ((reg & SPI_VPD_ENB) != 0) {
345 		/* Get VPD stored in TWSI EEPROM. */
346 		reg &= ~SPI_VPD_ENB;
347 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
348 	}
349 
350 	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
351 		/*
352 		 * PCI VPD capability found, let TWSI reload EEPROM.
353 		 * This will set ethernet address of controller.
354 		 */
355 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
356 		    TWSI_CTRL_SW_LD_START);
357 		for (i = 100; i > 0; i--) {
358 			DELAY(1000);
359 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
360 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
361 				break;
362 		}
363 		if (i == 0)
364 			device_printf(sc->age_dev,
365 			    "reloading EEPROM timeout!\n");
366 	} else {
367 		if (bootverbose)
368 			device_printf(sc->age_dev,
369 			    "PCI VPD capability not found!\n");
370 	}
371 
372 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
373 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
374 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
375 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
376 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
377 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
378 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
379 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
380 }
381 
382 static void
383 age_phy_reset(struct age_softc *sc)
384 {
385 	uint16_t reg, pn;
386 	int i, linkup;
387 
388 	/* Reset PHY. */
389 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
390 	DELAY(2000);
391 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
392 	DELAY(2000);
393 
394 #define	ATPHY_DBG_ADDR		0x1D
395 #define	ATPHY_DBG_DATA		0x1E
396 #define	ATPHY_CDTC		0x16
397 #define	PHY_CDTC_ENB		0x0001
398 #define	PHY_CDTC_POFF		8
399 #define	ATPHY_CDTS		0x1C
400 #define	PHY_CDTS_STAT_OK	0x0000
401 #define	PHY_CDTS_STAT_SHORT	0x0100
402 #define	PHY_CDTS_STAT_OPEN	0x0200
403 #define	PHY_CDTS_STAT_INVAL	0x0300
404 #define	PHY_CDTS_STAT_MASK	0x0300
405 
406 	/* Check power saving mode. Magic from Linux. */
407 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
408 	for (linkup = 0, pn = 0; pn < 4; pn++) {
409 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
410 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
411 		for (i = 200; i > 0; i--) {
412 			DELAY(1000);
413 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
414 			    ATPHY_CDTC);
415 			if ((reg & PHY_CDTC_ENB) == 0)
416 				break;
417 		}
418 		DELAY(1000);
419 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
420 		    ATPHY_CDTS);
421 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
422 			linkup++;
423 			break;
424 		}
425 	}
426 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
427 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
428 	if (linkup == 0) {
429 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
430 		    ATPHY_DBG_ADDR, 0);
431 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
432 		    ATPHY_DBG_DATA, 0x124E);
433 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
434 		    ATPHY_DBG_ADDR, 1);
435 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
436 		    ATPHY_DBG_DATA);
437 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438 		    ATPHY_DBG_DATA, reg | 0x03);
439 		/* XXX */
440 		DELAY(1500 * 1000);
441 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
442 		    ATPHY_DBG_ADDR, 0);
443 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
444 		    ATPHY_DBG_DATA, 0x024E);
445     }
446 
447 #undef	ATPHY_DBG_ADDR
448 #undef	ATPHY_DBG_DATA
449 #undef	ATPHY_CDTC
450 #undef	PHY_CDTC_ENB
451 #undef	PHY_CDTC_POFF
452 #undef	ATPHY_CDTS
453 #undef	PHY_CDTS_STAT_OK
454 #undef	PHY_CDTS_STAT_SHORT
455 #undef	PHY_CDTS_STAT_OPEN
456 #undef	PHY_CDTS_STAT_INVAL
457 #undef	PHY_CDTS_STAT_MASK
458 }
459 
460 static int
461 age_attach(device_t dev)
462 {
463 	struct age_softc *sc;
464 	struct ifnet *ifp;
465 	uint16_t burst;
466 	int error, i, msic, msixc, pmc;
467 
468 	error = 0;
469 	sc = device_get_softc(dev);
470 	sc->age_dev = dev;
471 
472 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
473 	    MTX_DEF);
474 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
475 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
476 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
477 
478 	/* Map the device. */
479 	pci_enable_busmaster(dev);
480 	sc->age_res_spec = age_res_spec_mem;
481 	sc->age_irq_spec = age_irq_spec_legacy;
482 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
483 	if (error != 0) {
484 		device_printf(dev, "cannot allocate memory resources.\n");
485 		goto fail;
486 	}
487 
488 	/* Set PHY address. */
489 	sc->age_phyaddr = AGE_PHY_ADDR;
490 
491 	/* Reset PHY. */
492 	age_phy_reset(sc);
493 
494 	/* Reset the ethernet controller. */
495 	age_reset(sc);
496 
497 	/* Get PCI and chip id/revision. */
498 	sc->age_rev = pci_get_revid(dev);
499 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
500 	    MASTER_CHIP_REV_SHIFT;
501 	if (bootverbose) {
502 		device_printf(dev, "PCI device revision : 0x%04x\n",
503 		    sc->age_rev);
504 		device_printf(dev, "Chip id/revision : 0x%04x\n",
505 		    sc->age_chip_rev);
506 	}
507 
508 	/*
509 	 * XXX
510 	 * Unintialized hardware returns an invalid chip id/revision
511 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
512 	 * unplugged cable results in putting hardware into automatic
513 	 * power down mode which in turn returns invalld chip revision.
514 	 */
515 	if (sc->age_chip_rev == 0xFFFF) {
516 		device_printf(dev,"invalid chip revision : 0x%04x -- "
517 		    "not initialized?\n", sc->age_chip_rev);
518 		error = ENXIO;
519 		goto fail;
520 	}
521 
522 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
523 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
524 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
525 
526 	/* Allocate IRQ resources. */
527 	msixc = pci_msix_count(dev);
528 	msic = pci_msi_count(dev);
529 	if (bootverbose) {
530 		device_printf(dev, "MSIX count : %d\n", msixc);
531 		device_printf(dev, "MSI count : %d\n", msic);
532 	}
533 
534 	/* Prefer MSIX over MSI. */
535 	if (msix_disable == 0 || msi_disable == 0) {
536 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
537 		    pci_alloc_msix(dev, &msixc) == 0) {
538 			if (msic == AGE_MSIX_MESSAGES) {
539 				device_printf(dev, "Using %d MSIX messages.\n",
540 				    msixc);
541 				sc->age_flags |= AGE_FLAG_MSIX;
542 				sc->age_irq_spec = age_irq_spec_msix;
543 			} else
544 				pci_release_msi(dev);
545 		}
546 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
547 		    msic == AGE_MSI_MESSAGES &&
548 		    pci_alloc_msi(dev, &msic) == 0) {
549 			if (msic == AGE_MSI_MESSAGES) {
550 				device_printf(dev, "Using %d MSI messages.\n",
551 				    msic);
552 				sc->age_flags |= AGE_FLAG_MSI;
553 				sc->age_irq_spec = age_irq_spec_msi;
554 			} else
555 				pci_release_msi(dev);
556 		}
557 	}
558 
559 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
560 	if (error != 0) {
561 		device_printf(dev, "cannot allocate IRQ resources.\n");
562 		goto fail;
563 	}
564 
565 
566 	/* Get DMA parameters from PCIe device control register. */
567 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
568 		sc->age_flags |= AGE_FLAG_PCIE;
569 		burst = pci_read_config(dev, i + 0x08, 2);
570 		/* Max read request size. */
571 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
572 		    DMA_CFG_RD_BURST_SHIFT;
573 		/* Max payload size. */
574 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
575 		    DMA_CFG_WR_BURST_SHIFT;
576 		if (bootverbose) {
577 			device_printf(dev, "Read request size : %d bytes.\n",
578 			    128 << ((burst >> 12) & 0x07));
579 			device_printf(dev, "TLP payload size : %d bytes.\n",
580 			    128 << ((burst >> 5) & 0x07));
581 		}
582 	} else {
583 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
584 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
585 	}
586 
587 	/* Create device sysctl node. */
588 	age_sysctl_node(sc);
589 
590 	if ((error = age_dma_alloc(sc)) != 0)
591 		goto fail;
592 
593 	/* Load station address. */
594 	age_get_macaddr(sc);
595 
596 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
597 	if (ifp == NULL) {
598 		device_printf(dev, "cannot allocate ifnet structure.\n");
599 		error = ENXIO;
600 		goto fail;
601 	}
602 
603 	ifp->if_softc = sc;
604 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
605 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
606 	ifp->if_ioctl = age_ioctl;
607 	ifp->if_start = age_start;
608 	ifp->if_init = age_init;
609 	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
610 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
611 	IFQ_SET_READY(&ifp->if_snd);
612 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
613 	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
614 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
615 		sc->age_flags |= AGE_FLAG_PMCAP;
616 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
617 	}
618 	ifp->if_capenable = ifp->if_capabilities;
619 
620 	/* Set up MII bus. */
621 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
622 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
623 	    0);
624 	if (error != 0) {
625 		device_printf(dev, "attaching PHYs failed\n");
626 		goto fail;
627 	}
628 
629 	ether_ifattach(ifp, sc->age_eaddr);
630 
631 	/* VLAN capability setup. */
632 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
633 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
634 	ifp->if_capenable = ifp->if_capabilities;
635 
636 	/* Tell the upper layer(s) we support long frames. */
637 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
638 
639 	/* Create local taskq. */
640 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
641 	    taskqueue_thread_enqueue, &sc->age_tq);
642 	if (sc->age_tq == NULL) {
643 		device_printf(dev, "could not create taskqueue.\n");
644 		ether_ifdetach(ifp);
645 		error = ENXIO;
646 		goto fail;
647 	}
648 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
649 	    device_get_nameunit(sc->age_dev));
650 
651 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
652 		msic = AGE_MSIX_MESSAGES;
653 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
654 		msic = AGE_MSI_MESSAGES;
655 	else
656 		msic = 1;
657 	for (i = 0; i < msic; i++) {
658 		error = bus_setup_intr(dev, sc->age_irq[i],
659 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
660 		    &sc->age_intrhand[i]);
661 		if (error != 0)
662 			break;
663 	}
664 	if (error != 0) {
665 		device_printf(dev, "could not set up interrupt handler.\n");
666 		taskqueue_free(sc->age_tq);
667 		sc->age_tq = NULL;
668 		ether_ifdetach(ifp);
669 		goto fail;
670 	}
671 
672 fail:
673 	if (error != 0)
674 		age_detach(dev);
675 
676 	return (error);
677 }
678 
679 static int
680 age_detach(device_t dev)
681 {
682 	struct age_softc *sc;
683 	struct ifnet *ifp;
684 	int i, msic;
685 
686 	sc = device_get_softc(dev);
687 
688 	ifp = sc->age_ifp;
689 	if (device_is_attached(dev)) {
690 		AGE_LOCK(sc);
691 		sc->age_flags |= AGE_FLAG_DETACH;
692 		age_stop(sc);
693 		AGE_UNLOCK(sc);
694 		callout_drain(&sc->age_tick_ch);
695 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
696 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
697 		ether_ifdetach(ifp);
698 	}
699 
700 	if (sc->age_tq != NULL) {
701 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
702 		taskqueue_free(sc->age_tq);
703 		sc->age_tq = NULL;
704 	}
705 
706 	if (sc->age_miibus != NULL) {
707 		device_delete_child(dev, sc->age_miibus);
708 		sc->age_miibus = NULL;
709 	}
710 	bus_generic_detach(dev);
711 	age_dma_free(sc);
712 
713 	if (ifp != NULL) {
714 		if_free(ifp);
715 		sc->age_ifp = NULL;
716 	}
717 
718 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
719 		msic = AGE_MSIX_MESSAGES;
720 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
721 		msic = AGE_MSI_MESSAGES;
722 	else
723 		msic = 1;
724 	for (i = 0; i < msic; i++) {
725 		if (sc->age_intrhand[i] != NULL) {
726 			bus_teardown_intr(dev, sc->age_irq[i],
727 			    sc->age_intrhand[i]);
728 			sc->age_intrhand[i] = NULL;
729 		}
730 	}
731 
732 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
733 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
734 		pci_release_msi(dev);
735 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
736 	mtx_destroy(&sc->age_mtx);
737 
738 	return (0);
739 }
740 
741 static void
742 age_sysctl_node(struct age_softc *sc)
743 {
744 	int error;
745 
746 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
747 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
748 	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
749 	    "I", "Statistics");
750 
751 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
752 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
753 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
754 	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
755 
756 	/* Pull in device tunables. */
757 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
758 	error = resource_int_value(device_get_name(sc->age_dev),
759 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
760 	if (error == 0) {
761 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
762 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
763 			device_printf(sc->age_dev,
764 			    "int_mod value out of range; using default: %d\n",
765 			    AGE_IM_TIMER_DEFAULT);
766 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
767 		}
768 	}
769 
770 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
771 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
772 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
773 	    0, sysctl_hw_age_proc_limit, "I",
774 	    "max number of Rx events to process");
775 
776 	/* Pull in device tunables. */
777 	sc->age_process_limit = AGE_PROC_DEFAULT;
778 	error = resource_int_value(device_get_name(sc->age_dev),
779 	    device_get_unit(sc->age_dev), "process_limit",
780 	    &sc->age_process_limit);
781 	if (error == 0) {
782 		if (sc->age_process_limit < AGE_PROC_MIN ||
783 		    sc->age_process_limit > AGE_PROC_MAX) {
784 			device_printf(sc->age_dev,
785 			    "process_limit value out of range; "
786 			    "using default: %d\n", AGE_PROC_DEFAULT);
787 			sc->age_process_limit = AGE_PROC_DEFAULT;
788 		}
789 	}
790 }
791 
792 struct age_dmamap_arg {
793 	bus_addr_t	age_busaddr;
794 };
795 
796 static void
797 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
798 {
799 	struct age_dmamap_arg *ctx;
800 
801 	if (error != 0)
802 		return;
803 
804 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
805 
806 	ctx = (struct age_dmamap_arg *)arg;
807 	ctx->age_busaddr = segs[0].ds_addr;
808 }
809 
810 /*
811  * Attansic L1 controller have single register to specify high
812  * address part of DMA blocks. So all descriptor structures and
813  * DMA memory blocks should have the same high address of given
814  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
815  */
816 static int
817 age_check_boundary(struct age_softc *sc)
818 {
819 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
820 	bus_addr_t cmb_block_end, smb_block_end;
821 
822 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
823 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
824 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
825 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
826 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
827 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
828 
829 	if ((AGE_ADDR_HI(tx_ring_end) !=
830 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
831 	    (AGE_ADDR_HI(rx_ring_end) !=
832 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
833 	    (AGE_ADDR_HI(rr_ring_end) !=
834 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
835 	    (AGE_ADDR_HI(cmb_block_end) !=
836 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
837 	    (AGE_ADDR_HI(smb_block_end) !=
838 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
839 		return (EFBIG);
840 
841 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
842 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
843 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
844 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
845 		return (EFBIG);
846 
847 	return (0);
848 }
849 
850 static int
851 age_dma_alloc(struct age_softc *sc)
852 {
853 	struct age_txdesc *txd;
854 	struct age_rxdesc *rxd;
855 	bus_addr_t lowaddr;
856 	struct age_dmamap_arg ctx;
857 	int error, i;
858 
859 	lowaddr = BUS_SPACE_MAXADDR;
860 
861 again:
862 	/* Create parent ring/DMA block tag. */
863 	error = bus_dma_tag_create(
864 	    bus_get_dma_tag(sc->age_dev), /* parent */
865 	    1, 0,			/* alignment, boundary */
866 	    lowaddr,			/* lowaddr */
867 	    BUS_SPACE_MAXADDR,		/* highaddr */
868 	    NULL, NULL,			/* filter, filterarg */
869 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
870 	    0,				/* nsegments */
871 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
872 	    0,				/* flags */
873 	    NULL, NULL,			/* lockfunc, lockarg */
874 	    &sc->age_cdata.age_parent_tag);
875 	if (error != 0) {
876 		device_printf(sc->age_dev,
877 		    "could not create parent DMA tag.\n");
878 		goto fail;
879 	}
880 
881 	/* Create tag for Tx ring. */
882 	error = bus_dma_tag_create(
883 	    sc->age_cdata.age_parent_tag, /* parent */
884 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
885 	    BUS_SPACE_MAXADDR,		/* lowaddr */
886 	    BUS_SPACE_MAXADDR,		/* highaddr */
887 	    NULL, NULL,			/* filter, filterarg */
888 	    AGE_TX_RING_SZ,		/* maxsize */
889 	    1,				/* nsegments */
890 	    AGE_TX_RING_SZ,		/* maxsegsize */
891 	    0,				/* flags */
892 	    NULL, NULL,			/* lockfunc, lockarg */
893 	    &sc->age_cdata.age_tx_ring_tag);
894 	if (error != 0) {
895 		device_printf(sc->age_dev,
896 		    "could not create Tx ring DMA tag.\n");
897 		goto fail;
898 	}
899 
900 	/* Create tag for Rx ring. */
901 	error = bus_dma_tag_create(
902 	    sc->age_cdata.age_parent_tag, /* parent */
903 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
904 	    BUS_SPACE_MAXADDR,		/* lowaddr */
905 	    BUS_SPACE_MAXADDR,		/* highaddr */
906 	    NULL, NULL,			/* filter, filterarg */
907 	    AGE_RX_RING_SZ,		/* maxsize */
908 	    1,				/* nsegments */
909 	    AGE_RX_RING_SZ,		/* maxsegsize */
910 	    0,				/* flags */
911 	    NULL, NULL,			/* lockfunc, lockarg */
912 	    &sc->age_cdata.age_rx_ring_tag);
913 	if (error != 0) {
914 		device_printf(sc->age_dev,
915 		    "could not create Rx ring DMA tag.\n");
916 		goto fail;
917 	}
918 
919 	/* Create tag for Rx return ring. */
920 	error = bus_dma_tag_create(
921 	    sc->age_cdata.age_parent_tag, /* parent */
922 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
923 	    BUS_SPACE_MAXADDR,		/* lowaddr */
924 	    BUS_SPACE_MAXADDR,		/* highaddr */
925 	    NULL, NULL,			/* filter, filterarg */
926 	    AGE_RR_RING_SZ,		/* maxsize */
927 	    1,				/* nsegments */
928 	    AGE_RR_RING_SZ,		/* maxsegsize */
929 	    0,				/* flags */
930 	    NULL, NULL,			/* lockfunc, lockarg */
931 	    &sc->age_cdata.age_rr_ring_tag);
932 	if (error != 0) {
933 		device_printf(sc->age_dev,
934 		    "could not create Rx return ring DMA tag.\n");
935 		goto fail;
936 	}
937 
938 	/* Create tag for coalesing message block. */
939 	error = bus_dma_tag_create(
940 	    sc->age_cdata.age_parent_tag, /* parent */
941 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
942 	    BUS_SPACE_MAXADDR,		/* lowaddr */
943 	    BUS_SPACE_MAXADDR,		/* highaddr */
944 	    NULL, NULL,			/* filter, filterarg */
945 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
946 	    1,				/* nsegments */
947 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
948 	    0,				/* flags */
949 	    NULL, NULL,			/* lockfunc, lockarg */
950 	    &sc->age_cdata.age_cmb_block_tag);
951 	if (error != 0) {
952 		device_printf(sc->age_dev,
953 		    "could not create CMB DMA tag.\n");
954 		goto fail;
955 	}
956 
957 	/* Create tag for statistics message block. */
958 	error = bus_dma_tag_create(
959 	    sc->age_cdata.age_parent_tag, /* parent */
960 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
961 	    BUS_SPACE_MAXADDR,		/* lowaddr */
962 	    BUS_SPACE_MAXADDR,		/* highaddr */
963 	    NULL, NULL,			/* filter, filterarg */
964 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
965 	    1,				/* nsegments */
966 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
967 	    0,				/* flags */
968 	    NULL, NULL,			/* lockfunc, lockarg */
969 	    &sc->age_cdata.age_smb_block_tag);
970 	if (error != 0) {
971 		device_printf(sc->age_dev,
972 		    "could not create SMB DMA tag.\n");
973 		goto fail;
974 	}
975 
976 	/* Allocate DMA'able memory and load the DMA map. */
977 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
978 	    (void **)&sc->age_rdata.age_tx_ring,
979 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
980 	    &sc->age_cdata.age_tx_ring_map);
981 	if (error != 0) {
982 		device_printf(sc->age_dev,
983 		    "could not allocate DMA'able memory for Tx ring.\n");
984 		goto fail;
985 	}
986 	ctx.age_busaddr = 0;
987 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
988 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
989 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
990 	if (error != 0 || ctx.age_busaddr == 0) {
991 		device_printf(sc->age_dev,
992 		    "could not load DMA'able memory for Tx ring.\n");
993 		goto fail;
994 	}
995 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
996 	/* Rx ring */
997 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
998 	    (void **)&sc->age_rdata.age_rx_ring,
999 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1000 	    &sc->age_cdata.age_rx_ring_map);
1001 	if (error != 0) {
1002 		device_printf(sc->age_dev,
1003 		    "could not allocate DMA'able memory for Rx ring.\n");
1004 		goto fail;
1005 	}
1006 	ctx.age_busaddr = 0;
1007 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1008 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1009 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1010 	if (error != 0 || ctx.age_busaddr == 0) {
1011 		device_printf(sc->age_dev,
1012 		    "could not load DMA'able memory for Rx ring.\n");
1013 		goto fail;
1014 	}
1015 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1016 	/* Rx return ring */
1017 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1018 	    (void **)&sc->age_rdata.age_rr_ring,
1019 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1020 	    &sc->age_cdata.age_rr_ring_map);
1021 	if (error != 0) {
1022 		device_printf(sc->age_dev,
1023 		    "could not allocate DMA'able memory for Rx return ring.\n");
1024 		goto fail;
1025 	}
1026 	ctx.age_busaddr = 0;
1027 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1028 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1029 	    AGE_RR_RING_SZ, age_dmamap_cb,
1030 	    &ctx, 0);
1031 	if (error != 0 || ctx.age_busaddr == 0) {
1032 		device_printf(sc->age_dev,
1033 		    "could not load DMA'able memory for Rx return ring.\n");
1034 		goto fail;
1035 	}
1036 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1037 	/* CMB block */
1038 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1039 	    (void **)&sc->age_rdata.age_cmb_block,
1040 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1041 	    &sc->age_cdata.age_cmb_block_map);
1042 	if (error != 0) {
1043 		device_printf(sc->age_dev,
1044 		    "could not allocate DMA'able memory for CMB block.\n");
1045 		goto fail;
1046 	}
1047 	ctx.age_busaddr = 0;
1048 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1049 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1050 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1051 	if (error != 0 || ctx.age_busaddr == 0) {
1052 		device_printf(sc->age_dev,
1053 		    "could not load DMA'able memory for CMB block.\n");
1054 		goto fail;
1055 	}
1056 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1057 	/* SMB block */
1058 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1059 	    (void **)&sc->age_rdata.age_smb_block,
1060 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1061 	    &sc->age_cdata.age_smb_block_map);
1062 	if (error != 0) {
1063 		device_printf(sc->age_dev,
1064 		    "could not allocate DMA'able memory for SMB block.\n");
1065 		goto fail;
1066 	}
1067 	ctx.age_busaddr = 0;
1068 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1069 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1070 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1071 	if (error != 0 || ctx.age_busaddr == 0) {
1072 		device_printf(sc->age_dev,
1073 		    "could not load DMA'able memory for SMB block.\n");
1074 		goto fail;
1075 	}
1076 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1077 
1078 	/*
1079 	 * All ring buffer and DMA blocks should have the same
1080 	 * high address part of 64bit DMA address space.
1081 	 */
1082 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1083 	    (error = age_check_boundary(sc)) != 0) {
1084 		device_printf(sc->age_dev, "4GB boundary crossed, "
1085 		    "switching to 32bit DMA addressing mode.\n");
1086 		age_dma_free(sc);
1087 		/* Limit DMA address space to 32bit and try again. */
1088 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1089 		goto again;
1090 	}
1091 
1092 	/*
1093 	 * Create Tx/Rx buffer parent tag.
1094 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1095 	 * so it needs separate parent DMA tag.
1096 	 * XXX
1097 	 * It seems enabling 64bit DMA causes data corruption. Limit
1098 	 * DMA address space to 32bit.
1099 	 */
1100 	error = bus_dma_tag_create(
1101 	    bus_get_dma_tag(sc->age_dev), /* parent */
1102 	    1, 0,			/* alignment, boundary */
1103 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1104 	    BUS_SPACE_MAXADDR,		/* highaddr */
1105 	    NULL, NULL,			/* filter, filterarg */
1106 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1107 	    0,				/* nsegments */
1108 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1109 	    0,				/* flags */
1110 	    NULL, NULL,			/* lockfunc, lockarg */
1111 	    &sc->age_cdata.age_buffer_tag);
1112 	if (error != 0) {
1113 		device_printf(sc->age_dev,
1114 		    "could not create parent buffer DMA tag.\n");
1115 		goto fail;
1116 	}
1117 
1118 	/* Create tag for Tx buffers. */
1119 	error = bus_dma_tag_create(
1120 	    sc->age_cdata.age_buffer_tag, /* parent */
1121 	    1, 0,			/* alignment, boundary */
1122 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1123 	    BUS_SPACE_MAXADDR,		/* highaddr */
1124 	    NULL, NULL,			/* filter, filterarg */
1125 	    AGE_TSO_MAXSIZE,		/* maxsize */
1126 	    AGE_MAXTXSEGS,		/* nsegments */
1127 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1128 	    0,				/* flags */
1129 	    NULL, NULL,			/* lockfunc, lockarg */
1130 	    &sc->age_cdata.age_tx_tag);
1131 	if (error != 0) {
1132 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1133 		goto fail;
1134 	}
1135 
1136 	/* Create tag for Rx buffers. */
1137 	error = bus_dma_tag_create(
1138 	    sc->age_cdata.age_buffer_tag, /* parent */
1139 	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1140 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1141 	    BUS_SPACE_MAXADDR,		/* highaddr */
1142 	    NULL, NULL,			/* filter, filterarg */
1143 	    MCLBYTES,			/* maxsize */
1144 	    1,				/* nsegments */
1145 	    MCLBYTES,			/* maxsegsize */
1146 	    0,				/* flags */
1147 	    NULL, NULL,			/* lockfunc, lockarg */
1148 	    &sc->age_cdata.age_rx_tag);
1149 	if (error != 0) {
1150 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1151 		goto fail;
1152 	}
1153 
1154 	/* Create DMA maps for Tx buffers. */
1155 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1156 		txd = &sc->age_cdata.age_txdesc[i];
1157 		txd->tx_m = NULL;
1158 		txd->tx_dmamap = NULL;
1159 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1160 		    &txd->tx_dmamap);
1161 		if (error != 0) {
1162 			device_printf(sc->age_dev,
1163 			    "could not create Tx dmamap.\n");
1164 			goto fail;
1165 		}
1166 	}
1167 	/* Create DMA maps for Rx buffers. */
1168 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1169 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1170 		device_printf(sc->age_dev,
1171 		    "could not create spare Rx dmamap.\n");
1172 		goto fail;
1173 	}
1174 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1175 		rxd = &sc->age_cdata.age_rxdesc[i];
1176 		rxd->rx_m = NULL;
1177 		rxd->rx_dmamap = NULL;
1178 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1179 		    &rxd->rx_dmamap);
1180 		if (error != 0) {
1181 			device_printf(sc->age_dev,
1182 			    "could not create Rx dmamap.\n");
1183 			goto fail;
1184 		}
1185 	}
1186 
1187 fail:
1188 	return (error);
1189 }
1190 
1191 static void
1192 age_dma_free(struct age_softc *sc)
1193 {
1194 	struct age_txdesc *txd;
1195 	struct age_rxdesc *rxd;
1196 	int i;
1197 
1198 	/* Tx buffers */
1199 	if (sc->age_cdata.age_tx_tag != NULL) {
1200 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1201 			txd = &sc->age_cdata.age_txdesc[i];
1202 			if (txd->tx_dmamap != NULL) {
1203 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1204 				    txd->tx_dmamap);
1205 				txd->tx_dmamap = NULL;
1206 			}
1207 		}
1208 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1209 		sc->age_cdata.age_tx_tag = NULL;
1210 	}
1211 	/* Rx buffers */
1212 	if (sc->age_cdata.age_rx_tag != NULL) {
1213 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1214 			rxd = &sc->age_cdata.age_rxdesc[i];
1215 			if (rxd->rx_dmamap != NULL) {
1216 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1217 				    rxd->rx_dmamap);
1218 				rxd->rx_dmamap = NULL;
1219 			}
1220 		}
1221 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1222 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1223 			    sc->age_cdata.age_rx_sparemap);
1224 			sc->age_cdata.age_rx_sparemap = NULL;
1225 		}
1226 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1227 		sc->age_cdata.age_rx_tag = NULL;
1228 	}
1229 	/* Tx ring. */
1230 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1231 		if (sc->age_rdata.age_tx_ring_paddr != 0)
1232 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1233 			    sc->age_cdata.age_tx_ring_map);
1234 		if (sc->age_rdata.age_tx_ring != NULL)
1235 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1236 			    sc->age_rdata.age_tx_ring,
1237 			    sc->age_cdata.age_tx_ring_map);
1238 		sc->age_rdata.age_tx_ring_paddr = 0;
1239 		sc->age_rdata.age_tx_ring = NULL;
1240 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1241 		sc->age_cdata.age_tx_ring_tag = NULL;
1242 	}
1243 	/* Rx ring. */
1244 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1245 		if (sc->age_rdata.age_rx_ring_paddr != 0)
1246 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1247 			    sc->age_cdata.age_rx_ring_map);
1248 		if (sc->age_rdata.age_rx_ring != NULL)
1249 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1250 			    sc->age_rdata.age_rx_ring,
1251 			    sc->age_cdata.age_rx_ring_map);
1252 		sc->age_rdata.age_rx_ring_paddr = 0;
1253 		sc->age_rdata.age_rx_ring = NULL;
1254 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1255 		sc->age_cdata.age_rx_ring_tag = NULL;
1256 	}
1257 	/* Rx return ring. */
1258 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1259 		if (sc->age_rdata.age_rr_ring_paddr != 0)
1260 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1261 			    sc->age_cdata.age_rr_ring_map);
1262 		if (sc->age_rdata.age_rr_ring != NULL)
1263 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1264 			    sc->age_rdata.age_rr_ring,
1265 			    sc->age_cdata.age_rr_ring_map);
1266 		sc->age_rdata.age_rr_ring_paddr = 0;
1267 		sc->age_rdata.age_rr_ring = NULL;
1268 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1269 		sc->age_cdata.age_rr_ring_tag = NULL;
1270 	}
1271 	/* CMB block */
1272 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1273 		if (sc->age_rdata.age_cmb_block_paddr != 0)
1274 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1275 			    sc->age_cdata.age_cmb_block_map);
1276 		if (sc->age_rdata.age_cmb_block != NULL)
1277 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1278 			    sc->age_rdata.age_cmb_block,
1279 			    sc->age_cdata.age_cmb_block_map);
1280 		sc->age_rdata.age_cmb_block_paddr = 0;
1281 		sc->age_rdata.age_cmb_block = NULL;
1282 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1283 		sc->age_cdata.age_cmb_block_tag = NULL;
1284 	}
1285 	/* SMB block */
1286 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1287 		if (sc->age_rdata.age_smb_block_paddr != 0)
1288 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1289 			    sc->age_cdata.age_smb_block_map);
1290 		if (sc->age_rdata.age_smb_block != NULL)
1291 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1292 			    sc->age_rdata.age_smb_block,
1293 			    sc->age_cdata.age_smb_block_map);
1294 		sc->age_rdata.age_smb_block_paddr = 0;
1295 		sc->age_rdata.age_smb_block = NULL;
1296 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1297 		sc->age_cdata.age_smb_block_tag = NULL;
1298 	}
1299 
1300 	if (sc->age_cdata.age_buffer_tag != NULL) {
1301 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1302 		sc->age_cdata.age_buffer_tag = NULL;
1303 	}
1304 	if (sc->age_cdata.age_parent_tag != NULL) {
1305 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1306 		sc->age_cdata.age_parent_tag = NULL;
1307 	}
1308 }
1309 
1310 /*
1311  *	Make sure the interface is stopped at reboot time.
1312  */
1313 static int
1314 age_shutdown(device_t dev)
1315 {
1316 
1317 	return (age_suspend(dev));
1318 }
1319 
1320 static void
1321 age_setwol(struct age_softc *sc)
1322 {
1323 	struct ifnet *ifp;
1324 	struct mii_data *mii;
1325 	uint32_t reg, pmcs;
1326 	uint16_t pmstat;
1327 	int aneg, i, pmc;
1328 
1329 	AGE_LOCK_ASSERT(sc);
1330 
1331 	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1332 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1333 		/*
1334 		 * No PME capability, PHY power down.
1335 		 * XXX
1336 		 * Due to an unknown reason powering down PHY resulted
1337 		 * in unexpected results such as inaccessbility of
1338 		 * hardware of freshly rebooted system. Disable
1339 		 * powering down PHY until I got more information for
1340 		 * Attansic/Atheros PHY hardwares.
1341 		 */
1342 #ifdef notyet
1343 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1344 		    MII_BMCR, BMCR_PDOWN);
1345 #endif
1346 		return;
1347 	}
1348 
1349 	ifp = sc->age_ifp;
1350 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1351 		/*
1352 		 * Note, this driver resets the link speed to 10/100Mbps with
1353 		 * auto-negotiation but we don't know whether that operation
1354 		 * would succeed or not as it have no control after powering
1355 		 * off. If the renegotiation fail WOL may not work. Running
1356 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1357 		 * specified in PCI specification and that would result in
1358 		 * complete shutdowning power to ethernet controller.
1359 		 *
1360 		 * TODO
1361 		 *  Save current negotiated media speed/duplex/flow-control
1362 		 *  to softc and restore the same link again after resuming.
1363 		 *  PHY handling such as power down/resetting to 100Mbps
1364 		 *  may be better handled in suspend method in phy driver.
1365 		 */
1366 		mii = device_get_softc(sc->age_miibus);
1367 		mii_pollstat(mii);
1368 		aneg = 0;
1369 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1370 			switch IFM_SUBTYPE(mii->mii_media_active) {
1371 			case IFM_10_T:
1372 			case IFM_100_TX:
1373 				goto got_link;
1374 			case IFM_1000_T:
1375 				aneg++;
1376 			default:
1377 				break;
1378 			}
1379 		}
1380 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1381 		    MII_100T2CR, 0);
1382 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1383 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1384 		    ANAR_10 | ANAR_CSMA);
1385 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1386 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1387 		DELAY(1000);
1388 		if (aneg != 0) {
1389 			/* Poll link state until age(4) get a 10/100 link. */
1390 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1391 				mii_pollstat(mii);
1392 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1393 					switch (IFM_SUBTYPE(
1394 					    mii->mii_media_active)) {
1395 					case IFM_10_T:
1396 					case IFM_100_TX:
1397 						age_mac_config(sc);
1398 						goto got_link;
1399 					default:
1400 						break;
1401 					}
1402 				}
1403 				AGE_UNLOCK(sc);
1404 				pause("agelnk", hz);
1405 				AGE_LOCK(sc);
1406 			}
1407 			if (i == MII_ANEGTICKS_GIGE)
1408 				device_printf(sc->age_dev,
1409 				    "establishing link failed, "
1410 				    "WOL may not work!");
1411 		}
1412 		/*
1413 		 * No link, force MAC to have 100Mbps, full-duplex link.
1414 		 * This is the last resort and may/may not work.
1415 		 */
1416 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1417 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1418 		age_mac_config(sc);
1419 	}
1420 
1421 got_link:
1422 	pmcs = 0;
1423 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1424 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1425 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1426 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1427 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1428 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1429 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1430 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1431 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1432 		reg |= MAC_CFG_RX_ENB;
1433 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1434 	}
1435 
1436 	/* Request PME. */
1437 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1438 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1439 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1440 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1441 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1442 #ifdef notyet
1443 	/* See above for powering down PHY issues. */
1444 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1445 		/* No WOL, PHY power down. */
1446 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1447 		    MII_BMCR, BMCR_PDOWN);
1448 	}
1449 #endif
1450 }
1451 
1452 static int
1453 age_suspend(device_t dev)
1454 {
1455 	struct age_softc *sc;
1456 
1457 	sc = device_get_softc(dev);
1458 
1459 	AGE_LOCK(sc);
1460 	age_stop(sc);
1461 	age_setwol(sc);
1462 	AGE_UNLOCK(sc);
1463 
1464 	return (0);
1465 }
1466 
1467 static int
1468 age_resume(device_t dev)
1469 {
1470 	struct age_softc *sc;
1471 	struct ifnet *ifp;
1472 
1473 	sc = device_get_softc(dev);
1474 
1475 	AGE_LOCK(sc);
1476 	age_phy_reset(sc);
1477 	ifp = sc->age_ifp;
1478 	if ((ifp->if_flags & IFF_UP) != 0)
1479 		age_init_locked(sc);
1480 
1481 	AGE_UNLOCK(sc);
1482 
1483 	return (0);
1484 }
1485 
1486 static int
1487 age_encap(struct age_softc *sc, struct mbuf **m_head)
1488 {
1489 	struct age_txdesc *txd, *txd_last;
1490 	struct tx_desc *desc;
1491 	struct mbuf *m;
1492 	struct ip *ip;
1493 	struct tcphdr *tcp;
1494 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1495 	bus_dmamap_t map;
1496 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1497 	int error, i, nsegs, prod, si;
1498 
1499 	AGE_LOCK_ASSERT(sc);
1500 
1501 	M_ASSERTPKTHDR((*m_head));
1502 
1503 	m = *m_head;
1504 	ip = NULL;
1505 	tcp = NULL;
1506 	cflags = vtag = 0;
1507 	ip_off = poff = 0;
1508 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1509 		/*
1510 		 * L1 requires offset of TCP/UDP payload in its Tx
1511 		 * descriptor to perform hardware Tx checksum offload.
1512 		 * Additionally, TSO requires IP/TCP header size and
1513 		 * modification of IP/TCP header in order to make TSO
1514 		 * engine work. This kind of operation takes many CPU
1515 		 * cycles on FreeBSD so fast host CPU is needed to get
1516 		 * smooth TSO performance.
1517 		 */
1518 		struct ether_header *eh;
1519 
1520 		if (M_WRITABLE(m) == 0) {
1521 			/* Get a writable copy. */
1522 			m = m_dup(*m_head, M_NOWAIT);
1523 			/* Release original mbufs. */
1524 			m_freem(*m_head);
1525 			if (m == NULL) {
1526 				*m_head = NULL;
1527 				return (ENOBUFS);
1528 			}
1529 			*m_head = m;
1530 		}
1531 		ip_off = sizeof(struct ether_header);
1532 		m = m_pullup(m, ip_off);
1533 		if (m == NULL) {
1534 			*m_head = NULL;
1535 			return (ENOBUFS);
1536 		}
1537 		eh = mtod(m, struct ether_header *);
1538 		/*
1539 		 * Check if hardware VLAN insertion is off.
1540 		 * Additional check for LLC/SNAP frame?
1541 		 */
1542 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1543 			ip_off = sizeof(struct ether_vlan_header);
1544 			m = m_pullup(m, ip_off);
1545 			if (m == NULL) {
1546 				*m_head = NULL;
1547 				return (ENOBUFS);
1548 			}
1549 		}
1550 		m = m_pullup(m, ip_off + sizeof(struct ip));
1551 		if (m == NULL) {
1552 			*m_head = NULL;
1553 			return (ENOBUFS);
1554 		}
1555 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1556 		poff = ip_off + (ip->ip_hl << 2);
1557 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1558 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1559 			if (m == NULL) {
1560 				*m_head = NULL;
1561 				return (ENOBUFS);
1562 			}
1563 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1564 			m = m_pullup(m, poff + (tcp->th_off << 2));
1565 			if (m == NULL) {
1566 				*m_head = NULL;
1567 				return (ENOBUFS);
1568 			}
1569 			/*
1570 			 * L1 requires IP/TCP header size and offset as
1571 			 * well as TCP pseudo checksum which complicates
1572 			 * TSO configuration. I guess this comes from the
1573 			 * adherence to Microsoft NDIS Large Send
1574 			 * specification which requires insertion of
1575 			 * pseudo checksum by upper stack. The pseudo
1576 			 * checksum that NDIS refers to doesn't include
1577 			 * TCP payload length so age(4) should recompute
1578 			 * the pseudo checksum here. Hopefully this wouldn't
1579 			 * be much burden on modern CPUs.
1580 			 * Reset IP checksum and recompute TCP pseudo
1581 			 * checksum as NDIS specification said.
1582 			 */
1583 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1584 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1585 			ip->ip_sum = 0;
1586 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1587 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1588 		}
1589 		*m_head = m;
1590 	}
1591 
1592 	si = prod = sc->age_cdata.age_tx_prod;
1593 	txd = &sc->age_cdata.age_txdesc[prod];
1594 	txd_last = txd;
1595 	map = txd->tx_dmamap;
1596 
1597 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1598 	    *m_head, txsegs, &nsegs, 0);
1599 	if (error == EFBIG) {
1600 		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1601 		if (m == NULL) {
1602 			m_freem(*m_head);
1603 			*m_head = NULL;
1604 			return (ENOMEM);
1605 		}
1606 		*m_head = m;
1607 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1608 		    *m_head, txsegs, &nsegs, 0);
1609 		if (error != 0) {
1610 			m_freem(*m_head);
1611 			*m_head = NULL;
1612 			return (error);
1613 		}
1614 	} else if (error != 0)
1615 		return (error);
1616 	if (nsegs == 0) {
1617 		m_freem(*m_head);
1618 		*m_head = NULL;
1619 		return (EIO);
1620 	}
1621 
1622 	/* Check descriptor overrun. */
1623 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1624 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1625 		return (ENOBUFS);
1626 	}
1627 
1628 	m = *m_head;
1629 	/* Configure VLAN hardware tag insertion. */
1630 	if ((m->m_flags & M_VLANTAG) != 0) {
1631 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1632 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1633 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1634 	}
1635 
1636 	desc = NULL;
1637 	i = 0;
1638 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1639 		/* Request TSO and set MSS. */
1640 		cflags |= AGE_TD_TSO_IPV4;
1641 		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1642 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1643 		    AGE_TD_TSO_MSS_SHIFT);
1644 		/* Set IP/TCP header size. */
1645 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1646 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1647 		/*
1648 		 * L1 requires the first buffer should only hold IP/TCP
1649 		 * header data. TCP payload should be handled in other
1650 		 * descriptors.
1651 		 */
1652 		hdrlen = poff + (tcp->th_off << 2);
1653 		desc = &sc->age_rdata.age_tx_ring[prod];
1654 		desc->addr = htole64(txsegs[0].ds_addr);
1655 		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1656 		desc->flags = htole32(cflags);
1657 		sc->age_cdata.age_tx_cnt++;
1658 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1659 		if (m->m_len - hdrlen > 0) {
1660 			/* Handle remaining payload of the 1st fragment. */
1661 			desc = &sc->age_rdata.age_tx_ring[prod];
1662 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1663 			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1664 			    vtag);
1665 			desc->flags = htole32(cflags);
1666 			sc->age_cdata.age_tx_cnt++;
1667 			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1668 		}
1669 		/* Handle remaining fragments. */
1670 		i = 1;
1671 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1672 		/* Configure Tx IP/TCP/UDP checksum offload. */
1673 		cflags |= AGE_TD_CSUM;
1674 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1675 			cflags |= AGE_TD_TCPCSUM;
1676 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1677 			cflags |= AGE_TD_UDPCSUM;
1678 		/* Set checksum start offset. */
1679 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1680 		/* Set checksum insertion position of TCP/UDP. */
1681 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1682 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1683 	}
1684 	for (; i < nsegs; i++) {
1685 		desc = &sc->age_rdata.age_tx_ring[prod];
1686 		desc->addr = htole64(txsegs[i].ds_addr);
1687 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1688 		desc->flags = htole32(cflags);
1689 		sc->age_cdata.age_tx_cnt++;
1690 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1691 	}
1692 	/* Update producer index. */
1693 	sc->age_cdata.age_tx_prod = prod;
1694 
1695 	/* Set EOP on the last descriptor. */
1696 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1697 	desc = &sc->age_rdata.age_tx_ring[prod];
1698 	desc->flags |= htole32(AGE_TD_EOP);
1699 
1700 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1701 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1702 		desc = &sc->age_rdata.age_tx_ring[si];
1703 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1704 	}
1705 
1706 	/* Swap dmamap of the first and the last. */
1707 	txd = &sc->age_cdata.age_txdesc[prod];
1708 	map = txd_last->tx_dmamap;
1709 	txd_last->tx_dmamap = txd->tx_dmamap;
1710 	txd->tx_dmamap = map;
1711 	txd->tx_m = m;
1712 
1713 	/* Sync descriptors. */
1714 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1715 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1716 	    sc->age_cdata.age_tx_ring_map,
1717 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1718 
1719 	return (0);
1720 }
1721 
1722 static void
1723 age_start(struct ifnet *ifp)
1724 {
1725         struct age_softc *sc;
1726 
1727 	sc = ifp->if_softc;
1728 	AGE_LOCK(sc);
1729 	age_start_locked(ifp);
1730 	AGE_UNLOCK(sc);
1731 }
1732 
1733 static void
1734 age_start_locked(struct ifnet *ifp)
1735 {
1736         struct age_softc *sc;
1737         struct mbuf *m_head;
1738 	int enq;
1739 
1740 	sc = ifp->if_softc;
1741 
1742 	AGE_LOCK_ASSERT(sc);
1743 
1744 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1745 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1746 		return;
1747 
1748 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1749 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1750 		if (m_head == NULL)
1751 			break;
1752 		/*
1753 		 * Pack the data into the transmit ring. If we
1754 		 * don't have room, set the OACTIVE flag and wait
1755 		 * for the NIC to drain the ring.
1756 		 */
1757 		if (age_encap(sc, &m_head)) {
1758 			if (m_head == NULL)
1759 				break;
1760 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1761 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1762 			break;
1763 		}
1764 
1765 		enq++;
1766 		/*
1767 		 * If there's a BPF listener, bounce a copy of this frame
1768 		 * to him.
1769 		 */
1770 		ETHER_BPF_MTAP(ifp, m_head);
1771 	}
1772 
1773 	if (enq > 0) {
1774 		/* Update mbox. */
1775 		AGE_COMMIT_MBOX(sc);
1776 		/* Set a timeout in case the chip goes out to lunch. */
1777 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1778 	}
1779 }
1780 
1781 static void
1782 age_watchdog(struct age_softc *sc)
1783 {
1784 	struct ifnet *ifp;
1785 
1786 	AGE_LOCK_ASSERT(sc);
1787 
1788 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1789 		return;
1790 
1791 	ifp = sc->age_ifp;
1792 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1793 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1794 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1795 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1796 		age_init_locked(sc);
1797 		return;
1798 	}
1799 	if (sc->age_cdata.age_tx_cnt == 0) {
1800 		if_printf(sc->age_ifp,
1801 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1802 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1803 			age_start_locked(ifp);
1804 		return;
1805 	}
1806 	if_printf(sc->age_ifp, "watchdog timeout\n");
1807 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1808 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1809 	age_init_locked(sc);
1810 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1811 		age_start_locked(ifp);
1812 }
1813 
1814 static int
1815 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1816 {
1817 	struct age_softc *sc;
1818 	struct ifreq *ifr;
1819 	struct mii_data *mii;
1820 	uint32_t reg;
1821 	int error, mask;
1822 
1823 	sc = ifp->if_softc;
1824 	ifr = (struct ifreq *)data;
1825 	error = 0;
1826 	switch (cmd) {
1827 	case SIOCSIFMTU:
1828 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1829 			error = EINVAL;
1830 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1831 			AGE_LOCK(sc);
1832 			ifp->if_mtu = ifr->ifr_mtu;
1833 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1834 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1835 				age_init_locked(sc);
1836 			}
1837 			AGE_UNLOCK(sc);
1838 		}
1839 		break;
1840 	case SIOCSIFFLAGS:
1841 		AGE_LOCK(sc);
1842 		if ((ifp->if_flags & IFF_UP) != 0) {
1843 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1844 				if (((ifp->if_flags ^ sc->age_if_flags)
1845 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1846 					age_rxfilter(sc);
1847 			} else {
1848 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1849 					age_init_locked(sc);
1850 			}
1851 		} else {
1852 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1853 				age_stop(sc);
1854 		}
1855 		sc->age_if_flags = ifp->if_flags;
1856 		AGE_UNLOCK(sc);
1857 		break;
1858 	case SIOCADDMULTI:
1859 	case SIOCDELMULTI:
1860 		AGE_LOCK(sc);
1861 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1862 			age_rxfilter(sc);
1863 		AGE_UNLOCK(sc);
1864 		break;
1865 	case SIOCSIFMEDIA:
1866 	case SIOCGIFMEDIA:
1867 		mii = device_get_softc(sc->age_miibus);
1868 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1869 		break;
1870 	case SIOCSIFCAP:
1871 		AGE_LOCK(sc);
1872 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1873 		if ((mask & IFCAP_TXCSUM) != 0 &&
1874 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1875 			ifp->if_capenable ^= IFCAP_TXCSUM;
1876 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1877 				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1878 			else
1879 				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1880 		}
1881 		if ((mask & IFCAP_RXCSUM) != 0 &&
1882 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1883 			ifp->if_capenable ^= IFCAP_RXCSUM;
1884 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1885 			reg &= ~MAC_CFG_RXCSUM_ENB;
1886 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1887 				reg |= MAC_CFG_RXCSUM_ENB;
1888 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1889 		}
1890 		if ((mask & IFCAP_TSO4) != 0 &&
1891 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1892 			ifp->if_capenable ^= IFCAP_TSO4;
1893 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1894 				ifp->if_hwassist |= CSUM_TSO;
1895 			else
1896 				ifp->if_hwassist &= ~CSUM_TSO;
1897 		}
1898 
1899 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1900 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1901 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1902 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1903 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1904 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1905 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1906 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1907 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1908 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1909 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1910 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1911 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1912 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1913 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1914 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1915 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1916 			age_rxvlan(sc);
1917 		}
1918 		AGE_UNLOCK(sc);
1919 		VLAN_CAPABILITIES(ifp);
1920 		break;
1921 	default:
1922 		error = ether_ioctl(ifp, cmd, data);
1923 		break;
1924 	}
1925 
1926 	return (error);
1927 }
1928 
1929 static void
1930 age_mac_config(struct age_softc *sc)
1931 {
1932 	struct mii_data *mii;
1933 	uint32_t reg;
1934 
1935 	AGE_LOCK_ASSERT(sc);
1936 
1937 	mii = device_get_softc(sc->age_miibus);
1938 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1939 	reg &= ~MAC_CFG_FULL_DUPLEX;
1940 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1941 	reg &= ~MAC_CFG_SPEED_MASK;
1942 	/* Reprogram MAC with resolved speed/duplex. */
1943 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1944 	case IFM_10_T:
1945 	case IFM_100_TX:
1946 		reg |= MAC_CFG_SPEED_10_100;
1947 		break;
1948 	case IFM_1000_T:
1949 		reg |= MAC_CFG_SPEED_1000;
1950 		break;
1951 	}
1952 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1953 		reg |= MAC_CFG_FULL_DUPLEX;
1954 #ifdef notyet
1955 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1956 			reg |= MAC_CFG_TX_FC;
1957 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1958 			reg |= MAC_CFG_RX_FC;
1959 #endif
1960 	}
1961 
1962 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1963 }
1964 
1965 static void
1966 age_link_task(void *arg, int pending)
1967 {
1968 	struct age_softc *sc;
1969 	struct mii_data *mii;
1970 	struct ifnet *ifp;
1971 	uint32_t reg;
1972 
1973 	sc = (struct age_softc *)arg;
1974 
1975 	AGE_LOCK(sc);
1976 	mii = device_get_softc(sc->age_miibus);
1977 	ifp = sc->age_ifp;
1978 	if (mii == NULL || ifp == NULL ||
1979 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1980 		AGE_UNLOCK(sc);
1981 		return;
1982 	}
1983 
1984 	sc->age_flags &= ~AGE_FLAG_LINK;
1985 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1986 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1987 		case IFM_10_T:
1988 		case IFM_100_TX:
1989 		case IFM_1000_T:
1990 			sc->age_flags |= AGE_FLAG_LINK;
1991 			break;
1992 		default:
1993 			break;
1994 		}
1995 	}
1996 
1997 	/* Stop Rx/Tx MACs. */
1998 	age_stop_rxmac(sc);
1999 	age_stop_txmac(sc);
2000 
2001 	/* Program MACs with resolved speed/duplex/flow-control. */
2002 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2003 		age_mac_config(sc);
2004 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2005 		/* Restart DMA engine and Tx/Rx MAC. */
2006 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2007 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2008 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2009 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2010 	}
2011 
2012 	AGE_UNLOCK(sc);
2013 }
2014 
2015 static void
2016 age_stats_update(struct age_softc *sc)
2017 {
2018 	struct age_stats *stat;
2019 	struct smb *smb;
2020 	struct ifnet *ifp;
2021 
2022 	AGE_LOCK_ASSERT(sc);
2023 
2024 	stat = &sc->age_stat;
2025 
2026 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2027 	    sc->age_cdata.age_smb_block_map,
2028 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2029 
2030 	smb = sc->age_rdata.age_smb_block;
2031 	if (smb->updated == 0)
2032 		return;
2033 
2034 	ifp = sc->age_ifp;
2035 	/* Rx stats. */
2036 	stat->rx_frames += smb->rx_frames;
2037 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2038 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2039 	stat->rx_pause_frames += smb->rx_pause_frames;
2040 	stat->rx_control_frames += smb->rx_control_frames;
2041 	stat->rx_crcerrs += smb->rx_crcerrs;
2042 	stat->rx_lenerrs += smb->rx_lenerrs;
2043 	stat->rx_bytes += smb->rx_bytes;
2044 	stat->rx_runts += smb->rx_runts;
2045 	stat->rx_fragments += smb->rx_fragments;
2046 	stat->rx_pkts_64 += smb->rx_pkts_64;
2047 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2048 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2049 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2050 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2051 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2052 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2053 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2054 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2055 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2056 	stat->rx_alignerrs += smb->rx_alignerrs;
2057 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2058 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2059 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2060 
2061 	/* Tx stats. */
2062 	stat->tx_frames += smb->tx_frames;
2063 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2064 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2065 	stat->tx_pause_frames += smb->tx_pause_frames;
2066 	stat->tx_excess_defer += smb->tx_excess_defer;
2067 	stat->tx_control_frames += smb->tx_control_frames;
2068 	stat->tx_deferred += smb->tx_deferred;
2069 	stat->tx_bytes += smb->tx_bytes;
2070 	stat->tx_pkts_64 += smb->tx_pkts_64;
2071 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2072 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2073 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2074 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2075 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2076 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2077 	stat->tx_single_colls += smb->tx_single_colls;
2078 	stat->tx_multi_colls += smb->tx_multi_colls;
2079 	stat->tx_late_colls += smb->tx_late_colls;
2080 	stat->tx_excess_colls += smb->tx_excess_colls;
2081 	stat->tx_underrun += smb->tx_underrun;
2082 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2083 	stat->tx_lenerrs += smb->tx_lenerrs;
2084 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2085 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2086 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2087 
2088 	/* Update counters in ifnet. */
2089 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2090 
2091 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2092 	    smb->tx_multi_colls + smb->tx_late_colls +
2093 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2094 
2095 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2096 	    smb->tx_late_colls + smb->tx_underrun +
2097 	    smb->tx_pkts_truncated);
2098 
2099 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2100 
2101 	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2102 	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2103 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2104 	    smb->rx_alignerrs);
2105 
2106 	/* Update done, clear. */
2107 	smb->updated = 0;
2108 
2109 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2110 	    sc->age_cdata.age_smb_block_map,
2111 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2112 }
2113 
2114 static int
2115 age_intr(void *arg)
2116 {
2117 	struct age_softc *sc;
2118 	uint32_t status;
2119 
2120 	sc = (struct age_softc *)arg;
2121 
2122 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2123 	if (status == 0 || (status & AGE_INTRS) == 0)
2124 		return (FILTER_STRAY);
2125 	/* Disable interrupts. */
2126 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2127 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2128 
2129 	return (FILTER_HANDLED);
2130 }
2131 
2132 static void
2133 age_int_task(void *arg, int pending)
2134 {
2135 	struct age_softc *sc;
2136 	struct ifnet *ifp;
2137 	struct cmb *cmb;
2138 	uint32_t status;
2139 
2140 	sc = (struct age_softc *)arg;
2141 
2142 	AGE_LOCK(sc);
2143 
2144 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2145 	    sc->age_cdata.age_cmb_block_map,
2146 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2147 	cmb = sc->age_rdata.age_cmb_block;
2148 	status = le32toh(cmb->intr_status);
2149 	if (sc->age_morework != 0)
2150 		status |= INTR_CMB_RX;
2151 	if ((status & AGE_INTRS) == 0)
2152 		goto done;
2153 
2154 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2155 	    TPD_CONS_SHIFT;
2156 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2157 	    RRD_PROD_SHIFT;
2158 	/* Let hardware know CMB was served. */
2159 	cmb->intr_status = 0;
2160 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2161 	    sc->age_cdata.age_cmb_block_map,
2162 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2163 
2164 #if 0
2165 	printf("INTR: 0x%08x\n", status);
2166 	status &= ~INTR_DIS_DMA;
2167 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2168 #endif
2169 	ifp = sc->age_ifp;
2170 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2171 		if ((status & INTR_CMB_RX) != 0)
2172 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2173 			    sc->age_process_limit);
2174 		if ((status & INTR_CMB_TX) != 0)
2175 			age_txintr(sc, sc->age_tpd_cons);
2176 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2177 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2178 				device_printf(sc->age_dev,
2179 				    "DMA read error! -- resetting\n");
2180 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2181 				device_printf(sc->age_dev,
2182 				    "DMA write error! -- resetting\n");
2183 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2184 			age_init_locked(sc);
2185 		}
2186 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2187 			age_start_locked(ifp);
2188 		if ((status & INTR_SMB) != 0)
2189 			age_stats_update(sc);
2190 	}
2191 
2192 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2193 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2194 	    sc->age_cdata.age_cmb_block_map,
2195 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2196 	status = le32toh(cmb->intr_status);
2197 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2198 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2199 		AGE_UNLOCK(sc);
2200 		return;
2201 	}
2202 
2203 done:
2204 	/* Re-enable interrupts. */
2205 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2206 	AGE_UNLOCK(sc);
2207 }
2208 
2209 static void
2210 age_txintr(struct age_softc *sc, int tpd_cons)
2211 {
2212 	struct ifnet *ifp;
2213 	struct age_txdesc *txd;
2214 	int cons, prog;
2215 
2216 	AGE_LOCK_ASSERT(sc);
2217 
2218 	ifp = sc->age_ifp;
2219 
2220 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2221 	    sc->age_cdata.age_tx_ring_map,
2222 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2223 
2224 	/*
2225 	 * Go through our Tx list and free mbufs for those
2226 	 * frames which have been transmitted.
2227 	 */
2228 	cons = sc->age_cdata.age_tx_cons;
2229 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2230 		if (sc->age_cdata.age_tx_cnt <= 0)
2231 			break;
2232 		prog++;
2233 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2234 		sc->age_cdata.age_tx_cnt--;
2235 		txd = &sc->age_cdata.age_txdesc[cons];
2236 		/*
2237 		 * Clear Tx descriptors, it's not required but would
2238 		 * help debugging in case of Tx issues.
2239 		 */
2240 		txd->tx_desc->addr = 0;
2241 		txd->tx_desc->len = 0;
2242 		txd->tx_desc->flags = 0;
2243 
2244 		if (txd->tx_m == NULL)
2245 			continue;
2246 		/* Reclaim transmitted mbufs. */
2247 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2248 		    BUS_DMASYNC_POSTWRITE);
2249 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2250 		m_freem(txd->tx_m);
2251 		txd->tx_m = NULL;
2252 	}
2253 
2254 	if (prog > 0) {
2255 		sc->age_cdata.age_tx_cons = cons;
2256 
2257 		/*
2258 		 * Unarm watchdog timer only when there are no pending
2259 		 * Tx descriptors in queue.
2260 		 */
2261 		if (sc->age_cdata.age_tx_cnt == 0)
2262 			sc->age_watchdog_timer = 0;
2263 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2264 		    sc->age_cdata.age_tx_ring_map,
2265 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2266 	}
2267 }
2268 
2269 #ifndef __NO_STRICT_ALIGNMENT
2270 static struct mbuf *
2271 age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2272 {
2273 	struct mbuf *n;
2274         int i;
2275         uint16_t *src, *dst;
2276 
2277 	src = mtod(m, uint16_t *);
2278 	dst = src - 3;
2279 
2280 	if (m->m_next == NULL) {
2281 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2282 			*dst++ = *src++;
2283 		m->m_data -= 6;
2284 		return (m);
2285 	}
2286 	/*
2287 	 * Append a new mbuf to received mbuf chain and copy ethernet
2288 	 * header from the mbuf chain. This can save lots of CPU
2289 	 * cycles for jumbo frame.
2290 	 */
2291 	MGETHDR(n, M_NOWAIT, MT_DATA);
2292 	if (n == NULL) {
2293 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2294 		m_freem(m);
2295 		return (NULL);
2296 	}
2297 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2298 	m->m_data += ETHER_HDR_LEN;
2299 	m->m_len -= ETHER_HDR_LEN;
2300 	n->m_len = ETHER_HDR_LEN;
2301 	M_MOVE_PKTHDR(n, m);
2302 	n->m_next = m;
2303 	return (n);
2304 }
2305 #endif
2306 
2307 /* Receive a frame. */
2308 static void
2309 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2310 {
2311 	struct age_rxdesc *rxd;
2312 	struct ifnet *ifp;
2313 	struct mbuf *mp, *m;
2314 	uint32_t status, index, vtag;
2315 	int count, nsegs;
2316 	int rx_cons;
2317 
2318 	AGE_LOCK_ASSERT(sc);
2319 
2320 	ifp = sc->age_ifp;
2321 	status = le32toh(rxrd->flags);
2322 	index = le32toh(rxrd->index);
2323 	rx_cons = AGE_RX_CONS(index);
2324 	nsegs = AGE_RX_NSEGS(index);
2325 
2326 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2327 	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2328 		/*
2329 		 * We want to pass the following frames to upper
2330 		 * layer regardless of error status of Rx return
2331 		 * ring.
2332 		 *
2333 		 *  o IP/TCP/UDP checksum is bad.
2334 		 *  o frame length and protocol specific length
2335 		 *     does not match.
2336 		 */
2337 		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2338 		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2339 		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2340 			return;
2341 	}
2342 
2343 	for (count = 0; count < nsegs; count++,
2344 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2345 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2346 		mp = rxd->rx_m;
2347 		/* Add a new receive buffer to the ring. */
2348 		if (age_newbuf(sc, rxd) != 0) {
2349 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2350 			/* Reuse Rx buffers. */
2351 			if (sc->age_cdata.age_rxhead != NULL)
2352 				m_freem(sc->age_cdata.age_rxhead);
2353 			break;
2354 		}
2355 
2356 		/*
2357 		 * Assume we've received a full sized frame.
2358 		 * Actual size is fixed when we encounter the end of
2359 		 * multi-segmented frame.
2360 		 */
2361 		mp->m_len = AGE_RX_BUF_SIZE;
2362 
2363 		/* Chain received mbufs. */
2364 		if (sc->age_cdata.age_rxhead == NULL) {
2365 			sc->age_cdata.age_rxhead = mp;
2366 			sc->age_cdata.age_rxtail = mp;
2367 		} else {
2368 			mp->m_flags &= ~M_PKTHDR;
2369 			sc->age_cdata.age_rxprev_tail =
2370 			    sc->age_cdata.age_rxtail;
2371 			sc->age_cdata.age_rxtail->m_next = mp;
2372 			sc->age_cdata.age_rxtail = mp;
2373 		}
2374 
2375 		if (count == nsegs - 1) {
2376 			/* Last desc. for this frame. */
2377 			m = sc->age_cdata.age_rxhead;
2378 			m->m_flags |= M_PKTHDR;
2379 			/*
2380 			 * It seems that L1 controller has no way
2381 			 * to tell hardware to strip CRC bytes.
2382 			 */
2383 			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2384 			    ETHER_CRC_LEN;
2385 			if (nsegs > 1) {
2386 				/* Set last mbuf size. */
2387 				mp->m_len = sc->age_cdata.age_rxlen -
2388 				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2389 				/* Remove the CRC bytes in chained mbufs. */
2390 				if (mp->m_len <= ETHER_CRC_LEN) {
2391 					sc->age_cdata.age_rxtail =
2392 					    sc->age_cdata.age_rxprev_tail;
2393 					sc->age_cdata.age_rxtail->m_len -=
2394 					    (ETHER_CRC_LEN - mp->m_len);
2395 					sc->age_cdata.age_rxtail->m_next = NULL;
2396 					m_freem(mp);
2397 				} else {
2398 					mp->m_len -= ETHER_CRC_LEN;
2399 				}
2400 			} else
2401 				m->m_len = m->m_pkthdr.len;
2402 			m->m_pkthdr.rcvif = ifp;
2403 			/*
2404 			 * Set checksum information.
2405 			 * It seems that L1 controller can compute partial
2406 			 * checksum. The partial checksum value can be used
2407 			 * to accelerate checksum computation for fragmented
2408 			 * TCP/UDP packets. Upper network stack already
2409 			 * takes advantage of the partial checksum value in
2410 			 * IP reassembly stage. But I'm not sure the
2411 			 * correctness of the partial hardware checksum
2412 			 * assistance due to lack of data sheet. If it is
2413 			 * proven to work on L1 I'll enable it.
2414 			 */
2415 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2416 			    (status & AGE_RRD_IPV4) != 0) {
2417 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2418 					m->m_pkthdr.csum_flags |=
2419 					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2420 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2421 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2422 					m->m_pkthdr.csum_flags |=
2423 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2424 					m->m_pkthdr.csum_data = 0xffff;
2425 				}
2426 				/*
2427 				 * Don't mark bad checksum for TCP/UDP frames
2428 				 * as fragmented frames may always have set
2429 				 * bad checksummed bit of descriptor status.
2430 				 */
2431 			}
2432 
2433 			/* Check for VLAN tagged frames. */
2434 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2435 			    (status & AGE_RRD_VLAN) != 0) {
2436 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2437 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2438 				m->m_flags |= M_VLANTAG;
2439 			}
2440 #ifndef __NO_STRICT_ALIGNMENT
2441 			m = age_fixup_rx(ifp, m);
2442 			if (m != NULL)
2443 #endif
2444 			{
2445 			/* Pass it on. */
2446 			AGE_UNLOCK(sc);
2447 			(*ifp->if_input)(ifp, m);
2448 			AGE_LOCK(sc);
2449 			}
2450 		}
2451 	}
2452 
2453 	/* Reset mbuf chains. */
2454 	AGE_RXCHAIN_RESET(sc);
2455 }
2456 
2457 static int
2458 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2459 {
2460 	struct rx_rdesc *rxrd;
2461 	int rr_cons, nsegs, pktlen, prog;
2462 
2463 	AGE_LOCK_ASSERT(sc);
2464 
2465 	rr_cons = sc->age_cdata.age_rr_cons;
2466 	if (rr_cons == rr_prod)
2467 		return (0);
2468 
2469 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2470 	    sc->age_cdata.age_rr_ring_map,
2471 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2472 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2473 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2474 
2475 	for (prog = 0; rr_cons != rr_prod; prog++) {
2476 		if (count-- <= 0)
2477 			break;
2478 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2479 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2480 		if (nsegs == 0)
2481 			break;
2482 		/*
2483 		 * Check number of segments against received bytes.
2484 		 * Non-matching value would indicate that hardware
2485 		 * is still trying to update Rx return descriptors.
2486 		 * I'm not sure whether this check is really needed.
2487 		 */
2488 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2489 		if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2490 			break;
2491 
2492 		/* Received a frame. */
2493 		age_rxeof(sc, rxrd);
2494 		/* Clear return ring. */
2495 		rxrd->index = 0;
2496 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2497 		sc->age_cdata.age_rx_cons += nsegs;
2498 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2499 	}
2500 
2501 	if (prog > 0) {
2502 		/* Update the consumer index. */
2503 		sc->age_cdata.age_rr_cons = rr_cons;
2504 
2505 		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2506 		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2507 		/* Sync descriptors. */
2508 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2509 		    sc->age_cdata.age_rr_ring_map,
2510 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2511 
2512 		/* Notify hardware availability of new Rx buffers. */
2513 		AGE_COMMIT_MBOX(sc);
2514 	}
2515 
2516 	return (count > 0 ? 0 : EAGAIN);
2517 }
2518 
2519 static void
2520 age_tick(void *arg)
2521 {
2522 	struct age_softc *sc;
2523 	struct mii_data *mii;
2524 
2525 	sc = (struct age_softc *)arg;
2526 
2527 	AGE_LOCK_ASSERT(sc);
2528 
2529 	mii = device_get_softc(sc->age_miibus);
2530 	mii_tick(mii);
2531 	age_watchdog(sc);
2532 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2533 }
2534 
2535 static void
2536 age_reset(struct age_softc *sc)
2537 {
2538 	uint32_t reg;
2539 	int i;
2540 
2541 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2542 	CSR_READ_4(sc, AGE_MASTER_CFG);
2543 	DELAY(1000);
2544 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2545 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2546 			break;
2547 		DELAY(10);
2548 	}
2549 
2550 	if (i == 0)
2551 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2552 	/* Initialize PCIe module. From Linux. */
2553 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2554 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2555 }
2556 
2557 static void
2558 age_init(void *xsc)
2559 {
2560 	struct age_softc *sc;
2561 
2562 	sc = (struct age_softc *)xsc;
2563 	AGE_LOCK(sc);
2564 	age_init_locked(sc);
2565 	AGE_UNLOCK(sc);
2566 }
2567 
2568 static void
2569 age_init_locked(struct age_softc *sc)
2570 {
2571 	struct ifnet *ifp;
2572 	struct mii_data *mii;
2573 	uint8_t eaddr[ETHER_ADDR_LEN];
2574 	bus_addr_t paddr;
2575 	uint32_t reg, fsize;
2576 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2577 	int error;
2578 
2579 	AGE_LOCK_ASSERT(sc);
2580 
2581 	ifp = sc->age_ifp;
2582 	mii = device_get_softc(sc->age_miibus);
2583 
2584 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2585 		return;
2586 
2587 	/*
2588 	 * Cancel any pending I/O.
2589 	 */
2590 	age_stop(sc);
2591 
2592 	/*
2593 	 * Reset the chip to a known state.
2594 	 */
2595 	age_reset(sc);
2596 
2597 	/* Initialize descriptors. */
2598 	error = age_init_rx_ring(sc);
2599         if (error != 0) {
2600                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2601                 age_stop(sc);
2602 		return;
2603         }
2604 	age_init_rr_ring(sc);
2605 	age_init_tx_ring(sc);
2606 	age_init_cmb_block(sc);
2607 	age_init_smb_block(sc);
2608 
2609 	/* Reprogram the station address. */
2610 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2611 	CSR_WRITE_4(sc, AGE_PAR0,
2612 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2613 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2614 
2615 	/* Set descriptor base addresses. */
2616 	paddr = sc->age_rdata.age_tx_ring_paddr;
2617 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2618 	paddr = sc->age_rdata.age_rx_ring_paddr;
2619 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2620 	paddr = sc->age_rdata.age_rr_ring_paddr;
2621 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2622 	paddr = sc->age_rdata.age_tx_ring_paddr;
2623 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2624 	paddr = sc->age_rdata.age_cmb_block_paddr;
2625 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2626 	paddr = sc->age_rdata.age_smb_block_paddr;
2627 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2628 	/* Set Rx/Rx return descriptor counter. */
2629 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2630 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2631 	    DESC_RRD_CNT_MASK) |
2632 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2633 	/* Set Tx descriptor counter. */
2634 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2635 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2636 
2637 	/* Tell hardware that we're ready to load descriptors. */
2638 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2639 
2640 	/*
2641 	 * Initialize mailbox register.
2642 	 * Updated producer/consumer index information is exchanged
2643 	 * through this mailbox register. However Tx producer and
2644 	 * Rx return consumer/Rx producer are all shared such that
2645 	 * it's hard to separate code path between Tx and Rx without
2646 	 * locking. If L1 hardware have a separate mail box register
2647 	 * for Tx and Rx consumer/producer management we could have
2648 	 * indepent Tx/Rx handler which in turn Rx handler could have
2649 	 * been run without any locking.
2650 	 */
2651 	AGE_COMMIT_MBOX(sc);
2652 
2653 	/* Configure IPG/IFG parameters. */
2654 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2655 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2656 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2657 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2658 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2659 
2660 	/* Set parameters for half-duplex media. */
2661 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2662 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2663 	    HDPX_CFG_LCOL_MASK) |
2664 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2665 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2666 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2667 	    HDPX_CFG_ABEBT_MASK) |
2668 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2669 	    HDPX_CFG_JAMIPG_MASK));
2670 
2671 	/* Configure interrupt moderation timer. */
2672 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2673 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2674 	reg &= ~MASTER_MTIMER_ENB;
2675 	if (AGE_USECS(sc->age_int_mod) == 0)
2676 		reg &= ~MASTER_ITIMER_ENB;
2677 	else
2678 		reg |= MASTER_ITIMER_ENB;
2679 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2680 	if (bootverbose)
2681 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2682 		    sc->age_int_mod);
2683 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2684 
2685 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2686 	if (ifp->if_mtu < ETHERMTU)
2687 		sc->age_max_frame_size = ETHERMTU;
2688 	else
2689 		sc->age_max_frame_size = ifp->if_mtu;
2690 	sc->age_max_frame_size += ETHER_HDR_LEN +
2691 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2692 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2693 	/* Configure jumbo frame. */
2694 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2695 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2696 	    (((fsize / sizeof(uint64_t)) <<
2697 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2698 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2699 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2700 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2701 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2702 
2703 	/* Configure flow-control parameters. From Linux. */
2704 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2705 		/*
2706 		 * Magic workaround for old-L1.
2707 		 * Don't know which hw revision requires this magic.
2708 		 */
2709 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2710 		/*
2711 		 * Another magic workaround for flow-control mode
2712 		 * change. From Linux.
2713 		 */
2714 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2715 	}
2716 	/*
2717 	 * TODO
2718 	 *  Should understand pause parameter relationships between FIFO
2719 	 *  size and number of Rx descriptors and Rx return descriptors.
2720 	 *
2721 	 *  Magic parameters came from Linux.
2722 	 */
2723 	switch (sc->age_chip_rev) {
2724 	case 0x8001:
2725 	case 0x9001:
2726 	case 0x9002:
2727 	case 0x9003:
2728 		rxf_hi = AGE_RX_RING_CNT / 16;
2729 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2730 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2731 		rrd_lo = AGE_RR_RING_CNT / 16;
2732 		break;
2733 	default:
2734 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2735 		rxf_lo = reg / 16;
2736 		if (rxf_lo < 192)
2737 			rxf_lo = 192;
2738 		rxf_hi = (reg * 7) / 8;
2739 		if (rxf_hi < rxf_lo)
2740 			rxf_hi = rxf_lo + 16;
2741 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2742 		rrd_lo = reg / 8;
2743 		rrd_hi = (reg * 7) / 8;
2744 		if (rrd_lo < 2)
2745 			rrd_lo = 2;
2746 		if (rrd_hi < rrd_lo)
2747 			rrd_hi = rrd_lo + 3;
2748 		break;
2749 	}
2750 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2751 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2752 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2753 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2754 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2755 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2756 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2757 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2758 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2759 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2760 
2761 	/* Configure RxQ. */
2762 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2763 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2764 	    RXQ_CFG_RD_BURST_MASK) |
2765 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2766 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2767 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2768 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2769 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2770 
2771 	/* Configure TxQ. */
2772 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2773 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2774 	    TXQ_CFG_TPD_BURST_MASK) |
2775 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2776 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2777 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2778 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2779 	    TXQ_CFG_ENB);
2780 
2781 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2782 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2783 	    TX_JUMBO_TPD_TH_MASK) |
2784 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2785 	    TX_JUMBO_TPD_IPG_MASK));
2786 	/* Configure DMA parameters. */
2787 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2788 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2789 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2790 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2791 
2792 	/* Configure CMB DMA write threshold. */
2793 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2794 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2795 	    CMB_WR_THRESH_RRD_MASK) |
2796 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2797 	    CMB_WR_THRESH_TPD_MASK));
2798 
2799 	/* Set CMB/SMB timer and enable them. */
2800 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2801 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2802 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2803 	/* Request SMB updates for every seconds. */
2804 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2805 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2806 
2807 	/*
2808 	 * Disable all WOL bits as WOL can interfere normal Rx
2809 	 * operation.
2810 	 */
2811 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2812 
2813 	/*
2814 	 * Configure Tx/Rx MACs.
2815 	 *  - Auto-padding for short frames.
2816 	 *  - Enable CRC generation.
2817 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2818 	 *  of MAC is followed after link establishment.
2819 	 */
2820 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2821 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2822 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2823 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2824 	    MAC_CFG_PREAMBLE_MASK));
2825 	/* Set up the receive filter. */
2826 	age_rxfilter(sc);
2827 	age_rxvlan(sc);
2828 
2829 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2830 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2831 		reg |= MAC_CFG_RXCSUM_ENB;
2832 
2833 	/* Ack all pending interrupts and clear it. */
2834 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2835 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2836 
2837 	/* Finally enable Tx/Rx MAC. */
2838 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2839 
2840 	sc->age_flags &= ~AGE_FLAG_LINK;
2841 	/* Switch to the current media. */
2842 	mii_mediachg(mii);
2843 
2844 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2845 
2846 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2847 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2848 }
2849 
2850 static void
2851 age_stop(struct age_softc *sc)
2852 {
2853 	struct ifnet *ifp;
2854 	struct age_txdesc *txd;
2855 	struct age_rxdesc *rxd;
2856 	uint32_t reg;
2857 	int i;
2858 
2859 	AGE_LOCK_ASSERT(sc);
2860 	/*
2861 	 * Mark the interface down and cancel the watchdog timer.
2862 	 */
2863 	ifp = sc->age_ifp;
2864 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2865 	sc->age_flags &= ~AGE_FLAG_LINK;
2866 	callout_stop(&sc->age_tick_ch);
2867 	sc->age_watchdog_timer = 0;
2868 
2869 	/*
2870 	 * Disable interrupts.
2871 	 */
2872 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2873 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2874 	/* Stop CMB/SMB updates. */
2875 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2876 	/* Stop Rx/Tx MAC. */
2877 	age_stop_rxmac(sc);
2878 	age_stop_txmac(sc);
2879 	/* Stop DMA. */
2880 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2881 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2882 	/* Stop TxQ/RxQ. */
2883 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2884 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2885 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2886 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2887 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2888 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2889 			break;
2890 		DELAY(10);
2891 	}
2892 	if (i == 0)
2893 		device_printf(sc->age_dev,
2894 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2895 
2896 	 /* Reclaim Rx buffers that have been processed. */
2897 	if (sc->age_cdata.age_rxhead != NULL)
2898 		m_freem(sc->age_cdata.age_rxhead);
2899 	AGE_RXCHAIN_RESET(sc);
2900 	/*
2901 	 * Free RX and TX mbufs still in the queues.
2902 	 */
2903 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2904 		rxd = &sc->age_cdata.age_rxdesc[i];
2905 		if (rxd->rx_m != NULL) {
2906 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2907 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2908 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2909 			    rxd->rx_dmamap);
2910 			m_freem(rxd->rx_m);
2911 			rxd->rx_m = NULL;
2912 		}
2913         }
2914 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2915 		txd = &sc->age_cdata.age_txdesc[i];
2916 		if (txd->tx_m != NULL) {
2917 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2918 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2919 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2920 			    txd->tx_dmamap);
2921 			m_freem(txd->tx_m);
2922 			txd->tx_m = NULL;
2923 		}
2924         }
2925 }
2926 
2927 static void
2928 age_stop_txmac(struct age_softc *sc)
2929 {
2930 	uint32_t reg;
2931 	int i;
2932 
2933 	AGE_LOCK_ASSERT(sc);
2934 
2935 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2936 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2937 		reg &= ~MAC_CFG_TX_ENB;
2938 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2939 	}
2940 	/* Stop Tx DMA engine. */
2941 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2942 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2943 		reg &= ~DMA_CFG_RD_ENB;
2944 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2945 	}
2946 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2947 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2948 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2949 			break;
2950 		DELAY(10);
2951 	}
2952 	if (i == 0)
2953 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2954 }
2955 
2956 static void
2957 age_stop_rxmac(struct age_softc *sc)
2958 {
2959 	uint32_t reg;
2960 	int i;
2961 
2962 	AGE_LOCK_ASSERT(sc);
2963 
2964 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2965 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2966 		reg &= ~MAC_CFG_RX_ENB;
2967 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2968 	}
2969 	/* Stop Rx DMA engine. */
2970 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2971 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2972 		reg &= ~DMA_CFG_WR_ENB;
2973 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2974 	}
2975 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2976 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2977 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2978 			break;
2979 		DELAY(10);
2980 	}
2981 	if (i == 0)
2982 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2983 }
2984 
2985 static void
2986 age_init_tx_ring(struct age_softc *sc)
2987 {
2988 	struct age_ring_data *rd;
2989 	struct age_txdesc *txd;
2990 	int i;
2991 
2992 	AGE_LOCK_ASSERT(sc);
2993 
2994 	sc->age_cdata.age_tx_prod = 0;
2995 	sc->age_cdata.age_tx_cons = 0;
2996 	sc->age_cdata.age_tx_cnt = 0;
2997 
2998 	rd = &sc->age_rdata;
2999 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
3000 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
3001 		txd = &sc->age_cdata.age_txdesc[i];
3002 		txd->tx_desc = &rd->age_tx_ring[i];
3003 		txd->tx_m = NULL;
3004 	}
3005 
3006 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3007 	    sc->age_cdata.age_tx_ring_map,
3008 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3009 }
3010 
3011 static int
3012 age_init_rx_ring(struct age_softc *sc)
3013 {
3014 	struct age_ring_data *rd;
3015 	struct age_rxdesc *rxd;
3016 	int i;
3017 
3018 	AGE_LOCK_ASSERT(sc);
3019 
3020 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3021 	sc->age_morework = 0;
3022 	rd = &sc->age_rdata;
3023 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3024 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3025 		rxd = &sc->age_cdata.age_rxdesc[i];
3026 		rxd->rx_m = NULL;
3027 		rxd->rx_desc = &rd->age_rx_ring[i];
3028 		if (age_newbuf(sc, rxd) != 0)
3029 			return (ENOBUFS);
3030 	}
3031 
3032 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3033 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3034 
3035 	return (0);
3036 }
3037 
3038 static void
3039 age_init_rr_ring(struct age_softc *sc)
3040 {
3041 	struct age_ring_data *rd;
3042 
3043 	AGE_LOCK_ASSERT(sc);
3044 
3045 	sc->age_cdata.age_rr_cons = 0;
3046 	AGE_RXCHAIN_RESET(sc);
3047 
3048 	rd = &sc->age_rdata;
3049 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3050 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3051 	    sc->age_cdata.age_rr_ring_map,
3052 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3053 }
3054 
3055 static void
3056 age_init_cmb_block(struct age_softc *sc)
3057 {
3058 	struct age_ring_data *rd;
3059 
3060 	AGE_LOCK_ASSERT(sc);
3061 
3062 	rd = &sc->age_rdata;
3063 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3064 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3065 	    sc->age_cdata.age_cmb_block_map,
3066 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3067 }
3068 
3069 static void
3070 age_init_smb_block(struct age_softc *sc)
3071 {
3072 	struct age_ring_data *rd;
3073 
3074 	AGE_LOCK_ASSERT(sc);
3075 
3076 	rd = &sc->age_rdata;
3077 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3078 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3079 	    sc->age_cdata.age_smb_block_map,
3080 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3081 }
3082 
3083 static int
3084 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3085 {
3086 	struct rx_desc *desc;
3087 	struct mbuf *m;
3088 	bus_dma_segment_t segs[1];
3089 	bus_dmamap_t map;
3090 	int nsegs;
3091 
3092 	AGE_LOCK_ASSERT(sc);
3093 
3094 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3095 	if (m == NULL)
3096 		return (ENOBUFS);
3097 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3098 #ifndef __NO_STRICT_ALIGNMENT
3099 	m_adj(m, AGE_RX_BUF_ALIGN);
3100 #endif
3101 
3102 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3103 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3104 		m_freem(m);
3105 		return (ENOBUFS);
3106 	}
3107 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3108 
3109 	if (rxd->rx_m != NULL) {
3110 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3111 		    BUS_DMASYNC_POSTREAD);
3112 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3113 	}
3114 	map = rxd->rx_dmamap;
3115 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3116 	sc->age_cdata.age_rx_sparemap = map;
3117 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3118 	    BUS_DMASYNC_PREREAD);
3119 	rxd->rx_m = m;
3120 
3121 	desc = rxd->rx_desc;
3122 	desc->addr = htole64(segs[0].ds_addr);
3123 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3124 	    AGE_RD_LEN_SHIFT);
3125 	return (0);
3126 }
3127 
3128 static void
3129 age_rxvlan(struct age_softc *sc)
3130 {
3131 	struct ifnet *ifp;
3132 	uint32_t reg;
3133 
3134 	AGE_LOCK_ASSERT(sc);
3135 
3136 	ifp = sc->age_ifp;
3137 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3138 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3139 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3140 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3141 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3142 }
3143 
3144 static void
3145 age_rxfilter(struct age_softc *sc)
3146 {
3147 	struct ifnet *ifp;
3148 	struct ifmultiaddr *ifma;
3149 	uint32_t crc;
3150 	uint32_t mchash[2];
3151 	uint32_t rxcfg;
3152 
3153 	AGE_LOCK_ASSERT(sc);
3154 
3155 	ifp = sc->age_ifp;
3156 
3157 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3158 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3159 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3160 		rxcfg |= MAC_CFG_BCAST;
3161 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3162 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3163 			rxcfg |= MAC_CFG_PROMISC;
3164 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3165 			rxcfg |= MAC_CFG_ALLMULTI;
3166 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3167 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3168 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3169 		return;
3170 	}
3171 
3172 	/* Program new filter. */
3173 	bzero(mchash, sizeof(mchash));
3174 
3175 	if_maddr_rlock(ifp);
3176 	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3177 		if (ifma->ifma_addr->sa_family != AF_LINK)
3178 			continue;
3179 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3180 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3181 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3182 	}
3183 	if_maddr_runlock(ifp);
3184 
3185 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3186 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3187 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3188 }
3189 
3190 static int
3191 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3192 {
3193 	struct age_softc *sc;
3194 	struct age_stats *stats;
3195 	int error, result;
3196 
3197 	result = -1;
3198 	error = sysctl_handle_int(oidp, &result, 0, req);
3199 
3200 	if (error != 0 || req->newptr == NULL)
3201 		return (error);
3202 
3203 	if (result != 1)
3204 		return (error);
3205 
3206 	sc = (struct age_softc *)arg1;
3207 	stats = &sc->age_stat;
3208 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3209 	printf("Transmit good frames : %ju\n",
3210 	    (uintmax_t)stats->tx_frames);
3211 	printf("Transmit good broadcast frames : %ju\n",
3212 	    (uintmax_t)stats->tx_bcast_frames);
3213 	printf("Transmit good multicast frames : %ju\n",
3214 	    (uintmax_t)stats->tx_mcast_frames);
3215 	printf("Transmit pause control frames : %u\n",
3216 	    stats->tx_pause_frames);
3217 	printf("Transmit control frames : %u\n",
3218 	    stats->tx_control_frames);
3219 	printf("Transmit frames with excessive deferrals : %u\n",
3220 	    stats->tx_excess_defer);
3221 	printf("Transmit deferrals : %u\n",
3222 	    stats->tx_deferred);
3223 	printf("Transmit good octets : %ju\n",
3224 	    (uintmax_t)stats->tx_bytes);
3225 	printf("Transmit good broadcast octets : %ju\n",
3226 	    (uintmax_t)stats->tx_bcast_bytes);
3227 	printf("Transmit good multicast octets : %ju\n",
3228 	    (uintmax_t)stats->tx_mcast_bytes);
3229 	printf("Transmit frames 64 bytes : %ju\n",
3230 	    (uintmax_t)stats->tx_pkts_64);
3231 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3232 	    (uintmax_t)stats->tx_pkts_65_127);
3233 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3234 	    (uintmax_t)stats->tx_pkts_128_255);
3235 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3236 	    (uintmax_t)stats->tx_pkts_256_511);
3237 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3238 	    (uintmax_t)stats->tx_pkts_512_1023);
3239 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3240 	    (uintmax_t)stats->tx_pkts_1024_1518);
3241 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3242 	    (uintmax_t)stats->tx_pkts_1519_max);
3243 	printf("Transmit single collisions : %u\n",
3244 	    stats->tx_single_colls);
3245 	printf("Transmit multiple collisions : %u\n",
3246 	    stats->tx_multi_colls);
3247 	printf("Transmit late collisions : %u\n",
3248 	    stats->tx_late_colls);
3249 	printf("Transmit abort due to excessive collisions : %u\n",
3250 	    stats->tx_excess_colls);
3251 	printf("Transmit underruns due to FIFO underruns : %u\n",
3252 	    stats->tx_underrun);
3253 	printf("Transmit descriptor write-back errors : %u\n",
3254 	    stats->tx_desc_underrun);
3255 	printf("Transmit frames with length mismatched frame size : %u\n",
3256 	    stats->tx_lenerrs);
3257 	printf("Transmit frames with truncated due to MTU size : %u\n",
3258 	    stats->tx_lenerrs);
3259 
3260 	printf("Receive good frames : %ju\n",
3261 	    (uintmax_t)stats->rx_frames);
3262 	printf("Receive good broadcast frames : %ju\n",
3263 	    (uintmax_t)stats->rx_bcast_frames);
3264 	printf("Receive good multicast frames : %ju\n",
3265 	    (uintmax_t)stats->rx_mcast_frames);
3266 	printf("Receive pause control frames : %u\n",
3267 	    stats->rx_pause_frames);
3268 	printf("Receive control frames : %u\n",
3269 	    stats->rx_control_frames);
3270 	printf("Receive CRC errors : %u\n",
3271 	    stats->rx_crcerrs);
3272 	printf("Receive frames with length errors : %u\n",
3273 	    stats->rx_lenerrs);
3274 	printf("Receive good octets : %ju\n",
3275 	    (uintmax_t)stats->rx_bytes);
3276 	printf("Receive good broadcast octets : %ju\n",
3277 	    (uintmax_t)stats->rx_bcast_bytes);
3278 	printf("Receive good multicast octets : %ju\n",
3279 	    (uintmax_t)stats->rx_mcast_bytes);
3280 	printf("Receive frames too short : %u\n",
3281 	    stats->rx_runts);
3282 	printf("Receive fragmented frames : %ju\n",
3283 	    (uintmax_t)stats->rx_fragments);
3284 	printf("Receive frames 64 bytes : %ju\n",
3285 	    (uintmax_t)stats->rx_pkts_64);
3286 	printf("Receive frames 65 to 127 bytes : %ju\n",
3287 	    (uintmax_t)stats->rx_pkts_65_127);
3288 	printf("Receive frames 128 to 255 bytes : %ju\n",
3289 	    (uintmax_t)stats->rx_pkts_128_255);
3290 	printf("Receive frames 256 to 511 bytes : %ju\n",
3291 	    (uintmax_t)stats->rx_pkts_256_511);
3292 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3293 	    (uintmax_t)stats->rx_pkts_512_1023);
3294 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3295 	    (uintmax_t)stats->rx_pkts_1024_1518);
3296 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3297 	    (uintmax_t)stats->rx_pkts_1519_max);
3298 	printf("Receive frames too long : %ju\n",
3299 	    (uint64_t)stats->rx_pkts_truncated);
3300 	printf("Receive frames with FIFO overflow : %u\n",
3301 	    stats->rx_fifo_oflows);
3302 	printf("Receive frames with return descriptor overflow : %u\n",
3303 	    stats->rx_desc_oflows);
3304 	printf("Receive frames with alignment errors : %u\n",
3305 	    stats->rx_alignerrs);
3306 	printf("Receive frames dropped due to address filtering : %ju\n",
3307 	    (uint64_t)stats->rx_pkts_filtered);
3308 
3309 	return (error);
3310 }
3311 
3312 static int
3313 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3314 {
3315 	int error, value;
3316 
3317 	if (arg1 == NULL)
3318 		return (EINVAL);
3319 	value = *(int *)arg1;
3320 	error = sysctl_handle_int(oidp, &value, 0, req);
3321 	if (error || req->newptr == NULL)
3322 		return (error);
3323 	if (value < low || value > high)
3324 		return (EINVAL);
3325         *(int *)arg1 = value;
3326 
3327         return (0);
3328 }
3329 
3330 static int
3331 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3332 {
3333 	return (sysctl_int_range(oidp, arg1, arg2, req,
3334 	    AGE_PROC_MIN, AGE_PROC_MAX));
3335 }
3336 
3337 static int
3338 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3339 {
3340 
3341 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3342 	    AGE_IM_TIMER_MAX));
3343 }
3344