xref: /freebsd/sys/dev/age/if_age.c (revision 718cf2ccb9956613756ab15d7a0e28f2c8e91cab)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/rman.h>
43 #include <sys/module.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 
71 #include <machine/bus.h>
72 #include <machine/in_cksum.h>
73 
74 #include <dev/age/if_agereg.h>
75 #include <dev/age/if_agevar.h>
76 
77 /* "device miibus" required.  See GENERIC if you get errors here. */
78 #include "miibus_if.h"
79 
80 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81 
82 MODULE_DEPEND(age, pci, 1, 1, 1);
83 MODULE_DEPEND(age, ether, 1, 1, 1);
84 MODULE_DEPEND(age, miibus, 1, 1, 1);
85 
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
91 
92 /*
93  * Devices supported by this driver.
94  */
95 static struct age_dev {
96 	uint16_t	age_vendorid;
97 	uint16_t	age_deviceid;
98 	const char	*age_name;
99 } age_devs[] = {
100 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
101 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
102 };
103 
104 static int age_miibus_readreg(device_t, int, int);
105 static int age_miibus_writereg(device_t, int, int, int);
106 static void age_miibus_statchg(device_t);
107 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
108 static int age_mediachange(struct ifnet *);
109 static int age_probe(device_t);
110 static void age_get_macaddr(struct age_softc *);
111 static void age_phy_reset(struct age_softc *);
112 static int age_attach(device_t);
113 static int age_detach(device_t);
114 static void age_sysctl_node(struct age_softc *);
115 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
116 static int age_check_boundary(struct age_softc *);
117 static int age_dma_alloc(struct age_softc *);
118 static void age_dma_free(struct age_softc *);
119 static int age_shutdown(device_t);
120 static void age_setwol(struct age_softc *);
121 static int age_suspend(device_t);
122 static int age_resume(device_t);
123 static int age_encap(struct age_softc *, struct mbuf **);
124 static void age_start(struct ifnet *);
125 static void age_start_locked(struct ifnet *);
126 static void age_watchdog(struct age_softc *);
127 static int age_ioctl(struct ifnet *, u_long, caddr_t);
128 static void age_mac_config(struct age_softc *);
129 static void age_link_task(void *, int);
130 static void age_stats_update(struct age_softc *);
131 static int age_intr(void *);
132 static void age_int_task(void *, int);
133 static void age_txintr(struct age_softc *, int);
134 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
135 static int age_rxintr(struct age_softc *, int, int);
136 static void age_tick(void *);
137 static void age_reset(struct age_softc *);
138 static void age_init(void *);
139 static void age_init_locked(struct age_softc *);
140 static void age_stop(struct age_softc *);
141 static void age_stop_txmac(struct age_softc *);
142 static void age_stop_rxmac(struct age_softc *);
143 static void age_init_tx_ring(struct age_softc *);
144 static int age_init_rx_ring(struct age_softc *);
145 static void age_init_rr_ring(struct age_softc *);
146 static void age_init_cmb_block(struct age_softc *);
147 static void age_init_smb_block(struct age_softc *);
148 #ifndef __NO_STRICT_ALIGNMENT
149 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
150 #endif
151 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
152 static void age_rxvlan(struct age_softc *);
153 static void age_rxfilter(struct age_softc *);
154 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
155 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
156 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
157 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
158 
159 
160 static device_method_t age_methods[] = {
161 	/* Device interface. */
162 	DEVMETHOD(device_probe,		age_probe),
163 	DEVMETHOD(device_attach,	age_attach),
164 	DEVMETHOD(device_detach,	age_detach),
165 	DEVMETHOD(device_shutdown,	age_shutdown),
166 	DEVMETHOD(device_suspend,	age_suspend),
167 	DEVMETHOD(device_resume,	age_resume),
168 
169 	/* MII interface. */
170 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
171 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
172 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
173 
174 	{ NULL, NULL }
175 };
176 
177 static driver_t age_driver = {
178 	"age",
179 	age_methods,
180 	sizeof(struct age_softc)
181 };
182 
183 static devclass_t age_devclass;
184 
185 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
186 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
187 
188 static struct resource_spec age_res_spec_mem[] = {
189 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
190 	{ -1,			0,		0 }
191 };
192 
193 static struct resource_spec age_irq_spec_legacy[] = {
194 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
195 	{ -1,			0,		0 }
196 };
197 
198 static struct resource_spec age_irq_spec_msi[] = {
199 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
200 	{ -1,			0,		0 }
201 };
202 
203 static struct resource_spec age_irq_spec_msix[] = {
204 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
205 	{ -1,			0,		0 }
206 };
207 
208 /*
209  *	Read a PHY register on the MII of the L1.
210  */
211 static int
212 age_miibus_readreg(device_t dev, int phy, int reg)
213 {
214 	struct age_softc *sc;
215 	uint32_t v;
216 	int i;
217 
218 	sc = device_get_softc(dev);
219 
220 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
221 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
222 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
223 		DELAY(1);
224 		v = CSR_READ_4(sc, AGE_MDIO);
225 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
226 			break;
227 	}
228 
229 	if (i == 0) {
230 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
231 		return (0);
232 	}
233 
234 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
235 }
236 
237 /*
238  *	Write a PHY register on the MII of the L1.
239  */
240 static int
241 age_miibus_writereg(device_t dev, int phy, int reg, int val)
242 {
243 	struct age_softc *sc;
244 	uint32_t v;
245 	int i;
246 
247 	sc = device_get_softc(dev);
248 
249 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
250 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
251 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
252 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
253 		DELAY(1);
254 		v = CSR_READ_4(sc, AGE_MDIO);
255 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
256 			break;
257 	}
258 
259 	if (i == 0)
260 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
261 
262 	return (0);
263 }
264 
265 /*
266  *	Callback from MII layer when media changes.
267  */
268 static void
269 age_miibus_statchg(device_t dev)
270 {
271 	struct age_softc *sc;
272 
273 	sc = device_get_softc(dev);
274 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
275 }
276 
277 /*
278  *	Get the current interface media status.
279  */
280 static void
281 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
282 {
283 	struct age_softc *sc;
284 	struct mii_data *mii;
285 
286 	sc = ifp->if_softc;
287 	AGE_LOCK(sc);
288 	mii = device_get_softc(sc->age_miibus);
289 
290 	mii_pollstat(mii);
291 	ifmr->ifm_status = mii->mii_media_status;
292 	ifmr->ifm_active = mii->mii_media_active;
293 	AGE_UNLOCK(sc);
294 }
295 
296 /*
297  *	Set hardware to newly-selected media.
298  */
299 static int
300 age_mediachange(struct ifnet *ifp)
301 {
302 	struct age_softc *sc;
303 	struct mii_data *mii;
304 	struct mii_softc *miisc;
305 	int error;
306 
307 	sc = ifp->if_softc;
308 	AGE_LOCK(sc);
309 	mii = device_get_softc(sc->age_miibus);
310 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
311 		PHY_RESET(miisc);
312 	error = mii_mediachg(mii);
313 	AGE_UNLOCK(sc);
314 
315 	return (error);
316 }
317 
318 static int
319 age_probe(device_t dev)
320 {
321 	struct age_dev *sp;
322 	int i;
323 	uint16_t vendor, devid;
324 
325 	vendor = pci_get_vendor(dev);
326 	devid = pci_get_device(dev);
327 	sp = age_devs;
328 	for (i = 0; i < nitems(age_devs); i++, sp++) {
329 		if (vendor == sp->age_vendorid &&
330 		    devid == sp->age_deviceid) {
331 			device_set_desc(dev, sp->age_name);
332 			return (BUS_PROBE_DEFAULT);
333 		}
334 	}
335 
336 	return (ENXIO);
337 }
338 
339 static void
340 age_get_macaddr(struct age_softc *sc)
341 {
342 	uint32_t ea[2], reg;
343 	int i, vpdc;
344 
345 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
346 	if ((reg & SPI_VPD_ENB) != 0) {
347 		/* Get VPD stored in TWSI EEPROM. */
348 		reg &= ~SPI_VPD_ENB;
349 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
350 	}
351 
352 	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
353 		/*
354 		 * PCI VPD capability found, let TWSI reload EEPROM.
355 		 * This will set ethernet address of controller.
356 		 */
357 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
358 		    TWSI_CTRL_SW_LD_START);
359 		for (i = 100; i > 0; i--) {
360 			DELAY(1000);
361 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
362 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
363 				break;
364 		}
365 		if (i == 0)
366 			device_printf(sc->age_dev,
367 			    "reloading EEPROM timeout!\n");
368 	} else {
369 		if (bootverbose)
370 			device_printf(sc->age_dev,
371 			    "PCI VPD capability not found!\n");
372 	}
373 
374 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
375 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
376 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
377 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
378 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
379 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
380 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
381 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
382 }
383 
384 static void
385 age_phy_reset(struct age_softc *sc)
386 {
387 	uint16_t reg, pn;
388 	int i, linkup;
389 
390 	/* Reset PHY. */
391 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
392 	DELAY(2000);
393 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
394 	DELAY(2000);
395 
396 #define	ATPHY_DBG_ADDR		0x1D
397 #define	ATPHY_DBG_DATA		0x1E
398 #define	ATPHY_CDTC		0x16
399 #define	PHY_CDTC_ENB		0x0001
400 #define	PHY_CDTC_POFF		8
401 #define	ATPHY_CDTS		0x1C
402 #define	PHY_CDTS_STAT_OK	0x0000
403 #define	PHY_CDTS_STAT_SHORT	0x0100
404 #define	PHY_CDTS_STAT_OPEN	0x0200
405 #define	PHY_CDTS_STAT_INVAL	0x0300
406 #define	PHY_CDTS_STAT_MASK	0x0300
407 
408 	/* Check power saving mode. Magic from Linux. */
409 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
410 	for (linkup = 0, pn = 0; pn < 4; pn++) {
411 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
412 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
413 		for (i = 200; i > 0; i--) {
414 			DELAY(1000);
415 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
416 			    ATPHY_CDTC);
417 			if ((reg & PHY_CDTC_ENB) == 0)
418 				break;
419 		}
420 		DELAY(1000);
421 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
422 		    ATPHY_CDTS);
423 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
424 			linkup++;
425 			break;
426 		}
427 	}
428 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
429 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
430 	if (linkup == 0) {
431 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
432 		    ATPHY_DBG_ADDR, 0);
433 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
434 		    ATPHY_DBG_DATA, 0x124E);
435 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
436 		    ATPHY_DBG_ADDR, 1);
437 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
438 		    ATPHY_DBG_DATA);
439 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
440 		    ATPHY_DBG_DATA, reg | 0x03);
441 		/* XXX */
442 		DELAY(1500 * 1000);
443 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
444 		    ATPHY_DBG_ADDR, 0);
445 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
446 		    ATPHY_DBG_DATA, 0x024E);
447     }
448 
449 #undef	ATPHY_DBG_ADDR
450 #undef	ATPHY_DBG_DATA
451 #undef	ATPHY_CDTC
452 #undef	PHY_CDTC_ENB
453 #undef	PHY_CDTC_POFF
454 #undef	ATPHY_CDTS
455 #undef	PHY_CDTS_STAT_OK
456 #undef	PHY_CDTS_STAT_SHORT
457 #undef	PHY_CDTS_STAT_OPEN
458 #undef	PHY_CDTS_STAT_INVAL
459 #undef	PHY_CDTS_STAT_MASK
460 }
461 
462 static int
463 age_attach(device_t dev)
464 {
465 	struct age_softc *sc;
466 	struct ifnet *ifp;
467 	uint16_t burst;
468 	int error, i, msic, msixc, pmc;
469 
470 	error = 0;
471 	sc = device_get_softc(dev);
472 	sc->age_dev = dev;
473 
474 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
475 	    MTX_DEF);
476 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
477 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
478 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
479 
480 	/* Map the device. */
481 	pci_enable_busmaster(dev);
482 	sc->age_res_spec = age_res_spec_mem;
483 	sc->age_irq_spec = age_irq_spec_legacy;
484 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
485 	if (error != 0) {
486 		device_printf(dev, "cannot allocate memory resources.\n");
487 		goto fail;
488 	}
489 
490 	/* Set PHY address. */
491 	sc->age_phyaddr = AGE_PHY_ADDR;
492 
493 	/* Reset PHY. */
494 	age_phy_reset(sc);
495 
496 	/* Reset the ethernet controller. */
497 	age_reset(sc);
498 
499 	/* Get PCI and chip id/revision. */
500 	sc->age_rev = pci_get_revid(dev);
501 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
502 	    MASTER_CHIP_REV_SHIFT;
503 	if (bootverbose) {
504 		device_printf(dev, "PCI device revision : 0x%04x\n",
505 		    sc->age_rev);
506 		device_printf(dev, "Chip id/revision : 0x%04x\n",
507 		    sc->age_chip_rev);
508 	}
509 
510 	/*
511 	 * XXX
512 	 * Unintialized hardware returns an invalid chip id/revision
513 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
514 	 * unplugged cable results in putting hardware into automatic
515 	 * power down mode which in turn returns invalld chip revision.
516 	 */
517 	if (sc->age_chip_rev == 0xFFFF) {
518 		device_printf(dev,"invalid chip revision : 0x%04x -- "
519 		    "not initialized?\n", sc->age_chip_rev);
520 		error = ENXIO;
521 		goto fail;
522 	}
523 
524 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
525 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
526 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
527 
528 	/* Allocate IRQ resources. */
529 	msixc = pci_msix_count(dev);
530 	msic = pci_msi_count(dev);
531 	if (bootverbose) {
532 		device_printf(dev, "MSIX count : %d\n", msixc);
533 		device_printf(dev, "MSI count : %d\n", msic);
534 	}
535 
536 	/* Prefer MSIX over MSI. */
537 	if (msix_disable == 0 || msi_disable == 0) {
538 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
539 		    pci_alloc_msix(dev, &msixc) == 0) {
540 			if (msic == AGE_MSIX_MESSAGES) {
541 				device_printf(dev, "Using %d MSIX messages.\n",
542 				    msixc);
543 				sc->age_flags |= AGE_FLAG_MSIX;
544 				sc->age_irq_spec = age_irq_spec_msix;
545 			} else
546 				pci_release_msi(dev);
547 		}
548 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
549 		    msic == AGE_MSI_MESSAGES &&
550 		    pci_alloc_msi(dev, &msic) == 0) {
551 			if (msic == AGE_MSI_MESSAGES) {
552 				device_printf(dev, "Using %d MSI messages.\n",
553 				    msic);
554 				sc->age_flags |= AGE_FLAG_MSI;
555 				sc->age_irq_spec = age_irq_spec_msi;
556 			} else
557 				pci_release_msi(dev);
558 		}
559 	}
560 
561 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
562 	if (error != 0) {
563 		device_printf(dev, "cannot allocate IRQ resources.\n");
564 		goto fail;
565 	}
566 
567 
568 	/* Get DMA parameters from PCIe device control register. */
569 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
570 		sc->age_flags |= AGE_FLAG_PCIE;
571 		burst = pci_read_config(dev, i + 0x08, 2);
572 		/* Max read request size. */
573 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
574 		    DMA_CFG_RD_BURST_SHIFT;
575 		/* Max payload size. */
576 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
577 		    DMA_CFG_WR_BURST_SHIFT;
578 		if (bootverbose) {
579 			device_printf(dev, "Read request size : %d bytes.\n",
580 			    128 << ((burst >> 12) & 0x07));
581 			device_printf(dev, "TLP payload size : %d bytes.\n",
582 			    128 << ((burst >> 5) & 0x07));
583 		}
584 	} else {
585 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
586 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
587 	}
588 
589 	/* Create device sysctl node. */
590 	age_sysctl_node(sc);
591 
592 	if ((error = age_dma_alloc(sc)) != 0)
593 		goto fail;
594 
595 	/* Load station address. */
596 	age_get_macaddr(sc);
597 
598 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
599 	if (ifp == NULL) {
600 		device_printf(dev, "cannot allocate ifnet structure.\n");
601 		error = ENXIO;
602 		goto fail;
603 	}
604 
605 	ifp->if_softc = sc;
606 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
607 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
608 	ifp->if_ioctl = age_ioctl;
609 	ifp->if_start = age_start;
610 	ifp->if_init = age_init;
611 	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
612 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
613 	IFQ_SET_READY(&ifp->if_snd);
614 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
615 	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
616 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
617 		sc->age_flags |= AGE_FLAG_PMCAP;
618 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
619 	}
620 	ifp->if_capenable = ifp->if_capabilities;
621 
622 	/* Set up MII bus. */
623 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
624 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
625 	    0);
626 	if (error != 0) {
627 		device_printf(dev, "attaching PHYs failed\n");
628 		goto fail;
629 	}
630 
631 	ether_ifattach(ifp, sc->age_eaddr);
632 
633 	/* VLAN capability setup. */
634 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
635 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
636 	ifp->if_capenable = ifp->if_capabilities;
637 
638 	/* Tell the upper layer(s) we support long frames. */
639 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
640 
641 	/* Create local taskq. */
642 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
643 	    taskqueue_thread_enqueue, &sc->age_tq);
644 	if (sc->age_tq == NULL) {
645 		device_printf(dev, "could not create taskqueue.\n");
646 		ether_ifdetach(ifp);
647 		error = ENXIO;
648 		goto fail;
649 	}
650 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
651 	    device_get_nameunit(sc->age_dev));
652 
653 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
654 		msic = AGE_MSIX_MESSAGES;
655 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
656 		msic = AGE_MSI_MESSAGES;
657 	else
658 		msic = 1;
659 	for (i = 0; i < msic; i++) {
660 		error = bus_setup_intr(dev, sc->age_irq[i],
661 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
662 		    &sc->age_intrhand[i]);
663 		if (error != 0)
664 			break;
665 	}
666 	if (error != 0) {
667 		device_printf(dev, "could not set up interrupt handler.\n");
668 		taskqueue_free(sc->age_tq);
669 		sc->age_tq = NULL;
670 		ether_ifdetach(ifp);
671 		goto fail;
672 	}
673 
674 fail:
675 	if (error != 0)
676 		age_detach(dev);
677 
678 	return (error);
679 }
680 
681 static int
682 age_detach(device_t dev)
683 {
684 	struct age_softc *sc;
685 	struct ifnet *ifp;
686 	int i, msic;
687 
688 	sc = device_get_softc(dev);
689 
690 	ifp = sc->age_ifp;
691 	if (device_is_attached(dev)) {
692 		AGE_LOCK(sc);
693 		sc->age_flags |= AGE_FLAG_DETACH;
694 		age_stop(sc);
695 		AGE_UNLOCK(sc);
696 		callout_drain(&sc->age_tick_ch);
697 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
698 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
699 		ether_ifdetach(ifp);
700 	}
701 
702 	if (sc->age_tq != NULL) {
703 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
704 		taskqueue_free(sc->age_tq);
705 		sc->age_tq = NULL;
706 	}
707 
708 	if (sc->age_miibus != NULL) {
709 		device_delete_child(dev, sc->age_miibus);
710 		sc->age_miibus = NULL;
711 	}
712 	bus_generic_detach(dev);
713 	age_dma_free(sc);
714 
715 	if (ifp != NULL) {
716 		if_free(ifp);
717 		sc->age_ifp = NULL;
718 	}
719 
720 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
721 		msic = AGE_MSIX_MESSAGES;
722 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
723 		msic = AGE_MSI_MESSAGES;
724 	else
725 		msic = 1;
726 	for (i = 0; i < msic; i++) {
727 		if (sc->age_intrhand[i] != NULL) {
728 			bus_teardown_intr(dev, sc->age_irq[i],
729 			    sc->age_intrhand[i]);
730 			sc->age_intrhand[i] = NULL;
731 		}
732 	}
733 
734 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
735 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
736 		pci_release_msi(dev);
737 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
738 	mtx_destroy(&sc->age_mtx);
739 
740 	return (0);
741 }
742 
743 static void
744 age_sysctl_node(struct age_softc *sc)
745 {
746 	int error;
747 
748 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
749 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
750 	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
751 	    "I", "Statistics");
752 
753 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
754 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
755 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
756 	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
757 
758 	/* Pull in device tunables. */
759 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
760 	error = resource_int_value(device_get_name(sc->age_dev),
761 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
762 	if (error == 0) {
763 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
764 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
765 			device_printf(sc->age_dev,
766 			    "int_mod value out of range; using default: %d\n",
767 			    AGE_IM_TIMER_DEFAULT);
768 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
769 		}
770 	}
771 
772 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
773 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
774 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
775 	    0, sysctl_hw_age_proc_limit, "I",
776 	    "max number of Rx events to process");
777 
778 	/* Pull in device tunables. */
779 	sc->age_process_limit = AGE_PROC_DEFAULT;
780 	error = resource_int_value(device_get_name(sc->age_dev),
781 	    device_get_unit(sc->age_dev), "process_limit",
782 	    &sc->age_process_limit);
783 	if (error == 0) {
784 		if (sc->age_process_limit < AGE_PROC_MIN ||
785 		    sc->age_process_limit > AGE_PROC_MAX) {
786 			device_printf(sc->age_dev,
787 			    "process_limit value out of range; "
788 			    "using default: %d\n", AGE_PROC_DEFAULT);
789 			sc->age_process_limit = AGE_PROC_DEFAULT;
790 		}
791 	}
792 }
793 
794 struct age_dmamap_arg {
795 	bus_addr_t	age_busaddr;
796 };
797 
798 static void
799 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
800 {
801 	struct age_dmamap_arg *ctx;
802 
803 	if (error != 0)
804 		return;
805 
806 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
807 
808 	ctx = (struct age_dmamap_arg *)arg;
809 	ctx->age_busaddr = segs[0].ds_addr;
810 }
811 
812 /*
813  * Attansic L1 controller have single register to specify high
814  * address part of DMA blocks. So all descriptor structures and
815  * DMA memory blocks should have the same high address of given
816  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
817  */
818 static int
819 age_check_boundary(struct age_softc *sc)
820 {
821 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
822 	bus_addr_t cmb_block_end, smb_block_end;
823 
824 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
825 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
826 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
827 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
828 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
829 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
830 
831 	if ((AGE_ADDR_HI(tx_ring_end) !=
832 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
833 	    (AGE_ADDR_HI(rx_ring_end) !=
834 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
835 	    (AGE_ADDR_HI(rr_ring_end) !=
836 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
837 	    (AGE_ADDR_HI(cmb_block_end) !=
838 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
839 	    (AGE_ADDR_HI(smb_block_end) !=
840 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
841 		return (EFBIG);
842 
843 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
844 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
845 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
846 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
847 		return (EFBIG);
848 
849 	return (0);
850 }
851 
852 static int
853 age_dma_alloc(struct age_softc *sc)
854 {
855 	struct age_txdesc *txd;
856 	struct age_rxdesc *rxd;
857 	bus_addr_t lowaddr;
858 	struct age_dmamap_arg ctx;
859 	int error, i;
860 
861 	lowaddr = BUS_SPACE_MAXADDR;
862 
863 again:
864 	/* Create parent ring/DMA block tag. */
865 	error = bus_dma_tag_create(
866 	    bus_get_dma_tag(sc->age_dev), /* parent */
867 	    1, 0,			/* alignment, boundary */
868 	    lowaddr,			/* lowaddr */
869 	    BUS_SPACE_MAXADDR,		/* highaddr */
870 	    NULL, NULL,			/* filter, filterarg */
871 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
872 	    0,				/* nsegments */
873 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
874 	    0,				/* flags */
875 	    NULL, NULL,			/* lockfunc, lockarg */
876 	    &sc->age_cdata.age_parent_tag);
877 	if (error != 0) {
878 		device_printf(sc->age_dev,
879 		    "could not create parent DMA tag.\n");
880 		goto fail;
881 	}
882 
883 	/* Create tag for Tx ring. */
884 	error = bus_dma_tag_create(
885 	    sc->age_cdata.age_parent_tag, /* parent */
886 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
887 	    BUS_SPACE_MAXADDR,		/* lowaddr */
888 	    BUS_SPACE_MAXADDR,		/* highaddr */
889 	    NULL, NULL,			/* filter, filterarg */
890 	    AGE_TX_RING_SZ,		/* maxsize */
891 	    1,				/* nsegments */
892 	    AGE_TX_RING_SZ,		/* maxsegsize */
893 	    0,				/* flags */
894 	    NULL, NULL,			/* lockfunc, lockarg */
895 	    &sc->age_cdata.age_tx_ring_tag);
896 	if (error != 0) {
897 		device_printf(sc->age_dev,
898 		    "could not create Tx ring DMA tag.\n");
899 		goto fail;
900 	}
901 
902 	/* Create tag for Rx ring. */
903 	error = bus_dma_tag_create(
904 	    sc->age_cdata.age_parent_tag, /* parent */
905 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
906 	    BUS_SPACE_MAXADDR,		/* lowaddr */
907 	    BUS_SPACE_MAXADDR,		/* highaddr */
908 	    NULL, NULL,			/* filter, filterarg */
909 	    AGE_RX_RING_SZ,		/* maxsize */
910 	    1,				/* nsegments */
911 	    AGE_RX_RING_SZ,		/* maxsegsize */
912 	    0,				/* flags */
913 	    NULL, NULL,			/* lockfunc, lockarg */
914 	    &sc->age_cdata.age_rx_ring_tag);
915 	if (error != 0) {
916 		device_printf(sc->age_dev,
917 		    "could not create Rx ring DMA tag.\n");
918 		goto fail;
919 	}
920 
921 	/* Create tag for Rx return ring. */
922 	error = bus_dma_tag_create(
923 	    sc->age_cdata.age_parent_tag, /* parent */
924 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
925 	    BUS_SPACE_MAXADDR,		/* lowaddr */
926 	    BUS_SPACE_MAXADDR,		/* highaddr */
927 	    NULL, NULL,			/* filter, filterarg */
928 	    AGE_RR_RING_SZ,		/* maxsize */
929 	    1,				/* nsegments */
930 	    AGE_RR_RING_SZ,		/* maxsegsize */
931 	    0,				/* flags */
932 	    NULL, NULL,			/* lockfunc, lockarg */
933 	    &sc->age_cdata.age_rr_ring_tag);
934 	if (error != 0) {
935 		device_printf(sc->age_dev,
936 		    "could not create Rx return ring DMA tag.\n");
937 		goto fail;
938 	}
939 
940 	/* Create tag for coalesing message block. */
941 	error = bus_dma_tag_create(
942 	    sc->age_cdata.age_parent_tag, /* parent */
943 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
944 	    BUS_SPACE_MAXADDR,		/* lowaddr */
945 	    BUS_SPACE_MAXADDR,		/* highaddr */
946 	    NULL, NULL,			/* filter, filterarg */
947 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
948 	    1,				/* nsegments */
949 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
950 	    0,				/* flags */
951 	    NULL, NULL,			/* lockfunc, lockarg */
952 	    &sc->age_cdata.age_cmb_block_tag);
953 	if (error != 0) {
954 		device_printf(sc->age_dev,
955 		    "could not create CMB DMA tag.\n");
956 		goto fail;
957 	}
958 
959 	/* Create tag for statistics message block. */
960 	error = bus_dma_tag_create(
961 	    sc->age_cdata.age_parent_tag, /* parent */
962 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
963 	    BUS_SPACE_MAXADDR,		/* lowaddr */
964 	    BUS_SPACE_MAXADDR,		/* highaddr */
965 	    NULL, NULL,			/* filter, filterarg */
966 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
967 	    1,				/* nsegments */
968 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
969 	    0,				/* flags */
970 	    NULL, NULL,			/* lockfunc, lockarg */
971 	    &sc->age_cdata.age_smb_block_tag);
972 	if (error != 0) {
973 		device_printf(sc->age_dev,
974 		    "could not create SMB DMA tag.\n");
975 		goto fail;
976 	}
977 
978 	/* Allocate DMA'able memory and load the DMA map. */
979 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
980 	    (void **)&sc->age_rdata.age_tx_ring,
981 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
982 	    &sc->age_cdata.age_tx_ring_map);
983 	if (error != 0) {
984 		device_printf(sc->age_dev,
985 		    "could not allocate DMA'able memory for Tx ring.\n");
986 		goto fail;
987 	}
988 	ctx.age_busaddr = 0;
989 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
990 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
991 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
992 	if (error != 0 || ctx.age_busaddr == 0) {
993 		device_printf(sc->age_dev,
994 		    "could not load DMA'able memory for Tx ring.\n");
995 		goto fail;
996 	}
997 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
998 	/* Rx ring */
999 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1000 	    (void **)&sc->age_rdata.age_rx_ring,
1001 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1002 	    &sc->age_cdata.age_rx_ring_map);
1003 	if (error != 0) {
1004 		device_printf(sc->age_dev,
1005 		    "could not allocate DMA'able memory for Rx ring.\n");
1006 		goto fail;
1007 	}
1008 	ctx.age_busaddr = 0;
1009 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1010 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1011 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1012 	if (error != 0 || ctx.age_busaddr == 0) {
1013 		device_printf(sc->age_dev,
1014 		    "could not load DMA'able memory for Rx ring.\n");
1015 		goto fail;
1016 	}
1017 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1018 	/* Rx return ring */
1019 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1020 	    (void **)&sc->age_rdata.age_rr_ring,
1021 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1022 	    &sc->age_cdata.age_rr_ring_map);
1023 	if (error != 0) {
1024 		device_printf(sc->age_dev,
1025 		    "could not allocate DMA'able memory for Rx return ring.\n");
1026 		goto fail;
1027 	}
1028 	ctx.age_busaddr = 0;
1029 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1030 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1031 	    AGE_RR_RING_SZ, age_dmamap_cb,
1032 	    &ctx, 0);
1033 	if (error != 0 || ctx.age_busaddr == 0) {
1034 		device_printf(sc->age_dev,
1035 		    "could not load DMA'able memory for Rx return ring.\n");
1036 		goto fail;
1037 	}
1038 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1039 	/* CMB block */
1040 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1041 	    (void **)&sc->age_rdata.age_cmb_block,
1042 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1043 	    &sc->age_cdata.age_cmb_block_map);
1044 	if (error != 0) {
1045 		device_printf(sc->age_dev,
1046 		    "could not allocate DMA'able memory for CMB block.\n");
1047 		goto fail;
1048 	}
1049 	ctx.age_busaddr = 0;
1050 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1051 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1052 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1053 	if (error != 0 || ctx.age_busaddr == 0) {
1054 		device_printf(sc->age_dev,
1055 		    "could not load DMA'able memory for CMB block.\n");
1056 		goto fail;
1057 	}
1058 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1059 	/* SMB block */
1060 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1061 	    (void **)&sc->age_rdata.age_smb_block,
1062 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1063 	    &sc->age_cdata.age_smb_block_map);
1064 	if (error != 0) {
1065 		device_printf(sc->age_dev,
1066 		    "could not allocate DMA'able memory for SMB block.\n");
1067 		goto fail;
1068 	}
1069 	ctx.age_busaddr = 0;
1070 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1071 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1072 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1073 	if (error != 0 || ctx.age_busaddr == 0) {
1074 		device_printf(sc->age_dev,
1075 		    "could not load DMA'able memory for SMB block.\n");
1076 		goto fail;
1077 	}
1078 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1079 
1080 	/*
1081 	 * All ring buffer and DMA blocks should have the same
1082 	 * high address part of 64bit DMA address space.
1083 	 */
1084 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1085 	    (error = age_check_boundary(sc)) != 0) {
1086 		device_printf(sc->age_dev, "4GB boundary crossed, "
1087 		    "switching to 32bit DMA addressing mode.\n");
1088 		age_dma_free(sc);
1089 		/* Limit DMA address space to 32bit and try again. */
1090 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1091 		goto again;
1092 	}
1093 
1094 	/*
1095 	 * Create Tx/Rx buffer parent tag.
1096 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1097 	 * so it needs separate parent DMA tag.
1098 	 * XXX
1099 	 * It seems enabling 64bit DMA causes data corruption. Limit
1100 	 * DMA address space to 32bit.
1101 	 */
1102 	error = bus_dma_tag_create(
1103 	    bus_get_dma_tag(sc->age_dev), /* parent */
1104 	    1, 0,			/* alignment, boundary */
1105 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1106 	    BUS_SPACE_MAXADDR,		/* highaddr */
1107 	    NULL, NULL,			/* filter, filterarg */
1108 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1109 	    0,				/* nsegments */
1110 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1111 	    0,				/* flags */
1112 	    NULL, NULL,			/* lockfunc, lockarg */
1113 	    &sc->age_cdata.age_buffer_tag);
1114 	if (error != 0) {
1115 		device_printf(sc->age_dev,
1116 		    "could not create parent buffer DMA tag.\n");
1117 		goto fail;
1118 	}
1119 
1120 	/* Create tag for Tx buffers. */
1121 	error = bus_dma_tag_create(
1122 	    sc->age_cdata.age_buffer_tag, /* parent */
1123 	    1, 0,			/* alignment, boundary */
1124 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1125 	    BUS_SPACE_MAXADDR,		/* highaddr */
1126 	    NULL, NULL,			/* filter, filterarg */
1127 	    AGE_TSO_MAXSIZE,		/* maxsize */
1128 	    AGE_MAXTXSEGS,		/* nsegments */
1129 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1130 	    0,				/* flags */
1131 	    NULL, NULL,			/* lockfunc, lockarg */
1132 	    &sc->age_cdata.age_tx_tag);
1133 	if (error != 0) {
1134 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1135 		goto fail;
1136 	}
1137 
1138 	/* Create tag for Rx buffers. */
1139 	error = bus_dma_tag_create(
1140 	    sc->age_cdata.age_buffer_tag, /* parent */
1141 	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1142 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1143 	    BUS_SPACE_MAXADDR,		/* highaddr */
1144 	    NULL, NULL,			/* filter, filterarg */
1145 	    MCLBYTES,			/* maxsize */
1146 	    1,				/* nsegments */
1147 	    MCLBYTES,			/* maxsegsize */
1148 	    0,				/* flags */
1149 	    NULL, NULL,			/* lockfunc, lockarg */
1150 	    &sc->age_cdata.age_rx_tag);
1151 	if (error != 0) {
1152 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1153 		goto fail;
1154 	}
1155 
1156 	/* Create DMA maps for Tx buffers. */
1157 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1158 		txd = &sc->age_cdata.age_txdesc[i];
1159 		txd->tx_m = NULL;
1160 		txd->tx_dmamap = NULL;
1161 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1162 		    &txd->tx_dmamap);
1163 		if (error != 0) {
1164 			device_printf(sc->age_dev,
1165 			    "could not create Tx dmamap.\n");
1166 			goto fail;
1167 		}
1168 	}
1169 	/* Create DMA maps for Rx buffers. */
1170 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1171 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1172 		device_printf(sc->age_dev,
1173 		    "could not create spare Rx dmamap.\n");
1174 		goto fail;
1175 	}
1176 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1177 		rxd = &sc->age_cdata.age_rxdesc[i];
1178 		rxd->rx_m = NULL;
1179 		rxd->rx_dmamap = NULL;
1180 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1181 		    &rxd->rx_dmamap);
1182 		if (error != 0) {
1183 			device_printf(sc->age_dev,
1184 			    "could not create Rx dmamap.\n");
1185 			goto fail;
1186 		}
1187 	}
1188 
1189 fail:
1190 	return (error);
1191 }
1192 
1193 static void
1194 age_dma_free(struct age_softc *sc)
1195 {
1196 	struct age_txdesc *txd;
1197 	struct age_rxdesc *rxd;
1198 	int i;
1199 
1200 	/* Tx buffers */
1201 	if (sc->age_cdata.age_tx_tag != NULL) {
1202 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1203 			txd = &sc->age_cdata.age_txdesc[i];
1204 			if (txd->tx_dmamap != NULL) {
1205 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1206 				    txd->tx_dmamap);
1207 				txd->tx_dmamap = NULL;
1208 			}
1209 		}
1210 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1211 		sc->age_cdata.age_tx_tag = NULL;
1212 	}
1213 	/* Rx buffers */
1214 	if (sc->age_cdata.age_rx_tag != NULL) {
1215 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1216 			rxd = &sc->age_cdata.age_rxdesc[i];
1217 			if (rxd->rx_dmamap != NULL) {
1218 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1219 				    rxd->rx_dmamap);
1220 				rxd->rx_dmamap = NULL;
1221 			}
1222 		}
1223 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1224 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1225 			    sc->age_cdata.age_rx_sparemap);
1226 			sc->age_cdata.age_rx_sparemap = NULL;
1227 		}
1228 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1229 		sc->age_cdata.age_rx_tag = NULL;
1230 	}
1231 	/* Tx ring. */
1232 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1233 		if (sc->age_rdata.age_tx_ring_paddr != 0)
1234 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1235 			    sc->age_cdata.age_tx_ring_map);
1236 		if (sc->age_rdata.age_tx_ring != NULL)
1237 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1238 			    sc->age_rdata.age_tx_ring,
1239 			    sc->age_cdata.age_tx_ring_map);
1240 		sc->age_rdata.age_tx_ring_paddr = 0;
1241 		sc->age_rdata.age_tx_ring = NULL;
1242 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1243 		sc->age_cdata.age_tx_ring_tag = NULL;
1244 	}
1245 	/* Rx ring. */
1246 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1247 		if (sc->age_rdata.age_rx_ring_paddr != 0)
1248 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1249 			    sc->age_cdata.age_rx_ring_map);
1250 		if (sc->age_rdata.age_rx_ring != NULL)
1251 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1252 			    sc->age_rdata.age_rx_ring,
1253 			    sc->age_cdata.age_rx_ring_map);
1254 		sc->age_rdata.age_rx_ring_paddr = 0;
1255 		sc->age_rdata.age_rx_ring = NULL;
1256 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1257 		sc->age_cdata.age_rx_ring_tag = NULL;
1258 	}
1259 	/* Rx return ring. */
1260 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1261 		if (sc->age_rdata.age_rr_ring_paddr != 0)
1262 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1263 			    sc->age_cdata.age_rr_ring_map);
1264 		if (sc->age_rdata.age_rr_ring != NULL)
1265 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1266 			    sc->age_rdata.age_rr_ring,
1267 			    sc->age_cdata.age_rr_ring_map);
1268 		sc->age_rdata.age_rr_ring_paddr = 0;
1269 		sc->age_rdata.age_rr_ring = NULL;
1270 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1271 		sc->age_cdata.age_rr_ring_tag = NULL;
1272 	}
1273 	/* CMB block */
1274 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1275 		if (sc->age_rdata.age_cmb_block_paddr != 0)
1276 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1277 			    sc->age_cdata.age_cmb_block_map);
1278 		if (sc->age_rdata.age_cmb_block != NULL)
1279 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1280 			    sc->age_rdata.age_cmb_block,
1281 			    sc->age_cdata.age_cmb_block_map);
1282 		sc->age_rdata.age_cmb_block_paddr = 0;
1283 		sc->age_rdata.age_cmb_block = NULL;
1284 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1285 		sc->age_cdata.age_cmb_block_tag = NULL;
1286 	}
1287 	/* SMB block */
1288 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1289 		if (sc->age_rdata.age_smb_block_paddr != 0)
1290 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1291 			    sc->age_cdata.age_smb_block_map);
1292 		if (sc->age_rdata.age_smb_block != NULL)
1293 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1294 			    sc->age_rdata.age_smb_block,
1295 			    sc->age_cdata.age_smb_block_map);
1296 		sc->age_rdata.age_smb_block_paddr = 0;
1297 		sc->age_rdata.age_smb_block = NULL;
1298 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1299 		sc->age_cdata.age_smb_block_tag = NULL;
1300 	}
1301 
1302 	if (sc->age_cdata.age_buffer_tag != NULL) {
1303 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1304 		sc->age_cdata.age_buffer_tag = NULL;
1305 	}
1306 	if (sc->age_cdata.age_parent_tag != NULL) {
1307 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1308 		sc->age_cdata.age_parent_tag = NULL;
1309 	}
1310 }
1311 
1312 /*
1313  *	Make sure the interface is stopped at reboot time.
1314  */
1315 static int
1316 age_shutdown(device_t dev)
1317 {
1318 
1319 	return (age_suspend(dev));
1320 }
1321 
1322 static void
1323 age_setwol(struct age_softc *sc)
1324 {
1325 	struct ifnet *ifp;
1326 	struct mii_data *mii;
1327 	uint32_t reg, pmcs;
1328 	uint16_t pmstat;
1329 	int aneg, i, pmc;
1330 
1331 	AGE_LOCK_ASSERT(sc);
1332 
1333 	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1334 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1335 		/*
1336 		 * No PME capability, PHY power down.
1337 		 * XXX
1338 		 * Due to an unknown reason powering down PHY resulted
1339 		 * in unexpected results such as inaccessbility of
1340 		 * hardware of freshly rebooted system. Disable
1341 		 * powering down PHY until I got more information for
1342 		 * Attansic/Atheros PHY hardwares.
1343 		 */
1344 #ifdef notyet
1345 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1346 		    MII_BMCR, BMCR_PDOWN);
1347 #endif
1348 		return;
1349 	}
1350 
1351 	ifp = sc->age_ifp;
1352 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1353 		/*
1354 		 * Note, this driver resets the link speed to 10/100Mbps with
1355 		 * auto-negotiation but we don't know whether that operation
1356 		 * would succeed or not as it have no control after powering
1357 		 * off. If the renegotiation fail WOL may not work. Running
1358 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1359 		 * specified in PCI specification and that would result in
1360 		 * complete shutdowning power to ethernet controller.
1361 		 *
1362 		 * TODO
1363 		 *  Save current negotiated media speed/duplex/flow-control
1364 		 *  to softc and restore the same link again after resuming.
1365 		 *  PHY handling such as power down/resetting to 100Mbps
1366 		 *  may be better handled in suspend method in phy driver.
1367 		 */
1368 		mii = device_get_softc(sc->age_miibus);
1369 		mii_pollstat(mii);
1370 		aneg = 0;
1371 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1372 			switch IFM_SUBTYPE(mii->mii_media_active) {
1373 			case IFM_10_T:
1374 			case IFM_100_TX:
1375 				goto got_link;
1376 			case IFM_1000_T:
1377 				aneg++;
1378 			default:
1379 				break;
1380 			}
1381 		}
1382 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1383 		    MII_100T2CR, 0);
1384 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1386 		    ANAR_10 | ANAR_CSMA);
1387 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1389 		DELAY(1000);
1390 		if (aneg != 0) {
1391 			/* Poll link state until age(4) get a 10/100 link. */
1392 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1393 				mii_pollstat(mii);
1394 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1395 					switch (IFM_SUBTYPE(
1396 					    mii->mii_media_active)) {
1397 					case IFM_10_T:
1398 					case IFM_100_TX:
1399 						age_mac_config(sc);
1400 						goto got_link;
1401 					default:
1402 						break;
1403 					}
1404 				}
1405 				AGE_UNLOCK(sc);
1406 				pause("agelnk", hz);
1407 				AGE_LOCK(sc);
1408 			}
1409 			if (i == MII_ANEGTICKS_GIGE)
1410 				device_printf(sc->age_dev,
1411 				    "establishing link failed, "
1412 				    "WOL may not work!");
1413 		}
1414 		/*
1415 		 * No link, force MAC to have 100Mbps, full-duplex link.
1416 		 * This is the last resort and may/may not work.
1417 		 */
1418 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1419 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1420 		age_mac_config(sc);
1421 	}
1422 
1423 got_link:
1424 	pmcs = 0;
1425 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1426 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1427 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1428 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1429 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1430 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1431 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1432 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1433 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1434 		reg |= MAC_CFG_RX_ENB;
1435 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1436 	}
1437 
1438 	/* Request PME. */
1439 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1440 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1441 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1442 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1443 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1444 #ifdef notyet
1445 	/* See above for powering down PHY issues. */
1446 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1447 		/* No WOL, PHY power down. */
1448 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1449 		    MII_BMCR, BMCR_PDOWN);
1450 	}
1451 #endif
1452 }
1453 
1454 static int
1455 age_suspend(device_t dev)
1456 {
1457 	struct age_softc *sc;
1458 
1459 	sc = device_get_softc(dev);
1460 
1461 	AGE_LOCK(sc);
1462 	age_stop(sc);
1463 	age_setwol(sc);
1464 	AGE_UNLOCK(sc);
1465 
1466 	return (0);
1467 }
1468 
1469 static int
1470 age_resume(device_t dev)
1471 {
1472 	struct age_softc *sc;
1473 	struct ifnet *ifp;
1474 
1475 	sc = device_get_softc(dev);
1476 
1477 	AGE_LOCK(sc);
1478 	age_phy_reset(sc);
1479 	ifp = sc->age_ifp;
1480 	if ((ifp->if_flags & IFF_UP) != 0)
1481 		age_init_locked(sc);
1482 
1483 	AGE_UNLOCK(sc);
1484 
1485 	return (0);
1486 }
1487 
1488 static int
1489 age_encap(struct age_softc *sc, struct mbuf **m_head)
1490 {
1491 	struct age_txdesc *txd, *txd_last;
1492 	struct tx_desc *desc;
1493 	struct mbuf *m;
1494 	struct ip *ip;
1495 	struct tcphdr *tcp;
1496 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1497 	bus_dmamap_t map;
1498 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1499 	int error, i, nsegs, prod, si;
1500 
1501 	AGE_LOCK_ASSERT(sc);
1502 
1503 	M_ASSERTPKTHDR((*m_head));
1504 
1505 	m = *m_head;
1506 	ip = NULL;
1507 	tcp = NULL;
1508 	cflags = vtag = 0;
1509 	ip_off = poff = 0;
1510 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1511 		/*
1512 		 * L1 requires offset of TCP/UDP payload in its Tx
1513 		 * descriptor to perform hardware Tx checksum offload.
1514 		 * Additionally, TSO requires IP/TCP header size and
1515 		 * modification of IP/TCP header in order to make TSO
1516 		 * engine work. This kind of operation takes many CPU
1517 		 * cycles on FreeBSD so fast host CPU is needed to get
1518 		 * smooth TSO performance.
1519 		 */
1520 		struct ether_header *eh;
1521 
1522 		if (M_WRITABLE(m) == 0) {
1523 			/* Get a writable copy. */
1524 			m = m_dup(*m_head, M_NOWAIT);
1525 			/* Release original mbufs. */
1526 			m_freem(*m_head);
1527 			if (m == NULL) {
1528 				*m_head = NULL;
1529 				return (ENOBUFS);
1530 			}
1531 			*m_head = m;
1532 		}
1533 		ip_off = sizeof(struct ether_header);
1534 		m = m_pullup(m, ip_off);
1535 		if (m == NULL) {
1536 			*m_head = NULL;
1537 			return (ENOBUFS);
1538 		}
1539 		eh = mtod(m, struct ether_header *);
1540 		/*
1541 		 * Check if hardware VLAN insertion is off.
1542 		 * Additional check for LLC/SNAP frame?
1543 		 */
1544 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1545 			ip_off = sizeof(struct ether_vlan_header);
1546 			m = m_pullup(m, ip_off);
1547 			if (m == NULL) {
1548 				*m_head = NULL;
1549 				return (ENOBUFS);
1550 			}
1551 		}
1552 		m = m_pullup(m, ip_off + sizeof(struct ip));
1553 		if (m == NULL) {
1554 			*m_head = NULL;
1555 			return (ENOBUFS);
1556 		}
1557 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1558 		poff = ip_off + (ip->ip_hl << 2);
1559 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1560 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1561 			if (m == NULL) {
1562 				*m_head = NULL;
1563 				return (ENOBUFS);
1564 			}
1565 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1566 			m = m_pullup(m, poff + (tcp->th_off << 2));
1567 			if (m == NULL) {
1568 				*m_head = NULL;
1569 				return (ENOBUFS);
1570 			}
1571 			/*
1572 			 * L1 requires IP/TCP header size and offset as
1573 			 * well as TCP pseudo checksum which complicates
1574 			 * TSO configuration. I guess this comes from the
1575 			 * adherence to Microsoft NDIS Large Send
1576 			 * specification which requires insertion of
1577 			 * pseudo checksum by upper stack. The pseudo
1578 			 * checksum that NDIS refers to doesn't include
1579 			 * TCP payload length so age(4) should recompute
1580 			 * the pseudo checksum here. Hopefully this wouldn't
1581 			 * be much burden on modern CPUs.
1582 			 * Reset IP checksum and recompute TCP pseudo
1583 			 * checksum as NDIS specification said.
1584 			 */
1585 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1586 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1587 			ip->ip_sum = 0;
1588 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1589 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1590 		}
1591 		*m_head = m;
1592 	}
1593 
1594 	si = prod = sc->age_cdata.age_tx_prod;
1595 	txd = &sc->age_cdata.age_txdesc[prod];
1596 	txd_last = txd;
1597 	map = txd->tx_dmamap;
1598 
1599 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1600 	    *m_head, txsegs, &nsegs, 0);
1601 	if (error == EFBIG) {
1602 		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1603 		if (m == NULL) {
1604 			m_freem(*m_head);
1605 			*m_head = NULL;
1606 			return (ENOMEM);
1607 		}
1608 		*m_head = m;
1609 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1610 		    *m_head, txsegs, &nsegs, 0);
1611 		if (error != 0) {
1612 			m_freem(*m_head);
1613 			*m_head = NULL;
1614 			return (error);
1615 		}
1616 	} else if (error != 0)
1617 		return (error);
1618 	if (nsegs == 0) {
1619 		m_freem(*m_head);
1620 		*m_head = NULL;
1621 		return (EIO);
1622 	}
1623 
1624 	/* Check descriptor overrun. */
1625 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1626 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1627 		return (ENOBUFS);
1628 	}
1629 
1630 	m = *m_head;
1631 	/* Configure VLAN hardware tag insertion. */
1632 	if ((m->m_flags & M_VLANTAG) != 0) {
1633 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1634 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1635 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1636 	}
1637 
1638 	desc = NULL;
1639 	i = 0;
1640 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1641 		/* Request TSO and set MSS. */
1642 		cflags |= AGE_TD_TSO_IPV4;
1643 		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1644 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1645 		    AGE_TD_TSO_MSS_SHIFT);
1646 		/* Set IP/TCP header size. */
1647 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1648 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1649 		/*
1650 		 * L1 requires the first buffer should only hold IP/TCP
1651 		 * header data. TCP payload should be handled in other
1652 		 * descriptors.
1653 		 */
1654 		hdrlen = poff + (tcp->th_off << 2);
1655 		desc = &sc->age_rdata.age_tx_ring[prod];
1656 		desc->addr = htole64(txsegs[0].ds_addr);
1657 		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1658 		desc->flags = htole32(cflags);
1659 		sc->age_cdata.age_tx_cnt++;
1660 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1661 		if (m->m_len - hdrlen > 0) {
1662 			/* Handle remaining payload of the 1st fragment. */
1663 			desc = &sc->age_rdata.age_tx_ring[prod];
1664 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1665 			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1666 			    vtag);
1667 			desc->flags = htole32(cflags);
1668 			sc->age_cdata.age_tx_cnt++;
1669 			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1670 		}
1671 		/* Handle remaining fragments. */
1672 		i = 1;
1673 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1674 		/* Configure Tx IP/TCP/UDP checksum offload. */
1675 		cflags |= AGE_TD_CSUM;
1676 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1677 			cflags |= AGE_TD_TCPCSUM;
1678 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1679 			cflags |= AGE_TD_UDPCSUM;
1680 		/* Set checksum start offset. */
1681 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1682 		/* Set checksum insertion position of TCP/UDP. */
1683 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1684 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1685 	}
1686 	for (; i < nsegs; i++) {
1687 		desc = &sc->age_rdata.age_tx_ring[prod];
1688 		desc->addr = htole64(txsegs[i].ds_addr);
1689 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1690 		desc->flags = htole32(cflags);
1691 		sc->age_cdata.age_tx_cnt++;
1692 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1693 	}
1694 	/* Update producer index. */
1695 	sc->age_cdata.age_tx_prod = prod;
1696 
1697 	/* Set EOP on the last descriptor. */
1698 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1699 	desc = &sc->age_rdata.age_tx_ring[prod];
1700 	desc->flags |= htole32(AGE_TD_EOP);
1701 
1702 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1703 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1704 		desc = &sc->age_rdata.age_tx_ring[si];
1705 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1706 	}
1707 
1708 	/* Swap dmamap of the first and the last. */
1709 	txd = &sc->age_cdata.age_txdesc[prod];
1710 	map = txd_last->tx_dmamap;
1711 	txd_last->tx_dmamap = txd->tx_dmamap;
1712 	txd->tx_dmamap = map;
1713 	txd->tx_m = m;
1714 
1715 	/* Sync descriptors. */
1716 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1717 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1718 	    sc->age_cdata.age_tx_ring_map,
1719 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1720 
1721 	return (0);
1722 }
1723 
1724 static void
1725 age_start(struct ifnet *ifp)
1726 {
1727         struct age_softc *sc;
1728 
1729 	sc = ifp->if_softc;
1730 	AGE_LOCK(sc);
1731 	age_start_locked(ifp);
1732 	AGE_UNLOCK(sc);
1733 }
1734 
1735 static void
1736 age_start_locked(struct ifnet *ifp)
1737 {
1738         struct age_softc *sc;
1739         struct mbuf *m_head;
1740 	int enq;
1741 
1742 	sc = ifp->if_softc;
1743 
1744 	AGE_LOCK_ASSERT(sc);
1745 
1746 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1747 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1748 		return;
1749 
1750 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1751 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1752 		if (m_head == NULL)
1753 			break;
1754 		/*
1755 		 * Pack the data into the transmit ring. If we
1756 		 * don't have room, set the OACTIVE flag and wait
1757 		 * for the NIC to drain the ring.
1758 		 */
1759 		if (age_encap(sc, &m_head)) {
1760 			if (m_head == NULL)
1761 				break;
1762 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1763 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1764 			break;
1765 		}
1766 
1767 		enq++;
1768 		/*
1769 		 * If there's a BPF listener, bounce a copy of this frame
1770 		 * to him.
1771 		 */
1772 		ETHER_BPF_MTAP(ifp, m_head);
1773 	}
1774 
1775 	if (enq > 0) {
1776 		/* Update mbox. */
1777 		AGE_COMMIT_MBOX(sc);
1778 		/* Set a timeout in case the chip goes out to lunch. */
1779 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1780 	}
1781 }
1782 
1783 static void
1784 age_watchdog(struct age_softc *sc)
1785 {
1786 	struct ifnet *ifp;
1787 
1788 	AGE_LOCK_ASSERT(sc);
1789 
1790 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1791 		return;
1792 
1793 	ifp = sc->age_ifp;
1794 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1795 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1796 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1797 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1798 		age_init_locked(sc);
1799 		return;
1800 	}
1801 	if (sc->age_cdata.age_tx_cnt == 0) {
1802 		if_printf(sc->age_ifp,
1803 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1804 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1805 			age_start_locked(ifp);
1806 		return;
1807 	}
1808 	if_printf(sc->age_ifp, "watchdog timeout\n");
1809 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1810 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1811 	age_init_locked(sc);
1812 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1813 		age_start_locked(ifp);
1814 }
1815 
1816 static int
1817 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1818 {
1819 	struct age_softc *sc;
1820 	struct ifreq *ifr;
1821 	struct mii_data *mii;
1822 	uint32_t reg;
1823 	int error, mask;
1824 
1825 	sc = ifp->if_softc;
1826 	ifr = (struct ifreq *)data;
1827 	error = 0;
1828 	switch (cmd) {
1829 	case SIOCSIFMTU:
1830 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1831 			error = EINVAL;
1832 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1833 			AGE_LOCK(sc);
1834 			ifp->if_mtu = ifr->ifr_mtu;
1835 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1836 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1837 				age_init_locked(sc);
1838 			}
1839 			AGE_UNLOCK(sc);
1840 		}
1841 		break;
1842 	case SIOCSIFFLAGS:
1843 		AGE_LOCK(sc);
1844 		if ((ifp->if_flags & IFF_UP) != 0) {
1845 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1846 				if (((ifp->if_flags ^ sc->age_if_flags)
1847 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1848 					age_rxfilter(sc);
1849 			} else {
1850 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1851 					age_init_locked(sc);
1852 			}
1853 		} else {
1854 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1855 				age_stop(sc);
1856 		}
1857 		sc->age_if_flags = ifp->if_flags;
1858 		AGE_UNLOCK(sc);
1859 		break;
1860 	case SIOCADDMULTI:
1861 	case SIOCDELMULTI:
1862 		AGE_LOCK(sc);
1863 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1864 			age_rxfilter(sc);
1865 		AGE_UNLOCK(sc);
1866 		break;
1867 	case SIOCSIFMEDIA:
1868 	case SIOCGIFMEDIA:
1869 		mii = device_get_softc(sc->age_miibus);
1870 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1871 		break;
1872 	case SIOCSIFCAP:
1873 		AGE_LOCK(sc);
1874 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1875 		if ((mask & IFCAP_TXCSUM) != 0 &&
1876 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1877 			ifp->if_capenable ^= IFCAP_TXCSUM;
1878 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1879 				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1880 			else
1881 				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1882 		}
1883 		if ((mask & IFCAP_RXCSUM) != 0 &&
1884 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1885 			ifp->if_capenable ^= IFCAP_RXCSUM;
1886 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1887 			reg &= ~MAC_CFG_RXCSUM_ENB;
1888 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1889 				reg |= MAC_CFG_RXCSUM_ENB;
1890 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1891 		}
1892 		if ((mask & IFCAP_TSO4) != 0 &&
1893 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1894 			ifp->if_capenable ^= IFCAP_TSO4;
1895 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1896 				ifp->if_hwassist |= CSUM_TSO;
1897 			else
1898 				ifp->if_hwassist &= ~CSUM_TSO;
1899 		}
1900 
1901 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1902 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1903 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1904 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1905 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1906 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1907 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1908 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1909 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1910 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1911 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1912 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1913 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1914 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1915 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1916 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1917 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1918 			age_rxvlan(sc);
1919 		}
1920 		AGE_UNLOCK(sc);
1921 		VLAN_CAPABILITIES(ifp);
1922 		break;
1923 	default:
1924 		error = ether_ioctl(ifp, cmd, data);
1925 		break;
1926 	}
1927 
1928 	return (error);
1929 }
1930 
1931 static void
1932 age_mac_config(struct age_softc *sc)
1933 {
1934 	struct mii_data *mii;
1935 	uint32_t reg;
1936 
1937 	AGE_LOCK_ASSERT(sc);
1938 
1939 	mii = device_get_softc(sc->age_miibus);
1940 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1941 	reg &= ~MAC_CFG_FULL_DUPLEX;
1942 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1943 	reg &= ~MAC_CFG_SPEED_MASK;
1944 	/* Reprogram MAC with resolved speed/duplex. */
1945 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1946 	case IFM_10_T:
1947 	case IFM_100_TX:
1948 		reg |= MAC_CFG_SPEED_10_100;
1949 		break;
1950 	case IFM_1000_T:
1951 		reg |= MAC_CFG_SPEED_1000;
1952 		break;
1953 	}
1954 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1955 		reg |= MAC_CFG_FULL_DUPLEX;
1956 #ifdef notyet
1957 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1958 			reg |= MAC_CFG_TX_FC;
1959 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1960 			reg |= MAC_CFG_RX_FC;
1961 #endif
1962 	}
1963 
1964 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1965 }
1966 
1967 static void
1968 age_link_task(void *arg, int pending)
1969 {
1970 	struct age_softc *sc;
1971 	struct mii_data *mii;
1972 	struct ifnet *ifp;
1973 	uint32_t reg;
1974 
1975 	sc = (struct age_softc *)arg;
1976 
1977 	AGE_LOCK(sc);
1978 	mii = device_get_softc(sc->age_miibus);
1979 	ifp = sc->age_ifp;
1980 	if (mii == NULL || ifp == NULL ||
1981 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1982 		AGE_UNLOCK(sc);
1983 		return;
1984 	}
1985 
1986 	sc->age_flags &= ~AGE_FLAG_LINK;
1987 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1988 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1989 		case IFM_10_T:
1990 		case IFM_100_TX:
1991 		case IFM_1000_T:
1992 			sc->age_flags |= AGE_FLAG_LINK;
1993 			break;
1994 		default:
1995 			break;
1996 		}
1997 	}
1998 
1999 	/* Stop Rx/Tx MACs. */
2000 	age_stop_rxmac(sc);
2001 	age_stop_txmac(sc);
2002 
2003 	/* Program MACs with resolved speed/duplex/flow-control. */
2004 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2005 		age_mac_config(sc);
2006 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2007 		/* Restart DMA engine and Tx/Rx MAC. */
2008 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2009 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2010 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2011 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2012 	}
2013 
2014 	AGE_UNLOCK(sc);
2015 }
2016 
2017 static void
2018 age_stats_update(struct age_softc *sc)
2019 {
2020 	struct age_stats *stat;
2021 	struct smb *smb;
2022 	struct ifnet *ifp;
2023 
2024 	AGE_LOCK_ASSERT(sc);
2025 
2026 	stat = &sc->age_stat;
2027 
2028 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2029 	    sc->age_cdata.age_smb_block_map,
2030 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2031 
2032 	smb = sc->age_rdata.age_smb_block;
2033 	if (smb->updated == 0)
2034 		return;
2035 
2036 	ifp = sc->age_ifp;
2037 	/* Rx stats. */
2038 	stat->rx_frames += smb->rx_frames;
2039 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2040 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2041 	stat->rx_pause_frames += smb->rx_pause_frames;
2042 	stat->rx_control_frames += smb->rx_control_frames;
2043 	stat->rx_crcerrs += smb->rx_crcerrs;
2044 	stat->rx_lenerrs += smb->rx_lenerrs;
2045 	stat->rx_bytes += smb->rx_bytes;
2046 	stat->rx_runts += smb->rx_runts;
2047 	stat->rx_fragments += smb->rx_fragments;
2048 	stat->rx_pkts_64 += smb->rx_pkts_64;
2049 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2050 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2051 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2052 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2053 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2054 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2055 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2056 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2057 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2058 	stat->rx_alignerrs += smb->rx_alignerrs;
2059 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2060 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2061 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2062 
2063 	/* Tx stats. */
2064 	stat->tx_frames += smb->tx_frames;
2065 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2066 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2067 	stat->tx_pause_frames += smb->tx_pause_frames;
2068 	stat->tx_excess_defer += smb->tx_excess_defer;
2069 	stat->tx_control_frames += smb->tx_control_frames;
2070 	stat->tx_deferred += smb->tx_deferred;
2071 	stat->tx_bytes += smb->tx_bytes;
2072 	stat->tx_pkts_64 += smb->tx_pkts_64;
2073 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2074 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2075 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2076 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2077 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2078 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2079 	stat->tx_single_colls += smb->tx_single_colls;
2080 	stat->tx_multi_colls += smb->tx_multi_colls;
2081 	stat->tx_late_colls += smb->tx_late_colls;
2082 	stat->tx_excess_colls += smb->tx_excess_colls;
2083 	stat->tx_underrun += smb->tx_underrun;
2084 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2085 	stat->tx_lenerrs += smb->tx_lenerrs;
2086 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2087 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2088 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2089 
2090 	/* Update counters in ifnet. */
2091 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2092 
2093 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2094 	    smb->tx_multi_colls + smb->tx_late_colls +
2095 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2096 
2097 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2098 	    smb->tx_late_colls + smb->tx_underrun +
2099 	    smb->tx_pkts_truncated);
2100 
2101 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2102 
2103 	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2104 	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2105 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2106 	    smb->rx_alignerrs);
2107 
2108 	/* Update done, clear. */
2109 	smb->updated = 0;
2110 
2111 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2112 	    sc->age_cdata.age_smb_block_map,
2113 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2114 }
2115 
2116 static int
2117 age_intr(void *arg)
2118 {
2119 	struct age_softc *sc;
2120 	uint32_t status;
2121 
2122 	sc = (struct age_softc *)arg;
2123 
2124 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2125 	if (status == 0 || (status & AGE_INTRS) == 0)
2126 		return (FILTER_STRAY);
2127 	/* Disable interrupts. */
2128 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2129 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2130 
2131 	return (FILTER_HANDLED);
2132 }
2133 
2134 static void
2135 age_int_task(void *arg, int pending)
2136 {
2137 	struct age_softc *sc;
2138 	struct ifnet *ifp;
2139 	struct cmb *cmb;
2140 	uint32_t status;
2141 
2142 	sc = (struct age_softc *)arg;
2143 
2144 	AGE_LOCK(sc);
2145 
2146 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2147 	    sc->age_cdata.age_cmb_block_map,
2148 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2149 	cmb = sc->age_rdata.age_cmb_block;
2150 	status = le32toh(cmb->intr_status);
2151 	if (sc->age_morework != 0)
2152 		status |= INTR_CMB_RX;
2153 	if ((status & AGE_INTRS) == 0)
2154 		goto done;
2155 
2156 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2157 	    TPD_CONS_SHIFT;
2158 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2159 	    RRD_PROD_SHIFT;
2160 	/* Let hardware know CMB was served. */
2161 	cmb->intr_status = 0;
2162 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2163 	    sc->age_cdata.age_cmb_block_map,
2164 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2165 
2166 	ifp = sc->age_ifp;
2167 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2168 		if ((status & INTR_CMB_RX) != 0)
2169 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2170 			    sc->age_process_limit);
2171 		if ((status & INTR_CMB_TX) != 0)
2172 			age_txintr(sc, sc->age_tpd_cons);
2173 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2174 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2175 				device_printf(sc->age_dev,
2176 				    "DMA read error! -- resetting\n");
2177 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2178 				device_printf(sc->age_dev,
2179 				    "DMA write error! -- resetting\n");
2180 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2181 			age_init_locked(sc);
2182 		}
2183 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2184 			age_start_locked(ifp);
2185 		if ((status & INTR_SMB) != 0)
2186 			age_stats_update(sc);
2187 	}
2188 
2189 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2190 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2191 	    sc->age_cdata.age_cmb_block_map,
2192 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2193 	status = le32toh(cmb->intr_status);
2194 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2195 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2196 		AGE_UNLOCK(sc);
2197 		return;
2198 	}
2199 
2200 done:
2201 	/* Re-enable interrupts. */
2202 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2203 	AGE_UNLOCK(sc);
2204 }
2205 
2206 static void
2207 age_txintr(struct age_softc *sc, int tpd_cons)
2208 {
2209 	struct ifnet *ifp;
2210 	struct age_txdesc *txd;
2211 	int cons, prog;
2212 
2213 	AGE_LOCK_ASSERT(sc);
2214 
2215 	ifp = sc->age_ifp;
2216 
2217 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2218 	    sc->age_cdata.age_tx_ring_map,
2219 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2220 
2221 	/*
2222 	 * Go through our Tx list and free mbufs for those
2223 	 * frames which have been transmitted.
2224 	 */
2225 	cons = sc->age_cdata.age_tx_cons;
2226 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2227 		if (sc->age_cdata.age_tx_cnt <= 0)
2228 			break;
2229 		prog++;
2230 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2231 		sc->age_cdata.age_tx_cnt--;
2232 		txd = &sc->age_cdata.age_txdesc[cons];
2233 		/*
2234 		 * Clear Tx descriptors, it's not required but would
2235 		 * help debugging in case of Tx issues.
2236 		 */
2237 		txd->tx_desc->addr = 0;
2238 		txd->tx_desc->len = 0;
2239 		txd->tx_desc->flags = 0;
2240 
2241 		if (txd->tx_m == NULL)
2242 			continue;
2243 		/* Reclaim transmitted mbufs. */
2244 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2245 		    BUS_DMASYNC_POSTWRITE);
2246 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2247 		m_freem(txd->tx_m);
2248 		txd->tx_m = NULL;
2249 	}
2250 
2251 	if (prog > 0) {
2252 		sc->age_cdata.age_tx_cons = cons;
2253 
2254 		/*
2255 		 * Unarm watchdog timer only when there are no pending
2256 		 * Tx descriptors in queue.
2257 		 */
2258 		if (sc->age_cdata.age_tx_cnt == 0)
2259 			sc->age_watchdog_timer = 0;
2260 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2261 		    sc->age_cdata.age_tx_ring_map,
2262 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2263 	}
2264 }
2265 
2266 #ifndef __NO_STRICT_ALIGNMENT
2267 static struct mbuf *
2268 age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2269 {
2270 	struct mbuf *n;
2271         int i;
2272         uint16_t *src, *dst;
2273 
2274 	src = mtod(m, uint16_t *);
2275 	dst = src - 3;
2276 
2277 	if (m->m_next == NULL) {
2278 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2279 			*dst++ = *src++;
2280 		m->m_data -= 6;
2281 		return (m);
2282 	}
2283 	/*
2284 	 * Append a new mbuf to received mbuf chain and copy ethernet
2285 	 * header from the mbuf chain. This can save lots of CPU
2286 	 * cycles for jumbo frame.
2287 	 */
2288 	MGETHDR(n, M_NOWAIT, MT_DATA);
2289 	if (n == NULL) {
2290 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2291 		m_freem(m);
2292 		return (NULL);
2293 	}
2294 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2295 	m->m_data += ETHER_HDR_LEN;
2296 	m->m_len -= ETHER_HDR_LEN;
2297 	n->m_len = ETHER_HDR_LEN;
2298 	M_MOVE_PKTHDR(n, m);
2299 	n->m_next = m;
2300 	return (n);
2301 }
2302 #endif
2303 
2304 /* Receive a frame. */
2305 static void
2306 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2307 {
2308 	struct age_rxdesc *rxd;
2309 	struct ifnet *ifp;
2310 	struct mbuf *mp, *m;
2311 	uint32_t status, index, vtag;
2312 	int count, nsegs;
2313 	int rx_cons;
2314 
2315 	AGE_LOCK_ASSERT(sc);
2316 
2317 	ifp = sc->age_ifp;
2318 	status = le32toh(rxrd->flags);
2319 	index = le32toh(rxrd->index);
2320 	rx_cons = AGE_RX_CONS(index);
2321 	nsegs = AGE_RX_NSEGS(index);
2322 
2323 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2324 	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2325 		/*
2326 		 * We want to pass the following frames to upper
2327 		 * layer regardless of error status of Rx return
2328 		 * ring.
2329 		 *
2330 		 *  o IP/TCP/UDP checksum is bad.
2331 		 *  o frame length and protocol specific length
2332 		 *     does not match.
2333 		 */
2334 		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2335 		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2336 		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2337 			return;
2338 	}
2339 
2340 	for (count = 0; count < nsegs; count++,
2341 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2342 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2343 		mp = rxd->rx_m;
2344 		/* Add a new receive buffer to the ring. */
2345 		if (age_newbuf(sc, rxd) != 0) {
2346 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2347 			/* Reuse Rx buffers. */
2348 			if (sc->age_cdata.age_rxhead != NULL)
2349 				m_freem(sc->age_cdata.age_rxhead);
2350 			break;
2351 		}
2352 
2353 		/*
2354 		 * Assume we've received a full sized frame.
2355 		 * Actual size is fixed when we encounter the end of
2356 		 * multi-segmented frame.
2357 		 */
2358 		mp->m_len = AGE_RX_BUF_SIZE;
2359 
2360 		/* Chain received mbufs. */
2361 		if (sc->age_cdata.age_rxhead == NULL) {
2362 			sc->age_cdata.age_rxhead = mp;
2363 			sc->age_cdata.age_rxtail = mp;
2364 		} else {
2365 			mp->m_flags &= ~M_PKTHDR;
2366 			sc->age_cdata.age_rxprev_tail =
2367 			    sc->age_cdata.age_rxtail;
2368 			sc->age_cdata.age_rxtail->m_next = mp;
2369 			sc->age_cdata.age_rxtail = mp;
2370 		}
2371 
2372 		if (count == nsegs - 1) {
2373 			/* Last desc. for this frame. */
2374 			m = sc->age_cdata.age_rxhead;
2375 			m->m_flags |= M_PKTHDR;
2376 			/*
2377 			 * It seems that L1 controller has no way
2378 			 * to tell hardware to strip CRC bytes.
2379 			 */
2380 			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2381 			    ETHER_CRC_LEN;
2382 			if (nsegs > 1) {
2383 				/* Set last mbuf size. */
2384 				mp->m_len = sc->age_cdata.age_rxlen -
2385 				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2386 				/* Remove the CRC bytes in chained mbufs. */
2387 				if (mp->m_len <= ETHER_CRC_LEN) {
2388 					sc->age_cdata.age_rxtail =
2389 					    sc->age_cdata.age_rxprev_tail;
2390 					sc->age_cdata.age_rxtail->m_len -=
2391 					    (ETHER_CRC_LEN - mp->m_len);
2392 					sc->age_cdata.age_rxtail->m_next = NULL;
2393 					m_freem(mp);
2394 				} else {
2395 					mp->m_len -= ETHER_CRC_LEN;
2396 				}
2397 			} else
2398 				m->m_len = m->m_pkthdr.len;
2399 			m->m_pkthdr.rcvif = ifp;
2400 			/*
2401 			 * Set checksum information.
2402 			 * It seems that L1 controller can compute partial
2403 			 * checksum. The partial checksum value can be used
2404 			 * to accelerate checksum computation for fragmented
2405 			 * TCP/UDP packets. Upper network stack already
2406 			 * takes advantage of the partial checksum value in
2407 			 * IP reassembly stage. But I'm not sure the
2408 			 * correctness of the partial hardware checksum
2409 			 * assistance due to lack of data sheet. If it is
2410 			 * proven to work on L1 I'll enable it.
2411 			 */
2412 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2413 			    (status & AGE_RRD_IPV4) != 0) {
2414 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2415 					m->m_pkthdr.csum_flags |=
2416 					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2417 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2418 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2419 					m->m_pkthdr.csum_flags |=
2420 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2421 					m->m_pkthdr.csum_data = 0xffff;
2422 				}
2423 				/*
2424 				 * Don't mark bad checksum for TCP/UDP frames
2425 				 * as fragmented frames may always have set
2426 				 * bad checksummed bit of descriptor status.
2427 				 */
2428 			}
2429 
2430 			/* Check for VLAN tagged frames. */
2431 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2432 			    (status & AGE_RRD_VLAN) != 0) {
2433 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2434 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2435 				m->m_flags |= M_VLANTAG;
2436 			}
2437 #ifndef __NO_STRICT_ALIGNMENT
2438 			m = age_fixup_rx(ifp, m);
2439 			if (m != NULL)
2440 #endif
2441 			{
2442 			/* Pass it on. */
2443 			AGE_UNLOCK(sc);
2444 			(*ifp->if_input)(ifp, m);
2445 			AGE_LOCK(sc);
2446 			}
2447 		}
2448 	}
2449 
2450 	/* Reset mbuf chains. */
2451 	AGE_RXCHAIN_RESET(sc);
2452 }
2453 
2454 static int
2455 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2456 {
2457 	struct rx_rdesc *rxrd;
2458 	int rr_cons, nsegs, pktlen, prog;
2459 
2460 	AGE_LOCK_ASSERT(sc);
2461 
2462 	rr_cons = sc->age_cdata.age_rr_cons;
2463 	if (rr_cons == rr_prod)
2464 		return (0);
2465 
2466 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2467 	    sc->age_cdata.age_rr_ring_map,
2468 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2469 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2470 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2471 
2472 	for (prog = 0; rr_cons != rr_prod; prog++) {
2473 		if (count-- <= 0)
2474 			break;
2475 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2476 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2477 		if (nsegs == 0)
2478 			break;
2479 		/*
2480 		 * Check number of segments against received bytes.
2481 		 * Non-matching value would indicate that hardware
2482 		 * is still trying to update Rx return descriptors.
2483 		 * I'm not sure whether this check is really needed.
2484 		 */
2485 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2486 		if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2487 			break;
2488 
2489 		/* Received a frame. */
2490 		age_rxeof(sc, rxrd);
2491 		/* Clear return ring. */
2492 		rxrd->index = 0;
2493 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2494 		sc->age_cdata.age_rx_cons += nsegs;
2495 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2496 	}
2497 
2498 	if (prog > 0) {
2499 		/* Update the consumer index. */
2500 		sc->age_cdata.age_rr_cons = rr_cons;
2501 
2502 		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2503 		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2504 		/* Sync descriptors. */
2505 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2506 		    sc->age_cdata.age_rr_ring_map,
2507 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2508 
2509 		/* Notify hardware availability of new Rx buffers. */
2510 		AGE_COMMIT_MBOX(sc);
2511 	}
2512 
2513 	return (count > 0 ? 0 : EAGAIN);
2514 }
2515 
2516 static void
2517 age_tick(void *arg)
2518 {
2519 	struct age_softc *sc;
2520 	struct mii_data *mii;
2521 
2522 	sc = (struct age_softc *)arg;
2523 
2524 	AGE_LOCK_ASSERT(sc);
2525 
2526 	mii = device_get_softc(sc->age_miibus);
2527 	mii_tick(mii);
2528 	age_watchdog(sc);
2529 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2530 }
2531 
2532 static void
2533 age_reset(struct age_softc *sc)
2534 {
2535 	uint32_t reg;
2536 	int i;
2537 
2538 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2539 	CSR_READ_4(sc, AGE_MASTER_CFG);
2540 	DELAY(1000);
2541 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2542 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2543 			break;
2544 		DELAY(10);
2545 	}
2546 
2547 	if (i == 0)
2548 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2549 	/* Initialize PCIe module. From Linux. */
2550 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2551 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2552 }
2553 
2554 static void
2555 age_init(void *xsc)
2556 {
2557 	struct age_softc *sc;
2558 
2559 	sc = (struct age_softc *)xsc;
2560 	AGE_LOCK(sc);
2561 	age_init_locked(sc);
2562 	AGE_UNLOCK(sc);
2563 }
2564 
2565 static void
2566 age_init_locked(struct age_softc *sc)
2567 {
2568 	struct ifnet *ifp;
2569 	struct mii_data *mii;
2570 	uint8_t eaddr[ETHER_ADDR_LEN];
2571 	bus_addr_t paddr;
2572 	uint32_t reg, fsize;
2573 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2574 	int error;
2575 
2576 	AGE_LOCK_ASSERT(sc);
2577 
2578 	ifp = sc->age_ifp;
2579 	mii = device_get_softc(sc->age_miibus);
2580 
2581 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2582 		return;
2583 
2584 	/*
2585 	 * Cancel any pending I/O.
2586 	 */
2587 	age_stop(sc);
2588 
2589 	/*
2590 	 * Reset the chip to a known state.
2591 	 */
2592 	age_reset(sc);
2593 
2594 	/* Initialize descriptors. */
2595 	error = age_init_rx_ring(sc);
2596         if (error != 0) {
2597                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2598                 age_stop(sc);
2599 		return;
2600         }
2601 	age_init_rr_ring(sc);
2602 	age_init_tx_ring(sc);
2603 	age_init_cmb_block(sc);
2604 	age_init_smb_block(sc);
2605 
2606 	/* Reprogram the station address. */
2607 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2608 	CSR_WRITE_4(sc, AGE_PAR0,
2609 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2610 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2611 
2612 	/* Set descriptor base addresses. */
2613 	paddr = sc->age_rdata.age_tx_ring_paddr;
2614 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2615 	paddr = sc->age_rdata.age_rx_ring_paddr;
2616 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2617 	paddr = sc->age_rdata.age_rr_ring_paddr;
2618 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2619 	paddr = sc->age_rdata.age_tx_ring_paddr;
2620 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2621 	paddr = sc->age_rdata.age_cmb_block_paddr;
2622 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2623 	paddr = sc->age_rdata.age_smb_block_paddr;
2624 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2625 	/* Set Rx/Rx return descriptor counter. */
2626 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2627 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2628 	    DESC_RRD_CNT_MASK) |
2629 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2630 	/* Set Tx descriptor counter. */
2631 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2632 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2633 
2634 	/* Tell hardware that we're ready to load descriptors. */
2635 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2636 
2637 	/*
2638 	 * Initialize mailbox register.
2639 	 * Updated producer/consumer index information is exchanged
2640 	 * through this mailbox register. However Tx producer and
2641 	 * Rx return consumer/Rx producer are all shared such that
2642 	 * it's hard to separate code path between Tx and Rx without
2643 	 * locking. If L1 hardware have a separate mail box register
2644 	 * for Tx and Rx consumer/producer management we could have
2645 	 * indepent Tx/Rx handler which in turn Rx handler could have
2646 	 * been run without any locking.
2647 	 */
2648 	AGE_COMMIT_MBOX(sc);
2649 
2650 	/* Configure IPG/IFG parameters. */
2651 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2652 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2653 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2654 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2655 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2656 
2657 	/* Set parameters for half-duplex media. */
2658 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2659 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2660 	    HDPX_CFG_LCOL_MASK) |
2661 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2662 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2663 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2664 	    HDPX_CFG_ABEBT_MASK) |
2665 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2666 	    HDPX_CFG_JAMIPG_MASK));
2667 
2668 	/* Configure interrupt moderation timer. */
2669 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2670 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2671 	reg &= ~MASTER_MTIMER_ENB;
2672 	if (AGE_USECS(sc->age_int_mod) == 0)
2673 		reg &= ~MASTER_ITIMER_ENB;
2674 	else
2675 		reg |= MASTER_ITIMER_ENB;
2676 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2677 	if (bootverbose)
2678 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2679 		    sc->age_int_mod);
2680 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2681 
2682 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2683 	if (ifp->if_mtu < ETHERMTU)
2684 		sc->age_max_frame_size = ETHERMTU;
2685 	else
2686 		sc->age_max_frame_size = ifp->if_mtu;
2687 	sc->age_max_frame_size += ETHER_HDR_LEN +
2688 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2689 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2690 	/* Configure jumbo frame. */
2691 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2692 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2693 	    (((fsize / sizeof(uint64_t)) <<
2694 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2695 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2696 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2697 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2698 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2699 
2700 	/* Configure flow-control parameters. From Linux. */
2701 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2702 		/*
2703 		 * Magic workaround for old-L1.
2704 		 * Don't know which hw revision requires this magic.
2705 		 */
2706 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2707 		/*
2708 		 * Another magic workaround for flow-control mode
2709 		 * change. From Linux.
2710 		 */
2711 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2712 	}
2713 	/*
2714 	 * TODO
2715 	 *  Should understand pause parameter relationships between FIFO
2716 	 *  size and number of Rx descriptors and Rx return descriptors.
2717 	 *
2718 	 *  Magic parameters came from Linux.
2719 	 */
2720 	switch (sc->age_chip_rev) {
2721 	case 0x8001:
2722 	case 0x9001:
2723 	case 0x9002:
2724 	case 0x9003:
2725 		rxf_hi = AGE_RX_RING_CNT / 16;
2726 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2727 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2728 		rrd_lo = AGE_RR_RING_CNT / 16;
2729 		break;
2730 	default:
2731 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2732 		rxf_lo = reg / 16;
2733 		if (rxf_lo < 192)
2734 			rxf_lo = 192;
2735 		rxf_hi = (reg * 7) / 8;
2736 		if (rxf_hi < rxf_lo)
2737 			rxf_hi = rxf_lo + 16;
2738 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2739 		rrd_lo = reg / 8;
2740 		rrd_hi = (reg * 7) / 8;
2741 		if (rrd_lo < 2)
2742 			rrd_lo = 2;
2743 		if (rrd_hi < rrd_lo)
2744 			rrd_hi = rrd_lo + 3;
2745 		break;
2746 	}
2747 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2748 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2749 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2750 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2751 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2752 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2753 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2754 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2755 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2756 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2757 
2758 	/* Configure RxQ. */
2759 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2760 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2761 	    RXQ_CFG_RD_BURST_MASK) |
2762 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2763 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2764 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2765 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2766 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2767 
2768 	/* Configure TxQ. */
2769 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2770 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2771 	    TXQ_CFG_TPD_BURST_MASK) |
2772 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2773 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2774 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2775 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2776 	    TXQ_CFG_ENB);
2777 
2778 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2779 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2780 	    TX_JUMBO_TPD_TH_MASK) |
2781 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2782 	    TX_JUMBO_TPD_IPG_MASK));
2783 	/* Configure DMA parameters. */
2784 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2785 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2786 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2787 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2788 
2789 	/* Configure CMB DMA write threshold. */
2790 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2791 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2792 	    CMB_WR_THRESH_RRD_MASK) |
2793 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2794 	    CMB_WR_THRESH_TPD_MASK));
2795 
2796 	/* Set CMB/SMB timer and enable them. */
2797 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2798 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2799 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2800 	/* Request SMB updates for every seconds. */
2801 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2802 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2803 
2804 	/*
2805 	 * Disable all WOL bits as WOL can interfere normal Rx
2806 	 * operation.
2807 	 */
2808 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2809 
2810 	/*
2811 	 * Configure Tx/Rx MACs.
2812 	 *  - Auto-padding for short frames.
2813 	 *  - Enable CRC generation.
2814 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2815 	 *  of MAC is followed after link establishment.
2816 	 */
2817 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2818 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2819 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2820 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2821 	    MAC_CFG_PREAMBLE_MASK));
2822 	/* Set up the receive filter. */
2823 	age_rxfilter(sc);
2824 	age_rxvlan(sc);
2825 
2826 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2827 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2828 		reg |= MAC_CFG_RXCSUM_ENB;
2829 
2830 	/* Ack all pending interrupts and clear it. */
2831 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2832 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2833 
2834 	/* Finally enable Tx/Rx MAC. */
2835 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2836 
2837 	sc->age_flags &= ~AGE_FLAG_LINK;
2838 	/* Switch to the current media. */
2839 	mii_mediachg(mii);
2840 
2841 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2842 
2843 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2844 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2845 }
2846 
2847 static void
2848 age_stop(struct age_softc *sc)
2849 {
2850 	struct ifnet *ifp;
2851 	struct age_txdesc *txd;
2852 	struct age_rxdesc *rxd;
2853 	uint32_t reg;
2854 	int i;
2855 
2856 	AGE_LOCK_ASSERT(sc);
2857 	/*
2858 	 * Mark the interface down and cancel the watchdog timer.
2859 	 */
2860 	ifp = sc->age_ifp;
2861 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2862 	sc->age_flags &= ~AGE_FLAG_LINK;
2863 	callout_stop(&sc->age_tick_ch);
2864 	sc->age_watchdog_timer = 0;
2865 
2866 	/*
2867 	 * Disable interrupts.
2868 	 */
2869 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2870 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2871 	/* Stop CMB/SMB updates. */
2872 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2873 	/* Stop Rx/Tx MAC. */
2874 	age_stop_rxmac(sc);
2875 	age_stop_txmac(sc);
2876 	/* Stop DMA. */
2877 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2878 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2879 	/* Stop TxQ/RxQ. */
2880 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2881 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2882 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2883 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2884 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2885 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2886 			break;
2887 		DELAY(10);
2888 	}
2889 	if (i == 0)
2890 		device_printf(sc->age_dev,
2891 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2892 
2893 	 /* Reclaim Rx buffers that have been processed. */
2894 	if (sc->age_cdata.age_rxhead != NULL)
2895 		m_freem(sc->age_cdata.age_rxhead);
2896 	AGE_RXCHAIN_RESET(sc);
2897 	/*
2898 	 * Free RX and TX mbufs still in the queues.
2899 	 */
2900 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2901 		rxd = &sc->age_cdata.age_rxdesc[i];
2902 		if (rxd->rx_m != NULL) {
2903 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2904 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2905 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2906 			    rxd->rx_dmamap);
2907 			m_freem(rxd->rx_m);
2908 			rxd->rx_m = NULL;
2909 		}
2910         }
2911 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2912 		txd = &sc->age_cdata.age_txdesc[i];
2913 		if (txd->tx_m != NULL) {
2914 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2915 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2916 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2917 			    txd->tx_dmamap);
2918 			m_freem(txd->tx_m);
2919 			txd->tx_m = NULL;
2920 		}
2921         }
2922 }
2923 
2924 static void
2925 age_stop_txmac(struct age_softc *sc)
2926 {
2927 	uint32_t reg;
2928 	int i;
2929 
2930 	AGE_LOCK_ASSERT(sc);
2931 
2932 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2933 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2934 		reg &= ~MAC_CFG_TX_ENB;
2935 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2936 	}
2937 	/* Stop Tx DMA engine. */
2938 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2939 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2940 		reg &= ~DMA_CFG_RD_ENB;
2941 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2942 	}
2943 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2944 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2945 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2946 			break;
2947 		DELAY(10);
2948 	}
2949 	if (i == 0)
2950 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2951 }
2952 
2953 static void
2954 age_stop_rxmac(struct age_softc *sc)
2955 {
2956 	uint32_t reg;
2957 	int i;
2958 
2959 	AGE_LOCK_ASSERT(sc);
2960 
2961 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2962 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2963 		reg &= ~MAC_CFG_RX_ENB;
2964 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2965 	}
2966 	/* Stop Rx DMA engine. */
2967 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2968 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2969 		reg &= ~DMA_CFG_WR_ENB;
2970 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2971 	}
2972 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2973 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2974 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2975 			break;
2976 		DELAY(10);
2977 	}
2978 	if (i == 0)
2979 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2980 }
2981 
2982 static void
2983 age_init_tx_ring(struct age_softc *sc)
2984 {
2985 	struct age_ring_data *rd;
2986 	struct age_txdesc *txd;
2987 	int i;
2988 
2989 	AGE_LOCK_ASSERT(sc);
2990 
2991 	sc->age_cdata.age_tx_prod = 0;
2992 	sc->age_cdata.age_tx_cons = 0;
2993 	sc->age_cdata.age_tx_cnt = 0;
2994 
2995 	rd = &sc->age_rdata;
2996 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2997 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2998 		txd = &sc->age_cdata.age_txdesc[i];
2999 		txd->tx_desc = &rd->age_tx_ring[i];
3000 		txd->tx_m = NULL;
3001 	}
3002 
3003 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3004 	    sc->age_cdata.age_tx_ring_map,
3005 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3006 }
3007 
3008 static int
3009 age_init_rx_ring(struct age_softc *sc)
3010 {
3011 	struct age_ring_data *rd;
3012 	struct age_rxdesc *rxd;
3013 	int i;
3014 
3015 	AGE_LOCK_ASSERT(sc);
3016 
3017 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3018 	sc->age_morework = 0;
3019 	rd = &sc->age_rdata;
3020 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3021 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3022 		rxd = &sc->age_cdata.age_rxdesc[i];
3023 		rxd->rx_m = NULL;
3024 		rxd->rx_desc = &rd->age_rx_ring[i];
3025 		if (age_newbuf(sc, rxd) != 0)
3026 			return (ENOBUFS);
3027 	}
3028 
3029 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3030 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3031 
3032 	return (0);
3033 }
3034 
3035 static void
3036 age_init_rr_ring(struct age_softc *sc)
3037 {
3038 	struct age_ring_data *rd;
3039 
3040 	AGE_LOCK_ASSERT(sc);
3041 
3042 	sc->age_cdata.age_rr_cons = 0;
3043 	AGE_RXCHAIN_RESET(sc);
3044 
3045 	rd = &sc->age_rdata;
3046 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3047 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3048 	    sc->age_cdata.age_rr_ring_map,
3049 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3050 }
3051 
3052 static void
3053 age_init_cmb_block(struct age_softc *sc)
3054 {
3055 	struct age_ring_data *rd;
3056 
3057 	AGE_LOCK_ASSERT(sc);
3058 
3059 	rd = &sc->age_rdata;
3060 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3061 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3062 	    sc->age_cdata.age_cmb_block_map,
3063 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3064 }
3065 
3066 static void
3067 age_init_smb_block(struct age_softc *sc)
3068 {
3069 	struct age_ring_data *rd;
3070 
3071 	AGE_LOCK_ASSERT(sc);
3072 
3073 	rd = &sc->age_rdata;
3074 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3075 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3076 	    sc->age_cdata.age_smb_block_map,
3077 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3078 }
3079 
3080 static int
3081 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3082 {
3083 	struct rx_desc *desc;
3084 	struct mbuf *m;
3085 	bus_dma_segment_t segs[1];
3086 	bus_dmamap_t map;
3087 	int nsegs;
3088 
3089 	AGE_LOCK_ASSERT(sc);
3090 
3091 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3092 	if (m == NULL)
3093 		return (ENOBUFS);
3094 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3095 #ifndef __NO_STRICT_ALIGNMENT
3096 	m_adj(m, AGE_RX_BUF_ALIGN);
3097 #endif
3098 
3099 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3100 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3101 		m_freem(m);
3102 		return (ENOBUFS);
3103 	}
3104 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3105 
3106 	if (rxd->rx_m != NULL) {
3107 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3108 		    BUS_DMASYNC_POSTREAD);
3109 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3110 	}
3111 	map = rxd->rx_dmamap;
3112 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3113 	sc->age_cdata.age_rx_sparemap = map;
3114 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3115 	    BUS_DMASYNC_PREREAD);
3116 	rxd->rx_m = m;
3117 
3118 	desc = rxd->rx_desc;
3119 	desc->addr = htole64(segs[0].ds_addr);
3120 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3121 	    AGE_RD_LEN_SHIFT);
3122 	return (0);
3123 }
3124 
3125 static void
3126 age_rxvlan(struct age_softc *sc)
3127 {
3128 	struct ifnet *ifp;
3129 	uint32_t reg;
3130 
3131 	AGE_LOCK_ASSERT(sc);
3132 
3133 	ifp = sc->age_ifp;
3134 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3135 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3136 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3137 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3138 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3139 }
3140 
3141 static void
3142 age_rxfilter(struct age_softc *sc)
3143 {
3144 	struct ifnet *ifp;
3145 	struct ifmultiaddr *ifma;
3146 	uint32_t crc;
3147 	uint32_t mchash[2];
3148 	uint32_t rxcfg;
3149 
3150 	AGE_LOCK_ASSERT(sc);
3151 
3152 	ifp = sc->age_ifp;
3153 
3154 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3155 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3156 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3157 		rxcfg |= MAC_CFG_BCAST;
3158 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3159 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3160 			rxcfg |= MAC_CFG_PROMISC;
3161 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3162 			rxcfg |= MAC_CFG_ALLMULTI;
3163 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3164 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3165 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3166 		return;
3167 	}
3168 
3169 	/* Program new filter. */
3170 	bzero(mchash, sizeof(mchash));
3171 
3172 	if_maddr_rlock(ifp);
3173 	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3174 		if (ifma->ifma_addr->sa_family != AF_LINK)
3175 			continue;
3176 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3177 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3178 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3179 	}
3180 	if_maddr_runlock(ifp);
3181 
3182 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3183 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3184 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3185 }
3186 
3187 static int
3188 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3189 {
3190 	struct age_softc *sc;
3191 	struct age_stats *stats;
3192 	int error, result;
3193 
3194 	result = -1;
3195 	error = sysctl_handle_int(oidp, &result, 0, req);
3196 
3197 	if (error != 0 || req->newptr == NULL)
3198 		return (error);
3199 
3200 	if (result != 1)
3201 		return (error);
3202 
3203 	sc = (struct age_softc *)arg1;
3204 	stats = &sc->age_stat;
3205 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3206 	printf("Transmit good frames : %ju\n",
3207 	    (uintmax_t)stats->tx_frames);
3208 	printf("Transmit good broadcast frames : %ju\n",
3209 	    (uintmax_t)stats->tx_bcast_frames);
3210 	printf("Transmit good multicast frames : %ju\n",
3211 	    (uintmax_t)stats->tx_mcast_frames);
3212 	printf("Transmit pause control frames : %u\n",
3213 	    stats->tx_pause_frames);
3214 	printf("Transmit control frames : %u\n",
3215 	    stats->tx_control_frames);
3216 	printf("Transmit frames with excessive deferrals : %u\n",
3217 	    stats->tx_excess_defer);
3218 	printf("Transmit deferrals : %u\n",
3219 	    stats->tx_deferred);
3220 	printf("Transmit good octets : %ju\n",
3221 	    (uintmax_t)stats->tx_bytes);
3222 	printf("Transmit good broadcast octets : %ju\n",
3223 	    (uintmax_t)stats->tx_bcast_bytes);
3224 	printf("Transmit good multicast octets : %ju\n",
3225 	    (uintmax_t)stats->tx_mcast_bytes);
3226 	printf("Transmit frames 64 bytes : %ju\n",
3227 	    (uintmax_t)stats->tx_pkts_64);
3228 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3229 	    (uintmax_t)stats->tx_pkts_65_127);
3230 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3231 	    (uintmax_t)stats->tx_pkts_128_255);
3232 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3233 	    (uintmax_t)stats->tx_pkts_256_511);
3234 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3235 	    (uintmax_t)stats->tx_pkts_512_1023);
3236 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3237 	    (uintmax_t)stats->tx_pkts_1024_1518);
3238 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3239 	    (uintmax_t)stats->tx_pkts_1519_max);
3240 	printf("Transmit single collisions : %u\n",
3241 	    stats->tx_single_colls);
3242 	printf("Transmit multiple collisions : %u\n",
3243 	    stats->tx_multi_colls);
3244 	printf("Transmit late collisions : %u\n",
3245 	    stats->tx_late_colls);
3246 	printf("Transmit abort due to excessive collisions : %u\n",
3247 	    stats->tx_excess_colls);
3248 	printf("Transmit underruns due to FIFO underruns : %u\n",
3249 	    stats->tx_underrun);
3250 	printf("Transmit descriptor write-back errors : %u\n",
3251 	    stats->tx_desc_underrun);
3252 	printf("Transmit frames with length mismatched frame size : %u\n",
3253 	    stats->tx_lenerrs);
3254 	printf("Transmit frames with truncated due to MTU size : %u\n",
3255 	    stats->tx_lenerrs);
3256 
3257 	printf("Receive good frames : %ju\n",
3258 	    (uintmax_t)stats->rx_frames);
3259 	printf("Receive good broadcast frames : %ju\n",
3260 	    (uintmax_t)stats->rx_bcast_frames);
3261 	printf("Receive good multicast frames : %ju\n",
3262 	    (uintmax_t)stats->rx_mcast_frames);
3263 	printf("Receive pause control frames : %u\n",
3264 	    stats->rx_pause_frames);
3265 	printf("Receive control frames : %u\n",
3266 	    stats->rx_control_frames);
3267 	printf("Receive CRC errors : %u\n",
3268 	    stats->rx_crcerrs);
3269 	printf("Receive frames with length errors : %u\n",
3270 	    stats->rx_lenerrs);
3271 	printf("Receive good octets : %ju\n",
3272 	    (uintmax_t)stats->rx_bytes);
3273 	printf("Receive good broadcast octets : %ju\n",
3274 	    (uintmax_t)stats->rx_bcast_bytes);
3275 	printf("Receive good multicast octets : %ju\n",
3276 	    (uintmax_t)stats->rx_mcast_bytes);
3277 	printf("Receive frames too short : %u\n",
3278 	    stats->rx_runts);
3279 	printf("Receive fragmented frames : %ju\n",
3280 	    (uintmax_t)stats->rx_fragments);
3281 	printf("Receive frames 64 bytes : %ju\n",
3282 	    (uintmax_t)stats->rx_pkts_64);
3283 	printf("Receive frames 65 to 127 bytes : %ju\n",
3284 	    (uintmax_t)stats->rx_pkts_65_127);
3285 	printf("Receive frames 128 to 255 bytes : %ju\n",
3286 	    (uintmax_t)stats->rx_pkts_128_255);
3287 	printf("Receive frames 256 to 511 bytes : %ju\n",
3288 	    (uintmax_t)stats->rx_pkts_256_511);
3289 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3290 	    (uintmax_t)stats->rx_pkts_512_1023);
3291 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3292 	    (uintmax_t)stats->rx_pkts_1024_1518);
3293 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3294 	    (uintmax_t)stats->rx_pkts_1519_max);
3295 	printf("Receive frames too long : %ju\n",
3296 	    (uint64_t)stats->rx_pkts_truncated);
3297 	printf("Receive frames with FIFO overflow : %u\n",
3298 	    stats->rx_fifo_oflows);
3299 	printf("Receive frames with return descriptor overflow : %u\n",
3300 	    stats->rx_desc_oflows);
3301 	printf("Receive frames with alignment errors : %u\n",
3302 	    stats->rx_alignerrs);
3303 	printf("Receive frames dropped due to address filtering : %ju\n",
3304 	    (uint64_t)stats->rx_pkts_filtered);
3305 
3306 	return (error);
3307 }
3308 
3309 static int
3310 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3311 {
3312 	int error, value;
3313 
3314 	if (arg1 == NULL)
3315 		return (EINVAL);
3316 	value = *(int *)arg1;
3317 	error = sysctl_handle_int(oidp, &value, 0, req);
3318 	if (error || req->newptr == NULL)
3319 		return (error);
3320 	if (value < low || value > high)
3321 		return (EINVAL);
3322         *(int *)arg1 = value;
3323 
3324         return (0);
3325 }
3326 
3327 static int
3328 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3329 {
3330 	return (sysctl_int_range(oidp, arg1, arg2, req,
3331 	    AGE_PROC_MIN, AGE_PROC_MAX));
3332 }
3333 
3334 static int
3335 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3336 {
3337 
3338 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3339 	    AGE_IM_TIMER_MAX));
3340 }
3341