xref: /freebsd/sys/dev/age/if_age.c (revision 891b8ed4672a213bbe6f3f10522eeadb34d01b76)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 
71 #include <dev/age/if_agereg.h>
72 #include <dev/age/if_agevar.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78 
79 MODULE_DEPEND(age, pci, 1, 1, 1);
80 MODULE_DEPEND(age, ether, 1, 1, 1);
81 MODULE_DEPEND(age, miibus, 1, 1, 1);
82 
83 /* Tunables. */
84 static int msi_disable = 0;
85 static int msix_disable = 0;
86 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88 
89 /*
90  * Devices supported by this driver.
91  */
92 static struct age_dev {
93 	uint16_t	age_vendorid;
94 	uint16_t	age_deviceid;
95 	const char	*age_name;
96 } age_devs[] = {
97 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99 };
100 
101 static int age_miibus_readreg(device_t, int, int);
102 static int age_miibus_writereg(device_t, int, int, int);
103 static void age_miibus_statchg(device_t);
104 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105 static int age_mediachange(struct ifnet *);
106 static int age_probe(device_t);
107 static void age_get_macaddr(struct age_softc *);
108 static void age_phy_reset(struct age_softc *);
109 static int age_attach(device_t);
110 static int age_detach(device_t);
111 static void age_sysctl_node(struct age_softc *);
112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 static int age_check_boundary(struct age_softc *);
114 static int age_dma_alloc(struct age_softc *);
115 static void age_dma_free(struct age_softc *);
116 static int age_shutdown(device_t);
117 static void age_setwol(struct age_softc *);
118 static int age_suspend(device_t);
119 static int age_resume(device_t);
120 static int age_encap(struct age_softc *, struct mbuf **);
121 static void age_start(struct ifnet *);
122 static void age_start_locked(struct ifnet *);
123 static void age_watchdog(struct age_softc *);
124 static int age_ioctl(struct ifnet *, u_long, caddr_t);
125 static void age_mac_config(struct age_softc *);
126 static void age_link_task(void *, int);
127 static void age_stats_update(struct age_softc *);
128 static int age_intr(void *);
129 static void age_int_task(void *, int);
130 static void age_txintr(struct age_softc *, int);
131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132 static int age_rxintr(struct age_softc *, int, int);
133 static void age_tick(void *);
134 static void age_reset(struct age_softc *);
135 static void age_init(void *);
136 static void age_init_locked(struct age_softc *);
137 static void age_stop(struct age_softc *);
138 static void age_stop_txmac(struct age_softc *);
139 static void age_stop_rxmac(struct age_softc *);
140 static void age_init_tx_ring(struct age_softc *);
141 static int age_init_rx_ring(struct age_softc *);
142 static void age_init_rr_ring(struct age_softc *);
143 static void age_init_cmb_block(struct age_softc *);
144 static void age_init_smb_block(struct age_softc *);
145 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
146 static void age_rxvlan(struct age_softc *);
147 static void age_rxfilter(struct age_softc *);
148 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
149 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
151 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
152 
153 
154 static device_method_t age_methods[] = {
155 	/* Device interface. */
156 	DEVMETHOD(device_probe,		age_probe),
157 	DEVMETHOD(device_attach,	age_attach),
158 	DEVMETHOD(device_detach,	age_detach),
159 	DEVMETHOD(device_shutdown,	age_shutdown),
160 	DEVMETHOD(device_suspend,	age_suspend),
161 	DEVMETHOD(device_resume,	age_resume),
162 
163 	/* MII interface. */
164 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
165 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
166 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
167 
168 	{ NULL, NULL }
169 };
170 
171 static driver_t age_driver = {
172 	"age",
173 	age_methods,
174 	sizeof(struct age_softc)
175 };
176 
177 static devclass_t age_devclass;
178 
179 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
180 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
181 
182 static struct resource_spec age_res_spec_mem[] = {
183 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
184 	{ -1,			0,		0 }
185 };
186 
187 static struct resource_spec age_irq_spec_legacy[] = {
188 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
189 	{ -1,			0,		0 }
190 };
191 
192 static struct resource_spec age_irq_spec_msi[] = {
193 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
194 	{ -1,			0,		0 }
195 };
196 
197 static struct resource_spec age_irq_spec_msix[] = {
198 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
199 	{ -1,			0,		0 }
200 };
201 
202 /*
203  *	Read a PHY register on the MII of the L1.
204  */
205 static int
206 age_miibus_readreg(device_t dev, int phy, int reg)
207 {
208 	struct age_softc *sc;
209 	uint32_t v;
210 	int i;
211 
212 	sc = device_get_softc(dev);
213 
214 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
215 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
216 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
217 		DELAY(1);
218 		v = CSR_READ_4(sc, AGE_MDIO);
219 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
220 			break;
221 	}
222 
223 	if (i == 0) {
224 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
225 		return (0);
226 	}
227 
228 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229 }
230 
231 /*
232  *	Write a PHY register on the MII of the L1.
233  */
234 static int
235 age_miibus_writereg(device_t dev, int phy, int reg, int val)
236 {
237 	struct age_softc *sc;
238 	uint32_t v;
239 	int i;
240 
241 	sc = device_get_softc(dev);
242 
243 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
244 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
245 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
246 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
247 		DELAY(1);
248 		v = CSR_READ_4(sc, AGE_MDIO);
249 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
250 			break;
251 	}
252 
253 	if (i == 0)
254 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
255 
256 	return (0);
257 }
258 
259 /*
260  *	Callback from MII layer when media changes.
261  */
262 static void
263 age_miibus_statchg(device_t dev)
264 {
265 	struct age_softc *sc;
266 
267 	sc = device_get_softc(dev);
268 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
269 }
270 
271 /*
272  *	Get the current interface media status.
273  */
274 static void
275 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
276 {
277 	struct age_softc *sc;
278 	struct mii_data *mii;
279 
280 	sc = ifp->if_softc;
281 	AGE_LOCK(sc);
282 	mii = device_get_softc(sc->age_miibus);
283 
284 	mii_pollstat(mii);
285 	AGE_UNLOCK(sc);
286 	ifmr->ifm_status = mii->mii_media_status;
287 	ifmr->ifm_active = mii->mii_media_active;
288 }
289 
290 /*
291  *	Set hardware to newly-selected media.
292  */
293 static int
294 age_mediachange(struct ifnet *ifp)
295 {
296 	struct age_softc *sc;
297 	struct mii_data *mii;
298 	struct mii_softc *miisc;
299 	int error;
300 
301 	sc = ifp->if_softc;
302 	AGE_LOCK(sc);
303 	mii = device_get_softc(sc->age_miibus);
304 	if (mii->mii_instance != 0) {
305 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
306 			mii_phy_reset(miisc);
307 	}
308 	error = mii_mediachg(mii);
309 	AGE_UNLOCK(sc);
310 
311 	return (error);
312 }
313 
314 static int
315 age_probe(device_t dev)
316 {
317 	struct age_dev *sp;
318 	int i;
319 	uint16_t vendor, devid;
320 
321 	vendor = pci_get_vendor(dev);
322 	devid = pci_get_device(dev);
323 	sp = age_devs;
324 	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
325 	    i++, sp++) {
326 		if (vendor == sp->age_vendorid &&
327 		    devid == sp->age_deviceid) {
328 			device_set_desc(dev, sp->age_name);
329 			return (BUS_PROBE_DEFAULT);
330 		}
331 	}
332 
333 	return (ENXIO);
334 }
335 
336 static void
337 age_get_macaddr(struct age_softc *sc)
338 {
339 	uint32_t ea[2], reg;
340 	int i, vpdc;
341 
342 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
343 	if ((reg & SPI_VPD_ENB) != 0) {
344 		/* Get VPD stored in TWSI EEPROM. */
345 		reg &= ~SPI_VPD_ENB;
346 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
347 	}
348 
349 	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
350 		/*
351 		 * PCI VPD capability found, let TWSI reload EEPROM.
352 		 * This will set ethernet address of controller.
353 		 */
354 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
355 		    TWSI_CTRL_SW_LD_START);
356 		for (i = 100; i > 0; i--) {
357 			DELAY(1000);
358 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
359 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
360 				break;
361 		}
362 		if (i == 0)
363 			device_printf(sc->age_dev,
364 			    "reloading EEPROM timeout!\n");
365 	} else {
366 		if (bootverbose)
367 			device_printf(sc->age_dev,
368 			    "PCI VPD capability not found!\n");
369 	}
370 
371 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
372 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
373 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
374 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
375 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
376 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
377 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
378 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
379 }
380 
381 static void
382 age_phy_reset(struct age_softc *sc)
383 {
384 	uint16_t reg, pn;
385 	int i, linkup;
386 
387 	/* Reset PHY. */
388 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
389 	DELAY(2000);
390 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
391 	DELAY(2000);
392 
393 #define	ATPHY_DBG_ADDR		0x1D
394 #define	ATPHY_DBG_DATA		0x1E
395 #define	ATPHY_CDTC		0x16
396 #define	PHY_CDTC_ENB		0x0001
397 #define	PHY_CDTC_POFF		8
398 #define	ATPHY_CDTS		0x1C
399 #define	PHY_CDTS_STAT_OK	0x0000
400 #define	PHY_CDTS_STAT_SHORT	0x0100
401 #define	PHY_CDTS_STAT_OPEN	0x0200
402 #define	PHY_CDTS_STAT_INVAL	0x0300
403 #define	PHY_CDTS_STAT_MASK	0x0300
404 
405 	/* Check power saving mode. Magic from Linux. */
406 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
407 	for (linkup = 0, pn = 0; pn < 4; pn++) {
408 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
409 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
410 		for (i = 200; i > 0; i--) {
411 			DELAY(1000);
412 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
413 			    ATPHY_CDTC);
414 			if ((reg & PHY_CDTC_ENB) == 0)
415 				break;
416 		}
417 		DELAY(1000);
418 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
419 		    ATPHY_CDTS);
420 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
421 			linkup++;
422 			break;
423 		}
424 	}
425 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
426 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
427 	if (linkup == 0) {
428 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429 		    ATPHY_DBG_ADDR, 0);
430 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431 		    ATPHY_DBG_DATA, 0x124E);
432 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
433 		    ATPHY_DBG_ADDR, 1);
434 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
435 		    ATPHY_DBG_DATA);
436 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
437 		    ATPHY_DBG_DATA, reg | 0x03);
438 		/* XXX */
439 		DELAY(1500 * 1000);
440 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441 		    ATPHY_DBG_ADDR, 0);
442 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
443 		    ATPHY_DBG_DATA, 0x024E);
444     }
445 
446 #undef	ATPHY_DBG_ADDR
447 #undef	ATPHY_DBG_DATA
448 #undef	ATPHY_CDTC
449 #undef	PHY_CDTC_ENB
450 #undef	PHY_CDTC_POFF
451 #undef	ATPHY_CDTS
452 #undef	PHY_CDTS_STAT_OK
453 #undef	PHY_CDTS_STAT_SHORT
454 #undef	PHY_CDTS_STAT_OPEN
455 #undef	PHY_CDTS_STAT_INVAL
456 #undef	PHY_CDTS_STAT_MASK
457 }
458 
459 static int
460 age_attach(device_t dev)
461 {
462 	struct age_softc *sc;
463 	struct ifnet *ifp;
464 	uint16_t burst;
465 	int error, i, msic, msixc, pmc;
466 
467 	error = 0;
468 	sc = device_get_softc(dev);
469 	sc->age_dev = dev;
470 
471 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
472 	    MTX_DEF);
473 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
474 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
475 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
476 
477 	/* Map the device. */
478 	pci_enable_busmaster(dev);
479 	sc->age_res_spec = age_res_spec_mem;
480 	sc->age_irq_spec = age_irq_spec_legacy;
481 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
482 	if (error != 0) {
483 		device_printf(dev, "cannot allocate memory resources.\n");
484 		goto fail;
485 	}
486 
487 	/* Set PHY address. */
488 	sc->age_phyaddr = AGE_PHY_ADDR;
489 
490 	/* Reset PHY. */
491 	age_phy_reset(sc);
492 
493 	/* Reset the ethernet controller. */
494 	age_reset(sc);
495 
496 	/* Get PCI and chip id/revision. */
497 	sc->age_rev = pci_get_revid(dev);
498 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
499 	    MASTER_CHIP_REV_SHIFT;
500 	if (bootverbose) {
501 		device_printf(dev, "PCI device revision : 0x%04x\n",
502 		    sc->age_rev);
503 		device_printf(dev, "Chip id/revision : 0x%04x\n",
504 		    sc->age_chip_rev);
505 	}
506 
507 	/*
508 	 * XXX
509 	 * Unintialized hardware returns an invalid chip id/revision
510 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
511 	 * unplugged cable results in putting hardware into automatic
512 	 * power down mode which in turn returns invalld chip revision.
513 	 */
514 	if (sc->age_chip_rev == 0xFFFF) {
515 		device_printf(dev,"invalid chip revision : 0x%04x -- "
516 		    "not initialized?\n", sc->age_chip_rev);
517 		error = ENXIO;
518 		goto fail;
519 	}
520 
521 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
522 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
523 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
524 
525 	/* Allocate IRQ resources. */
526 	msixc = pci_msix_count(dev);
527 	msic = pci_msi_count(dev);
528 	if (bootverbose) {
529 		device_printf(dev, "MSIX count : %d\n", msixc);
530 		device_printf(dev, "MSI count : %d\n", msic);
531 	}
532 
533 	/* Prefer MSIX over MSI. */
534 	if (msix_disable == 0 || msi_disable == 0) {
535 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
536 		    pci_alloc_msix(dev, &msixc) == 0) {
537 			if (msic == AGE_MSIX_MESSAGES) {
538 				device_printf(dev, "Using %d MSIX messages.\n",
539 				    msixc);
540 				sc->age_flags |= AGE_FLAG_MSIX;
541 				sc->age_irq_spec = age_irq_spec_msix;
542 			} else
543 				pci_release_msi(dev);
544 		}
545 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
546 		    msic == AGE_MSI_MESSAGES &&
547 		    pci_alloc_msi(dev, &msic) == 0) {
548 			if (msic == AGE_MSI_MESSAGES) {
549 				device_printf(dev, "Using %d MSI messages.\n",
550 				    msic);
551 				sc->age_flags |= AGE_FLAG_MSI;
552 				sc->age_irq_spec = age_irq_spec_msi;
553 			} else
554 				pci_release_msi(dev);
555 		}
556 	}
557 
558 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
559 	if (error != 0) {
560 		device_printf(dev, "cannot allocate IRQ resources.\n");
561 		goto fail;
562 	}
563 
564 
565 	/* Get DMA parameters from PCIe device control register. */
566 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
567 		sc->age_flags |= AGE_FLAG_PCIE;
568 		burst = pci_read_config(dev, i + 0x08, 2);
569 		/* Max read request size. */
570 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
571 		    DMA_CFG_RD_BURST_SHIFT;
572 		/* Max payload size. */
573 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
574 		    DMA_CFG_WR_BURST_SHIFT;
575 		if (bootverbose) {
576 			device_printf(dev, "Read request size : %d bytes.\n",
577 			    128 << ((burst >> 12) & 0x07));
578 			device_printf(dev, "TLP payload size : %d bytes.\n",
579 			    128 << ((burst >> 5) & 0x07));
580 		}
581 	} else {
582 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
583 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
584 	}
585 
586 	/* Create device sysctl node. */
587 	age_sysctl_node(sc);
588 
589 	if ((error = age_dma_alloc(sc) != 0))
590 		goto fail;
591 
592 	/* Load station address. */
593 	age_get_macaddr(sc);
594 
595 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
596 	if (ifp == NULL) {
597 		device_printf(dev, "cannot allocate ifnet structure.\n");
598 		error = ENXIO;
599 		goto fail;
600 	}
601 
602 	ifp->if_softc = sc;
603 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
604 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
605 	ifp->if_ioctl = age_ioctl;
606 	ifp->if_start = age_start;
607 	ifp->if_init = age_init;
608 	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
609 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
610 	IFQ_SET_READY(&ifp->if_snd);
611 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
612 	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
613 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
614 		sc->age_flags |= AGE_FLAG_PMCAP;
615 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
616 	}
617 	ifp->if_capenable = ifp->if_capabilities;
618 
619 	/* Set up MII bus. */
620 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
621 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
622 	    0);
623 	if (error != 0) {
624 		device_printf(dev, "attaching PHYs failed\n");
625 		goto fail;
626 	}
627 
628 	ether_ifattach(ifp, sc->age_eaddr);
629 
630 	/* VLAN capability setup. */
631 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
632 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
633 	ifp->if_capenable = ifp->if_capabilities;
634 
635 	/* Tell the upper layer(s) we support long frames. */
636 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
637 
638 	/* Create local taskq. */
639 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
640 	    taskqueue_thread_enqueue, &sc->age_tq);
641 	if (sc->age_tq == NULL) {
642 		device_printf(dev, "could not create taskqueue.\n");
643 		ether_ifdetach(ifp);
644 		error = ENXIO;
645 		goto fail;
646 	}
647 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
648 	    device_get_nameunit(sc->age_dev));
649 
650 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
651 		msic = AGE_MSIX_MESSAGES;
652 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
653 		msic = AGE_MSI_MESSAGES;
654 	else
655 		msic = 1;
656 	for (i = 0; i < msic; i++) {
657 		error = bus_setup_intr(dev, sc->age_irq[i],
658 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
659 		    &sc->age_intrhand[i]);
660 		if (error != 0)
661 			break;
662 	}
663 	if (error != 0) {
664 		device_printf(dev, "could not set up interrupt handler.\n");
665 		taskqueue_free(sc->age_tq);
666 		sc->age_tq = NULL;
667 		ether_ifdetach(ifp);
668 		goto fail;
669 	}
670 
671 fail:
672 	if (error != 0)
673 		age_detach(dev);
674 
675 	return (error);
676 }
677 
678 static int
679 age_detach(device_t dev)
680 {
681 	struct age_softc *sc;
682 	struct ifnet *ifp;
683 	int i, msic;
684 
685 	sc = device_get_softc(dev);
686 
687 	ifp = sc->age_ifp;
688 	if (device_is_attached(dev)) {
689 		AGE_LOCK(sc);
690 		sc->age_flags |= AGE_FLAG_DETACH;
691 		age_stop(sc);
692 		AGE_UNLOCK(sc);
693 		callout_drain(&sc->age_tick_ch);
694 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
695 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
696 		ether_ifdetach(ifp);
697 	}
698 
699 	if (sc->age_tq != NULL) {
700 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
701 		taskqueue_free(sc->age_tq);
702 		sc->age_tq = NULL;
703 	}
704 
705 	if (sc->age_miibus != NULL) {
706 		device_delete_child(dev, sc->age_miibus);
707 		sc->age_miibus = NULL;
708 	}
709 	bus_generic_detach(dev);
710 	age_dma_free(sc);
711 
712 	if (ifp != NULL) {
713 		if_free(ifp);
714 		sc->age_ifp = NULL;
715 	}
716 
717 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
718 		msic = AGE_MSIX_MESSAGES;
719 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
720 		msic = AGE_MSI_MESSAGES;
721 	else
722 		msic = 1;
723 	for (i = 0; i < msic; i++) {
724 		if (sc->age_intrhand[i] != NULL) {
725 			bus_teardown_intr(dev, sc->age_irq[i],
726 			    sc->age_intrhand[i]);
727 			sc->age_intrhand[i] = NULL;
728 		}
729 	}
730 
731 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
732 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
733 		pci_release_msi(dev);
734 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
735 	mtx_destroy(&sc->age_mtx);
736 
737 	return (0);
738 }
739 
740 static void
741 age_sysctl_node(struct age_softc *sc)
742 {
743 	int error;
744 
745 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
746 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
747 	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
748 	    "I", "Statistics");
749 
750 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
751 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
752 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
753 	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
754 
755 	/* Pull in device tunables. */
756 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
757 	error = resource_int_value(device_get_name(sc->age_dev),
758 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
759 	if (error == 0) {
760 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
761 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
762 			device_printf(sc->age_dev,
763 			    "int_mod value out of range; using default: %d\n",
764 			    AGE_IM_TIMER_DEFAULT);
765 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
766 		}
767 	}
768 
769 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
770 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
771 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
772 	    0, sysctl_hw_age_proc_limit, "I",
773 	    "max number of Rx events to process");
774 
775 	/* Pull in device tunables. */
776 	sc->age_process_limit = AGE_PROC_DEFAULT;
777 	error = resource_int_value(device_get_name(sc->age_dev),
778 	    device_get_unit(sc->age_dev), "process_limit",
779 	    &sc->age_process_limit);
780 	if (error == 0) {
781 		if (sc->age_process_limit < AGE_PROC_MIN ||
782 		    sc->age_process_limit > AGE_PROC_MAX) {
783 			device_printf(sc->age_dev,
784 			    "process_limit value out of range; "
785 			    "using default: %d\n", AGE_PROC_DEFAULT);
786 			sc->age_process_limit = AGE_PROC_DEFAULT;
787 		}
788 	}
789 }
790 
791 struct age_dmamap_arg {
792 	bus_addr_t	age_busaddr;
793 };
794 
795 static void
796 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
797 {
798 	struct age_dmamap_arg *ctx;
799 
800 	if (error != 0)
801 		return;
802 
803 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
804 
805 	ctx = (struct age_dmamap_arg *)arg;
806 	ctx->age_busaddr = segs[0].ds_addr;
807 }
808 
809 /*
810  * Attansic L1 controller have single register to specify high
811  * address part of DMA blocks. So all descriptor structures and
812  * DMA memory blocks should have the same high address of given
813  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
814  */
815 static int
816 age_check_boundary(struct age_softc *sc)
817 {
818 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
819 	bus_addr_t cmb_block_end, smb_block_end;
820 
821 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
822 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
823 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
824 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
825 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
826 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
827 
828 	if ((AGE_ADDR_HI(tx_ring_end) !=
829 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
830 	    (AGE_ADDR_HI(rx_ring_end) !=
831 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
832 	    (AGE_ADDR_HI(rr_ring_end) !=
833 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
834 	    (AGE_ADDR_HI(cmb_block_end) !=
835 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
836 	    (AGE_ADDR_HI(smb_block_end) !=
837 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
838 		return (EFBIG);
839 
840 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
841 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
842 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
843 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
844 		return (EFBIG);
845 
846 	return (0);
847 }
848 
849 static int
850 age_dma_alloc(struct age_softc *sc)
851 {
852 	struct age_txdesc *txd;
853 	struct age_rxdesc *rxd;
854 	bus_addr_t lowaddr;
855 	struct age_dmamap_arg ctx;
856 	int error, i;
857 
858 	lowaddr = BUS_SPACE_MAXADDR;
859 
860 again:
861 	/* Create parent ring/DMA block tag. */
862 	error = bus_dma_tag_create(
863 	    bus_get_dma_tag(sc->age_dev), /* parent */
864 	    1, 0,			/* alignment, boundary */
865 	    lowaddr,			/* lowaddr */
866 	    BUS_SPACE_MAXADDR,		/* highaddr */
867 	    NULL, NULL,			/* filter, filterarg */
868 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
869 	    0,				/* nsegments */
870 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
871 	    0,				/* flags */
872 	    NULL, NULL,			/* lockfunc, lockarg */
873 	    &sc->age_cdata.age_parent_tag);
874 	if (error != 0) {
875 		device_printf(sc->age_dev,
876 		    "could not create parent DMA tag.\n");
877 		goto fail;
878 	}
879 
880 	/* Create tag for Tx ring. */
881 	error = bus_dma_tag_create(
882 	    sc->age_cdata.age_parent_tag, /* parent */
883 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
884 	    BUS_SPACE_MAXADDR,		/* lowaddr */
885 	    BUS_SPACE_MAXADDR,		/* highaddr */
886 	    NULL, NULL,			/* filter, filterarg */
887 	    AGE_TX_RING_SZ,		/* maxsize */
888 	    1,				/* nsegments */
889 	    AGE_TX_RING_SZ,		/* maxsegsize */
890 	    0,				/* flags */
891 	    NULL, NULL,			/* lockfunc, lockarg */
892 	    &sc->age_cdata.age_tx_ring_tag);
893 	if (error != 0) {
894 		device_printf(sc->age_dev,
895 		    "could not create Tx ring DMA tag.\n");
896 		goto fail;
897 	}
898 
899 	/* Create tag for Rx ring. */
900 	error = bus_dma_tag_create(
901 	    sc->age_cdata.age_parent_tag, /* parent */
902 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
903 	    BUS_SPACE_MAXADDR,		/* lowaddr */
904 	    BUS_SPACE_MAXADDR,		/* highaddr */
905 	    NULL, NULL,			/* filter, filterarg */
906 	    AGE_RX_RING_SZ,		/* maxsize */
907 	    1,				/* nsegments */
908 	    AGE_RX_RING_SZ,		/* maxsegsize */
909 	    0,				/* flags */
910 	    NULL, NULL,			/* lockfunc, lockarg */
911 	    &sc->age_cdata.age_rx_ring_tag);
912 	if (error != 0) {
913 		device_printf(sc->age_dev,
914 		    "could not create Rx ring DMA tag.\n");
915 		goto fail;
916 	}
917 
918 	/* Create tag for Rx return ring. */
919 	error = bus_dma_tag_create(
920 	    sc->age_cdata.age_parent_tag, /* parent */
921 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
922 	    BUS_SPACE_MAXADDR,		/* lowaddr */
923 	    BUS_SPACE_MAXADDR,		/* highaddr */
924 	    NULL, NULL,			/* filter, filterarg */
925 	    AGE_RR_RING_SZ,		/* maxsize */
926 	    1,				/* nsegments */
927 	    AGE_RR_RING_SZ,		/* maxsegsize */
928 	    0,				/* flags */
929 	    NULL, NULL,			/* lockfunc, lockarg */
930 	    &sc->age_cdata.age_rr_ring_tag);
931 	if (error != 0) {
932 		device_printf(sc->age_dev,
933 		    "could not create Rx return ring DMA tag.\n");
934 		goto fail;
935 	}
936 
937 	/* Create tag for coalesing message block. */
938 	error = bus_dma_tag_create(
939 	    sc->age_cdata.age_parent_tag, /* parent */
940 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
941 	    BUS_SPACE_MAXADDR,		/* lowaddr */
942 	    BUS_SPACE_MAXADDR,		/* highaddr */
943 	    NULL, NULL,			/* filter, filterarg */
944 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
945 	    1,				/* nsegments */
946 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
947 	    0,				/* flags */
948 	    NULL, NULL,			/* lockfunc, lockarg */
949 	    &sc->age_cdata.age_cmb_block_tag);
950 	if (error != 0) {
951 		device_printf(sc->age_dev,
952 		    "could not create CMB DMA tag.\n");
953 		goto fail;
954 	}
955 
956 	/* Create tag for statistics message block. */
957 	error = bus_dma_tag_create(
958 	    sc->age_cdata.age_parent_tag, /* parent */
959 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
960 	    BUS_SPACE_MAXADDR,		/* lowaddr */
961 	    BUS_SPACE_MAXADDR,		/* highaddr */
962 	    NULL, NULL,			/* filter, filterarg */
963 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
964 	    1,				/* nsegments */
965 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
966 	    0,				/* flags */
967 	    NULL, NULL,			/* lockfunc, lockarg */
968 	    &sc->age_cdata.age_smb_block_tag);
969 	if (error != 0) {
970 		device_printf(sc->age_dev,
971 		    "could not create SMB DMA tag.\n");
972 		goto fail;
973 	}
974 
975 	/* Allocate DMA'able memory and load the DMA map. */
976 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
977 	    (void **)&sc->age_rdata.age_tx_ring,
978 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
979 	    &sc->age_cdata.age_tx_ring_map);
980 	if (error != 0) {
981 		device_printf(sc->age_dev,
982 		    "could not allocate DMA'able memory for Tx ring.\n");
983 		goto fail;
984 	}
985 	ctx.age_busaddr = 0;
986 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
987 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
988 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
989 	if (error != 0 || ctx.age_busaddr == 0) {
990 		device_printf(sc->age_dev,
991 		    "could not load DMA'able memory for Tx ring.\n");
992 		goto fail;
993 	}
994 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
995 	/* Rx ring */
996 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
997 	    (void **)&sc->age_rdata.age_rx_ring,
998 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
999 	    &sc->age_cdata.age_rx_ring_map);
1000 	if (error != 0) {
1001 		device_printf(sc->age_dev,
1002 		    "could not allocate DMA'able memory for Rx ring.\n");
1003 		goto fail;
1004 	}
1005 	ctx.age_busaddr = 0;
1006 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1007 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1008 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1009 	if (error != 0 || ctx.age_busaddr == 0) {
1010 		device_printf(sc->age_dev,
1011 		    "could not load DMA'able memory for Rx ring.\n");
1012 		goto fail;
1013 	}
1014 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1015 	/* Rx return ring */
1016 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1017 	    (void **)&sc->age_rdata.age_rr_ring,
1018 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1019 	    &sc->age_cdata.age_rr_ring_map);
1020 	if (error != 0) {
1021 		device_printf(sc->age_dev,
1022 		    "could not allocate DMA'able memory for Rx return ring.\n");
1023 		goto fail;
1024 	}
1025 	ctx.age_busaddr = 0;
1026 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1027 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1028 	    AGE_RR_RING_SZ, age_dmamap_cb,
1029 	    &ctx, 0);
1030 	if (error != 0 || ctx.age_busaddr == 0) {
1031 		device_printf(sc->age_dev,
1032 		    "could not load DMA'able memory for Rx return ring.\n");
1033 		goto fail;
1034 	}
1035 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1036 	/* CMB block */
1037 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1038 	    (void **)&sc->age_rdata.age_cmb_block,
1039 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1040 	    &sc->age_cdata.age_cmb_block_map);
1041 	if (error != 0) {
1042 		device_printf(sc->age_dev,
1043 		    "could not allocate DMA'able memory for CMB block.\n");
1044 		goto fail;
1045 	}
1046 	ctx.age_busaddr = 0;
1047 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1048 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1049 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1050 	if (error != 0 || ctx.age_busaddr == 0) {
1051 		device_printf(sc->age_dev,
1052 		    "could not load DMA'able memory for CMB block.\n");
1053 		goto fail;
1054 	}
1055 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1056 	/* SMB block */
1057 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1058 	    (void **)&sc->age_rdata.age_smb_block,
1059 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1060 	    &sc->age_cdata.age_smb_block_map);
1061 	if (error != 0) {
1062 		device_printf(sc->age_dev,
1063 		    "could not allocate DMA'able memory for SMB block.\n");
1064 		goto fail;
1065 	}
1066 	ctx.age_busaddr = 0;
1067 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1068 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1069 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1070 	if (error != 0 || ctx.age_busaddr == 0) {
1071 		device_printf(sc->age_dev,
1072 		    "could not load DMA'able memory for SMB block.\n");
1073 		goto fail;
1074 	}
1075 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1076 
1077 	/*
1078 	 * All ring buffer and DMA blocks should have the same
1079 	 * high address part of 64bit DMA address space.
1080 	 */
1081 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1082 	    (error = age_check_boundary(sc)) != 0) {
1083 		device_printf(sc->age_dev, "4GB boundary crossed, "
1084 		    "switching to 32bit DMA addressing mode.\n");
1085 		age_dma_free(sc);
1086 		/* Limit DMA address space to 32bit and try again. */
1087 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1088 		goto again;
1089 	}
1090 
1091 	/*
1092 	 * Create Tx/Rx buffer parent tag.
1093 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1094 	 * so it needs separate parent DMA tag.
1095 	 * XXX
1096 	 * It seems enabling 64bit DMA causes data corruption. Limit
1097 	 * DMA address space to 32bit.
1098 	 */
1099 	error = bus_dma_tag_create(
1100 	    bus_get_dma_tag(sc->age_dev), /* parent */
1101 	    1, 0,			/* alignment, boundary */
1102 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1103 	    BUS_SPACE_MAXADDR,		/* highaddr */
1104 	    NULL, NULL,			/* filter, filterarg */
1105 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1106 	    0,				/* nsegments */
1107 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1108 	    0,				/* flags */
1109 	    NULL, NULL,			/* lockfunc, lockarg */
1110 	    &sc->age_cdata.age_buffer_tag);
1111 	if (error != 0) {
1112 		device_printf(sc->age_dev,
1113 		    "could not create parent buffer DMA tag.\n");
1114 		goto fail;
1115 	}
1116 
1117 	/* Create tag for Tx buffers. */
1118 	error = bus_dma_tag_create(
1119 	    sc->age_cdata.age_buffer_tag, /* parent */
1120 	    1, 0,			/* alignment, boundary */
1121 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1122 	    BUS_SPACE_MAXADDR,		/* highaddr */
1123 	    NULL, NULL,			/* filter, filterarg */
1124 	    AGE_TSO_MAXSIZE,		/* maxsize */
1125 	    AGE_MAXTXSEGS,		/* nsegments */
1126 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1127 	    0,				/* flags */
1128 	    NULL, NULL,			/* lockfunc, lockarg */
1129 	    &sc->age_cdata.age_tx_tag);
1130 	if (error != 0) {
1131 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1132 		goto fail;
1133 	}
1134 
1135 	/* Create tag for Rx buffers. */
1136 	error = bus_dma_tag_create(
1137 	    sc->age_cdata.age_buffer_tag, /* parent */
1138 	    1, 0,			/* alignment, boundary */
1139 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1140 	    BUS_SPACE_MAXADDR,		/* highaddr */
1141 	    NULL, NULL,			/* filter, filterarg */
1142 	    MCLBYTES,			/* maxsize */
1143 	    1,				/* nsegments */
1144 	    MCLBYTES,			/* maxsegsize */
1145 	    0,				/* flags */
1146 	    NULL, NULL,			/* lockfunc, lockarg */
1147 	    &sc->age_cdata.age_rx_tag);
1148 	if (error != 0) {
1149 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1150 		goto fail;
1151 	}
1152 
1153 	/* Create DMA maps for Tx buffers. */
1154 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1155 		txd = &sc->age_cdata.age_txdesc[i];
1156 		txd->tx_m = NULL;
1157 		txd->tx_dmamap = NULL;
1158 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1159 		    &txd->tx_dmamap);
1160 		if (error != 0) {
1161 			device_printf(sc->age_dev,
1162 			    "could not create Tx dmamap.\n");
1163 			goto fail;
1164 		}
1165 	}
1166 	/* Create DMA maps for Rx buffers. */
1167 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1168 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1169 		device_printf(sc->age_dev,
1170 		    "could not create spare Rx dmamap.\n");
1171 		goto fail;
1172 	}
1173 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1174 		rxd = &sc->age_cdata.age_rxdesc[i];
1175 		rxd->rx_m = NULL;
1176 		rxd->rx_dmamap = NULL;
1177 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1178 		    &rxd->rx_dmamap);
1179 		if (error != 0) {
1180 			device_printf(sc->age_dev,
1181 			    "could not create Rx dmamap.\n");
1182 			goto fail;
1183 		}
1184 	}
1185 
1186 fail:
1187 	return (error);
1188 }
1189 
1190 static void
1191 age_dma_free(struct age_softc *sc)
1192 {
1193 	struct age_txdesc *txd;
1194 	struct age_rxdesc *rxd;
1195 	int i;
1196 
1197 	/* Tx buffers */
1198 	if (sc->age_cdata.age_tx_tag != NULL) {
1199 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1200 			txd = &sc->age_cdata.age_txdesc[i];
1201 			if (txd->tx_dmamap != NULL) {
1202 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1203 				    txd->tx_dmamap);
1204 				txd->tx_dmamap = NULL;
1205 			}
1206 		}
1207 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1208 		sc->age_cdata.age_tx_tag = NULL;
1209 	}
1210 	/* Rx buffers */
1211 	if (sc->age_cdata.age_rx_tag != NULL) {
1212 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1213 			rxd = &sc->age_cdata.age_rxdesc[i];
1214 			if (rxd->rx_dmamap != NULL) {
1215 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1216 				    rxd->rx_dmamap);
1217 				rxd->rx_dmamap = NULL;
1218 			}
1219 		}
1220 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1221 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1222 			    sc->age_cdata.age_rx_sparemap);
1223 			sc->age_cdata.age_rx_sparemap = NULL;
1224 		}
1225 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1226 		sc->age_cdata.age_rx_tag = NULL;
1227 	}
1228 	/* Tx ring. */
1229 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1230 		if (sc->age_cdata.age_tx_ring_map != NULL)
1231 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1232 			    sc->age_cdata.age_tx_ring_map);
1233 		if (sc->age_cdata.age_tx_ring_map != NULL &&
1234 		    sc->age_rdata.age_tx_ring != NULL)
1235 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1236 			    sc->age_rdata.age_tx_ring,
1237 			    sc->age_cdata.age_tx_ring_map);
1238 		sc->age_rdata.age_tx_ring = NULL;
1239 		sc->age_cdata.age_tx_ring_map = NULL;
1240 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1241 		sc->age_cdata.age_tx_ring_tag = NULL;
1242 	}
1243 	/* Rx ring. */
1244 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1245 		if (sc->age_cdata.age_rx_ring_map != NULL)
1246 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1247 			    sc->age_cdata.age_rx_ring_map);
1248 		if (sc->age_cdata.age_rx_ring_map != NULL &&
1249 		    sc->age_rdata.age_rx_ring != NULL)
1250 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1251 			    sc->age_rdata.age_rx_ring,
1252 			    sc->age_cdata.age_rx_ring_map);
1253 		sc->age_rdata.age_rx_ring = NULL;
1254 		sc->age_cdata.age_rx_ring_map = NULL;
1255 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1256 		sc->age_cdata.age_rx_ring_tag = NULL;
1257 	}
1258 	/* Rx return ring. */
1259 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1260 		if (sc->age_cdata.age_rr_ring_map != NULL)
1261 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1262 			    sc->age_cdata.age_rr_ring_map);
1263 		if (sc->age_cdata.age_rr_ring_map != NULL &&
1264 		    sc->age_rdata.age_rr_ring != NULL)
1265 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1266 			    sc->age_rdata.age_rr_ring,
1267 			    sc->age_cdata.age_rr_ring_map);
1268 		sc->age_rdata.age_rr_ring = NULL;
1269 		sc->age_cdata.age_rr_ring_map = NULL;
1270 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1271 		sc->age_cdata.age_rr_ring_tag = NULL;
1272 	}
1273 	/* CMB block */
1274 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1275 		if (sc->age_cdata.age_cmb_block_map != NULL)
1276 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1277 			    sc->age_cdata.age_cmb_block_map);
1278 		if (sc->age_cdata.age_cmb_block_map != NULL &&
1279 		    sc->age_rdata.age_cmb_block != NULL)
1280 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1281 			    sc->age_rdata.age_cmb_block,
1282 			    sc->age_cdata.age_cmb_block_map);
1283 		sc->age_rdata.age_cmb_block = NULL;
1284 		sc->age_cdata.age_cmb_block_map = NULL;
1285 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1286 		sc->age_cdata.age_cmb_block_tag = NULL;
1287 	}
1288 	/* SMB block */
1289 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1290 		if (sc->age_cdata.age_smb_block_map != NULL)
1291 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1292 			    sc->age_cdata.age_smb_block_map);
1293 		if (sc->age_cdata.age_smb_block_map != NULL &&
1294 		    sc->age_rdata.age_smb_block != NULL)
1295 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1296 			    sc->age_rdata.age_smb_block,
1297 			    sc->age_cdata.age_smb_block_map);
1298 		sc->age_rdata.age_smb_block = NULL;
1299 		sc->age_cdata.age_smb_block_map = NULL;
1300 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1301 		sc->age_cdata.age_smb_block_tag = NULL;
1302 	}
1303 
1304 	if (sc->age_cdata.age_buffer_tag != NULL) {
1305 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1306 		sc->age_cdata.age_buffer_tag = NULL;
1307 	}
1308 	if (sc->age_cdata.age_parent_tag != NULL) {
1309 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1310 		sc->age_cdata.age_parent_tag = NULL;
1311 	}
1312 }
1313 
1314 /*
1315  *	Make sure the interface is stopped at reboot time.
1316  */
1317 static int
1318 age_shutdown(device_t dev)
1319 {
1320 
1321 	return (age_suspend(dev));
1322 }
1323 
1324 static void
1325 age_setwol(struct age_softc *sc)
1326 {
1327 	struct ifnet *ifp;
1328 	struct mii_data *mii;
1329 	uint32_t reg, pmcs;
1330 	uint16_t pmstat;
1331 	int aneg, i, pmc;
1332 
1333 	AGE_LOCK_ASSERT(sc);
1334 
1335 	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1336 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1337 		/*
1338 		 * No PME capability, PHY power down.
1339 		 * XXX
1340 		 * Due to an unknown reason powering down PHY resulted
1341 		 * in unexpected results such as inaccessbility of
1342 		 * hardware of freshly rebooted system. Disable
1343 		 * powering down PHY until I got more information for
1344 		 * Attansic/Atheros PHY hardwares.
1345 		 */
1346 #ifdef notyet
1347 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1348 		    MII_BMCR, BMCR_PDOWN);
1349 #endif
1350 		return;
1351 	}
1352 
1353 	ifp = sc->age_ifp;
1354 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1355 		/*
1356 		 * Note, this driver resets the link speed to 10/100Mbps with
1357 		 * auto-negotiation but we don't know whether that operation
1358 		 * would succeed or not as it have no control after powering
1359 		 * off. If the renegotiation fail WOL may not work. Running
1360 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1361 		 * specified in PCI specification and that would result in
1362 		 * complete shutdowning power to ethernet controller.
1363 		 *
1364 		 * TODO
1365 		 *  Save current negotiated media speed/duplex/flow-control
1366 		 *  to softc and restore the same link again after resuming.
1367 		 *  PHY handling such as power down/resetting to 100Mbps
1368 		 *  may be better handled in suspend method in phy driver.
1369 		 */
1370 		mii = device_get_softc(sc->age_miibus);
1371 		mii_pollstat(mii);
1372 		aneg = 0;
1373 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1374 			switch IFM_SUBTYPE(mii->mii_media_active) {
1375 			case IFM_10_T:
1376 			case IFM_100_TX:
1377 				goto got_link;
1378 			case IFM_1000_T:
1379 				aneg++;
1380 			default:
1381 				break;
1382 			}
1383 		}
1384 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385 		    MII_100T2CR, 0);
1386 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1387 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1388 		    ANAR_10 | ANAR_CSMA);
1389 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1390 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1391 		DELAY(1000);
1392 		if (aneg != 0) {
1393 			/* Poll link state until age(4) get a 10/100 link. */
1394 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1395 				mii_pollstat(mii);
1396 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1397 					switch (IFM_SUBTYPE(
1398 					    mii->mii_media_active)) {
1399 					case IFM_10_T:
1400 					case IFM_100_TX:
1401 						age_mac_config(sc);
1402 						goto got_link;
1403 					default:
1404 						break;
1405 					}
1406 				}
1407 				AGE_UNLOCK(sc);
1408 				pause("agelnk", hz);
1409 				AGE_LOCK(sc);
1410 			}
1411 			if (i == MII_ANEGTICKS_GIGE)
1412 				device_printf(sc->age_dev,
1413 				    "establishing link failed, "
1414 				    "WOL may not work!");
1415 		}
1416 		/*
1417 		 * No link, force MAC to have 100Mbps, full-duplex link.
1418 		 * This is the last resort and may/may not work.
1419 		 */
1420 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1421 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1422 		age_mac_config(sc);
1423 	}
1424 
1425 got_link:
1426 	pmcs = 0;
1427 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1428 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1429 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1430 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1431 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1432 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1433 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1434 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1435 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1436 		reg |= MAC_CFG_RX_ENB;
1437 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1438 	}
1439 
1440 	/* Request PME. */
1441 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1442 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1443 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1444 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1445 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1446 #ifdef notyet
1447 	/* See above for powering down PHY issues. */
1448 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1449 		/* No WOL, PHY power down. */
1450 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1451 		    MII_BMCR, BMCR_PDOWN);
1452 	}
1453 #endif
1454 }
1455 
1456 static int
1457 age_suspend(device_t dev)
1458 {
1459 	struct age_softc *sc;
1460 
1461 	sc = device_get_softc(dev);
1462 
1463 	AGE_LOCK(sc);
1464 	age_stop(sc);
1465 	age_setwol(sc);
1466 	AGE_UNLOCK(sc);
1467 
1468 	return (0);
1469 }
1470 
1471 static int
1472 age_resume(device_t dev)
1473 {
1474 	struct age_softc *sc;
1475 	struct ifnet *ifp;
1476 
1477 	sc = device_get_softc(dev);
1478 
1479 	AGE_LOCK(sc);
1480 	age_phy_reset(sc);
1481 	ifp = sc->age_ifp;
1482 	if ((ifp->if_flags & IFF_UP) != 0)
1483 		age_init_locked(sc);
1484 
1485 	AGE_UNLOCK(sc);
1486 
1487 	return (0);
1488 }
1489 
1490 static int
1491 age_encap(struct age_softc *sc, struct mbuf **m_head)
1492 {
1493 	struct age_txdesc *txd, *txd_last;
1494 	struct tx_desc *desc;
1495 	struct mbuf *m;
1496 	struct ip *ip;
1497 	struct tcphdr *tcp;
1498 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1499 	bus_dmamap_t map;
1500 	uint32_t cflags, ip_off, poff, vtag;
1501 	int error, i, nsegs, prod, si;
1502 
1503 	AGE_LOCK_ASSERT(sc);
1504 
1505 	M_ASSERTPKTHDR((*m_head));
1506 
1507 	m = *m_head;
1508 	ip = NULL;
1509 	tcp = NULL;
1510 	cflags = vtag = 0;
1511 	ip_off = poff = 0;
1512 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1513 		/*
1514 		 * L1 requires offset of TCP/UDP payload in its Tx
1515 		 * descriptor to perform hardware Tx checksum offload.
1516 		 * Additionally, TSO requires IP/TCP header size and
1517 		 * modification of IP/TCP header in order to make TSO
1518 		 * engine work. This kind of operation takes many CPU
1519 		 * cycles on FreeBSD so fast host CPU is needed to get
1520 		 * smooth TSO performance.
1521 		 */
1522 		struct ether_header *eh;
1523 
1524 		if (M_WRITABLE(m) == 0) {
1525 			/* Get a writable copy. */
1526 			m = m_dup(*m_head, M_DONTWAIT);
1527 			/* Release original mbufs. */
1528 			m_freem(*m_head);
1529 			if (m == NULL) {
1530 				*m_head = NULL;
1531 				return (ENOBUFS);
1532 			}
1533 			*m_head = m;
1534 		}
1535 		ip_off = sizeof(struct ether_header);
1536 		m = m_pullup(m, ip_off);
1537 		if (m == NULL) {
1538 			*m_head = NULL;
1539 			return (ENOBUFS);
1540 		}
1541 		eh = mtod(m, struct ether_header *);
1542 		/*
1543 		 * Check if hardware VLAN insertion is off.
1544 		 * Additional check for LLC/SNAP frame?
1545 		 */
1546 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1547 			ip_off = sizeof(struct ether_vlan_header);
1548 			m = m_pullup(m, ip_off);
1549 			if (m == NULL) {
1550 				*m_head = NULL;
1551 				return (ENOBUFS);
1552 			}
1553 		}
1554 		m = m_pullup(m, ip_off + sizeof(struct ip));
1555 		if (m == NULL) {
1556 			*m_head = NULL;
1557 			return (ENOBUFS);
1558 		}
1559 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1560 		poff = ip_off + (ip->ip_hl << 2);
1561 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1562 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1563 			if (m == NULL) {
1564 				*m_head = NULL;
1565 				return (ENOBUFS);
1566 			}
1567 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1568 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1569 			/*
1570 			 * L1 requires IP/TCP header size and offset as
1571 			 * well as TCP pseudo checksum which complicates
1572 			 * TSO configuration. I guess this comes from the
1573 			 * adherence to Microsoft NDIS Large Send
1574 			 * specification which requires insertion of
1575 			 * pseudo checksum by upper stack. The pseudo
1576 			 * checksum that NDIS refers to doesn't include
1577 			 * TCP payload length so age(4) should recompute
1578 			 * the pseudo checksum here. Hopefully this wouldn't
1579 			 * be much burden on modern CPUs.
1580 			 * Reset IP checksum and recompute TCP pseudo
1581 			 * checksum as NDIS specification said.
1582 			 */
1583 			ip->ip_sum = 0;
1584 			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1585 				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1586 				    ip->ip_dst.s_addr,
1587 				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1588 			else
1589 				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1590 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1591 		}
1592 		*m_head = m;
1593 	}
1594 
1595 	si = prod = sc->age_cdata.age_tx_prod;
1596 	txd = &sc->age_cdata.age_txdesc[prod];
1597 	txd_last = txd;
1598 	map = txd->tx_dmamap;
1599 
1600 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1601 	    *m_head, txsegs, &nsegs, 0);
1602 	if (error == EFBIG) {
1603 		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1604 		if (m == NULL) {
1605 			m_freem(*m_head);
1606 			*m_head = NULL;
1607 			return (ENOMEM);
1608 		}
1609 		*m_head = m;
1610 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1611 		    *m_head, txsegs, &nsegs, 0);
1612 		if (error != 0) {
1613 			m_freem(*m_head);
1614 			*m_head = NULL;
1615 			return (error);
1616 		}
1617 	} else if (error != 0)
1618 		return (error);
1619 	if (nsegs == 0) {
1620 		m_freem(*m_head);
1621 		*m_head = NULL;
1622 		return (EIO);
1623 	}
1624 
1625 	/* Check descriptor overrun. */
1626 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1627 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1628 		return (ENOBUFS);
1629 	}
1630 
1631 	m = *m_head;
1632 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1633 		/* Configure TSO. */
1634 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1635 			/* Not TSO but IP/TCP checksum offload. */
1636 			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1637 			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1638 			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1639 		} else {
1640 			/* Request TSO and set MSS. */
1641 			cflags |= AGE_TD_TSO_IPV4;
1642 			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1643 			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1644 			    AGE_TD_TSO_MSS_SHIFT);
1645 		}
1646 		/* Set IP/TCP header size. */
1647 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1648 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1649 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1650 		/* Configure Tx IP/TCP/UDP checksum offload. */
1651 		cflags |= AGE_TD_CSUM;
1652 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1653 			cflags |= AGE_TD_TCPCSUM;
1654 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1655 			cflags |= AGE_TD_UDPCSUM;
1656 		/* Set checksum start offset. */
1657 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1658 		/* Set checksum insertion position of TCP/UDP. */
1659 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1660 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1661 	}
1662 
1663 	/* Configure VLAN hardware tag insertion. */
1664 	if ((m->m_flags & M_VLANTAG) != 0) {
1665 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1666 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1667 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1668 	}
1669 
1670 	desc = NULL;
1671 	for (i = 0; i < nsegs; i++) {
1672 		desc = &sc->age_rdata.age_tx_ring[prod];
1673 		desc->addr = htole64(txsegs[i].ds_addr);
1674 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1675 		desc->flags = htole32(cflags);
1676 		sc->age_cdata.age_tx_cnt++;
1677 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1678 	}
1679 	/* Update producer index. */
1680 	sc->age_cdata.age_tx_prod = prod;
1681 
1682 	/* Set EOP on the last descriptor. */
1683 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1684 	desc = &sc->age_rdata.age_tx_ring[prod];
1685 	desc->flags |= htole32(AGE_TD_EOP);
1686 
1687 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1688 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1689 		desc = &sc->age_rdata.age_tx_ring[si];
1690 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1691 	}
1692 
1693 	/* Swap dmamap of the first and the last. */
1694 	txd = &sc->age_cdata.age_txdesc[prod];
1695 	map = txd_last->tx_dmamap;
1696 	txd_last->tx_dmamap = txd->tx_dmamap;
1697 	txd->tx_dmamap = map;
1698 	txd->tx_m = m;
1699 
1700 	/* Sync descriptors. */
1701 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1702 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1703 	    sc->age_cdata.age_tx_ring_map,
1704 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1705 
1706 	return (0);
1707 }
1708 
1709 static void
1710 age_start(struct ifnet *ifp)
1711 {
1712         struct age_softc *sc;
1713 
1714 	sc = ifp->if_softc;
1715 	AGE_LOCK(sc);
1716 	age_start_locked(ifp);
1717 	AGE_UNLOCK(sc);
1718 }
1719 
1720 static void
1721 age_start_locked(struct ifnet *ifp)
1722 {
1723         struct age_softc *sc;
1724         struct mbuf *m_head;
1725 	int enq;
1726 
1727 	sc = ifp->if_softc;
1728 
1729 	AGE_LOCK_ASSERT(sc);
1730 
1731 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1732 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1733 		return;
1734 
1735 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1736 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1737 		if (m_head == NULL)
1738 			break;
1739 		/*
1740 		 * Pack the data into the transmit ring. If we
1741 		 * don't have room, set the OACTIVE flag and wait
1742 		 * for the NIC to drain the ring.
1743 		 */
1744 		if (age_encap(sc, &m_head)) {
1745 			if (m_head == NULL)
1746 				break;
1747 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1748 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1749 			break;
1750 		}
1751 
1752 		enq++;
1753 		/*
1754 		 * If there's a BPF listener, bounce a copy of this frame
1755 		 * to him.
1756 		 */
1757 		ETHER_BPF_MTAP(ifp, m_head);
1758 	}
1759 
1760 	if (enq > 0) {
1761 		/* Update mbox. */
1762 		AGE_COMMIT_MBOX(sc);
1763 		/* Set a timeout in case the chip goes out to lunch. */
1764 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1765 	}
1766 }
1767 
1768 static void
1769 age_watchdog(struct age_softc *sc)
1770 {
1771 	struct ifnet *ifp;
1772 
1773 	AGE_LOCK_ASSERT(sc);
1774 
1775 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1776 		return;
1777 
1778 	ifp = sc->age_ifp;
1779 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1780 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1781 		ifp->if_oerrors++;
1782 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1783 		age_init_locked(sc);
1784 		return;
1785 	}
1786 	if (sc->age_cdata.age_tx_cnt == 0) {
1787 		if_printf(sc->age_ifp,
1788 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1789 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1790 			age_start_locked(ifp);
1791 		return;
1792 	}
1793 	if_printf(sc->age_ifp, "watchdog timeout\n");
1794 	ifp->if_oerrors++;
1795 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1796 	age_init_locked(sc);
1797 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1798 		age_start_locked(ifp);
1799 }
1800 
1801 static int
1802 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1803 {
1804 	struct age_softc *sc;
1805 	struct ifreq *ifr;
1806 	struct mii_data *mii;
1807 	uint32_t reg;
1808 	int error, mask;
1809 
1810 	sc = ifp->if_softc;
1811 	ifr = (struct ifreq *)data;
1812 	error = 0;
1813 	switch (cmd) {
1814 	case SIOCSIFMTU:
1815 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1816 			error = EINVAL;
1817 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1818 			AGE_LOCK(sc);
1819 			ifp->if_mtu = ifr->ifr_mtu;
1820 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1821 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1822 				age_init_locked(sc);
1823 			}
1824 			AGE_UNLOCK(sc);
1825 		}
1826 		break;
1827 	case SIOCSIFFLAGS:
1828 		AGE_LOCK(sc);
1829 		if ((ifp->if_flags & IFF_UP) != 0) {
1830 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1831 				if (((ifp->if_flags ^ sc->age_if_flags)
1832 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1833 					age_rxfilter(sc);
1834 			} else {
1835 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1836 					age_init_locked(sc);
1837 			}
1838 		} else {
1839 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1840 				age_stop(sc);
1841 		}
1842 		sc->age_if_flags = ifp->if_flags;
1843 		AGE_UNLOCK(sc);
1844 		break;
1845 	case SIOCADDMULTI:
1846 	case SIOCDELMULTI:
1847 		AGE_LOCK(sc);
1848 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1849 			age_rxfilter(sc);
1850 		AGE_UNLOCK(sc);
1851 		break;
1852 	case SIOCSIFMEDIA:
1853 	case SIOCGIFMEDIA:
1854 		mii = device_get_softc(sc->age_miibus);
1855 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1856 		break;
1857 	case SIOCSIFCAP:
1858 		AGE_LOCK(sc);
1859 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1860 		if ((mask & IFCAP_TXCSUM) != 0 &&
1861 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1862 			ifp->if_capenable ^= IFCAP_TXCSUM;
1863 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1864 				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1865 			else
1866 				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1867 		}
1868 		if ((mask & IFCAP_RXCSUM) != 0 &&
1869 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1870 			ifp->if_capenable ^= IFCAP_RXCSUM;
1871 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1872 			reg &= ~MAC_CFG_RXCSUM_ENB;
1873 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1874 				reg |= MAC_CFG_RXCSUM_ENB;
1875 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1876 		}
1877 		if ((mask & IFCAP_TSO4) != 0 &&
1878 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1879 			ifp->if_capenable ^= IFCAP_TSO4;
1880 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1881 				ifp->if_hwassist |= CSUM_TSO;
1882 			else
1883 				ifp->if_hwassist &= ~CSUM_TSO;
1884 		}
1885 
1886 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1887 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1888 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1889 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1890 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1891 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1892 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1893 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1894 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1895 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1896 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1897 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1898 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1899 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1900 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1901 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1902 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1903 			age_rxvlan(sc);
1904 		}
1905 		AGE_UNLOCK(sc);
1906 		VLAN_CAPABILITIES(ifp);
1907 		break;
1908 	default:
1909 		error = ether_ioctl(ifp, cmd, data);
1910 		break;
1911 	}
1912 
1913 	return (error);
1914 }
1915 
1916 static void
1917 age_mac_config(struct age_softc *sc)
1918 {
1919 	struct mii_data *mii;
1920 	uint32_t reg;
1921 
1922 	AGE_LOCK_ASSERT(sc);
1923 
1924 	mii = device_get_softc(sc->age_miibus);
1925 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1926 	reg &= ~MAC_CFG_FULL_DUPLEX;
1927 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1928 	reg &= ~MAC_CFG_SPEED_MASK;
1929 	/* Reprogram MAC with resolved speed/duplex. */
1930 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1931 	case IFM_10_T:
1932 	case IFM_100_TX:
1933 		reg |= MAC_CFG_SPEED_10_100;
1934 		break;
1935 	case IFM_1000_T:
1936 		reg |= MAC_CFG_SPEED_1000;
1937 		break;
1938 	}
1939 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1940 		reg |= MAC_CFG_FULL_DUPLEX;
1941 #ifdef notyet
1942 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1943 			reg |= MAC_CFG_TX_FC;
1944 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1945 			reg |= MAC_CFG_RX_FC;
1946 #endif
1947 	}
1948 
1949 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1950 }
1951 
1952 static void
1953 age_link_task(void *arg, int pending)
1954 {
1955 	struct age_softc *sc;
1956 	struct mii_data *mii;
1957 	struct ifnet *ifp;
1958 	uint32_t reg;
1959 
1960 	sc = (struct age_softc *)arg;
1961 
1962 	AGE_LOCK(sc);
1963 	mii = device_get_softc(sc->age_miibus);
1964 	ifp = sc->age_ifp;
1965 	if (mii == NULL || ifp == NULL ||
1966 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1967 		AGE_UNLOCK(sc);
1968 		return;
1969 	}
1970 
1971 	sc->age_flags &= ~AGE_FLAG_LINK;
1972 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1973 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1974 		case IFM_10_T:
1975 		case IFM_100_TX:
1976 		case IFM_1000_T:
1977 			sc->age_flags |= AGE_FLAG_LINK;
1978 			break;
1979 		default:
1980 			break;
1981 		}
1982 	}
1983 
1984 	/* Stop Rx/Tx MACs. */
1985 	age_stop_rxmac(sc);
1986 	age_stop_txmac(sc);
1987 
1988 	/* Program MACs with resolved speed/duplex/flow-control. */
1989 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1990 		age_mac_config(sc);
1991 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1992 		/* Restart DMA engine and Tx/Rx MAC. */
1993 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1994 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1995 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1996 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1997 	}
1998 
1999 	AGE_UNLOCK(sc);
2000 }
2001 
2002 static void
2003 age_stats_update(struct age_softc *sc)
2004 {
2005 	struct age_stats *stat;
2006 	struct smb *smb;
2007 	struct ifnet *ifp;
2008 
2009 	AGE_LOCK_ASSERT(sc);
2010 
2011 	stat = &sc->age_stat;
2012 
2013 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2014 	    sc->age_cdata.age_smb_block_map,
2015 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2016 
2017 	smb = sc->age_rdata.age_smb_block;
2018 	if (smb->updated == 0)
2019 		return;
2020 
2021 	ifp = sc->age_ifp;
2022 	/* Rx stats. */
2023 	stat->rx_frames += smb->rx_frames;
2024 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2025 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2026 	stat->rx_pause_frames += smb->rx_pause_frames;
2027 	stat->rx_control_frames += smb->rx_control_frames;
2028 	stat->rx_crcerrs += smb->rx_crcerrs;
2029 	stat->rx_lenerrs += smb->rx_lenerrs;
2030 	stat->rx_bytes += smb->rx_bytes;
2031 	stat->rx_runts += smb->rx_runts;
2032 	stat->rx_fragments += smb->rx_fragments;
2033 	stat->rx_pkts_64 += smb->rx_pkts_64;
2034 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2035 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2036 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2037 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2038 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2039 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2040 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2041 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2042 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2043 	stat->rx_alignerrs += smb->rx_alignerrs;
2044 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2045 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2046 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2047 
2048 	/* Tx stats. */
2049 	stat->tx_frames += smb->tx_frames;
2050 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2051 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2052 	stat->tx_pause_frames += smb->tx_pause_frames;
2053 	stat->tx_excess_defer += smb->tx_excess_defer;
2054 	stat->tx_control_frames += smb->tx_control_frames;
2055 	stat->tx_deferred += smb->tx_deferred;
2056 	stat->tx_bytes += smb->tx_bytes;
2057 	stat->tx_pkts_64 += smb->tx_pkts_64;
2058 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2059 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2060 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2061 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2062 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2063 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2064 	stat->tx_single_colls += smb->tx_single_colls;
2065 	stat->tx_multi_colls += smb->tx_multi_colls;
2066 	stat->tx_late_colls += smb->tx_late_colls;
2067 	stat->tx_excess_colls += smb->tx_excess_colls;
2068 	stat->tx_underrun += smb->tx_underrun;
2069 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2070 	stat->tx_lenerrs += smb->tx_lenerrs;
2071 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2072 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2073 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2074 
2075 	/* Update counters in ifnet. */
2076 	ifp->if_opackets += smb->tx_frames;
2077 
2078 	ifp->if_collisions += smb->tx_single_colls +
2079 	    smb->tx_multi_colls + smb->tx_late_colls +
2080 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2081 
2082 	ifp->if_oerrors += smb->tx_excess_colls +
2083 	    smb->tx_late_colls + smb->tx_underrun +
2084 	    smb->tx_pkts_truncated;
2085 
2086 	ifp->if_ipackets += smb->rx_frames;
2087 
2088 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2089 	    smb->rx_runts + smb->rx_pkts_truncated +
2090 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2091 	    smb->rx_alignerrs;
2092 
2093 	/* Update done, clear. */
2094 	smb->updated = 0;
2095 
2096 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2097 	    sc->age_cdata.age_smb_block_map,
2098 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2099 }
2100 
2101 static int
2102 age_intr(void *arg)
2103 {
2104 	struct age_softc *sc;
2105 	uint32_t status;
2106 
2107 	sc = (struct age_softc *)arg;
2108 
2109 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2110 	if (status == 0 || (status & AGE_INTRS) == 0)
2111 		return (FILTER_STRAY);
2112 	/* Disable interrupts. */
2113 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2114 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2115 
2116 	return (FILTER_HANDLED);
2117 }
2118 
2119 static void
2120 age_int_task(void *arg, int pending)
2121 {
2122 	struct age_softc *sc;
2123 	struct ifnet *ifp;
2124 	struct cmb *cmb;
2125 	uint32_t status;
2126 
2127 	sc = (struct age_softc *)arg;
2128 
2129 	AGE_LOCK(sc);
2130 
2131 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2132 	    sc->age_cdata.age_cmb_block_map,
2133 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2134 	cmb = sc->age_rdata.age_cmb_block;
2135 	status = le32toh(cmb->intr_status);
2136 	if (sc->age_morework != 0)
2137 		status |= INTR_CMB_RX;
2138 	if ((status & AGE_INTRS) == 0)
2139 		goto done;
2140 
2141 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2142 	    TPD_CONS_SHIFT;
2143 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2144 	    RRD_PROD_SHIFT;
2145 	/* Let hardware know CMB was served. */
2146 	cmb->intr_status = 0;
2147 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2148 	    sc->age_cdata.age_cmb_block_map,
2149 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2150 
2151 #if 0
2152 	printf("INTR: 0x%08x\n", status);
2153 	status &= ~INTR_DIS_DMA;
2154 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2155 #endif
2156 	ifp = sc->age_ifp;
2157 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2158 		if ((status & INTR_CMB_RX) != 0)
2159 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2160 			    sc->age_process_limit);
2161 		if ((status & INTR_CMB_TX) != 0)
2162 			age_txintr(sc, sc->age_tpd_cons);
2163 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2164 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2165 				device_printf(sc->age_dev,
2166 				    "DMA read error! -- resetting\n");
2167 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2168 				device_printf(sc->age_dev,
2169 				    "DMA write error! -- resetting\n");
2170 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2171 			age_init_locked(sc);
2172 		}
2173 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2174 			age_start_locked(ifp);
2175 		if ((status & INTR_SMB) != 0)
2176 			age_stats_update(sc);
2177 	}
2178 
2179 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2180 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2181 	    sc->age_cdata.age_cmb_block_map,
2182 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2183 	status = le32toh(cmb->intr_status);
2184 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2185 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2186 		AGE_UNLOCK(sc);
2187 		return;
2188 	}
2189 
2190 done:
2191 	/* Re-enable interrupts. */
2192 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2193 	AGE_UNLOCK(sc);
2194 }
2195 
2196 static void
2197 age_txintr(struct age_softc *sc, int tpd_cons)
2198 {
2199 	struct ifnet *ifp;
2200 	struct age_txdesc *txd;
2201 	int cons, prog;
2202 
2203 	AGE_LOCK_ASSERT(sc);
2204 
2205 	ifp = sc->age_ifp;
2206 
2207 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2208 	    sc->age_cdata.age_tx_ring_map,
2209 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2210 
2211 	/*
2212 	 * Go through our Tx list and free mbufs for those
2213 	 * frames which have been transmitted.
2214 	 */
2215 	cons = sc->age_cdata.age_tx_cons;
2216 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2217 		if (sc->age_cdata.age_tx_cnt <= 0)
2218 			break;
2219 		prog++;
2220 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2221 		sc->age_cdata.age_tx_cnt--;
2222 		txd = &sc->age_cdata.age_txdesc[cons];
2223 		/*
2224 		 * Clear Tx descriptors, it's not required but would
2225 		 * help debugging in case of Tx issues.
2226 		 */
2227 		txd->tx_desc->addr = 0;
2228 		txd->tx_desc->len = 0;
2229 		txd->tx_desc->flags = 0;
2230 
2231 		if (txd->tx_m == NULL)
2232 			continue;
2233 		/* Reclaim transmitted mbufs. */
2234 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2235 		    BUS_DMASYNC_POSTWRITE);
2236 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2237 		m_freem(txd->tx_m);
2238 		txd->tx_m = NULL;
2239 	}
2240 
2241 	if (prog > 0) {
2242 		sc->age_cdata.age_tx_cons = cons;
2243 
2244 		/*
2245 		 * Unarm watchdog timer only when there are no pending
2246 		 * Tx descriptors in queue.
2247 		 */
2248 		if (sc->age_cdata.age_tx_cnt == 0)
2249 			sc->age_watchdog_timer = 0;
2250 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2251 		    sc->age_cdata.age_tx_ring_map,
2252 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2253 	}
2254 }
2255 
2256 /* Receive a frame. */
2257 static void
2258 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2259 {
2260 	struct age_rxdesc *rxd;
2261 	struct rx_desc *desc;
2262 	struct ifnet *ifp;
2263 	struct mbuf *mp, *m;
2264 	uint32_t status, index, vtag;
2265 	int count, nsegs, pktlen;
2266 	int rx_cons;
2267 
2268 	AGE_LOCK_ASSERT(sc);
2269 
2270 	ifp = sc->age_ifp;
2271 	status = le32toh(rxrd->flags);
2272 	index = le32toh(rxrd->index);
2273 	rx_cons = AGE_RX_CONS(index);
2274 	nsegs = AGE_RX_NSEGS(index);
2275 
2276 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2277 	if ((status & AGE_RRD_ERROR) != 0 &&
2278 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2279 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2280 		/*
2281 		 * We want to pass the following frames to upper
2282 		 * layer regardless of error status of Rx return
2283 		 * ring.
2284 		 *
2285 		 *  o IP/TCP/UDP checksum is bad.
2286 		 *  o frame length and protocol specific length
2287 		 *     does not match.
2288 		 */
2289 		sc->age_cdata.age_rx_cons += nsegs;
2290 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2291 		return;
2292 	}
2293 
2294 	pktlen = 0;
2295 	for (count = 0; count < nsegs; count++,
2296 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2297 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2298 		mp = rxd->rx_m;
2299 		desc = rxd->rx_desc;
2300 		/* Add a new receive buffer to the ring. */
2301 		if (age_newbuf(sc, rxd) != 0) {
2302 			ifp->if_iqdrops++;
2303 			/* Reuse Rx buffers. */
2304 			if (sc->age_cdata.age_rxhead != NULL) {
2305 				m_freem(sc->age_cdata.age_rxhead);
2306 				AGE_RXCHAIN_RESET(sc);
2307 			}
2308 			break;
2309 		}
2310 
2311 		/* The length of the first mbuf is computed last. */
2312 		if (count != 0) {
2313 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2314 			pktlen += mp->m_len;
2315 		}
2316 
2317 		/* Chain received mbufs. */
2318 		if (sc->age_cdata.age_rxhead == NULL) {
2319 			sc->age_cdata.age_rxhead = mp;
2320 			sc->age_cdata.age_rxtail = mp;
2321 		} else {
2322 			mp->m_flags &= ~M_PKTHDR;
2323 			sc->age_cdata.age_rxprev_tail =
2324 			    sc->age_cdata.age_rxtail;
2325 			sc->age_cdata.age_rxtail->m_next = mp;
2326 			sc->age_cdata.age_rxtail = mp;
2327 		}
2328 
2329 		if (count == nsegs - 1) {
2330 			/*
2331 			 * It seems that L1 controller has no way
2332 			 * to tell hardware to strip CRC bytes.
2333 			 */
2334 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2335 			if (nsegs > 1) {
2336 				/* Remove the CRC bytes in chained mbufs. */
2337 				pktlen -= ETHER_CRC_LEN;
2338 				if (mp->m_len <= ETHER_CRC_LEN) {
2339 					sc->age_cdata.age_rxtail =
2340 					    sc->age_cdata.age_rxprev_tail;
2341 					sc->age_cdata.age_rxtail->m_len -=
2342 					    (ETHER_CRC_LEN - mp->m_len);
2343 					sc->age_cdata.age_rxtail->m_next = NULL;
2344 					m_freem(mp);
2345 				} else {
2346 					mp->m_len -= ETHER_CRC_LEN;
2347 				}
2348 			}
2349 
2350 			m = sc->age_cdata.age_rxhead;
2351 			m->m_flags |= M_PKTHDR;
2352 			m->m_pkthdr.rcvif = ifp;
2353 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2354 			/* Set the first mbuf length. */
2355 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2356 
2357 			/*
2358 			 * Set checksum information.
2359 			 * It seems that L1 controller can compute partial
2360 			 * checksum. The partial checksum value can be used
2361 			 * to accelerate checksum computation for fragmented
2362 			 * TCP/UDP packets. Upper network stack already
2363 			 * takes advantage of the partial checksum value in
2364 			 * IP reassembly stage. But I'm not sure the
2365 			 * correctness of the partial hardware checksum
2366 			 * assistance due to lack of data sheet. If it is
2367 			 * proven to work on L1 I'll enable it.
2368 			 */
2369 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2370 			    (status & AGE_RRD_IPV4) != 0) {
2371 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2372 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2373 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2374 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2375 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2376 					m->m_pkthdr.csum_flags |=
2377 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2378 					m->m_pkthdr.csum_data = 0xffff;
2379 				}
2380 				/*
2381 				 * Don't mark bad checksum for TCP/UDP frames
2382 				 * as fragmented frames may always have set
2383 				 * bad checksummed bit of descriptor status.
2384 				 */
2385 			}
2386 
2387 			/* Check for VLAN tagged frames. */
2388 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2389 			    (status & AGE_RRD_VLAN) != 0) {
2390 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2391 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2392 				m->m_flags |= M_VLANTAG;
2393 			}
2394 
2395 			/* Pass it on. */
2396 			AGE_UNLOCK(sc);
2397 			(*ifp->if_input)(ifp, m);
2398 			AGE_LOCK(sc);
2399 
2400 			/* Reset mbuf chains. */
2401 			AGE_RXCHAIN_RESET(sc);
2402 		}
2403 	}
2404 
2405 	if (count != nsegs) {
2406 		sc->age_cdata.age_rx_cons += nsegs;
2407 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2408 	} else
2409 		sc->age_cdata.age_rx_cons = rx_cons;
2410 }
2411 
2412 static int
2413 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2414 {
2415 	struct rx_rdesc *rxrd;
2416 	int rr_cons, nsegs, pktlen, prog;
2417 
2418 	AGE_LOCK_ASSERT(sc);
2419 
2420 	rr_cons = sc->age_cdata.age_rr_cons;
2421 	if (rr_cons == rr_prod)
2422 		return (0);
2423 
2424 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2425 	    sc->age_cdata.age_rr_ring_map,
2426 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2427 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2428 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2429 
2430 	for (prog = 0; rr_cons != rr_prod; prog++) {
2431 		if (count <= 0)
2432 			break;
2433 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2434 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2435 		if (nsegs == 0)
2436 			break;
2437 		/*
2438 		 * Check number of segments against received bytes.
2439 		 * Non-matching value would indicate that hardware
2440 		 * is still trying to update Rx return descriptors.
2441 		 * I'm not sure whether this check is really needed.
2442 		 */
2443 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2444 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2445 		    (MCLBYTES - ETHER_ALIGN)))
2446 			break;
2447 
2448 		prog++;
2449 		/* Received a frame. */
2450 		age_rxeof(sc, rxrd);
2451 		/* Clear return ring. */
2452 		rxrd->index = 0;
2453 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2454 	}
2455 
2456 	if (prog > 0) {
2457 		/* Update the consumer index. */
2458 		sc->age_cdata.age_rr_cons = rr_cons;
2459 
2460 		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2461 		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2462 		/* Sync descriptors. */
2463 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2464 		    sc->age_cdata.age_rr_ring_map,
2465 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2466 
2467 		/* Notify hardware availability of new Rx buffers. */
2468 		AGE_COMMIT_MBOX(sc);
2469 	}
2470 
2471 	return (count > 0 ? 0 : EAGAIN);
2472 }
2473 
2474 static void
2475 age_tick(void *arg)
2476 {
2477 	struct age_softc *sc;
2478 	struct mii_data *mii;
2479 
2480 	sc = (struct age_softc *)arg;
2481 
2482 	AGE_LOCK_ASSERT(sc);
2483 
2484 	mii = device_get_softc(sc->age_miibus);
2485 	mii_tick(mii);
2486 	age_watchdog(sc);
2487 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2488 }
2489 
2490 static void
2491 age_reset(struct age_softc *sc)
2492 {
2493 	uint32_t reg;
2494 	int i;
2495 
2496 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2497 	CSR_READ_4(sc, AGE_MASTER_CFG);
2498 	DELAY(1000);
2499 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2500 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2501 			break;
2502 		DELAY(10);
2503 	}
2504 
2505 	if (i == 0)
2506 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2507 	/* Initialize PCIe module. From Linux. */
2508 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2509 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2510 }
2511 
2512 static void
2513 age_init(void *xsc)
2514 {
2515 	struct age_softc *sc;
2516 
2517 	sc = (struct age_softc *)xsc;
2518 	AGE_LOCK(sc);
2519 	age_init_locked(sc);
2520 	AGE_UNLOCK(sc);
2521 }
2522 
2523 static void
2524 age_init_locked(struct age_softc *sc)
2525 {
2526 	struct ifnet *ifp;
2527 	struct mii_data *mii;
2528 	uint8_t eaddr[ETHER_ADDR_LEN];
2529 	bus_addr_t paddr;
2530 	uint32_t reg, fsize;
2531 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2532 	int error;
2533 
2534 	AGE_LOCK_ASSERT(sc);
2535 
2536 	ifp = sc->age_ifp;
2537 	mii = device_get_softc(sc->age_miibus);
2538 
2539 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2540 		return;
2541 
2542 	/*
2543 	 * Cancel any pending I/O.
2544 	 */
2545 	age_stop(sc);
2546 
2547 	/*
2548 	 * Reset the chip to a known state.
2549 	 */
2550 	age_reset(sc);
2551 
2552 	/* Initialize descriptors. */
2553 	error = age_init_rx_ring(sc);
2554         if (error != 0) {
2555                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2556                 age_stop(sc);
2557 		return;
2558         }
2559 	age_init_rr_ring(sc);
2560 	age_init_tx_ring(sc);
2561 	age_init_cmb_block(sc);
2562 	age_init_smb_block(sc);
2563 
2564 	/* Reprogram the station address. */
2565 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2566 	CSR_WRITE_4(sc, AGE_PAR0,
2567 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2568 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2569 
2570 	/* Set descriptor base addresses. */
2571 	paddr = sc->age_rdata.age_tx_ring_paddr;
2572 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2573 	paddr = sc->age_rdata.age_rx_ring_paddr;
2574 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2575 	paddr = sc->age_rdata.age_rr_ring_paddr;
2576 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2577 	paddr = sc->age_rdata.age_tx_ring_paddr;
2578 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2579 	paddr = sc->age_rdata.age_cmb_block_paddr;
2580 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2581 	paddr = sc->age_rdata.age_smb_block_paddr;
2582 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2583 	/* Set Rx/Rx return descriptor counter. */
2584 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2585 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2586 	    DESC_RRD_CNT_MASK) |
2587 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2588 	/* Set Tx descriptor counter. */
2589 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2590 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2591 
2592 	/* Tell hardware that we're ready to load descriptors. */
2593 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2594 
2595 	/*
2596 	 * Initialize mailbox register.
2597 	 * Updated producer/consumer index information is exchanged
2598 	 * through this mailbox register. However Tx producer and
2599 	 * Rx return consumer/Rx producer are all shared such that
2600 	 * it's hard to separate code path between Tx and Rx without
2601 	 * locking. If L1 hardware have a separate mail box register
2602 	 * for Tx and Rx consumer/producer management we could have
2603 	 * indepent Tx/Rx handler which in turn Rx handler could have
2604 	 * been run without any locking.
2605 	 */
2606 	AGE_COMMIT_MBOX(sc);
2607 
2608 	/* Configure IPG/IFG parameters. */
2609 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2610 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2611 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2612 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2613 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2614 
2615 	/* Set parameters for half-duplex media. */
2616 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2617 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2618 	    HDPX_CFG_LCOL_MASK) |
2619 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2620 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2621 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2622 	    HDPX_CFG_ABEBT_MASK) |
2623 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2624 	    HDPX_CFG_JAMIPG_MASK));
2625 
2626 	/* Configure interrupt moderation timer. */
2627 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2628 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2629 	reg &= ~MASTER_MTIMER_ENB;
2630 	if (AGE_USECS(sc->age_int_mod) == 0)
2631 		reg &= ~MASTER_ITIMER_ENB;
2632 	else
2633 		reg |= MASTER_ITIMER_ENB;
2634 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2635 	if (bootverbose)
2636 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2637 		    sc->age_int_mod);
2638 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2639 
2640 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2641 	if (ifp->if_mtu < ETHERMTU)
2642 		sc->age_max_frame_size = ETHERMTU;
2643 	else
2644 		sc->age_max_frame_size = ifp->if_mtu;
2645 	sc->age_max_frame_size += ETHER_HDR_LEN +
2646 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2647 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2648 	/* Configure jumbo frame. */
2649 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2650 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2651 	    (((fsize / sizeof(uint64_t)) <<
2652 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2653 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2654 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2655 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2656 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2657 
2658 	/* Configure flow-control parameters. From Linux. */
2659 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2660 		/*
2661 		 * Magic workaround for old-L1.
2662 		 * Don't know which hw revision requires this magic.
2663 		 */
2664 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2665 		/*
2666 		 * Another magic workaround for flow-control mode
2667 		 * change. From Linux.
2668 		 */
2669 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2670 	}
2671 	/*
2672 	 * TODO
2673 	 *  Should understand pause parameter relationships between FIFO
2674 	 *  size and number of Rx descriptors and Rx return descriptors.
2675 	 *
2676 	 *  Magic parameters came from Linux.
2677 	 */
2678 	switch (sc->age_chip_rev) {
2679 	case 0x8001:
2680 	case 0x9001:
2681 	case 0x9002:
2682 	case 0x9003:
2683 		rxf_hi = AGE_RX_RING_CNT / 16;
2684 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2685 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2686 		rrd_lo = AGE_RR_RING_CNT / 16;
2687 		break;
2688 	default:
2689 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2690 		rxf_lo = reg / 16;
2691 		if (rxf_lo < 192)
2692 			rxf_lo = 192;
2693 		rxf_hi = (reg * 7) / 8;
2694 		if (rxf_hi < rxf_lo)
2695 			rxf_hi = rxf_lo + 16;
2696 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2697 		rrd_lo = reg / 8;
2698 		rrd_hi = (reg * 7) / 8;
2699 		if (rrd_lo < 2)
2700 			rrd_lo = 2;
2701 		if (rrd_hi < rrd_lo)
2702 			rrd_hi = rrd_lo + 3;
2703 		break;
2704 	}
2705 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2706 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2707 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2708 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2709 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2710 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2711 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2712 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2713 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2714 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2715 
2716 	/* Configure RxQ. */
2717 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2718 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2719 	    RXQ_CFG_RD_BURST_MASK) |
2720 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2721 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2722 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2723 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2724 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2725 
2726 	/* Configure TxQ. */
2727 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2728 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2729 	    TXQ_CFG_TPD_BURST_MASK) |
2730 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2731 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2732 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2733 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2734 	    TXQ_CFG_ENB);
2735 
2736 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2737 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2738 	    TX_JUMBO_TPD_TH_MASK) |
2739 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2740 	    TX_JUMBO_TPD_IPG_MASK));
2741 	/* Configure DMA parameters. */
2742 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2743 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2744 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2745 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2746 
2747 	/* Configure CMB DMA write threshold. */
2748 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2749 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2750 	    CMB_WR_THRESH_RRD_MASK) |
2751 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2752 	    CMB_WR_THRESH_TPD_MASK));
2753 
2754 	/* Set CMB/SMB timer and enable them. */
2755 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2756 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2757 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2758 	/* Request SMB updates for every seconds. */
2759 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2760 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2761 
2762 	/*
2763 	 * Disable all WOL bits as WOL can interfere normal Rx
2764 	 * operation.
2765 	 */
2766 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2767 
2768 	/*
2769 	 * Configure Tx/Rx MACs.
2770 	 *  - Auto-padding for short frames.
2771 	 *  - Enable CRC generation.
2772 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2773 	 *  of MAC is followed after link establishment.
2774 	 */
2775 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2776 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2777 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2778 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2779 	    MAC_CFG_PREAMBLE_MASK));
2780 	/* Set up the receive filter. */
2781 	age_rxfilter(sc);
2782 	age_rxvlan(sc);
2783 
2784 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2785 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2786 		reg |= MAC_CFG_RXCSUM_ENB;
2787 
2788 	/* Ack all pending interrupts and clear it. */
2789 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2790 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2791 
2792 	/* Finally enable Tx/Rx MAC. */
2793 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2794 
2795 	sc->age_flags &= ~AGE_FLAG_LINK;
2796 	/* Switch to the current media. */
2797 	mii_mediachg(mii);
2798 
2799 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2800 
2801 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2802 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2803 }
2804 
2805 static void
2806 age_stop(struct age_softc *sc)
2807 {
2808 	struct ifnet *ifp;
2809 	struct age_txdesc *txd;
2810 	struct age_rxdesc *rxd;
2811 	uint32_t reg;
2812 	int i;
2813 
2814 	AGE_LOCK_ASSERT(sc);
2815 	/*
2816 	 * Mark the interface down and cancel the watchdog timer.
2817 	 */
2818 	ifp = sc->age_ifp;
2819 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2820 	sc->age_flags &= ~AGE_FLAG_LINK;
2821 	callout_stop(&sc->age_tick_ch);
2822 	sc->age_watchdog_timer = 0;
2823 
2824 	/*
2825 	 * Disable interrupts.
2826 	 */
2827 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2828 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2829 	/* Stop CMB/SMB updates. */
2830 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2831 	/* Stop Rx/Tx MAC. */
2832 	age_stop_rxmac(sc);
2833 	age_stop_txmac(sc);
2834 	/* Stop DMA. */
2835 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2836 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2837 	/* Stop TxQ/RxQ. */
2838 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2839 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2840 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2841 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2842 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2843 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2844 			break;
2845 		DELAY(10);
2846 	}
2847 	if (i == 0)
2848 		device_printf(sc->age_dev,
2849 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2850 
2851 	 /* Reclaim Rx buffers that have been processed. */
2852 	if (sc->age_cdata.age_rxhead != NULL)
2853 		m_freem(sc->age_cdata.age_rxhead);
2854 	AGE_RXCHAIN_RESET(sc);
2855 	/*
2856 	 * Free RX and TX mbufs still in the queues.
2857 	 */
2858 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2859 		rxd = &sc->age_cdata.age_rxdesc[i];
2860 		if (rxd->rx_m != NULL) {
2861 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2862 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2863 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2864 			    rxd->rx_dmamap);
2865 			m_freem(rxd->rx_m);
2866 			rxd->rx_m = NULL;
2867 		}
2868         }
2869 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2870 		txd = &sc->age_cdata.age_txdesc[i];
2871 		if (txd->tx_m != NULL) {
2872 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2873 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2874 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2875 			    txd->tx_dmamap);
2876 			m_freem(txd->tx_m);
2877 			txd->tx_m = NULL;
2878 		}
2879         }
2880 }
2881 
2882 static void
2883 age_stop_txmac(struct age_softc *sc)
2884 {
2885 	uint32_t reg;
2886 	int i;
2887 
2888 	AGE_LOCK_ASSERT(sc);
2889 
2890 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2891 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2892 		reg &= ~MAC_CFG_TX_ENB;
2893 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2894 	}
2895 	/* Stop Tx DMA engine. */
2896 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2897 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2898 		reg &= ~DMA_CFG_RD_ENB;
2899 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2900 	}
2901 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2902 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2903 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2904 			break;
2905 		DELAY(10);
2906 	}
2907 	if (i == 0)
2908 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2909 }
2910 
2911 static void
2912 age_stop_rxmac(struct age_softc *sc)
2913 {
2914 	uint32_t reg;
2915 	int i;
2916 
2917 	AGE_LOCK_ASSERT(sc);
2918 
2919 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2920 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2921 		reg &= ~MAC_CFG_RX_ENB;
2922 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2923 	}
2924 	/* Stop Rx DMA engine. */
2925 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2926 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2927 		reg &= ~DMA_CFG_WR_ENB;
2928 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2929 	}
2930 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2931 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2932 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2933 			break;
2934 		DELAY(10);
2935 	}
2936 	if (i == 0)
2937 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2938 }
2939 
2940 static void
2941 age_init_tx_ring(struct age_softc *sc)
2942 {
2943 	struct age_ring_data *rd;
2944 	struct age_txdesc *txd;
2945 	int i;
2946 
2947 	AGE_LOCK_ASSERT(sc);
2948 
2949 	sc->age_cdata.age_tx_prod = 0;
2950 	sc->age_cdata.age_tx_cons = 0;
2951 	sc->age_cdata.age_tx_cnt = 0;
2952 
2953 	rd = &sc->age_rdata;
2954 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2955 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2956 		txd = &sc->age_cdata.age_txdesc[i];
2957 		txd->tx_desc = &rd->age_tx_ring[i];
2958 		txd->tx_m = NULL;
2959 	}
2960 
2961 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2962 	    sc->age_cdata.age_tx_ring_map,
2963 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2964 }
2965 
2966 static int
2967 age_init_rx_ring(struct age_softc *sc)
2968 {
2969 	struct age_ring_data *rd;
2970 	struct age_rxdesc *rxd;
2971 	int i;
2972 
2973 	AGE_LOCK_ASSERT(sc);
2974 
2975 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2976 	sc->age_morework = 0;
2977 	rd = &sc->age_rdata;
2978 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2979 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2980 		rxd = &sc->age_cdata.age_rxdesc[i];
2981 		rxd->rx_m = NULL;
2982 		rxd->rx_desc = &rd->age_rx_ring[i];
2983 		if (age_newbuf(sc, rxd) != 0)
2984 			return (ENOBUFS);
2985 	}
2986 
2987 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2988 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2989 
2990 	return (0);
2991 }
2992 
2993 static void
2994 age_init_rr_ring(struct age_softc *sc)
2995 {
2996 	struct age_ring_data *rd;
2997 
2998 	AGE_LOCK_ASSERT(sc);
2999 
3000 	sc->age_cdata.age_rr_cons = 0;
3001 	AGE_RXCHAIN_RESET(sc);
3002 
3003 	rd = &sc->age_rdata;
3004 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3005 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3006 	    sc->age_cdata.age_rr_ring_map,
3007 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3008 }
3009 
3010 static void
3011 age_init_cmb_block(struct age_softc *sc)
3012 {
3013 	struct age_ring_data *rd;
3014 
3015 	AGE_LOCK_ASSERT(sc);
3016 
3017 	rd = &sc->age_rdata;
3018 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3019 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3020 	    sc->age_cdata.age_cmb_block_map,
3021 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3022 }
3023 
3024 static void
3025 age_init_smb_block(struct age_softc *sc)
3026 {
3027 	struct age_ring_data *rd;
3028 
3029 	AGE_LOCK_ASSERT(sc);
3030 
3031 	rd = &sc->age_rdata;
3032 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3033 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3034 	    sc->age_cdata.age_smb_block_map,
3035 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3036 }
3037 
3038 static int
3039 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3040 {
3041 	struct rx_desc *desc;
3042 	struct mbuf *m;
3043 	bus_dma_segment_t segs[1];
3044 	bus_dmamap_t map;
3045 	int nsegs;
3046 
3047 	AGE_LOCK_ASSERT(sc);
3048 
3049 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3050 	if (m == NULL)
3051 		return (ENOBUFS);
3052 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3053 	m_adj(m, ETHER_ALIGN);
3054 
3055 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3056 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3057 		m_freem(m);
3058 		return (ENOBUFS);
3059 	}
3060 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3061 
3062 	if (rxd->rx_m != NULL) {
3063 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3064 		    BUS_DMASYNC_POSTREAD);
3065 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3066 	}
3067 	map = rxd->rx_dmamap;
3068 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3069 	sc->age_cdata.age_rx_sparemap = map;
3070 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3071 	    BUS_DMASYNC_PREREAD);
3072 	rxd->rx_m = m;
3073 
3074 	desc = rxd->rx_desc;
3075 	desc->addr = htole64(segs[0].ds_addr);
3076 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3077 	    AGE_RD_LEN_SHIFT);
3078 	return (0);
3079 }
3080 
3081 static void
3082 age_rxvlan(struct age_softc *sc)
3083 {
3084 	struct ifnet *ifp;
3085 	uint32_t reg;
3086 
3087 	AGE_LOCK_ASSERT(sc);
3088 
3089 	ifp = sc->age_ifp;
3090 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3091 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3092 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3093 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3094 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3095 }
3096 
3097 static void
3098 age_rxfilter(struct age_softc *sc)
3099 {
3100 	struct ifnet *ifp;
3101 	struct ifmultiaddr *ifma;
3102 	uint32_t crc;
3103 	uint32_t mchash[2];
3104 	uint32_t rxcfg;
3105 
3106 	AGE_LOCK_ASSERT(sc);
3107 
3108 	ifp = sc->age_ifp;
3109 
3110 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3111 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3112 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3113 		rxcfg |= MAC_CFG_BCAST;
3114 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3115 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3116 			rxcfg |= MAC_CFG_PROMISC;
3117 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3118 			rxcfg |= MAC_CFG_ALLMULTI;
3119 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3120 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3121 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3122 		return;
3123 	}
3124 
3125 	/* Program new filter. */
3126 	bzero(mchash, sizeof(mchash));
3127 
3128 	if_maddr_rlock(ifp);
3129 	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3130 		if (ifma->ifma_addr->sa_family != AF_LINK)
3131 			continue;
3132 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3133 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3134 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3135 	}
3136 	if_maddr_runlock(ifp);
3137 
3138 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3139 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3140 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3141 }
3142 
3143 static int
3144 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3145 {
3146 	struct age_softc *sc;
3147 	struct age_stats *stats;
3148 	int error, result;
3149 
3150 	result = -1;
3151 	error = sysctl_handle_int(oidp, &result, 0, req);
3152 
3153 	if (error != 0 || req->newptr == NULL)
3154 		return (error);
3155 
3156 	if (result != 1)
3157 		return (error);
3158 
3159 	sc = (struct age_softc *)arg1;
3160 	stats = &sc->age_stat;
3161 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3162 	printf("Transmit good frames : %ju\n",
3163 	    (uintmax_t)stats->tx_frames);
3164 	printf("Transmit good broadcast frames : %ju\n",
3165 	    (uintmax_t)stats->tx_bcast_frames);
3166 	printf("Transmit good multicast frames : %ju\n",
3167 	    (uintmax_t)stats->tx_mcast_frames);
3168 	printf("Transmit pause control frames : %u\n",
3169 	    stats->tx_pause_frames);
3170 	printf("Transmit control frames : %u\n",
3171 	    stats->tx_control_frames);
3172 	printf("Transmit frames with excessive deferrals : %u\n",
3173 	    stats->tx_excess_defer);
3174 	printf("Transmit deferrals : %u\n",
3175 	    stats->tx_deferred);
3176 	printf("Transmit good octets : %ju\n",
3177 	    (uintmax_t)stats->tx_bytes);
3178 	printf("Transmit good broadcast octets : %ju\n",
3179 	    (uintmax_t)stats->tx_bcast_bytes);
3180 	printf("Transmit good multicast octets : %ju\n",
3181 	    (uintmax_t)stats->tx_mcast_bytes);
3182 	printf("Transmit frames 64 bytes : %ju\n",
3183 	    (uintmax_t)stats->tx_pkts_64);
3184 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3185 	    (uintmax_t)stats->tx_pkts_65_127);
3186 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3187 	    (uintmax_t)stats->tx_pkts_128_255);
3188 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3189 	    (uintmax_t)stats->tx_pkts_256_511);
3190 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3191 	    (uintmax_t)stats->tx_pkts_512_1023);
3192 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3193 	    (uintmax_t)stats->tx_pkts_1024_1518);
3194 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3195 	    (uintmax_t)stats->tx_pkts_1519_max);
3196 	printf("Transmit single collisions : %u\n",
3197 	    stats->tx_single_colls);
3198 	printf("Transmit multiple collisions : %u\n",
3199 	    stats->tx_multi_colls);
3200 	printf("Transmit late collisions : %u\n",
3201 	    stats->tx_late_colls);
3202 	printf("Transmit abort due to excessive collisions : %u\n",
3203 	    stats->tx_excess_colls);
3204 	printf("Transmit underruns due to FIFO underruns : %u\n",
3205 	    stats->tx_underrun);
3206 	printf("Transmit descriptor write-back errors : %u\n",
3207 	    stats->tx_desc_underrun);
3208 	printf("Transmit frames with length mismatched frame size : %u\n",
3209 	    stats->tx_lenerrs);
3210 	printf("Transmit frames with truncated due to MTU size : %u\n",
3211 	    stats->tx_lenerrs);
3212 
3213 	printf("Receive good frames : %ju\n",
3214 	    (uintmax_t)stats->rx_frames);
3215 	printf("Receive good broadcast frames : %ju\n",
3216 	    (uintmax_t)stats->rx_bcast_frames);
3217 	printf("Receive good multicast frames : %ju\n",
3218 	    (uintmax_t)stats->rx_mcast_frames);
3219 	printf("Receive pause control frames : %u\n",
3220 	    stats->rx_pause_frames);
3221 	printf("Receive control frames : %u\n",
3222 	    stats->rx_control_frames);
3223 	printf("Receive CRC errors : %u\n",
3224 	    stats->rx_crcerrs);
3225 	printf("Receive frames with length errors : %u\n",
3226 	    stats->rx_lenerrs);
3227 	printf("Receive good octets : %ju\n",
3228 	    (uintmax_t)stats->rx_bytes);
3229 	printf("Receive good broadcast octets : %ju\n",
3230 	    (uintmax_t)stats->rx_bcast_bytes);
3231 	printf("Receive good multicast octets : %ju\n",
3232 	    (uintmax_t)stats->rx_mcast_bytes);
3233 	printf("Receive frames too short : %u\n",
3234 	    stats->rx_runts);
3235 	printf("Receive fragmented frames : %ju\n",
3236 	    (uintmax_t)stats->rx_fragments);
3237 	printf("Receive frames 64 bytes : %ju\n",
3238 	    (uintmax_t)stats->rx_pkts_64);
3239 	printf("Receive frames 65 to 127 bytes : %ju\n",
3240 	    (uintmax_t)stats->rx_pkts_65_127);
3241 	printf("Receive frames 128 to 255 bytes : %ju\n",
3242 	    (uintmax_t)stats->rx_pkts_128_255);
3243 	printf("Receive frames 256 to 511 bytes : %ju\n",
3244 	    (uintmax_t)stats->rx_pkts_256_511);
3245 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3246 	    (uintmax_t)stats->rx_pkts_512_1023);
3247 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3248 	    (uintmax_t)stats->rx_pkts_1024_1518);
3249 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3250 	    (uintmax_t)stats->rx_pkts_1519_max);
3251 	printf("Receive frames too long : %ju\n",
3252 	    (uint64_t)stats->rx_pkts_truncated);
3253 	printf("Receive frames with FIFO overflow : %u\n",
3254 	    stats->rx_fifo_oflows);
3255 	printf("Receive frames with return descriptor overflow : %u\n",
3256 	    stats->rx_desc_oflows);
3257 	printf("Receive frames with alignment errors : %u\n",
3258 	    stats->rx_alignerrs);
3259 	printf("Receive frames dropped due to address filtering : %ju\n",
3260 	    (uint64_t)stats->rx_pkts_filtered);
3261 
3262 	return (error);
3263 }
3264 
3265 static int
3266 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3267 {
3268 	int error, value;
3269 
3270 	if (arg1 == NULL)
3271 		return (EINVAL);
3272 	value = *(int *)arg1;
3273 	error = sysctl_handle_int(oidp, &value, 0, req);
3274 	if (error || req->newptr == NULL)
3275 		return (error);
3276 	if (value < low || value > high)
3277 		return (EINVAL);
3278         *(int *)arg1 = value;
3279 
3280         return (0);
3281 }
3282 
3283 static int
3284 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3285 {
3286 	return (sysctl_int_range(oidp, arg1, arg2, req,
3287 	    AGE_PROC_MIN, AGE_PROC_MAX));
3288 }
3289 
3290 static int
3291 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3292 {
3293 
3294 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3295 	    AGE_IM_TIMER_MAX));
3296 }
3297